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Abstract 12 

The Moine Thrust Zone in the Scottish Highlands developed during the Scandian 13 

Event of the Caledonian Orogeny, and now forms the boundary between the 14 

Caledonian orogenic belt and the undeformed foreland. The Scandian Event, and the 15 

formation of the Moine Thrust Zone, have previously been dated by a range of 16 

isotopic methods, and relatively imprecise ages on a suite of alkaline intrusions 17 

localised along the thrust zone have provided the best age constraints for deformation. 18 

Recent BGS mapping has improved our understanding of the structural relationships 19 

of some of these intrusions, and this work is combined with new U-Pb dates in this 20 

paper to provide significantly improved ages for the Moine Thrust Zone. Our work 21 

shows that a single early intrusion (the Glen Dessarry Pluton) was emplaced within 22 

the orogenic belt to the east of the Moine Thrust Zone at 447.9 ± 2.9 Ma. A more 23 

significant pulse of magmatism centred in the Assynt area, which temporally 24 

overlapped movement in the thrust zone, occurred at 430.7 ± 0.5 Ma. Movement in 25 

the thrust zone had largely ceased by the time of emplacement of the youngest 26 

intrusions, the late suite of the Loch Borralan Pluton, at 429.2 ± 0.5 Ma, and the Loch 27 

Loyal Syenite Complex.  28 

[end of abstract] 29 

 30 
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 31 

The Caledonian orogenic belt extends from Svalbard, through Scandinavia, Eastern 32 

Greenland and the British Isles, to the Appalachian mountains of North America, and 33 

is among the world’s most well-studied collisional orogens. Caledonian orogenesis 34 

comprised a number of separate events, which are attributed to the closure of the 35 

Iapetus Ocean during Ordovician to Silurian time, and the subsequent oblique 36 

collision of three crustal blocks, Laurentia, Baltica and Eastern Avalonia (e.g. Soper 37 

& Hutton 1984; Pickering et al. 1988; Soper et al. 1992; McKerrow et al. 2000; 38 

Dewey & Strachan 2003). In Scotland and Ireland, which were part of Laurentia, 39 

early orogenic activity resulted from an Ordovician arc-continent collision, the 40 

Grampian Event (Lambert & McKerrow 1976; Soper et al. 1999). Metamorphism 41 

associated with this event has been dated at 465 – 470 Ma (Oliver et al. 2000; Chew 42 

et al. 2008). This was followed by collision of Baltica with Laurentia during the 43 

Silurian (c. 435-425 Ma), causing the Scandian Event, which was first defined in 44 

Scandinavia (Gee, 1975) and later recognised in Scotland (Coward 1990; Dallmeyer 45 

et al. 2001; Kinny et al. 2003). The western margin of the Caledonian Orogen in 46 

North-west Scotland is defined by the Moine Thrust Zone, which runs from Loch 47 

Eriboll on the north coast to the Isle of Skye (Fig. 1), and which formed during the 48 

Scandian Event.  49 

Constraints on the timing of the Scandian Event in North-west Scotland are based on 50 

two methods: the application of U-Pb geochronology to igneous intrusions with well-51 

defined structural relationships (e.g. van Breemen et al. 1979a,b; Halliday et al. 1987; 52 

Rogers & Dunning 1991; Stewart et al. 2001; Kinny et al. 2003; Kocks et al. 2006); 53 

and direct dating of minerals grown during ductile deformation (Kelley 1998; 54 

Freeman et al. 1998; Dallmeyer et al. 2001). In this paper we present the results of an 55 

integrated structural and geochronological study of alkaline intrusions that occupy 56 

differing structural settings along the Moine Thrust Zone. We focus in particular on 57 

the classic area of the Moine Thrust Zone in Assynt, which has recently been 58 

remapped (Goodenough et al. 2004; British Geological Survey 2007; Krabbendam & 59 

Leslie 2010). The data reported here place tight constraints on the age of the Moine 60 

Thrust Zone as well as the timing of ductile deformation within internal sectors of the 61 

orogen, and thus have implications for Caledonian tectonic models in this part of the 62 

North Atlantic region. 63 
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Regional setting 64 

The Moine Thrust Zone defines the western margin of the Caledonian Orogen in 65 

Scotland (Fig. 1). To the west lies the undeformed foreland, first described by Peach 66 

et al. (1907). The foreland basement comprises Archaean to Palaeoproterozoic 67 

gneisses of the Lewisian Gneiss Complex (Park et al. 2002). An unconformity 68 

separates the basement from a thick succession of  Meso- to Neoproterozoic clastic 69 

sedimentary rocks belonging to the Stoer, Sleat and Torridon groups, commonly 70 

grouped under the umbrella term ‘Torridonian’ (Stewart 2002). The basement 71 

gneisses and Torridonian succession are both unconformably overlain by a Cambro-72 

Ordovician sedimentary sequence. This succession, which is dominated by quartz 73 

arenites in its lower part (Ardvreck Group) and dolostones in its upper part (Durness 74 

Group), was deposited on the passive margin of eastern Laurentia following opening 75 

of the Iapetus Ocean (Park et al. 2002). Structurally above, and to the east of, the 76 

Moine Thrust Zone lie metasedimentary rocks of the Early Neoproterozoic Moine 77 

Supergroup (Strachan et al. 2002). 78 

The Moine Thrust Zone comprises a series of thrust sheets, made up of rocks that are 79 

correlated with the foreland sequences (Lapworth 1883; Peach et al. 1907; Elliott & 80 

Johnson 1980; Coward 1983; Butler 1987). It is widest in the Assynt Culmination 81 

(Figs 2, 3) where the component units of the foreland are interleaved in a series of 82 

major thrust sheets (Peach et al. 1907; Elliott & Johnson 1980; Krabbendam & Leslie 83 

2004; British Geological Survey, 2007). The general consensus is that most thrusts 84 

propagated in ‘piggy-back’ sequence towards the foreland (Elliott & Johnson 1980; 85 

Coward 1985). The structurally highest and hence oldest thrust is the ductile Moine 86 

Thrust, with associated mylonites derived both from the foreland succession and the 87 

overlying Moine Supergroup. Below the Moine Thrust, the Ben More Thrust carries 88 

Lewisian gneisses, Torridon Group and Ardvreck Group rocks in its hangingwall. The 89 

underlying Glencoul Thrust carries Ardvreck Group quartz arenites and Lewisian 90 

gneisses. The Glencoul Thrust is well-defined in northern Assynt but becomes more 91 

difficult to trace southwards, splaying into a complex imbricate system to the east of 92 

Inchnadamph (Elliott & Johnson 1980; Krabbendam & Leslie 2010). The structurally 93 

lowest and youngest thrust is the Sole Thrust, with imbricates of the Durness Group 94 

and the upper part of the Ardvreck Group in its hangingwall (Fig. 4). The 95 

temperatures of deformation within the Moine Thrust Zone are difficult to establish, 96 
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but studies of conodont colour indices and illite crystallinity have indicated a likely 97 

maximum temperature range in the lower thrust sheets of 225-325°C (Johnson et al. 98 

1985; M.P. Smith pers. comm.). Deformation temperatures associated with ductile 99 

deformation in the Moine Thrust sheet were > 500°C (Thigpen et al. 2010).  100 

A broadly foreland-propagating sequence of thrusting is indicated by the way in 101 

which the structurally highest thrusts are folded by the development of duplexes in 102 

their footwalls (Elliott & Johnson 1980; Fig. 4). Nonetheless, some structures have an 103 

‘out-of-sequence’ geometry, that has been suggested to result from late movement 104 

(Coward 1982, 1983, 1985; see also Holdsworth et al. 2006) or simultaneous slip on 105 

an array of imbricate thrusts (Butler 2004). Thus the ductile Moine Thrust in central 106 

and northern Assynt is early in the structural sequence, but in southern Assynt it is 107 

represented by a late, out-of-sequence brittle structure (Coward 1985). However, the 108 

overall displacement on any out-of-sequence structures is not thought to be regionally 109 

significant. The construction of balanced cross-sections across the Assynt 110 

Culmination indicates a total displacement on the Moine Thrust and lower thrusts 111 

within the Moine Thrust Zone of up to 100 km (Elliott & Johnson 1980), to which can 112 

be added an unknown amount of displacement related to development of the 113 

mylonites within the overlying Moine rocks. 114 

East of the Moine Thrust, metasedimentary rocks of the Neoproterozoic Moine 115 

Supergroup underlie much of the Northern Highlands (Fig. 1), and are disposed in a 116 

series of east-dipping ductile thrust nappes (e.g. Barr et al. 1986; Holdsworth 1989; 117 

Holdsworth et al. 2001; Strachan et al. 2002; Alsop et al. 2010; Leslie et al. 2010). 118 

The effects of the earlier Grampian Event appear to be restricted to the eastern and 119 

structurally higher Sgurr Beag and Naver nappes (Kinny et al. 1999; Rogers et al. 120 

2001; Cutts et al. 2010). In contrast, in the western nappes below the Naver and Sgurr 121 

Beag thrusts (Fig. 1), widespread foreland-propagating ductile thrusting and folding 122 

accompanied by amphibolite-facies metamorphism is assigned to the Scandian Event, 123 

and culminated in the development of the Moine Thrust Zone (Strachan & 124 

Holdsworth 1988; Holdsworth 1989; Dallmeyer et al. 2001; Strachan et al. 2002; 125 

Kinny et al. 2003; Holdsworth et al. 2006, 2007; Alsop et al. 2010; Leslie et al. 2010; 126 

Krabbendam et al. in press). Above the Sgurr Beag Thrust, Scandian deformation led 127 

to the development of regional-scale upright folding in a zone known as the Northern 128 

Highland Steep Belt (Roberts et al. 1984; Strachan & Evans 2008). 129 
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Syn-tectonic metagranites within the western part of the Moine outcrop have yielded 130 

U-Pb (SIMS) zircon ages of c. 430-415 Ma (Kinny et al. 2003; Alsop et al. 2010), 131 

broadly constraining the age of the Scandian Event. Dating of micas in the Moine 132 

Thrust mylonites, using the Rb-Sr, K-Ar and Ar-Ar isotope systems (Kelley 1988; 133 

Freeman et al. 1998; Dallmeyer et al. 2001), has also yielded a range of Silurian to 134 

Devonian ages. All of these studies pointed to the continuation of deformation along 135 

the Moine Thrust after 430 Ma, and Freeman et al. (1998) suggested that transfer of 136 

movement from the Moine Thrust on to the underlying Ben More Thrust may have 137 

occurred at c. 430 Ma. In order to further constrain the timing of regional deformation 138 

and marginal thrusting we now focus on the structural setting and U-Pb 139 

geochronology of alkaline intrusions that intrude the Moine Thrust Zone and Moine 140 

Supergroup.  141 

 142 

Alkaline to calc-alkaline magmatism in the North-west Highlands 143 

The Ordovician - Silurian closure of the Iapetus Ocean was associated with 144 

voluminous calc-alkaline and minor alkaline magmatism in the Scottish Highlands 145 

(e.g. Read 1961; Stephenson et al. 1999). The calc-alkaline magmatism has been 146 

generally attributed to NW-directed subduction of oceanic lithosphere beneath the 147 

Laurentian margin (e.g. Dewey 1971; van Breemen & Bluck 1981; Fowler et al. 148 

2001; Oliver et al. 2008), with a major magmatic pulse during the late Silurian and 149 

early Devonian being caused by slab break-off (Atherton & Ghani 2002; Neilson et 150 

al. 2009).  151 

In the North-west Highlands, a number of alkaline plutons, together with abundant 152 

calc-alkaline to alkaline dykes and sills, intrude across the Moine Thrust Zone and 153 

into both the foreland and the Moine Supergroup (Peach et al. 1907; Parsons 1999). 154 

These magmas are generally thought to be shoshonitic in nature, generated at some 155 

distance from the active subduction zone (Thompson & Fowler 1986; Thirlwall & 156 

Burnard 1990; Fowler et al. 2008). 157 

The most extensive alkaline magmatism occurred within the Assynt Culmination (Fig. 158 

2). Two major syenite plutons intrude the culmination, the Loch Ailsh Pluton 159 

(Phemister 1926; Parsons 1965 a,b) and the Loch Borralan Pluton (Woolley 1970, 160 

1973), as well as a wide range of sills and dykes (Sabine 1953; Goodenough et al. 161 
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2004). The Loch Ailsh Pluton and the majority of the minor intrusions are considered 162 

to have been deformed by thrust movement within the Moine Thrust Zone (Parsons 163 

1999; Goodenough et al. 2004), whereas emplacement of the Loch Borralan Pluton, 164 

which comprises two separate magmatic suites, has been shown to have overlapped 165 

with thrusting, as described in detail below (Woolley 1970).  166 

Above the Moine Thrust, the Loch Loyal Syenite Complex and the Glen Dessarry and 167 

Ratagain plutons intrude the Moine Supergroup (Fig. 1). The Glen Dessarry Pluton, 168 

the southern-most of the alkaline intrusions, has a penetrative Caledonian fabric that 169 

formed during upright folding and development of the Northern Highland Steep Belt 170 

(Roberts et al. 1984). In contrast, the Loch Loyal Syenite Complex clearly post-dates 171 

the main ductile deformation and metamorphism in the host Moine rocks (Holdsworth 172 

et al. 1999). All the main plutons have been dated by previous workers using U-Pb 173 

techniques on zircon (Fig. 6). The oldest, deformed Glen Dessarry Pluton has been 174 

dated at 456 ± 5 Ma (van Breemen et al. 1979b). The Loch Ailsh Pluton (439 ± 4 Ma; 175 

Halliday et al. 1987), and the Canisp Porphyry Sills (437 ± 5 Ma; Goodenough et al. 176 

2006) pre-date movements in the Moine Thrust Zone (Parsons 1999; Goodenough et 177 

al. 2004) and these dates have been considered to provide a maximum age for the 178 

onset of thrusting. The Loch Borralan Pluton has been dated at 430 ± 4 Ma (van 179 

Breemen et al. 1979a), but this date was based on a number of samples derived from 180 

different intrusive phases with varied structural relationships (as mapped by Woolley 181 

1970) and so the exact relationship of the age to thrusting was unclear. Later workers 182 

have generally assumed that this age post-dates movement within the Moine Thrust 183 

Zone (e.g. Halliday et al. 1987). The post-deformation Loch Loyal Syenite Complex 184 

has been dated at 426 ± 9 Ma (Halliday et al. 1987). 185 

Many of the existing U-Pb zircon data are highly discordant, and record an apparently 186 

large spread in ages (from c. 456 to c. 426 Ma) for emplacement of geochemically 187 

similar intrusions. Recent years have seen advances in geochronological techniques, 188 

as well as an increased understanding of the field relationships in the Moine Thrust 189 

Zone, and so a new integrated structural and geochronological study of the 190 

Caledonian alkaline intrusions of North-west Scotland is timely.    191 

 192 

Structural settings of the alkaline intrusions 193 
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These are described in their likely order from oldest to youngest, based on published 194 

geochronology where available (see above). 195 

Glen Dessarry Pluton 196 

The Glen Dessarry Pluton is located within the Sgurr Beag Nappe, over 100 km to the 197 

south of the other syenite plutons discussed here, and over 30 km east of the trace of 198 

the Moine Thrust to the south of the Isle of Skye (Fig. 1). Nonetheless it is typically 199 

grouped with the other syenite plutons, on the basis of similar petrology and 200 

geochemistry (e.g. Fowler et al. 2008). It comprises an outer mafic syenite, with a 201 

core of felsic syenite (Richardson 1968). The pluton intrudes Moine psammites 202 

assigned to the Loch Eil Group and occupies the core of a large, curvilinear synform 203 

(Roberts et al. 1984). The intrusion post-dates two early deformation phases in its 204 

host Moine rocks, but it carries a penetrative solid state deformation fabric that is 205 

related to the widespread tight to isoclinal upright folding of the Northern Highland 206 

Steep Belt (Roberts et al. 1984).  207 

The Loch Ailsh Pluton 208 

The syenites of the Loch Ailsh Pluton lie directly beneath the Moine Thrust and 209 

intrude Lewisian and Cambrian rocks of the Ben More Thrust sheet in the Assynt 210 

Culmination (Fig. 3).  The pluton comprises three phases, termed S1, S2, and S3, 211 

which are considered to be broadly contemporaneous (Parsons 1965b; Fig. 3). 212 

Although their contact with the Moine Thrust is not exposed, geophysical evidence 213 

suggests that the plutonic rocks extend to the east beneath the thrust (Parsons 1965a). 214 

The syenites have been mylonitised in a number of localised shear zones associated 215 

with thrusting, with recrystallisation of large perthitic feldspars to fine-grained albite-216 

rich aggregates (Parsons 1965b). The Ben More Thrust sheet has not been affected by 217 

significant internal deformation, and there are no exposed contacts between the Loch 218 

Ailsh Pluton and mappable thrusts. However, a rhyolite dyke which cuts the S2 219 

syenites at [NC 3269 1365] is part of the Peralkaline Rhyolite Swarm, which was 220 

deformed by movement associated with the Glencoul and Ben More thrusts 221 

(Goodenough et al. 2004). If this dyke swarm represents a single intrusive episode, 222 

then the Loch Ailsh Pluton was emplaced prior to movement on these thrusts.  223 

Minor intrusions 224 
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The minor intrusions of the Assynt Culmination comprise six swarms (Canisp 225 

Porphyry, Peralkaline Rhyolite, Hornblende Microdiorite, Nordmarkite, Vogesite and 226 

Porphyritic Trachyte swarms), most of which pre-date thrusting (Sabine 1953; 227 

Goodenough et al. 2004). The Canisp Porphyry sills are found below, and close to,  228 

the Sole Thrust (Parsons 1999) but do not appear above it, and so are considered to 229 

pre-date movement on that thrust. The Peralkaline Rhyolite, Hornblende Microdiorite, 230 

and Vogesite swarms outcrop within the Moine Thrust Zone in Assynt, and are 231 

affected by thrust-related deformation (Goodenough et al. 2004). 232 

The intrusions of the Nordmarkite Swarm are unusual in that they crop out along, and 233 

on both sides of, the Moine Thrust and within the Moine rocks to the east (Parsons 234 

1999; Goodenough et al. 2004). Since the rocks in the hangingwall of the Moine 235 

Thrust may have moved up to 100 km westwards to their present position (Elliott & 236 

Johnson 1980), the nordmarkite intrusions must post-date the main movement on the 237 

Moine Thrust. However, the intrusions close to the Moine Thrust have mylonitic 238 

margins, indicating that they were emplaced before final movement had ceased.  239 

The Loch Borralan Pluton 240 

The Loch Borralan Pluton includes a range of unusual rock-types such as ‘borolanite’ 241 

(a melanite-biotite nepheline-syenite with white spots that represent pseudomorphs 242 

after leucite) and ‘ledmorite’ (a melanite-augite nepheline-syenite) (Shand 1909, 243 

1910, 1939). Woolley (1970) identified two separate suites, separated by an intrusive 244 

contact (Fig. 3). The early suite consists of a poorly-exposed ‘conformable sheeted 245 

complex’ (Woolley 1970) comprising locally foliated pseudoleucite syenites 246 

(‘borolanites’) and nepheline syenites (‘ledmorites’) as well as mafic to ultramafic 247 

rocks. In contrast, the late suite, which is rather better exposed on the hill of Cnoc na 248 

Sroine (Fig. 3), forms a steep-sided plug of syenite and quartz-syenite, undeformed 249 

except for some late fracturing. Woolley (1970) suggested that at least part of the 250 

early suite was intruded prior to movement on local thrusts, whilst the late suite post-251 

dated thrusting. However, the structural relationships of the early suite have been the 252 

subject of debate, because some workers have suggested that the syenites form a 253 

single mass that has been deformed and transported by thrust movement (Coward 254 

1985; Searle et al. 2010). The debate centres on a handful of key contact localities 255 

(Parsons 1999), which are briefly summarised here. 256 
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At the north-western margin of the pluton, the marble quarry at Ledbeg [NC 252 135] 257 

exposes sheets of pseudoleucite syenite 1-2 m across cutting metasomatised 258 

dolostones of the Durness Group in the Sole Thrust sheet. These outcrops lie in the 259 

footwall to the ‘Borralan Thrust’ of Searle et al. 2010, clearly indicating that this 260 

thrust is cross-cut by rocks of the early suite. Just north of the quarry around [NC 257 261 

145] lies an isolated mass of nepheline syenite (the Loyne Mass of Woolley 1970), 262 

whose relationships to thrusts are not well exposed (Searle et al., 2010). In the north-263 

east of the Loch Borralan Pluton, at the Four Burns locality [NC 293 132], nepheline-264 

syenite sheets intrude dolostones and quartz arenites immediately beneath the Ben 265 

More Thrust (Woolley 1970; Woolley et al. 1972). These sedimentary rocks lie within 266 

an imbricate stack termed the Breabag Dome (Elliott and Johnson 1980; Coward 267 

1984; British Geological Survey 2007; Krabbendam and Leslie 2010). The exposures 268 

at the Four Burns are thus significantly higher in the thrust pile than the exposures 269 

around Ledbeg (Figs. 3, 4). At the southern margin of the pluton, Ardvreck Group 270 

quartz arenites that have been fenitised by the syenite intrusion are exposed around 271 

[NC 285 284] (Woolley et al. 1972). Again, these quartz arenites are structurally 272 

higher than the dolostones around Ledbeg (British Geological Survey 2007).  273 

A key contact of the Loch Borralan Pluton is exposed to the south of Loch Borralan, 274 

at Bad na h-Achlaise [NC 245 115], and has been excavated to improve the exposure 275 

(Parsons & McKirdy 1983). At this locality, syenites attributed to the early suite 276 

intrude Ardvreck Group quartz arenites that are part of the Cam Loch thrust klippe 277 

(Parsons & McKirdy 1983; British Geological Survey 2007) (Fig. 3). This klippe has 278 

been considered to be floored by the Ben More Thrust (Elliott & Johnson 1980; 279 

Coward 1985) but may equally be a separate thrust (Butler 2009; Searle et al. 2010). 280 

A short distance to the south-east of Bad na h-Achlaise, ultramafic rocks of the early 281 

suite, together with a small carbonatite body, intrude Durness Group dolostones in the 282 

footwall to the Cam Loch thrust (Shaw et al. 1992; Young et al. 1994).  283 

The best single exposure of the early suite rocks occurs at the Aultivullin quarry [NC 284 

2870 0965], where the pseudoleucite-syenites are well exposed. Here the white 285 

pseudoleucite spots are streaked and flattened into ellipses that define a south-easterly 286 

dipping foliation. Cross-cutting pegmatites appear undeformed, and this led Bailey & 287 

McCallien (1934) to suggest that the earlier parts of the Loch Borralan Pluton were 288 

emplaced prior to thrusting, with later intrusions post-dating thrusting. Woolley 289 
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(1970) studied the petrography of the pseudoleucite-syenites, and observed “a 290 

complete overlap of crystallisation by deformation”, indicating a syn-tectonic age. 291 

Similarly, Elliott & Johnson (1980) noted that the foliation probably formed during 292 

emplacement of the pluton. However, Searle et al. (2010) argue that the foliation 293 

formed after crystallisation of the magmas.  294 

The field evidence as described here indicates that intrusions belonging to the early 295 

suite of the Loch Borralan Pluton clearly cut across a number of thrusts between the 296 

Sole and Ben More thrusts (Fig. 3; Parsons & McKirdy 1983; Parsons 1999; British 297 

Geological Survey 2007). The overall outcrop pattern indicates that the Loch Borralan 298 

Pluton was intruded into quartzite-dominated imbricates to the north and dolostone-299 

dominated imbricates to the south, and thus was probably focused along a lateral 300 

ramp. The contacts of the early suite of the Loch Borralan Pluton have a sheeted form 301 

(e.g. at the Four Burns and at Ledbeg Quarry) and the whole suite is considered to be 302 

formed of a series of sheets, emplaced along thrust planes during thrusting. We follow 303 

the detailed study of Woolley (1970) in concluding that emplacement of the early 304 

suite overlapped with thrust movement, but that the later suite clearly post-dates thrust 305 

movement; the observed field relationships do not fit with the proposal of Searle et al. 306 

(2010) for movement of the entire Loch Borralan Pluton on a Borralan Thrust.   307 

The Loch Loyal Syenite Complex 308 

The Loch Loyal Syenite Complex intrudes the Moine Supergroup c. 15 km east of the 309 

Moine Thrust (Fig. 1). It consists of three separate, but related, quartz-syenite bodies, 310 

the Ben Loyal, Ben Stumanadh and Cnoc nan Cuilean intrusions (Robertson and 311 

Parsons 1974; Holdsworth et al. 1999, 2001). Intrusion of the Loch Loyal syenites 312 

post-dated regional (Scandian) D2 and D3 folding and ductile thrusting in this part of 313 

the Moine (Read 1931; Holdsworth et al. 1999, 2001).  314 

 315 

U-Pb Geochronology  316 

Techniques for dating zircons using isotope-dilution thermal ionisation mass 317 

spectrometry (ID-TIMS) have improved significantly in recent years.  The early 318 

studies of the Loch Borralan and Loch Ailsh plutons, by van Breemen et al. (1979a) 319 

and Halliday et al. (1987), required dissolution of multi-milligram zircon fractions 320 

that were highly discordant due to Pb-loss.  Subsequently, methods have been 321 
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developed to allow low-blank zircon dissolution and chemical separation of U and Pb 322 

(Krogh 1973; Parrish 1987), to reduce discordance due to Pb-loss using air abrasion 323 

(Krogh 1982),  and to improve analytical precision and accuracy using gravimetrically 324 

well-calibrated synthetic isotope tracers (Parrish & Krogh 1987; Parrish et al. 2006).  325 

Recently, Mattinson (2005) reported a method of annealing and chemically abrading 326 

zircons (CA-TIMS), which in many cases eliminates discordance due to Pb-loss.  327 

Together, these advances allow increasingly precise (and accurate, subject to 328 

uncertainties in decay constants and tracer calibrations) ages to be determined on 329 

single zircon crystals or crystal fragments. Ongoing research, co-ordinated by the 330 

EARTHTIME initiative (www.earth-time.org), aims to improve the accuracy and 331 

precision of uranium decay constants and the natural 235U/238U ratio,  calibrate and 332 

distribute interlaboratory standards, develop open-source universal data-reduction 333 

software, and intercalibrate U-Pb, Ar-Ar and cyclostratigraphic dating techniques.   334 

Methodology 335 

Zircons were separated using standard crushing and mineral separation techniques. 336 

The best quality zircons were picked, annealed, and subjected to chemical abrasion 337 

(CA: Mattinson 2005) to improve concordance. Single grains were spiked with a 338 

mixed 205Pb/235U tracer (Parrish & Krogh 1987) or mixed 205Pb/235U/233U tracer 339 

(Parrish et al. 2006) and dissolved in teflon microcapsules (Parrish 1987).  Titanites 340 

were separated from the Glen Dessarry sample using standard techniques, and 341 

dissolved in Savillex® beakers. U and Pb were separated following Corfu and Noble 342 

(1992) and references therein. U and Pb were loaded together onto single rhenium 343 

filaments using silica gel, and measured by peak-jumping using a secondary electron 344 

multiplier on a Thermo-Electron Triton thermal ionization mass spectrometer.  Raw 345 

data were reprocessed offline using MATLAB® in order to allow time-interpolated 346 

correction of isobaric interferences.  Data reduction was carried out using the UPbR 347 

spreadsheet derived from the algorithms of Schmitz & Schoene (2007). Ages were 348 

calculated using Isoplot 3.16 (Ludwig 2003).   349 

 350 

Sample descriptions 351 

A sample of felsic (meta)syenite (GDS-1) was collected from the Glen Dessarry 352 

Pluton at [NM 9515 9217]. The sample is coarse grained and carries a penetrative 353 
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solid-state deformation fabric defined by augen of recrystallised alkali feldspar and 354 

sub-parallel grains of aligned hornblende and biotite. Magnetite, titanite and zircon 355 

are common accessory minerals.    356 

A sample of the Loch Ailsh Pluton (KG014) was collected from outcrops in the River 357 

Oykel near the centre of the intrusion, within the S2 syenites, at [NC 3272 1319]. It is 358 

a coarse-grained syenite, consisting chiefly of plates of microperthitic alkali feldspar 359 

with small amounts (<10%) of a green pyroxene; titanite and zircon are common 360 

accessories. The feldspar plates appear largely undeformed, but do exhibit swapped 361 

rims, which are common in the Loch Ailsh Pluton and are considered to have formed 362 

during thrust movement (Parsons, 1965b) 363 

A sample of Canisp Porphyry (KG023) was collected from a sill intruding Ardvreck 364 

Group quartz arenites below the Sole Thrust at [NC 2410 2128]. The sample is 365 

strongly porphyritic, with large (up to 1 cm) euhedral albite phenocrysts in a fine-366 

grained, structureless quartzofeldspathic groundmass. Biotite is the main mafic 367 

mineral. This sample has previously yielded a U-Pb zircon age of 437 ± 4.8 Ma 368 

(Goodenough et al. 2006) and has been re-analysed as part of the present study.  369 

A sample of a nordmarkite intrusion (KG050) was taken from a c. 1m-thick sill that 370 

intrudes dolostones of the Durness Group immediately beneath the Moine Thrust to 371 

the south of Loch Ailsh [NC 3010 0833]. The sample contains irregular, strongly 372 

sericitised plates of albite up to c. 2 mm, in a very fine-grained quartzofeldspathic 373 

matrix. The matrix has a penetrative solid-state deformation fabric defined by 374 

elongate aggregates of recrystallised quartz, and stringers of fine-grained chlorite and 375 

biotite.  376 

Three samples were collected from the Loch Borralan Pluton. Sample IM2.1 was 377 

collected from Bad na h-Achlaise where early suite syenites cut quartz arenite of the 378 

Cam Loch thrust klippe [NC 2442 1152]. The sample is coarse grained and consists 379 

largely of plates of perthitic feldspar, with rare aegirine augite. Sample IM4.1 was 380 

collected from the early suite at Aultivullin Quarry [NC 2870 0965]. It is coarse 381 

grained, consisting of laths of perthitic feldspar with nepheline, brown melanite 382 

garnet, biotite and hornblende. Aggregates of fine-grained feldspar, nepheline and 383 

white mica form pseudoleucite spots. Accessory minerals include titanite, apatite and 384 

carbonates. In hand specimen, a foliation is visible, chiefly defined by flattened 385 
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pseudoleucites; at thin-section scale, the foliation is only weakly defined by a broad 386 

parallelism of feldspar laths and biotite flakes. Feldspars are locally recrystallised to 387 

subgrains.  Sample IM1.1 was collected from the late suite near the summit of Cnoc 388 

na Sroine [NC 2550 1225]. The sample is coarse grained and unfoliated, and consists 389 

chiefly of laths of perthitic feldspar with interstitial quartz. 390 

A sample (Loyal1) of the Loch Loyal Syenite Complex was collected from [NC 6125 391 

4980]. The sample was obtained from the outer marginal syenite of the Ben Loyal 392 

body. It is medium to coarse grained, and consists of alkali feldspar, albite, quartz and 393 

hornblende with minor titanite, apatite and opaque oxides. A magmatic-state 394 

deformation fabric is defined by the alignment of feldspar laths and hornblende.     395 

 396 

Results and Interpretation 397 

Glen Dessarry Pluton  398 

Eight single zircon grains and three titanite fractions were analysed from the Glen 399 

Dessarry syenite (sample GDS-1, Table 1, Fig. 5a).  Of these, two grains (GDS-1 z1 400 

and z5; not plotted in Fig 5a) show reverse discordance and must contain inherited 401 

cores.  Three further grains (GDS-1 z2, z3, z4; not plotted in Fig. 5a) were small (sub-402 

microgram), and their analyses had low ratios of radiogenic to common lead, resulting 403 

in imprecise analyses that scatter around concordia, with a mean 206Pb/238U age of 448 404 

Ma.  Three larger grains (GDS-1 z6, z8, z9) give precise, concordant analyses, with a 405 

weighted mean 206Pb/238U age of 447.9 ± 2.9 Ma.  The three analysed titanite fractions 406 

are relatively non-radiogenic (206Pb/204Pb  from 55 to 62).  However, when corrected 407 

for common lead using the Stacey-Kramers model at 450 Ma, they yield concordant 408 

data, with a mean 206Pb/238U  age of 445.7 ± 8.0 Ma, and a concordia age of 445.3 ± 409 

1.9 Ma. 410 

Loch Ailsh Pluton  411 

Eight single zircon grains were analysed from the Loch Ailsh Pluton (sample KG014; 412 

Fig. 5b).  Of these, one (KG014z3) is highly discordant, and appears to have suffered 413 

Pb-loss, despite having undergone chemical abrasion.  Of the remaining seven grains, 414 

one (KG014z4) gave a relatively imprecise analysis, but is included as it overlaps the 415 

other analyses.  The seven analyses all overlap concordia, with a weighted mean 416 
206Pb/238U age of 430.6 ± 0.3 Ma.  In detail, five fractions have near-identical 417 
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206Pb/238U ages (fraction KG014z7 has a slightly younger 206Pb/238U age, and might 418 

have suffered Pb-loss, and KG014z5 has a slightly older 206Pb/238U age, perhaps 419 

indicating a small degree of inheritance).  However, the weighted mean 206Pb/238U age 420 

of these five analyses (430.6 ± 0.2 Ma) is identical to the age given by all seven 421 

concordant fractions.  Rather than over-interpreting the data, we prefer the age of 422 

430.6 ± 0.3 Ma for the Loch Ailsh Pluton, derived from all seven concordant 423 

analyses.  424 

Canisp Porphyry  425 

Ten single zircon grains were analysed from the Canisp Porphyry sample (KG023; 426 

Fig. 5c).  Of these, two (KG023z1, KG023z2) are highly reversely discordant and 427 

must contain inherited cores.  Two fractions (KG023z3, KG023z5) are concordant, 428 

but with slightly older 206Pb/238U ages than the bulk of the zircon data, perhaps 429 

indicating a small degree of inheritance of slightly older zircon.  The six remaining 430 

fractions are concordant, and form a cluster with a weighted mean 206Pb/238U age of 431 

430.4 ± 0.4 Ma.  Mixture modelling (Sambridge & Compston 1994, as implemented 432 

by Ludwig 2003) is consistent with the interpretation of these six analyses as forming 433 

a single normally-distributed age population, with the two slightly older concordant 434 

fractions representing a separate, older population. 435 

Nordmarkite Swarm 436 

Five single grains were analysed from a sample of nordmarkite (KG50; 5d).  Three of 437 

the five analyses contained high levels (tens of picograms) of common Pb, and 438 

yielded imprecise analyses. All five grains are discordant, with a wide range of 439 
206Pb/238U  ages from 437 to 1979 Ma.  The data scatter around a discordia with an 440 

upper intercept age of 2740 Ma, and a lower intercept of 420 Ma.  A regression 441 

through the two analyses closest to the lower intercept intersects concordia at 430 Ma.   442 

Loch Borralan early suite  443 

Four single zircon grains were analysed from the Bad na h-Achlaise early suite 444 

syenite vein (sample IM.2.1; Fig. 5e).   All four analyses are highly discordant.  445 

Forcing a regression line through 430 Ma yields an Archaean upper intercept at 446 

around 2580 Ma.  Three of the grains define a discordia with upper and lower 447 

intercepts at 2939 ± 13 Ma and 1329 ± 19 Ma respectively (MSWD = 0.58).  448 

However, Mesoproterozoic events are not recorded by detrital zircons in Ardvreck 449 
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Group quartz arenites (Cawood et al. 2007), so this discordia is almost certainly 450 

coincidental and has no geological significance. 451 

Four single zircon grains were analysed from the Loch Borralan pseudoleucite syenite 452 

at Aultivullin Quarry (sample IM.4.1; Fig. 5f).  All four analyses overlap concordia, 453 

and give a weighted mean 206Pb/238U age of 431.1 ± 1.2 Ma.   454 

Loch Borralan late suite  455 

Four single zircon grains were analysed from the Loch Borralan quartz syenite 456 

(sample IM.1.1; Fig. 5g).  All four analyses overlap concordia, and give a weighted 457 

mean 206Pb/238U age of 429.2 ± 0.5 Ma.   458 

Loch Loyal Syenite Complex  459 

Twelve single zircon grains were analysed from the Loch Loyal syenite complex 460 

(Sample Loyal1; Fig. 5h).  All but one are highly discordant.  Assuming a lower 461 

intercept age of 425 Ma, these indicate the presence of inherited components between 462 

1000 and 2500 Ma in age.  One single grain is concordant, with a 206Pb/238U  age of c. 463 

425 Ma. 464 

 465 

Discussion 466 

Comparison with previously published ages 467 

The new age obtained for the Glen Dessarry Pluton of 447.9 ± 2.9 is significantly 468 

younger than the published age of 456 ± 5 Ma (van Breemen et al. 1979b).  However, 469 

in detail, the zircon data of van Breemen et al. (1979b) are slightly discordant, and 470 

this was interpreted as resulting from a small, but similar degree of Pb-loss in all four 471 

analysed fractions (data are plotted in Fig. 5a, with nominal errors as these were not 472 

reported by van Breemen et al. 1979b).  It is more likely that the shift to the right of 473 

concordia is caused by a slight inaccuracy in the applied common lead correction, 474 

together with uncertainty in uranium decay constants (see discussion of Canisp 475 

Porphyry below).  If this is the case, the preferred age derived from the data of van 476 

Breemen et al. (1979b) would be defined by the mean 206Pb/238U model age, at around 477 

448.5 Ma.  Notably, the titanite age reported by van Breemen et al. (445 ± 5 Ma) is 478 

identical to that presented here (concordia age = 445.3 ± 1.9 Ma).  The new date for 479 
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the Glen Dessarry Pluton of 447.9 ± 2.9 Ma confirms that this intrusion is distinctly 480 

older than the syenite plutons to the north.  481 

The age of 430.6 ± 0.3 Ma obtained here for the Loch Ailsh Pluton is significantly 482 

younger than the previously accepted age of 439 ± 4 Ma (Fig. 6), which was based on 483 

analysis of six large size fractions of zircon from two different syenite samples 484 

(Halliday et al. 1987).  The resulting data were highly discordant, with 206Pb/238U ages 485 

between 337 and 382 Ma.  Nonetheless, if modern Pb-loss is assumed, and a 486 

regression is forced through 0 Ma, these data would define a discordia with an upper 487 

intercept age of c. 435 Ma.  Halliday et al. (1987) chose to derive their age using a 488 

Pb-Pb regression, which is highly dependent on the assumption of modern Pb-loss, 489 

and the common lead composition used for correction of the analyses.  The age of 490 

430.6 ± 0.3 Ma presented here is derived from seven concordant analyses of 491 

chemically abraded single zircon grains, and is clearly more reliable than the 492 

previously published age. 493 

The zircons analysed from the nordmarkite sill were highly discordant, and do not 494 

yield a statistically meaningful age.  However, the lower intercept of the least 495 

discordant analyses (c. 430 Ma) lies within the range defined by the other syenite 496 

bodies from Assynt.  497 

The ages of 431.1 ± 1.2 Ma and 429.2 ± 0.5 Ma presented here, for the Loch Borralan 498 

Pluton early suite and late suite respectively, are within error of the age of 430 ± 4 Ma 499 

reported by van Breemen et al. (1979a), which was derived from four samples from 500 

both early and late intrusive phases (Fig. 6). However, the increased precision on our 501 

new dates allows us to resolve the age difference between the two suites.     502 

The age of 430.4 ± 0.4 presented here for the Canisp Porphyry is significantly 503 

younger than the published age of 437 ± 5 Ma (Goodenough et al. 2006).  The zircons 504 

analysed by Goodenough et al. (2006) were physically, but not chemically abraded, 505 

and show varying degrees of Pb-loss.  The age of 437 ± 5 Ma was derived by forcing 506 

a regression line through 0 ± 10 Ma, and closely approximates to the mean 207Pb/206Pb 507 

model age of the zircons.  In detail, however, the zircon fraction with the least 508 

apparent Pb-loss has a 206Pb/238U model age of 430.6 Ma, within error of the age of 509 

430.4 ± 0.4 Ma presented here.  It seems probable that a combination of analytical 510 

artefacts has shifted the data of Goodenough et al. (2006) slightly to the right (i.e. to 511 
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high 207Pb/235U) on the concordia diagram, leading to artificially high 207Pb/206Pb 512 

ages.   There are three possible explanations for this:  (1) Uncertainty in U decay 513 

constants, in particular that of 235U, leads to a systematic bias (Schoene et al. 2006).  514 
207Pb/206Pb ages are systematically older than 206Pb/238U ages by between 0.15% in 515 

Precambrian samples to as much as 3.3% in Mesozoic samples (Schoene et al. 2006). 516 

At c. 430 Ma, this effect would lead to 207Pb/206Pb ages being overestimated by c. 2-3 517 

Ma.  (2) Uncertainty in the correction applied for initial common Pb and/or blank can 518 

have a significant effect on the 207Pb/206Pb age of a zircon.  Goodenough et al. (2006) 519 

used the model of Stacey & Kramers (1975) to estimate the initial common Pb 520 

composition at 430 Ma, whereas in this study we use the measured feldspar values of 521 

van Breemen et al. (1979a). (3) At the time of analysis of the zircons described by 522 

Goodenough et al. (2006), organic interferences were affecting some analyses at the 523 

NERC Isotope Geosciences Laboratory.  The effect of these interferences was to shift 524 

data ellipses towards the right on Concordia diagrams.  This problem was eliminated 525 

before the analyses presented here were carried out, by the use of oil-free pumps 526 

throughout the laboratory.  We therefore feel that our weighted mean 206Pb/238U age 527 

of 430.4 ± 0.4 Ma, based on six concordant zircon analyses, is the best estimate for 528 

the age of the Canisp Porphyry. 529 

Only one concordant analysis was obtained from the Loch Loyal syenite complex, 530 

indicating an age of around 425 Ma.  This is in agreement with the published age of 531 

426 ± 9 Ma, based on three normally discordant zircon size fractions (Halliday et al. 532 

1987). 533 

 534 

Timing of Caledonian deformation 535 

The Glen Dessarry Pluton post-dates early, regional deformation in the host Moine 536 

rocks, but pre-dates the formation of the Northern Highland Steep Belt (Roberts et al. 537 

1984). The new date of 447.9 ± 2.9 Ma thus supports the existing consensus that the 538 

earlier deformation is Grampian (Ordovician) in age, but that the Northern Highland 539 

Steep Belt formed during the Scandian Event (Strachan & Evans, 2008). 540 

The new date for the Loch Ailsh Pluton of 430.6 ± 0.3 Ma, the revised date for the 541 

Canisp Porphyry of 430.4 ± 0.4 Ma, and the new date for the early suite at Loch 542 

Borralan (431.1 ± 1.2 Ma) are all within error of each other and indicate a pulse of 543 
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alkaline magmatism at c. 430.5 to 431 Ma. The weighted mean 206Pb/238U age of all 544 

19 concordant analyses from these samples is 430.7 ± 0.5 Ma, which is the preferred 545 

age for this earlier pulse of magmatism in the Assynt area. Field relationships show 546 

that the Loch Ailsh Pluton and the Canisp Porphyry sills were emplaced before or 547 

during thrusting in the Moine Thrust Zone, whilst emplacement of the early suite of 548 

the Loch Borralan Pluton overlapped with thrusting. Overall, then, the early pulse of 549 

magmatism overlapped with movement in the Moine Thrust Zone.  550 

The late suite of the Loch Borralan Pluton, which is undeformed and can be shown to 551 

post-date thrust movement, is also clearly younger than the other intrusions, at 429.2 552 

± 0.5 Ma. Although a reliable new date for the Loch Loyal Syenite Complex has not 553 

been obtained, the presence of a single concordant zircon at c. 425 Ma, together with 554 

the observed field relationships, indicate that this is likely to be part of the same, 555 

slightly later, pulse of magmatism as the late suite of the Loch Borralan Pluton.  556 

The new dates allow us to place detailed constraints on the timing of collision-related 557 

deformation in the Moine Thrust Zone. The earliest ductile movements on the Moine 558 

Thrust itself are not constrained, but it is evident that such movements continued after 559 

430.6 ± 0.3 Ma, since the rocks of the Loch Ailsh Pluton are locally mylonitised. 560 

Within the Moine Thrust Zone (ie between the Moine and Sole thrusts), thrust 561 

movement overlapped with emplacement of the Loch Ailsh Pluton, the Canisp 562 

Porphyry sills, and the early suite of the Loch Borralan Pluton at 430.7 ± 0.5 Ma. 563 

However, movement on these thrusts had ceased by the time the late suite of the Loch 564 

Borralan Pluton was emplaced at 429.2 ± 0.5 Ma. It is conceivable that minor 565 

deformation could have continued along the Sole Thrust after this time, and late, out-566 

of-sequence movement along the Moine Thrust may also post-date this intrusion.  567 

Deformed metagranites within Moine metasedimentary rocks to the NE of the Assynt 568 

Culmination were emplaced and penetratively deformed during NW-directed, 569 

foreland-propagating ductile thrusting and nappe assembly.  These yield ion 570 

microprobe zircon ages (Kinny et al. 2003) ranging from 429 ± 11 Ma (Strathnaver 571 

granite) to 420 ± 6 Ma (Klibreck granite).  The Klibreck granite appears to be 572 

anomalously young if ductile deformation within the Moine Thrust Zone ceased by 573 

429.2 ± 0.5 Ma.  However, on closer analysis, the Klibreck granite ion probe data 574 

shows clear evidence for Pb-loss (as is the case with the Strathnaver granite; Kinny et 575 

al. 2003).  It is therefore probably the case that the true age of the Klibreck granite is 576 
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older than the weighted mean 206Pb/238U  age of 420 ± 6 Ma, and may lie closer to the 577 

upper intercept of a regression line passed through the data, indicating an age of 430 ± 578 

11 Ma. 579 

A metagranite sampled from within the Moine rocks north-east of Assynt, with thrust-580 

related ductile deformation, has yielded an ion microprobe zircon age of 415 ± 6 Ma 581 

(Alsop et al. 2010).  While this sample has less systematic evidence for Pb-loss, the 582 

data are rather scattered. Verification of the published age would be desirable in order 583 

to test the evidence for ductile deformation after 415 Ma. 584 

The revised ages presented here for the Glen Dessarry and Loch Ailsh plutons, and 585 

for the Canisp Porphyry, demonstrate the pitfalls involved in interpretation of zircon 586 

data that is even slightly discordant.  Clearly, unambiguous discrimination between 587 

events that occurred within a few million years (e.g. intrusion of the early and late 588 

syenites of Assynt) requires precise, concordant zircon data with minimal Pb-loss, 589 

such that 206Pb/238U  ages can be used with confidence, thereby avoiding the inherent 590 

bias in 207Pb/206Pb ages due to uncertainty in common Pb corrections and the 235U 591 

decay constant.   592 

On the basis of Rb-Sr dating of muscovites in Moine mylonites, Freeman et al. (1998) 593 

suggested that transfer of displacement from the ductile Moine Thrust to the 594 

underlying thrusts occurred at c. 430 Ma; this conclusion is corroborated by the new 595 

data presented here. More difficult to explain are the suggestions that thrusting 596 

continued until c. 408 Ma to the south of Assynt (Freeman et al. 1998), and until c. 597 

413 Ma further north (Dallmeyer et al. 2001). It is known that, in southern Assynt, the 598 

Moine Thrust was reactivated at a late stage in the history of the thrust zone, by a 599 

component of largely brittle movement (Coward, 1983, 1985) and this reactivation 600 

may explain some of the younger ages in this area; the dates presented in the present 601 

paper do not provide a constraint on the age of this brittle reactivation. However, the 602 

Rb-Sr data of Freeman et al. (1998) from south of Assynt require that micas with 603 

indistinguishable phengite chemistry crystallised at very similar depths over a period 604 

of c. 21 Ma during active thrusting.  This seems geologically improbable, and it seems 605 

more likely that their ages, which are defined by statistically poorly constrained two-606 

point isochrons, are rendered inaccurate by the use of bulk feldspar separates rather 607 

than microsampling of synkinematic overgrowths to constrain initial ratios (which 608 

was not technically feasible at the time).  Notably, the feldspar analyses of Freeman et 609 
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al. (1998) show considerable variation (and indeed, scatter around a trend with an 610 

‘age’ of c. 920 Ma).  611 

The total amount of displacement on the Glencoul and Ben More thrusts is estimated 612 

at c. 50 km (Elliott and Johnson 1980). This displacement occurred between the 613 

emplacement of the Loch Ailsh Pluton and the late suite of the Loch Borralan Pluton, 614 

a period of 2.2-0.6 Ma, taking into account the errors. This would suggest a 615 

movement rate of between 20 and 80 mm per year. Although the upper end of this 616 

spectrum is rather high, the lower end accords well with known modern slip rates in 617 

the Himalaya (20 mm/yr; Mugnier et al. 2004) and New Zealand (30 mm/year; Norris 618 

and Cooper 1997). It should be noted that Scandian orogenesis in general was 619 

relatively rapid, and associated with fast, but realistic, plate motions (Dewey & 620 

Strachan 2003). 621 

In the Scandinavian Caledonides, pre- to syn-tectonic subduction-related magmatism 622 

occurred at 445 – 435 Ma (Corfu et al. 2006), but the main collisional stages took 623 

place between 430 – 400 Ma (Tucker et al., 2004). In Greenland, syn-tectonic 624 

magmatism is dated at 430 – 425 Ma (Strachan et al., 2001; Andresen et al. 2007), but 625 

plate convergence is known to have continued through the Devonian (Dallmeyer et al. 626 

1994; Gilotti & McClelland 2007). This contrasts with the new evidence, presented 627 

here, that the Scandian collisional event in Scotland was largely completed by c. 429 628 

Ma. With the levels of geochronological precision now achievable, it is possible to 629 

recognise different phases of orogenic activity within the Scandian Event along the 630 

length of the Caledonian Orogen.  631 

Conclusions 632 

The data presented here constrain the timing of deformation associated with the 633 

Moine Thrust Zone in the North-west Highlands of Scotland. Early ductile movement 634 

on the Moine Thrust, possibly associated with the formation of the Northern Highland 635 

Steep Belt, occurred after the emplacement of the Glen Dessarry Pluton at 447.9 ± 2.9 636 

Ma. Movement within the Moine Thrust Zone in Assynt overlapped in space and time 637 

with a pulse of syn-tectonic alkaline magmatism, including the Loch Ailsh Pluton, the 638 

Canisp Porphyry sills, and the early suite of the Loch Borralan Pluton, at 430.7 ± 0.5 639 

Ma. Deformation within the Moine Thrust Zone was completed by the emplacement 640 
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of the undeformed late suite of the Loch Borralan pluton at 429.2 ± 0.5 Ma. Late 641 

brittle movement on the Moine Thrust may post-date this magmatism.   642 
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 1011 

Figures 1012 

1) Simplified geological map of the Northern Highlands, showing the main 1013 

structures and intrusions. Major thrusts: MT – Moine Thrust; BHT – Ben Hope 1014 

Thrust; NT – Naver Thrust; SBT – Sgurr Beag Thrust. Alkaline plutons: GDP – Glen 1015 

Dessarry Pluton; LBP – Loch Borralan Pluton; LAP – Loch Ailsh Pluton; LLSC – 1016 

Loch Loyal Syenite Complex.  1017 

2) Simplified map of the Assynt Culmination, showing the major thrust 1018 

structures and the location of the Loch Ailsh and Loch Borralan plutons. CLT – Cam 1019 

Loch Thrust. Dashed box indicates area of Fig. 3. Dashed line indicates location of 1020 

section in Fig. 4.  1021 

3) Simplified extract from the Assynt 1:50 000 geological map sheet (British 1022 

Geological Survey 2007) showing the geology around the Loch Ailsh and Loch 1023 

Borralan plutons. CLT – Cam Loch Thrust; ST – Sole Thrust; BMT – Ben More 1024 

Thrust; MT – Moine Thrust. 1025 
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4) Simplified cross-section through the Assynt area, from British Geological 1026 

Survey (2007). The Loch Borralan pluton lies to the south of this cross-section, where 1027 

it clearly cuts across the Breabag Dome.   1028 

5) U-Pb concordia diagrams for the dated samples from the syenites of the North-1029 

west Highlands. All error ellipses are plotted at the 2σ level.  1030 

6) Summary of the dates for the alkaline plutons of the North-west Highlands. 1031 

Dates from this paper shown in black; dates from previous papers (van Breemen et al. 1032 

1979a,b; Halliday et al. 1987; Goodenough et al. 2006) shown in grey.  1033 

 1034 

Tables 1035 

1) U-Pb analytical data for zircons from syenite intrusions dated in this study.  1036 

 1037 















 Compositional Parameters Radiogenic Isotope Ratios Isotopic Ages 

Sample 
Wt. 
mg 
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ppm 

Th/U 
Pb 

ppm  
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(pg) 

206Pb
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206Pb 
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206Pb 

% err 
207Pb 
235U 

% err 
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% err 
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207Pb 
206Pb 

± 
207Pb 
235U 

± 
206Pb 
238U 

± 

(a) (b) (c) (d) (c) (e) (e) (f) (g) (g) (h) (g) (h) (g) (h)  (i) (h) (i) (h) (i) (h) 

                    

Glen Dessary Syenite – GDS-1                    

Zircons                      

z1 0.001 2418 0.249 504.2 74 3.38 4666 0.076 0.083338 0.103 2.370269 0.307 0.206277 0.260 0.948 1277.15 2.00 1233.68 2.19 1208.95 2.87 

z2 0.001 359 0.516 34.0 4 5.35 262 0.165 0.057404 0.696 0.571562 0.835 0.072214 0.279 0.625 507.08 15.30 459.02 3.08 449.48 1.21 

z3 0.001 1304 0.094 97.2 9 6.99 607 0.030 0.056042 0.308 0.553864 0.457 0.071678 0.263 0.763 454.04 6.83 447.52 1.65 446.26 1.13 

z4 0.001 668 0.089 50.9 7 4.36 503 0.028 0.055449 0.506 0.549371 0.639 0.071857 0.266 0.656 430.38 11.27 444.58 2.30 447.33 1.15 

z5 0.0005 945 0.182 133.5 6 7.72 375 0.089 0.122676 0.223 1.961128 0.393 0.115943 0.269 0.837 1995.50 3.97 1102.27 2.64 707.17 1.80 

z6 0.002 2196 0.102 150.7 50 5.87 3404 0.032 0.055979 0.127 0.555399 0.319 0.071958 0.261 0.924 451.54 2.82 448.53 1.16 447.94 1.13 

z8 0.002 1912 0.321 139.0 67 4.07 4285 0.101 0.055957 0.121 0.555824 0.317 0.072041 0.261 0.930 450.68 2.69 448.80 1.15 448.44 1.13 

z9 0.002 2829 0.218 198.7 86 4.57 5610 0.069 0.055989 0.100 0.554547 0.308 0.071835 0.262 0.951 451.92 2.22 447.97 1.12 447.20 1.13 
Titanites                      

t1 0.100 14 2.337 2.8 1.1 136.38 62 0.724 0.054988 2.111 0.541392 2.130 0.071408 0.664 0.184 411.72 47.21 439.34 7.60 444.63 2.85 

t2 0.100 8 2.764 2.0 1.0 99.02 55 0.865 0.055683 2.887 0.549342 2.941 0.071552 0.801 0.203 439.73 64.24 444.57 10.59 445.50 3.45 

t3 0.100 7 4.072 1.9 1.2 86.83 55 1.250 0.054438 2.524 0.539585 2.535 0.071888 0.776 0.168 389.20 56.66 438.15 9.02 447.52 3.36 

Loch Ailsh syenite – KG14                   

z1 0.001 3447 0.495 249.3 196 1.64 11957 0.156 0.055457 0.097 0.528287 0.188 0.069090 0.110 0.920 430.68 2.16 430.67 0.66 430.67 0.46 

z2 0.001 3182 0.412 226.0 111 2.02 6923 0.130 0.055461 0.104 0.528222 0.191 0.069076 0.102 0.921 430.85 2.32 430.63 0.67 430.59 0.43 

z3 0.0005 6648 0.192 411.5 13 2.93 867 0.062 0.056363 0.402 0.464499 0.488 0.059771 0.153 0.669 466.70 8.90 387.38 1.57 374.23 0.56 

z4 0.0005 2550 0.266 196.6 7 2.41 479 0.083 0.055385 0.676 0.527606 0.825 0.069090 0.250 0.692 427.82 15.08 430.22 2.89 430.67 1.04 

z5 0.001 5496 0.410 391.1 100 1.93 6267 0.129 0.055493 0.109 0.529330 0.196 0.069181 0.105 0.911 432.14 2.43 431.37 0.69 431.22 0.44 

z6 0.0005 19003 0.435 1368.1 60 2.24 3714 0.137 0.055457 0.124 0.528138 0.211 0.069070 0.104 0.908 430.71 2.76 430.57 0.74 430.55 0.44 

z7 0.002 3047 0.458 217.4 395 1.32 24274 0.144 0.055456 0.080 0.527525 0.179 0.068991 0.111 0.956 430.66 1.78 430.17 0.63 430.07 0.46 

z8 0.001 6197 0.500 447.9 337 1.46 20514 0.157 0.055473 0.083 0.528330 0.175 0.069075 0.102 0.958 431.34 1.84 430.70 0.61 430.58 0.42 

Canisp porphyry – KG23                      

z1 0.002 131 0.230 19.2 17 2.11 1070 0.097 0.105603 0.216 1.948881 0.428 0.133847 0.291 0.888 1724.84 3.96 1098.06 2.87 809.77 2.21 

z2 0.002 107 0.374 36.3 20 3.45 1093 0.136 0.157588 0.131 6.341717 0.356 0.291865 0.285 0.941 2429.95 2.21 2024.24 3.12 1650.84 4.15 

z3 0.002 5029 0.143 335.2 74 8.88 4877 0.045 0.055517 0.188 0.532162 0.345 0.069521 0.267 0.840 433.12 4.20 433.24 1.22 433.27 1.12 

z4 0.002 1594 0.123 105.8 47 4.41 3123 0.039 0.055511 0.114 0.528910 0.202 0.069104 0.104 0.918 432.85 2.55 431.09 0.71 430.76 0.43 

z5 0.002 893 0.143 60.4 31 3.75 2078 0.045 0.055617 0.160 0.531431 0.251 0.069301 0.130 0.829 437.10 3.57 432.76 0.88 431.94 0.54 

z6 0.002 1142 0.127 77.0 28 5.38 1839 0.040 0.055589 0.147 0.529943 0.230 0.069141 0.106 0.872 436.00 3.27 431.77 0.81 430.98 0.44 

z7 0.002 6846 0.139 447.8 337 2.65 22439 0.044 0.055490 0.083 0.528178 0.186 0.069034 0.121 0.943 432.02 1.84 430.60 0.65 430.34 0.50 

z8 0.002 7196 0.138 471.9 158 5.93 10397 0.043 0.055494 0.089 0.527981 0.186 0.069004 0.114 0.937 432.16 1.98 430.47 0.65 430.15 0.48 

z9 0.002 6385 0.140 417.6 286 2.91 19008 0.044 0.055509 0.083 0.527822 0.182 0.068964 0.114 0.948 432.78 1.84 430.36 0.64 429.91 0.47 

z10 0.002 11665 0.130 762.4 201 7.55 13199 0.041 0.055501 0.079 0.528179 0.215 0.069021 0.162 0.950 432.45 1.77 430.60 0.75 430.25 0.67 
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Nordmarkite dyke – KG50                    

z3 0.001 636 0.327 258.9 20 12.25 1024 0.115 0.181397 0.110 8.695388 0.311 0.347663 0.262 0.941 2665.68 1.82 2306.60 2.83 1923.43 4.35 

z4 0.001 633 0.506 209.6 2 62.85 122 0.225 0.154668 0.577 4.160143 0.726 0.195077 0.475 0.609 2398.19 9.81 1666.21 5.95 1148.82 5.00 

z5 0.003 239 0.714 106.4 75 4.77 3564 0.244 0.178276 0.088 8.833624 0.298 0.359373 0.258 0.960 2636.90 1.47 2320.97 2.71 1979.20 4.39 

z6 0.002 291 0.503 39.0 1 29.96 88 0.162 0.057450 1.954 0.555231 2.066 0.070095 0.702 0.325 508.84 42.96 448.42 7.49 436.73 2.96 

z8 0.0005 5268 0.277 455.2 51 2.63 3093 0.118 0.085851 0.115 0.968703 0.313 0.081836 0.256 0.938 1334.84 2.22 687.80 1.57 507.07 1.25 

Loch Borralan late suite syenite (quarry) – IM.4.1                  

z1 0.001 701 2.111 77.0 14 5.02 619 0.661 0.055279 0.412 0.528641 0.548 0.069358 0.287 0.677 423.53 9.18 430.91 1.92 432.29 1.20 

z4 0.001 1228 1.974 126.0 37 3.33 1611 0.620 0.055461 0.187 0.529000 0.269 0.069178 0.112 0.827 430.86 4.17 431.15 0.95 431.20 0.47 

z6 0.001 1066 2.437 118.5 47 2.47 1903 0.765 0.055475 0.195 0.529864 0.355 0.069273 0.249 0.849 431.43 4.35 431.72 1.25 431.77 1.04 

z7 0.001 1084 2.709 127.0 30 4.14 1142 0.848 0.055259 0.244 0.525499 0.358 0.068972 0.196 0.765 422.71 5.44 428.82 1.25 429.96 0.82 

z8 0.001 1013 1.395 93.9 34 2.72 1642 0.449 0.057146 0.195 0.546399 0.348 0.069347 0.238 0.844 497.16 4.30 442.64 1.25 432.22 0.99 

Loch Borralan late suite leucosyenite (marginal) – IM.2.1                  

z1 0.002 782 0.884 361.5 842 0.99 41932 0.300 0.178248 0.083 8.912908 0.304 0.362655 0.269 0.965 2636.63 1.38 2329.12 2.77 1994.75 4.61 

z2 0.002 226 0.550 103.6 26 6.48 1302 0.178 0.170804 0.097 8.978652 0.310 0.381252 0.262 0.957 2565.54 1.62 2335.84 2.84 2082.13 4.67 

z4 0.003 142 0.761 70.7 82 2.38 4172 0.243 0.177272 0.076 9.826409 0.300 0.402026 0.260 0.973 2627.51 1.26 2418.63 2.76 2178.36 4.81 

z5 0.004 117 1.091 55.8 163 1.36 7881 0.358 0.163455 0.037 8.134328 0.290 0.360930 0.257 0.998 2491.72 0.62 2246.07 2.62 1986.58 4.40 

Loch Borralan early suite leucosyenite – IM.1.1                  

z1 0.005 1161 1.380 103.1 167 3.13 8157 0.434 0.055486 0.102 0.526517 0.305 0.068822 0.259 0.947 431.86 2.28 429.50 1.07 429.05 1.07 

z2 0.004 1811 0.820 141.1 620 0.84 34751 0.257 0.055429 0.093 0.526181 0.300 0.068849 0.260 0.955 429.56 2.08 429.27 1.05 429.22 1.08 

z3 0.002 920 0.840 72.3 188 0.88 10493 0.264 0.055435 0.127 0.526547 0.317 0.068889 0.258 0.923 429.81 2.83 429.52 1.11 429.46 1.07 

z5 0.004 1554 0.899 123.9 173 3.13 9418 0.282 0.055427 0.101 0.525802 0.306 0.068802 0.262 0.949 429.47 2.24 429.02 1.07 428.94 1.09 

Loch Loyal – Loyal1                    

z3 0.002 394 0.161 75.0 29 4.24 1737 0.064 0.118243 0.123 2.952429 0.326 0.181094 0.269 0.933 1929.84 2.20 1395.47 2.47 1072.95 2.65 

z4 0.004 363 0.259 46.1 52 3.04 3299 0.085 0.070395 0.123 1.217917 0.315 0.125480 0.256 0.928 939.89 2.52 808.82 1.76 762.03 1.84 

z5 0.002 415 0.245 49.4 29 3.80 1828 0.083 0.071196 0.148 1.137373 0.333 0.115864 0.256 0.906 963.04 3.03 771.26 1.80 706.71 1.72 

z6 0.002 894 0.349 122.2 43 5.60 2561 0.124 0.079531 0.117 1.414408 0.312 0.128985 0.257 0.933 1185.37 2.32 895.01 1.86 782.07 1.89 

z7 0.002 427 0.361 91.4 67 2.67 3830 0.145 0.126463 0.098 3.358259 0.305 0.192596 0.259 0.953 2049.38 1.72 1494.72 2.39 1135.42 2.70 

z8 0.002 471 0.351 61.7 8 14.19 472 0.127 0.077432 0.238 1.195219 0.398 0.111950 0.264 0.817 1132.34 4.73 798.38 2.20 684.07 1.71 

z9 0.002 2924 0.099 584.5 74 15.57 4390 0.036 0.111048 0.047 3.061107 0.214 0.199924 0.168 0.998 1816.64 0.86 1423.01 1.64 1174.91 1.81 

z10 0.002 3437 0.831 269.1 80 6.66 4378 0.261 0.055400 0.118 0.521083 0.204 0.068217 0.112 0.882 428.41 2.62 425.87 0.71 425.41 0.46 

z11 0.002 725 0.266 152.9 10 27.27 603 0.094 0.099322 0.159 2.561892 0.244 0.187074 0.115 0.845 1611.42 2.97 1289.83 1.78 1105.50 1.17 

z12 0.002 422 0.392 47.5 18 5.01 1090 0.135 0.069579 0.162 0.987379 0.246 0.102921 0.099 0.904 915.95 3.34 697.38 1.24 631.51 0.59 

z13 0.002 2117 0.396 186.5 80 4.58 4870 0.131 0.062254 0.102 0.728034 0.189 0.084817 0.103 0.926 682.85 2.18 555.40 0.81 524.81 0.52 

z14 0.002 674 0.571 54.4 10 9.86 599 0.182 0.056283 0.242 0.534968 0.323 0.068936 0.111 0.809 463.56 5.37 435.10 1.14 429.74 0.46 

                    

                    



 

(a) z1, z2, t1 etc. are labels for fractions composed of single zircon grains (z) or titanite fractions (t); all zircons were annealed and chemically abraded after Mattinson (2005). 
(b) Nominal fraction weights estimated from photomicrographic grain dimensions, adjusted for partial dissolution during chemical abrasion. 
(c) Nominal U and total Pb concentrations subject to uncertainty in photomicrographic estimation of weight and partial dissolution during chemical abrasion. 
(d) Model Th/U ratio calculated from radiogenic 208Pb/206Pb ratio and 207Pb/235U age. 
(e) Pb* and Pbc represent radiogenic and common Pb, respectively. 
(f) Measured ratio corrected for spike and fractionation only. 
(g) Corrected for fractionation, spike, and common Pb; up to 2 pg of common Pb was assumed to be procedural blank: 206Pb/204Pb = 18.50 ± 0.50%; 207Pb/204Pb = 15.59 ± 0.32%;   208Pb/204Pb = 

38.02 ± 0.50% (all uncertainties 1-sigma).  Excess over blank was assigned to initial common Pb. 
(h) Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene (2007) and Crowley et al. (2007). 
(i) Calculations are based on the decay constants of Jaffey et al. (1971). 206Pb/238U and 207Pb/206Pb ages corrected for initial disequilibrium in 230Th/238U using Th/U [magma] = 3. 
(j) Corrected for fractionation, spike, and blank Pb only. 
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