

Moray Ness GSI3D ZOOMing in ?

GSI3D Consortium Workshop 1-2 March 2011, BGS Keyworth

Outline

- Background ~ Where? Context? Drivers?
- Designing the work Programme ~
 Multidisciplinary team work (field and office)
- Making the framework models (local detailed framework, nested in a regional generalised framework)
- Reattributing the detailed model/How much detail do we need?
- · The future

EGS 1835

Background Flooding in Forres

A large part of the town flooded 1997, 2001

Muckle Spate of August 1829

In parts of the catchment flow was estimated as >20 times the normal discharge at the mouth of the Thames

At Findhorn Bridge 🔵 flow was >7 times the Thames

New Flood Alleviation Schemes being designed

Before it reaches the sea the River Findhorn flows within a narrowly confined valley or numerous gorges cut into bedrock

The Findhorn flowing across psammites of the Dava Subgroup up-stream of Mains of Sluie

© NERC All rights reserved

Background Flooding in Forres

Background Flooding in Forres

Estimating permeability

- 1. Pumping tests
- 2. Particle size distribution
- 3. Slug tests
- 4. Geology and modelling: putting it all together

Pumping tests: transmissivity

high T > 1000 m²/d Great variability No obvious pattern

Modelled groundwater flooding

Measuring permeability at outcrop

Hydrogeologists – test permeability *in situ*Geologists – tell us exactly what unit we are in.

Engineering geologists – do standard tests

and descriptions

© NERC All rights reserved

Guelph permeameter

Make auger hole 10 cm deep

Difficult due to location of outcrops

Carry out test (<1 hour)

Range 0.001 - 20 m/d

Wide range over all deposits, but there is a statistically significant correlation between engineering parameters and hydraulic conductivities

Relating in-situ permeability, particle size and relative density of superficial deposits in a heterogeneous catchment. MacDonald· et al. Journal of Hydrology (submitted)

© NERC All rights reserved

The Regional model and the Forres Model

Regional Model

Simple 6 layer model

Superficial Deposits (Glacial & Postglacial unconsolidated materials)

Sedimentary rocks

Jurassic (mudstones & sandstones)

Permian/Triassic (sandstones)

Devonian (Old Red Sandstone)

Major igneous intrusions (mainly granites)

Ancient crystalline metamorphic basement

Extends on the southern flank of Moray Firth from Buckie to Inverness

© NERC All rights reserved

Exploded regional model

Distribution of Superficial Deposits

Sedimentary Rocks viewed from above

Complete model

A multilayer Zoom Regional Groundwater Model has been created for this area incorporating this data

© NERC All rights reserved

Extent of model with rivers and runoff ratio

- •Recharge model over the Moray region generated using ZOODRM
- •Runoff ratio was calculated from the extent and nature of the surface deposits

Transmissivity in the model

3 layer model: Superficial deposits, Sedimentary & Crystalline rocks

- •Transmissivity = thickness x permeability
- •Thickness from GSI3D model; permeability from field measurements
- Results: plausible groundwater levels in superficial deposits and flows in rivers

Forres Model

Complex model 47 layers including lenses

Bedrock ~ Crystalline basement (no distinction between country rock and intrusions: basal conglomerate, sandstone - but no faulting (modelled as 'stepped' profiles)

Remaining 44 layers are Quaternary (Superficial Deposits) + Artificial deposits (Flood prevention embankments are important)

© NERC All rights reserved

The new geological map is the starting point

150 km² of ground covering all of the Forres urban area and the lower reaches of the River Findhorn to the coast

A complex, locally thick, sequence of aeolian, marine, glacimarine, fluvial, glaciofluvial and glacial sediments overlying Middle & Upper ORS and crystalline basement rocks

> 480 data points: boreholes, wells, trial pits and logged sections

Local Forres ZOOM Model

- 3 layer model shallow superficial, deep superficial, bedrock in hydraulic connection
- based on GSI3D model simplified according to permeability from field measurements
- •Innovative the layer topography is included from GSI3D

© NERC All rights reserved

Hydraulic Conductivities for Layer 1 (Shallow Superficial Deposits)

Groundwater Results from the local model

- •Groundwater levels close to surface in Forres groundwater flooding
- •Some Superficial deposits on higher ground are dry
- •Small groundwater flow cells caused by discharges to local rivers

© NERC All rights reserved

2011 and beyond

ONGOING

Reattribution of Forres model with geotechnical properties – end March 2011. Licence negotiations with consultants for Lithoframe of portion of detailed model.

NEW START

GSI3D framework building will focus on Inverness city and the surrounding Great Glen Area; baseline data collection started Winter 2010-11

Drivers:

- 1. Last major urban area in the Scottish Highlands without updated geological coverage (land contamination issues)
- 2. Major Energy Infrastructure and Transport Improvement projects
- 3. Flood and slope stability risk

Extending the framework models

