Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: implications for deep ocean Mg/Ca paleothermometry

Peck, Victoria L. ORCID:; Yu, J.; Kender, S.; Riesselman, C.R.. 2010 Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: implications for deep ocean Mg/Ca paleothermometry. Paleoceanography, 25 (4), PA4219.

Before downloading, please read NORA policies.
palo1643.pdf - Published Version

Download (4MB) | Preview


To date, no conclusive evidence has been identified for intermediate or deep water cooling associated with the > 1 parts per thousand benthic delta O-18 increase at the Eocene-Oligocene transition (EOT) when large permanent ice sheets first appeared on Antarctica. Interpretation of this isotopic shift as purely ice volume change necessitates bipolar glaciation in the early Oligocene approaching that of the Last Glacial Maximum. To test this hypothesis, it is necessary to have knowledge about deep water temperature, which previous studies have attempted to reconstruct using benthic foraminiferal Mg/Ca ratios. However, it appears likely that contemporaneous changes in ocean carbonate chemistry compromised the Mg/Ca temperature sensitivity of benthic foraminifera at deep sites. New geochemical proxy records from a relatively shallow core, ODP Site 1263 (estimated paleodepth of 2100 m on the Walvis Ridge), reveal that carbonate chemistry change across the EOT was not limited to deep sites but extended well above the lysocline, critically limiting our ability to obtain reliable estimates of deep-ocean cooling during that time. Benthic Li/Ca measurements, used as a proxy for [CO32-], suggest that [CO32-] increased by similar to 29 mu mol/kg at Site 1263 across the EOT and likely impacted benthic foraminiferal Mg/Ca. A [CO32-]-benthic Mg/Ca relationship is most apparent during the early EOT when the overall increase in [CO32-] is interrupted by an apparent dissolution event. Planktonic d18O and Mg/Ca records suggest no change in thermocline temperature and a delta O-18(seawater) increase of up to 0.6 parts per thousand at this site across the EOT, consistent with previous estimates and supporting the absence of extensive bipolar glaciation in the early Oligocene.

Item Type: Publication - Article
Digital Object Identifier (DOI):
Programmes: BGS Programmes 2010 > Climate Change Science
BAS Programmes > Polar Science for Planet Earth (2009 - ) > Chemistry and Past Climate
ISSN: 0883-8305
NORA Subject Terms: Marine Sciences
Meteorology and Climatology
Date made live: 17 Mar 2011 13:21 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...