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Abstract. The paper assesses the range of changes from a comprehensive set of scenarios 

describing uncertainties due to climate modelling and climate projections for the 2080s.  

The study focuses on the mean annual flow ANN and the low flow regime indicator Q95.  

The changes are represented by confidence bands including 90% of the future simulations 

and are compared with estimated variations in ANN and Q95 due to natural climatic 

variability.  The climatic projections include uncertainty in future emissions of 

greenhouse gases, in modelling global climate and in downscaling methodologies, while 

the natural variability is assessed through data resampling.  Results are analysed to assess 

which of the considered uncertainties is largest for one British test catchment, and to 

provide guidance for incorporating uncertainty in future impact studies. 

Résumé. L’article analyse les changements dus à un ensemble de scenarii décrivant les 

incertitudes relatives à la modélisation climatique pour la période 2080.  L’étude se 

concentre sur le débit moyen annuel ANN et l’indicateur d’étiage Q95.  Ces changements 

sont représentés par une bande de confiance comprenant 90% des simulations futures et 
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sont comparés aux variations de ANN et Q95 dues à la variabilité climatique.  Les 

incertitudes sur les projections climatiques tiennent compte des incertitudes sur les 

futures émissions de gaz à effet de serre, sur les modèles climatique globaux et sur les 

méthodes de désagrégation, et la variabilté naturelle est estimée par re-échantillonnage.  

Les résultats sont analysés pour évaluer lesquelles des incertitudes considérées sont les 

plus importantes pour un basin versant test en Grande Bretagne, et pour fournir des 

guides sur la prise en compte de l’incertitude dans des études de changement climatique. 

Key words: Water resource; Climate change impact; hydrological modelling; uncertainty 

Mots clefs: Resource en eau; impacts du changement climatique; modélisation 

hydrologique; incertitude 

INTRODUCTION 

There is increasing concern about the impact of climate change on water resources, and 

potential implications for water resource management.  According to the IPCC, future 

GCMs projections indicate that temperature and precipitation patterns are likely to 

change in Britain, with summer runoff, water availability and soil moisture likely to 

decrease in southern Europe, and both variables (temperature and precipitation) likely to 

increase everywhere in Europe (Intergovernmental Panel on Climate Change, 2001).  

Global Climate Models (GCMs) provide us at present with the most reliable and robust 

methods for assessing the response of the climate system to changes in forcing.  These 

GCMs are based upon the fundamental laws of physics and on assumptions on the 

content of greenhouse gases (in terms of CO2 equivalent) in the atmosphere, such as the 

IPCC-SRES scenarios (based on assumptions on societal development).  However, it is 
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recognised that different climate models provide different projections.  For example, 

Prudhomme et al. (2003) found that GCMs uncertainty was larger than emission 

uncertainty in the impact on the flood regime in Britain, and recommended to consider 

different GCMs when undertaking any impact study on the hydrological regime.   

GCMs are subject to a number of limitations, in particular the limited spatial detail of the 

relatively coarse grid of a GCM and consequently the inadequacy to model appropriately 

the short-time scale variability.  Techniques to downscale the results of the GCM 

integrations to the appropriate scale for climate change impact assessments in hydrology 

have been developed to overcome the limitations of coarse scales, such as: 

• Complex models, such as dynamical downscaling, use atmospheric general circulation 

model (AGCMs) outputs as limiting conditions for high-resolution regional climate 

models (RCMs) and provide daily climate outputs at a 50x50km grid over Britain; 

• Statistical downscaling techniques are simpler and computationally less expensive than 

dynamical models and can be repeatedly re-run to generate large ensembles of daily 

precipitation series at the point/catchment scale for uncertainty assessment;  

• Simple models, such as the delta method, use monthly factors (average changes for 

each GCMs grid) to perturb observed series to produce changed series (e.g. 

Prudhomme et al., 2003). 

METHODOLOGY 

Climate change uncertainty 

Two main sources of uncertainty in climate change modelling have been considered. 
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GCMs and emission scenarios uncertainty. Three GCMs were considered: HadCM3 

from the Hadley Centre for Climate Prediction and Research (Met.Office, UK); 

CCGCM2, from the Canadian Centre for Climate Modelling and Analysis (CCCMA; 

Canada) and CSIRO-Mk2 from the Commonwealth Science and Industrial Research 

Organisation (CSIRO, Australia).  These were chosen because daily outputs of range of 

climate variables were available through the LINK project IPCC-DDC (http://ipcc-

ddc.cru.uea.ac.uk/).  For the emission uncertainty, two SRES scenarios were considered, 

A2 and B2, that encompass most of the range of the SRES scenarios.  Results from A2 

and B2 runs are considered together when assessing uncertainty in GCMs and 

downscaling techniques, and separately when assessing emission scenarios uncertainty. 

Uncertainty in downscaling methodologies. Three downscaling techniques have been 

considered: (1) dynamical downscaling, with daily outputs from the Hadley Centre’s 

regional model, HadRM3H at a 25x25-km grid-scale, driven indirectly from the HadCM3 

simulation under the A2 scenario.  (2) Statistical downscaling, with the Statistical 

DownScaling Model (SDSM), described as a hybrid between regression-based and 

stochastic weather generation techniques (Wilby et al., 2002).  It uses empirical 

regression equations between large-scale atmospheric conditions and the observed daily 

local weather conditions, combined with a stochastic element to improve the reproduction 

of daily variability not suitably captured by the large-scale variables. In this study, 

20 separate runs were made for each of the GCM and emission scenario combinations 

(Osborn et al., 2005).  The final regression equation models were chosen after various 

combinations of predictors were tested and the model verified on an independent period.  

(3) A simple ‘delta’ (or proportional) approach that creates scenarios in perturbing 

 5

http://ipcc-ddc.cru.uea.ac.uk/
http://ipcc-ddc.cru.uea.ac.uk/


observed baseline series according to average monthly factors of change (e.g. a +10% 

factor for January leads to a new series where all observed daily records for January are 

increased by 10% to produce a new future series; see Prudhomme et al., 2003).  This is 

the most commonly used technique in climate change impact studies.  The factors used 

are the four 'UKCIP02 scenarios' (i.e. monthly factors of change), specifically developed 

for impact studies in Britain by the UK Climate Impact Project (Hulme et al., 2002) from 

HadRM3 runs with four SRES emissions scenarios. 

A schematic of the different uncertainty sources considered and the corresponding 

scenarios is provided in Fig. 1 (for the future time horizon 2080s). 

PE scenarios. These were derived using the delta method, with factors of change 

calculated using the Penman Monteith equations (Allen et al., 1994) for PE estimates 

from the relevant climate variables from all the combinations of GCMs, RCMs and 

emissions scenarios. 

Uncertainty due to natural climate variability 

Natural variability. Oceanic climate such as observed in the British Isles is extremely 

variable, and the inter-annual climatic variability is significant.  Yet, this natural climate 

variability (hereafter natural variability) is generally ignored in climate impact studies.  A 

simple methodology of block resampling with replacement has been used to define and 

incorporate natural climate variability.  The resampling procedure randomly selects 3-

month blocks from the original series (respecting the annual sequences) to create a new 

series the same length as the original.  A three month resampling was preferred to a 1-

month resampling so that the medium-term seasonal structure of the rainfall is 
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maintained, as this is particularly important for the recharge process.  For this study, 

99 new series were produced using that method, thus providing a set of 100 scenarios 

including the observed series. 

Climate variability.  Natural variability, as defined with resampling of short records of 

observed series, does not incorporate any extreme event that is not included in the 

observations nor any change in the inter-seasonal variability (due to the 3-month 

resampling procedure, the original 3-months sequences are maintained in all resamples).  

One way of more extensively capturing the climate variability is via the modelling of the 

climate.  The random element built in SDSM introduces some variability in each of the 

simulated series and hence has been used to derive 20 daily precipitation series for each 

GCM representative of the baseline time horizon (1961-1990).  A further 5 block-

resamplings of each of the 20 series was done to finally produce 100 scenarios (same 

scenario group size as used to assess the natural variability). 

Only precipitation series were derived with SDSM.  For current climate, observed PE 

series were used for simulations of current conditions except for dynamical downscaling 

(modelled). 

Calculation of changes and uncertainty 

Reference indicator and calculation of changes. The reference indicators are calculated 

from the daily flow series simulated with the observed rainfall and PE (and NOT from 

the flow records).  This is to eliminate the bias due to hydrological model errors.  For 

each simulated flow series, an indicator is calculated and the difference with the reference 
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indicator expressed as percentage of that reference value.  For example, for a reference 

value of 20 and a scenario value of 22, the change is 10%. 

Uncertainty.  For one indicator type and a given source of uncertainty, the uncertainty is 

represented by the range comprising 90% of the simulated indicators (or 90% Confidence 

Interval CI).  Ranking all the 100 indicators in ascending order, CI is defined by the 5th 

and the 95th values (corresponding to the 5th and 95th percentiles).  The 25th and 75th 

percentiles are also derived, showing the range comprising half of the simulations around 

the median.  These percentiles are graphically shown by a box-plot diagram, with the 

whiskers representing the 5th (lower) and 95th (upper) percentiles, and the black boxes the 

25th (lower limit) and 75th (upper limit) percentiles (e.g. Fig. 2).  For example, let's 

consider the results from the SDSM downscaling method with the outputs from the 

Hadley Centre Model HadCM3 run for the 2080s time horizon with the A2 SRES 

emission scenario.  The 100 precipitation series (the 20 SDSM series, each resampled 5 

times) and the same future PE series are used in the hydrological model to produce 100 

daily flow series.  The indicators are calculated for each of the 100 simulated flow series, 

and ranked to provide the 5th, 25th, 75th and 95th percentiles values of the Confidence 

Interval. 

CASE STUDY 

Catchment 

The catchment selected is the Thrushel at Tinday, a rural catchment with grazing and low 

grade agriculture located in South West of Britain in Cornwall (Marsh and Lees, 2003).  

It has an area of 113 km2 and an average altitude of 175 m.  The mean annual rainfall is 
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1195 mm; the Base Flow Index, a measure of permeability of the catchment, is 0.42, 

indicating that around 42% of the river flow is from stored sources.  The catchment was 

selected from a pool of good hydrometric quality, natural, gauged catchments from the 

National River Flow Archive held at CEH-Wallingford using the classification system of 

Gustard et al. (1992).  

Data used 

Daily time series of catchment average precipitation for the study period 1969-97 was 

derived using the Meteorological Office daily rainfall library and a modified version of 

the Triangular Planes interpolation methodology of Jones (1983).  Time series of 

potential evaporation (PE) was estimated for each catchment from the Meteorological 

Office of Rainfall and Evaporation Calculation System (MORECS) II potential 

evaporation estimates available at a 40 km grid resolution. 

Hydrological model 

The hydrological model used is based on the Probability Distributed Model theory 

(Moore, 1985) that represents the soil storage capacity as a probability distribution and 

has two second-order linear routing reservoirs simulating quick and slow flows.  The 

model includes an interception storage term and a soil-moisture related drainage term and 

has five free parameters for calibration.   The parameters of the equations are calibrated 

so that the river flow time series simulated by the model provide a good match with the 

observed river flow records of the same period as the input data (bias and errors 

minimized).  Evaluation is done on a separate period than the calibration.  Uncertainties 

due to hydrological modelling are not discussed in this paper. 
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RESULTS 

Two indicators of river flow are analysed: the annual mean flow (ANN) and the flow 

exceeded or equalled 95% of the time (Q95).  For practicality, the results are named after 

the GCM and the downscaling technique used to derive the input series.  Results are 

shown as box-plot graphs (Fig. 2 and Fig. 3). 

Current climate uncertainty 

For the current climate, the variation (in % change compared to the reference value) of 

ANN is smaller than that of Q95 (Fig.2 and Fig.3, baseline scenarios).  Because of the 

small absolute value of Q95 (Q95 in this catchment is about 10% of ANN), large 

percentage variations in Q95 can be associated to a small absolute change.  This larger 

uncertainty size for Q95 is in no way reflecting a poor modelling performance of the low 

flows. 

Uncertainty due to 'climate variability' (as defined by running a range of scenarios 

derived by SDSM simulations and resampling techniques under current conditions) is 

smaller than the natural variability (as defined by running resamples of observed series) 

for ANN with the CI size varying from 8.7% (CCGCM) to 10.4% (CSIRO).  This may be 

because the stochastic element integrated within SDSM does not produce extreme 

scenarios.  Conversely, the climate variability is larger than natural variability for Q95 

(from 36.7% (CSIRO) to 43% CCGCM)).  For all GCMs ANN is underestimated and 

Q95 overestimated.  Those results highlight the difficulty that GCMs encounter in 

modelling the climate (and in particular precipitation).  The potential bias in reproducing 
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current climate should always be borne in mind when analysing any projected changes in 

climate change impact studies. 

Results from HadRM3 outputs show significant bias, with overestimation of ANN 

(ranging from 42 to 61%) and large uncertainty for Q95 (62.3%).  The difference in the 

sign of the ‘errors’ between statistical and dynamical downscaling of the Hadley Centre 

model is partly explained by the bias correction that is introduced within the SDSM 

calibration procedure.  This bias correction is absent from the HadRM3 precipitation 

outputs that were directly used as input of the hydrological model. 

Future climate uncertainty 

Uncertainty (i.e. size of 90% CI) associated with SDSM-derived scenarios increases for 

all three GCMs for 2080s future projections compared to current climate projections 

(ANN) or remains the same (Q95).  All scenarios show a decrease in ANN, with changes 

in the median between current and future projections ranging between 3.9% (CSIRO) to 

14.4% (CCGCM) (Fig. 2).  Compared to the reference indicators, the decreases in ANN 

appear much greater, up to a 37.2% median decrease for CCGCM (Fig. 2).  This is 

because all GCMs underestimate ANN during current conditions and that 

underestimation is propagated to future projections.  Uncertainty due to each downscaling 

methodology (SDSM-HadCM3 or HadRM3) is of similar magnitude for ANN (around 

15%), but they are very large discrepancies in terms of the sign of the changes of the 

projections by the different methods: HadRM3 scenarios show an increase of ANN in 

2080s when compared to natural variability (+50.4% for the median of simulations), but 

these changes are insignificant when comparing current and future projections of 
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HadRM3 (current median simulation has a +52.3% bias compared to the reference value. 

the annual pattern of HadRM3 projections, however, shows considerable variation (not 

shown) between the two time horizons); SDSM-HadCM3 projects a decrease between 6.2 

and 11.7%.  The overall uncertainty in ANN due to downscaling is therefore extremely 

large for that catchment. 

Q95 is also projected to decrease by the 2080s (Fig. 3) by all GCMs and downscaling 

methods, but the magnitude of that decrease greatly differs from one GCM to another, 

with HadCM3 projecting the largest reduction (median of changes by both A2 and B2 

scenarios of -56.2%) and CSIRO the smallest (-16.5%).  Unlike for ANN, the 

downscaling methods using the Hadley Centre GCM show consistent results in terms of 

sign of change and magnitudes, with a reduction of Q95 ranging from -39 to -70% 

(SDSM-HadCM3), -53 to -67% for HadRM3, and -47 to -71 for UKCIP02 (factors). 

The uncertainty due to the emission scenarios (range between A2 and B2 for each GCM) 

is smaller than that of GCMs or downscaling methodology for ANN: uncertainty due to 

emission is about half of that of GCMs for both ANN and Q95, and smaller than that due 

to downscaling methods for ANN and about the same size for Q95.  This is reflected by 

the UKCIP02 range not capturing the full range of uncertainty of climate change impact 

due to other sources than emission. 

CONCLUSION 

The results obtained are specific for this catchment: they are only examples of how the 

uncertainty in hydrological modelling and climate change impact study can be assessed.  

They are in no way an assessment of the quality of any of the modelling techniques 
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considered.  However, they depict features inherent to climate change modelling that 

should be considered when undertaking a climate change impact study: 

• Different flow indicators can show different changes.  Assessment studies should 

specify the indicator analysed and results should not be generalised further; 

• Natural variability comprises some uncertainty. It is important to compare potential 

climate change impact and its uncertainty to uncertainty due to natural variability ;  

• GCMs (downscaled with sophisticated or simple techniques) do not always accurately 

reproduce current climate (see the modelling of the current climate).  Their ability to 

do so should be borne in mind when assessing climate change impact; 

• For future projections, GCMs carry the largest uncertainty: it would be misleading to 

only undertake an impact study solely from outputs from one single GCM ; 

• Downscaling uncertainty can be significant: statistical methods compensate for 

modelling errors in the current climate, but the assumptions they are based upon may 

not remain true in the future; dynamical models cater for changes in the atmospheric 

processes producing precipitation, but retaining potential bias in the model; 

• Uncertainty in the emission scenarios is the smallest of the GCM-associated 

uncertainties.  Instead of undertaking impact studies with several scenarios from 

different emission assumptions but the same GCM (e.g. UKCIP02 scenarios), it 

would be preferable to use different GCM outputs under the same emission 

assumption, to carry more of the uncertainty surrounding future climate projections. 

In this study, the hydrological model parameters were assumed to remain valid under 

changing climatic conditions, and the same sets used both for current and future 
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simulations.  However, there is concern that this assumption may not be true under drier, 

hotter conditions where the soil moisture deficit may be aggravated and hence 

hydrological processes modified.  This was not tackled by the study, firstly because of the 

absence of available records long enough to show different periods with significantly 

different climate characteristics for two parameter sets to be calibrated; secondly because 

the analysis focused on comparing GCMs uncertainty with natural variability under 

current conditions, and how GCM uncertainty is projected to vary in the future, all the 

rest being equal. 
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Captions 

Fig. 1. Schematic diagram of graph of the suite of scenarios considered in the study to 

define each uncertainty 

Fig. 2. Uncertainty in mean annual flow ANN for baseline climate due to hydrological 

modelling (3 boxes in right-hand side), climate variability and downscaling (baseline-

marked scenarios), and for future projections 2080s due to GCMs (all 2080s scenarios), 

downscaling (HadCM3, HadRM3 and UKCIP02 scenarios) and emission scenarios 

(legend with A2 and B2 scenarios). Box plots show (from bottom to top) the 5th (lower 

whisker), 25th (lower limit of black box), 75th (higher limit of black box) and 95th (higher 

whiskers) percentiles.  The black box contains 50% of the simulations around the median. 

Fig. 3. Uncertainty in Q95 for baseline climate due to hydrological modelling (3 boxes in 

right-hand side), climate variability and downscaling (baseline-marked scenarios), and 

for future projections 2080s due to GCMs (all 2080s scenarios), downscaling (HadCM3, 

HadRM3 and UKCIP02 scenarios) and emission scenarios (legend with A2 and B2 

scenarios).  Box plots as in Fig. 2 
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Fig. 1 
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Fig. 2 
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