1	Numerical model to determine the composition of
2	H ₂ O-NaCl-CaCl ₂ fluid inclusions based on
3	microthermometric and microanalytical data
4	
5	M. Steele-MacInnis ¹ , R. J. Bodnar ¹ and J. Naden ²
6	
7	^{1.} Department of Geosciences, Virginia Tech, Blacksburg, VA 24061
8	^{2.} British Geological Survey, Keyworth, Nottingham UK NG12 5GG
9	
10	REVISED MANUSCRIPT W7363
11	Submitted August 13, 2010
12	
13	
14	
15	
16	
17	

18

Abstract

19	Natural fluids approximated by the H ₂ O-NaCl-CaCl ₂ system are common in a wide range of
20	geologic environments, including sedimentary basins associated with hydrocarbon occurrences
21	and MVT deposits, submarine hydrothermal systems, and other metamorphic, magmatic and
22	hydrothermal environments. We present a comprehensive numerical model and Microsoft®
23	Excel©-based computer program to determine the compositions of fluid inclusions in the H ₂ O-
24	$NaCl\mbox{-}CaCl\mbox{-}2$ system based on microthermometric and microanalytical data. The model consists of
25	six polynomial correlation equations that describe liquid salinity as a function of NaCl/CaCl ₂
26	ratio and melting temperature on each of the ice, hydrohalite, halite, antarcticite, $CaCl_2 \cdot 4H_2O$ and
27	CaCl ₂ ·2H ₂ O vapor-saturated liquidus surfaces. The cotectic and peritectic boundaries are
28	determined from the intersections of the liquidus surfaces. The model is implicitly internally
29	consistent and topologically correct.
30	The model expands upon the compositional range of applicability and the data types that can
31	be used for compositional determination. It reproduces experimental data for all compositions
32	that lie within the H_2O -NaCl-CaCl ₂ ·4 H_2O compositional triangle in the H_2O -NaCl-CaCl ₂ system
33	and yields accurate reproductions of the $\mathrm{H}_2\mathrm{O}\text{-}\mathrm{NaCl}$ and $\mathrm{H}_2\mathrm{O}\text{-}\mathrm{CaCl}_2$ binaries. Furthermore, in
34	comparison to previously published models, the one presented here eliminates systematic errors,
35	wavy isotherms and cotectic and peritectic curves with local "bumps."
36	

38 List of Symbols

39	n _i	number of moles of component <i>i</i>
40	\mathbf{X}_i	Mole fraction of component $i \ [= (n_i)/(n_{total})]$
41	Ψ	The molar fraction of NaCl relative to $NaCl + CaCl_2$
42		$[=(X_{NaCl})/(X_{NaCl} + X_{CaCl2})]$
43	Φ	The weight fraction of NaCl relative to $NaCl + CaCl_2$
44		$[= (wt.\% NaCl)/(wt.\% NaCl + wt.\% CaCl_2)]$
45	Ω	The molar fraction of $CaCl_2$ relative to $H_2O + CaCl_2$
46		$[=(X_{CaCl2})/(X_{CaCl2}+X_{H2O})]$
47	$T_{m,x}$	Temperature (°C) at which solid phase x melts on the one-solid-stable vapor-
48		saturated liquidus surface.
49	$T_{pb,x}$	Temperature (°C) at which solid phase x melts on either a cotectic or peritectic
50		phase boundary curve, in the presence of liquid plus vapor plus another solid.
51		Subscripts <i>x: ice</i> (= H ₂ O solid); <i>hh</i> (= hydrohalite); <i>h</i> (= halite); <i>ant</i> (=
52		antarcticite); $Ca4h$ (tetrahydrate = CaCl ₂ ·4H ₂ O); $Ca2h$
53		$(dihydrate = CaCl_2 \cdot 2H_2O = sinjarite)$
54	$\mathbf{S}_{\mathrm{mol}}$	Total salinity on a mole fraction basis $[= X_{NaCl} + X_{CaCl2}]$.
55	\mathbf{S}_{wt}	Total salinity on a wt.% basis [= (wt.% NaCl + wt.% CaCl ₂)]
56	a_i	Regression coefficient.
57		

58 Introduction

59 Aqueous fluids in which NaCl and CaCl₂ are the two most abundant salts and which may be adequately described by the system H₂O-NaCl-CaCl₂ are common in many geologic 60 61 environments. Fluids of this composition are commonly found in sedimentary basins (COLLINS, 62 1975; LOWENSTEIN et al., 2003; HANOR and MACINTOSH, 2007), Mississippi Valley-Type Pb-Zn 63 deposits (HAYNES and KESSLER, 1987; BASUKI and SPOONER, 2002; STOFFELL et al., 2008), 64 Archean lode gold deposits (ROBERT and KELLY, 1987), skarn and greisen deposits (KWAK and TAN, 1981; LAYNE and SPOONER, 1991; SAMSON et al., 2008), iron-oxide Cu-Au (IOCG) -type 65 deposits (XU, 2000), magmatic Cu-Ni deposits (LI and NALDRETT, 1993), crystalline rocks of the 66 67 Canadian Shield (FRAPE et al., 1984), mafic pegmatoids associated with platinum deposits in the Bushveld Complex (SCHIFFRIES, 1990) and elsewhere (NYMAN et al., 1990), and in sub-seafloor 68 69 hydrothermal systems (VANKO, 1988; VANKO et al., 1988). Thus, fluid inclusions approximated 70 by the system H₂O-NaCl-CaCl₂ are common in a diverse range of geologic environments, and a 71 methodology to interpret microthermometric data obtained from these inclusions is necessary to 72 better understand geologic processes such as diagenesis, hydrocarbon migration, evolution of 73 hydrothermal systems, metal transport, metamorphism and crystallization of magmas.

The best source of information concerning the compositions of paleo-geologic fluids comes from fluid inclusions (ROEDDER, 1984). The temperatures at which phase changes occur within a fluid inclusion during heating can be used to estimate the fluid composition, assuming that PTX phase relationships of representative fluid systems are available. In addition, the elemental ratios in saline aqueous inclusions can be determined by microanalysis, for example by laser ablation ICPMS (LA-ICPMS) (GÜNTHER et al., 1998), which provides an additional constraint for determining the fluid composition when combined with microthermometric data.

81 The system H_2O -NaCl-CaCl₂ (Fig. 1) is a three-component system, and the phase rule 82 requires that two variables must be specified to determine a unique liquid composition on the 83 vapor-saturated liquidus, whereas one variable is sufficient to determine a unique liquid 84 composition on any vapor-saturated, two-solid-plus-liquid boundary (cotectic or peritectic 85 curve). The temperatures of last melting of solid phases, either on a cotectic or peritectic curve $(T_{pb,x1})$ or on the one-solid liquidus $(T_{m,x2})$, are two possible sources of data; elemental ratios 86 87 determined from LA-ICPMS represent another data source. (Note that whereas several previous 88 studies of the H₂O-NaCl-CaCl₂ system have used the term "X_{NaCl}" to refer to the weight ratio of 89 NaCl relative to NaCl+CaCl₂, we adopt the more common notation such that X_{NaCl} refers to the 90 mole fraction of NaCl, and we instead denote the weight and molar ratios of NaCl relative to 91 NaCl+CaCl₂ as Φ and Ψ , respectively). As discussed in detail below, depending upon which data 92 are available, fluid inclusion compositions may be determined using a combination of either the 93 temperature of melting on a cotectic or peritectic and a temperature of melting on the vapor-94 saturated liquidus surface $(T_{pb,xl} + T_{m,x2})$, or a temperature of melting on the vapor-saturated 95 liquidus surface and the ratio of the amount of NaCl relative to the total amount of NaCl and CaCl₂, ($T_{m,x}$ + either Φ or Ψ – the two compositional ratios can be directly converted to one 96 97 another via the molar masses of the species) or the temperature of melting of one phase on a 98 cotectic or peritectic and the temperature of melting of a second phase on a cotectic or peritectic 99 $(T_{pb,x1} + T_{pb,x2}).$

Compositions of H₂O-NaCl-CaCl₂ fluid inclusions can be approximated using
graphically-displayed phase equilibrium data (e.g., KONNERUP-MADSEN, 1979; ROBERT and
KELLEY, 1987) or using empirical or theoretical data (OAKES et al., 1990; WILLIAMS-JONES and
SAMSON, 1990; NADEN, 1996; CHI and NI, 2007), and several computer packages have been

104 developed to interpret data from fluid inclusions whose compositions are approximated by the 105 system H₂O-NaCl-CaCl₂ (NADEN, 1996; BAKKER, 2003; CHI and NI, 2007). While each model 106 works well over a limited range of T-X conditions, none of the currently available models is 107 equipped to calculate fluid inclusion compositions over the complete range in compositions 108 reported for natural H₂O-NaCl-CaCl₂ fluid inclusions. Moreover, some of the previously 109 published equations (OAKES et al., 1990; NADEN, 1996; CHI and NI, 2007) are characterized by 110 structured residuals with respect to the experimental data, or have inflections ("bumps") between 111 data points and local extrema along calculated isotherms and univariant curves, as described in 112 more detail below. Finally, none of the previously published models provide the ability to 113 determine fluid compositions using the complete range of possible input data, such as the 114 temperature of melting on a cotectic or peritectic and a temperature of melting on the vapor-115 saturated liquidus surface $(T_{pb,xl} + T_{m,x2})$, or a temperature of melting on the vapor-saturated 116 liquidus surface and the weight fraction of NaCl relative to NaCl + CaCl₂ (Tm_x + Φ), or the 117 temperature of melting of one phase on a cotectic or peritectic and the temperature of melting of 118 a second phase on a cotectic or peritectic $(T_{pb,xl} + T_{pb,x2})$, as described below. The model 119 presented here incorporates those aspects of previous models that have been shown to be 120 consistent with the phase equilibria determined from experimental data, and adds new equations 121 and methods to expand the T-X range of applicability, remove anomalies inherent in some 122 previous statistical models, and expands the range of input data that may be used to estimate the 123 composition of H₂O-NaCl-CaCl₂ fluid inclusions.

124 The goal of this study is to provide a comprehensive set of empirical equations that 125 describe the portion of the vapor-saturated H_2O -NaCl-CaCl₂ system that includes the range of 126 compositions of natural fluid inclusions and the range of available experimental data. As such,

127	this study covers a region within the ternary system bounded by the H_2O apex, the NaCl apex
128	and the composition of $CaCl_2 \cdot 4H_2O$ on the H_2O -CaCl_2 binary (Fig. 1b). The equations derived in
129	this study have been assembled into a Microsoft® Excel©-based program to allow users to easily
130	calculate fluid inclusion compositions in this complex system over the complete compositional
131	range reported from natural fluid inclusions, using a variety of input data, including $T_{pb,xI} + T_{m,x2}$,
132	$T_{m,x} + \Phi$ or $T_{pb,xl} + T_{pb,x2}$. The program is available as an electronic annex to this paper.
133	We emphasize that the model developed in this study applies to stable equilibrium
134	melting behavior in the system H ₂ O-NaCl-CaCl ₂ , but metastable melting phenomena are also
135	frequently encountered in CaCl ₂ -bearing fluids (e.g., POTTER and CLYNNE, 1978; ROEDDER,
136	1984; VANKO et al., 1988; BAUMGARTNER and BAKKER, 2009). For instance, VANKO et al.
137	(1988) reported that some of their synthetic H ₂ O-NaCl-CaCl ₂ fluid inclusions could not be
138	completely frozen, while others could only be frozen to a metastable phase assemblage.
139	Likewise, LINKE (1958) and BAUMGARTNER and BAKKER (2009) report the occurrence of several
140	metastable phase assemblages in the H ₂ O-CaCl ₂ binary system. While we acknowledge that
141	metastable behavior in the H ₂ O-NaCl-CaCl ₂ system does occur, the model presented in this study
142	specifically represents only the <i>stable</i> phase relations on the vapor-saturated H ₂ O-NaCl-CaCl ₂
143	liquidus.

144 Vapor-Saturated Phase Relations in the H₂O-NaCl-CaCl₂ System

Phase relations on the vapor-saturated liquidus of the H_2O -NaCl-CaCl₂ ternary system are shown in Figure 1. The system is characterized by at least eight fields in which a single solid phase is in equilibrium with liquid and vapor. Six of these fields are described in this study; two additional fields in the high salinity, CaCl₂-rich, low weight fraction NaCl (Φ) part of the system (near the CaCl₂ apex; Fig. 1a) are not considered here because experimental data are not

150	available in that part of the ternary system (although these phases have been characterized along
151	the H ₂ O-CaCl ₂ binary, e.g. LINKE, 1958). Figure 1 shows phase relationships in the part of the
152	system that includes the range of reported compositions of natural fluid inclusions. The phase
153	boundaries shown in Figure 1c were calculated using the equations derived in this study and
154	below we compare these calculated phase boundaries with experimental data.
155	Each field shown in Figure 1 is labeled according to the solid phase that is in equilibrium
156	with liquid and vapor. At low salinity, near the H ₂ O apex, the stable solid phase on the liquidus
157	surface is H_2O ice (Fig. 1a, c). At intermediate to high salinity and $R_{wt} > 0.04$, halite (NaCl) is
158	the stable solid phase (Fig. 1a, c). A field in which hydrohalite (NaCl·2H ₂ O) is the stable solid
159	phase separates the ice- and halite-stable fields (Fig. 1a, c). At intermediate to high salinity and
160	$R_{wt} < 0.04$, calcium chloride hydrates are the stable solid phases: antarcticite (CaCl ₂ ·6H ₂ O) is the
161	stable phase from about 30 to 50 wt.% total salt, "tetrahydrate" ($CaCl_2 \cdot 4H_2O$) is the stable solid
162	from 50 to about 57 wt.% salt, and "dihydrate" (CaCl ₂ ·2H ₂ O = sinjarite) is stable from about 57
163	to 75 wt.% salt (Fig. 1a, c). To our knowledge, ternary experimental data are not available for the
164	H_2O -NaCl-CaCl ₂ system at salinities above 75 wt.% total salt, thus the CaCl ₂ · H_2O and CaCl ₂
165	(anhydrous) stable fields are not included in this study (area near the CaCl ₂ apex on Fig. 1a
166	labeled with a question mark, ?). Also shown in Figure 1c are the compositions of hydrohalite
167	(61.86 wt.% NaCl on the H ₂ O-NaCl binary), antarcticite (50.07 wt.% $CaCl_2$ on the H ₂ O-CaCl ₂
168	binary), $CaCl_2 \cdot 4H_2O$ (60.63 wt.% $CaCl_2$ on the H_2O -CaCl_2 binary) and $CaCl_2 \cdot 2H_2O$ (75.49 wt.%
169	$CaCl_2$ on the H ₂ O-CaCl ₂ binary).

The fields in which one solid is in equilibrium with liquid and vapor are separated from
each other by peritectic or cotectic boundary curves. Ice and hydrohalite are separated by the ice
+ hydrohalite (I+HH) cotectic, which extends from the ternary eutectic point (E) at -52°C

173	(YANATIEVA, 1946) to the binary H ₂ O-NaCl eutectic (E') at -21.2°C (HALL et al., 1988). Ice and
174	antarcticite are separated by the ice + antarcticite (I+A) cotectic, which extends from the ternary
175	eutectic (E) to the binary H_2O -CaCl ₂ eutectic (E") at -49.8°C (YANATIEVA, 1946). The
176	hydrohalite and antarcticite fields are separated from each other by the hydrohalite + antarcticite
177	(HH+A) cotectic curve, which extends from the ternary eutectic (E) to the first ternary peritectic
178	(P ₁) at -22.4°C (YANATIEVA, 1946). The hydrohalite field is separated from the halite field by the
179	hydrohalite + halite (HH+H) peritectic curve, which extends from the first ternary peritectic (P_1)
180	to the binary H ₂ O-NaCl peritectic (P') at +0.1 $^{\circ}$ C (LINKE, 1958). The halite field is separated from
181	the antarcticite field by the halite + antarcticite (H+A) cotectic curve, which extends from the
182	first ternary peritectic (P_1) to the second ternary peritectic (P_2) at +29°C (SCHIFFRIES, 1990). The
183	halite field is separated from the tetrahydrate field by the halite + tetrahydrate (H+Ca4h) cotectic,
184	which extends from the second ternary peritectic (P_2) to the third ternary peritectic (P_3) at
185	approximately $+45^{\circ}$ C (estimated from the data of LINKE, 1958). The halite field is separated
186	from the dihydrate field by the halite + dihydrate (H+Ca2h) cotectic curve, which extends from
187	the third ternary peritectic (P_3) to the fourth ternary peritectic at >110°C (LINKE, 1958). The
188	antarcticite field is separated from the tetrahydrate field by the antarcticite + tetrahydrate
189	$(A+Ca4h)$ peritectic curve, which extends from the second ternary peritectic point (P_2) to the first
190	binary H ₂ O-CaCl ₂ peritectic (P ₁ ") at +30.1°C (LINKE, 1958). Tetrahydrate is separated from
191	dihydrate by the tetrahydrate + dihydrate (Ca4h+Ca2h) peritectic curve, which extends from the
192	third ternary peritectic point (P ₃) to the second binary H_2O -CaCl ₂ peritectic (P ₂ ") at +45.1°C
193	(LINKE, 1958). The locations of other boundary curves that occur at higher salinity conditions
194	close to the H ₂ O-CaCl ₂ binary and near the CaCl ₂ apex are not known. A detailed summary of

195 the stable melting paths followed by H₂O-NaCl-CaCl₂ fluid inclusions having compositions in

196 the various fields described above is provided in Appendix A.

197 Sources of Experimental Data

The experimental data used in the regression analysis are summarized in Table 1 andFigure 2.

200 Phase Boundaries

201 Phase boundaries on the vapor-saturated liquidus in the system H₂O-NaCl-CaCl₂ are 202 broadly characterized by either cotectic relationships or peritectic relationships. Note that on a 203 cotectic boundary, the phase change behavior that is observed upon heating is always 204 "solid1+solid2 \rightarrow solid2+liquid \rightarrow liquid", whereas on a peritectic boundary, the reaction 205 observed upon heating is "solid1+liquid \rightarrow solid2+liquid \rightarrow liquid". In other words, as a fluid 206 inclusion is heated, the inclusionist would observe two solids shrinking (melting) along a cotectic 207 curve until one disappeared leaving behind the second solid and liquid, whereas s/he would 208 observe one solid growing at the expense of the other along a peritectic curve. 209 In addition to the T-X data along the cotectic and peritectic phase boundaries summarized 210 in Table 1 and Figure 2, SCHIFFRIES (1990) reported the temperature at the second peritectic 211 point (P₂) of +29°C, which provides an additional constraint on the location of the A+Ca4h,

212 A+H and Ca4h+H phase boundary curves.

213 Liquidus Surfaces

In addition to compositions that lie on each divariant liquidus surface, data for the univariant boundary curves (peritectics or cotectics) adjacent to the surface were included in the regression for each liquidus surface. For example, in modeling the hydrohalite field, data from

the I+HH, HH+A and HH+H phase boundaries were used in addition to the hydrohalite-only
liquidus data. For each liquidus field, the number of data points that have been used in the
regression, including data within the field and those on the phase boundary curves, are listed in
Table 1.

For the halite liquidus, the high temperature data of CHOU (1987) were omitted from the regression analysis, but these data are in excellent agreement with those of STERNER et al. (1988). In addition, the experimental data analyzed in this study include several liquidus temperature measurements along the anhydrous NaCl-CaCl₂ binary (ZHANG et al., 1995), but those data are not included in the data set for regression.

For the tetrahydrate liquidus, LINKE (1958) reports multiple polymorphs of CaCl₂·4H₂O coexisting with different salinity liquids. We have followed the suggestion of POTTER and CLYNNE (1978), who point out that consideration of the phase rule indicates that the "beta" and "gamma" polymorphs are metastable, and so we have included only the "alpha" polymorph solubility data of LINKE (1958).

231 Equations Describing the Liquidus and Phase Boundary Curves

232 The liquidi in a ternary system are divariant surfaces, and thus the total salinity (S_{wt}) can 233 be represented as a function of the weight fraction of NaCl relative to NaCl + CaCl₂ (Φ) and the temperature of melting of the last solid phase on the vapor-saturated liquidus $(T_{m,x})$. The cotectic 234 235 and peritectic curves are univariant lines and therefore both Φ and S_{wt} can be represented as a 236 function of the temperature of melting of solid phase x on the cotectic or peritectic ($T_{pb,x}$). 237 Previous studies have generally approached the problem of regression modeling of the vapor-238 saturated liquidi of ternary systems by fitting separate univariant regression equations to the 239 experimental data on the phase boundary curves (e.g., STERNER et al., 1988; NADEN, 1996).

240 While that approach often produces a system of equations with small errors with respect to the 241 experimental data, it also generally yields a model that is not internally consistent because 242 predicted phase boundary curves will not necessarily intersect at the invariant points (eutectic 243 and peritectic points) and predicted isotherms of adjacent fields will not always intersect at the 244 univariant curves as they should. The approach taken in this study has been to regress the data 245 for each liquidus surface, and weight the cotectic and peritectic curve appropriately to ensure that 246 univariant curves represent the intersection of the adjacent liquidus surfaces. This approach has 247 two advantages: First, it yields a model that is implicitly internally consistent, and secondly, it 248 provides additional constraints on liquidus fields that are represented by sparse experimental 249 data. For example, the only data available for the tetrahydrate field are along the $H_2O-CaCl_2$ 250 binary (as described above). However, isotherms are available at the intersections of the 251 tetrahydrate field with the adjacent antarcticite, halite and dihydrate fields, and these data, 252 combined with data along the H₂O-CaCl₂ binary, provide reasonable constraints on the locations 253 of isotherms within the tetrahydrate field.

254 Regression analyses were conducted using SAS© JMP 8 statistical software. The 255 experimental data on each liquidus surface were regressed to find the equation that best satisfied 256 three criteria: First, the equation was required to accurately reproduce the experimental data; 257 secondly, the resulting isotherms were required to be smooth and monotonic, meaning free of 258 local extrema and inflections; and thirdly, the equations for adjacent liquidus surfaces were 259 required to intersect such that the cotectic and peritectic phase boundaries predicted by the 260 intersection were consistent with experimental data. The percent residuals of each equation with 261 respect to the experimental data were calculated by the expression $\{(1 -$ 262 calculated/measured)*100% }.

263 Ice field

Salinities of fluid inclusions for which H_2O ice is the final solid to melt are described by the following equation, modified from NADEN (1996):

266
$$S_{wt} = \sum_{i=0}^{5} a_i T_{m,ice}^i + \sum_{i=6}^{7} a_i \Phi^{(i-5)} + a_8 \Phi T_{m,ice}^2 + a_9 \Phi T_{m,ice}^5 - 0.185 \exp(-T_{m,ice} - 52)$$
(1)

where $T_{m,ice}$ is the final ice melting temperature in degrees Celsius and the a_i 's are fitting 267 268 parameters given in Table 2. We have added the exponential term at the end of the equation 269 originally provided by NADEN (1996) to improve the intersection with the antarcticite field, as 270 discussed below. The equation for the ice liquidus surface of CHI and NI (2007) (their Eqn. (4)) 271 is based upon extrapolation from their I+HH boundary, and is therefore valid only at high 272 salinity ($T_{m,ice} \le -21^{\circ}C$), and it shows significant structure in the residuals as a function of salinity 273 (Fig. 3). The equation of OAKES et al. (1990) (their Eqn. (2)) fits the data well at salinities from 0 274 to 25 wt. %, but provides a poorer fit to the higher salinity data of YANATIEVA (1946), with a negative-sloped, apparently linear structure in the residuals in this range (Fig. 3). Equation (1) 275 276 does not reproduce the lowest salinity experimental data as well as the equation of OAKES et al. 277 (1990), but it provides a better fit in general over the entire salinity range of the ice field (Fig. 3). 278 For these reasons, Eqn. (1) is recommended as the general equation for the ice field, and is 279 adopted for all figures and examples herein, while the equation of OAKES et al. (1990) may be 280 preferable if all data to be analyzed have a $T_{m,ice} \ge -15^{\circ}C$. The numerical model described later 281 offers users the option to select the equation of OAKES et al. (1990) if their microthermometric 282 data are in the range in which that model predicts values that are in better agreement with 283 experimental values.

284 Hydrohalite field

285 The salinity of fluid inclusions in which hydrohalite is the final solid phase to melt is 286 described by:

287
$$S_{mol} = \sum_{i=0}^{2} a_i (T_{m,hh} + 52)^i + a_3 \Psi^{-1} + \sum_{i=4}^{5} a_i \Psi^{i-2} + \sum_{i=6}^{7} a_i \Psi (T_{m,hh} + 52)^{i-4} + a_8 \Psi^2 (T_{m,hh} + 52)$$
(2)

288 with the a_i 's listed in Table 2. Residuals associated with calculation of the total salinity in terms 289 of weight percent (S_{wt}) using Eqn (2) are generally within ± 5 % of experimental values, 290 excluding one outlier (Fig. 3). Equation (2) does not significantly improve on the residuals 291 associated with the equation of NADEN (1996) for the hydrohalite field (Fig. 3); however, the 292 equation of NADEN (1996) tends to over-fit the data, and isotherms generated using NADEN's 293 equation have local extrema between data points, (at some temperatures crossing the H+HH 294 peritectic curve to predict compositions that are within the halite field) (Fig. 4). Isotherms 295 generated using Eqn. (2) are smooth and without local extrema (Fig. 4), and thus better reflect 296 the geometry of the hydrohalite liquidus surface.

297 Halite field

298 The liquid salinity on the halite liquidus is described by:

299

$$S_{mol} = \sum_{i=0}^{3} a_i (T_{m,h} + 52)^i + a_4 \Psi^{-1} + \sum_{i=5}^{6} a_i \Psi (T_{m,h} + 52)^{i-3} + \sum_{i=7}^{9} a_i \Psi^2 (T_{m,h} + 52)^{i-7} + \exp(-T_{m,h} - 52)$$
(3)

300 Values of the fitting cofficients a_i are listed in Table 2. Residuals for Eqn. (3) are shown in 301 Figure 3. In addition, the data of ZHANG et al. (1995) along the NaCl-CaCl₂ binary are predicted 302 by Eqn. (3) to within ± 4 %, even though the ZHANG et al. data were not included in the 303 regression analysis. In comparison to Eqn. (3), the equation of NADEN (1996) for the halite

304 liquidus surface predicts wavy isotherms with local extrema, compared to the smooth, monotonic 305 isotherms generated using Eqn. (3) and shown on Fig. 5. The equation of NADEN (1996) also 306 does not adequately reproduce the high salinity H₂O-NaCl binary data of STERNER et al. (1988) 307 (Fig. 3). WILLIAMS-JONES and SAMSON (1990) developed a theoretical equation to calculate 308 halite solubility on the halite liquidus surface, and they report their results graphically as 309 isotherms on the ternary phase diagram. WILLIAMS-JONES and SAMSON (1990) do not provide an 310 error analysis of their model, and their model cannot be compared directly to our results because 311 they do not provide the values for the Pitzer parameters, which they obtained from graphical 312 interpolation. However, based on visual inspection, the isotherms presented by WILLIAMS-JONES 313 and SAMSON (1990) appear to be in good agreement with those predicted by our Eqn. (3).

314 Antarcticite field

315 The salinity on the antarcticite liquidus surface is described by the following relationship:

316
$$S_{mol} = \sum_{i=0}^{5} a_i (T_{m,ant} + 52)^i + \sum_{i=6}^{7} a_i \Psi^{i-5} (T_{m,ant} + 52)^{i-6}$$
(4)

Values of the fitting parameters, a_i , are listed in Table 2. Residuals associated with Eqn. (4) are all within \pm 5 % of the experimental values (Fig. 3). To our knowledge, no equations have been published previously that describe the relationship between salinity and temperature on the H₂O-NaCl-CaCl₂ ternary antarcticite liquidus surface.

321 Tetrahydrate and dihydrate fields

322 Quantitative representation of the tetrahydrate and dihydrate fields is limited by the 323 scarcity of available experimental data; however, the narrow compositional range of these fields 324 (Fig. 1c) limits the absolute error in the weight fraction of NaCl in the solution (Φ) to <0.058. 325 The form of each of the equations for the tetrahydrate and dihydrate fields was based in part on the requirement that the cotectic and peritectic curves bounding these fields must be predicted by the intersection of the equations for the adjacent liquidus fields, because the locations of isotherms in those fields are better constrained than those in the tetrahydrate and dihydrate fields and thus provide a means of checking the validity of the expressions for those fields. The salinity on the tetrahydrate liquidus surface is described by

331
$$S_{mol} = \sum_{i=0}^{2} a_i (T_{m,Ca4h} + 52)^i + \sum_{i=3}^{4} \Psi (T_{m,Ca4h} + 52)^{i-3} + \exp(100\Psi - 10)$$
(5)

and the salinity on the dihydrate liquidus surface is described by

333
$$S_{mol} = \sum_{i=0}^{3} a_i (T_{m,Ca2h} + 52)^i + a_4 \Psi$$
(6)

The a_i parameters are listed in Table 2. Residuals of Eqn. (5) are all within ± 2 % of

experimental values, and those for Eqn. (6) are within ± 3 %.

336 *Comparison with data for the binary systems*

337 The equations described above for modeling the ternary H₂O-NaCl-CaCl₂ system may 338 also be used to predict liquidi for the binary H_2O -NaCl and H_2O -CaCl₂ systems using Eqns. (1) 339 to (6), as shown on Figure 6. The predicted H_2O -NaCl eutectic (E') is at -21.18°C, compared to 340 the experimentally determined -21.2°C (HALL et al., 1988). The predicted H₂O-NaCl peritectic 341 point (P') is at +0.14°C, compared to the experimental value of +0.1°C (LINKE, 1958). The 342 predicted H_2O -CaCl₂ eutectic point (E") is at -49.9°C, compared to the experimentally 343 determined temperature of -49.8°C (YANATIEVA, 1946). The predicted first and second H₂O-344 CaCl₂ peritectic points (P_1 " and P_2 ") are at +30.0°C and +44.7°C, respectively, compared to the

345 experimental values of $+30.1^{\circ}$ C and $+45.1^{\circ}$ C (LINKE, 1958).

346 *Phase Boundary Curves*

347 Each univariant curve is represented by the intersection of the adjacent divariant surfaces, rather than by a separate equation, as discussed above. For example, the liquid composition on 348 349 the I+HH cotectic is represented by the intersection of the ice and hydrohalite liquidi, or in other 350 words by the collection of T-X conditions that simultaneously satisfy Eqns. (1) and (2). 351 Metastable extensions are not represented in this model. Residuals associated with determining 352 the total salinity in weight percent (S_{wt}) and the weight fraction of NaCl (Φ) along the phase 353 boundary curves by this method are shown in Figures 7 and 8, respectively. Residuals associated 354 with salinity estimation are all within ± 4 % for the I+HH and HH+A cotectics, and within ± 6 % 355 for the HH+H peritectic curve and H+CaCl₂·nH₂O cotectics (Fig. 7). Percent residuals associated 356 with estimation of Φ on the phase boundary curves are generally larger, with ± 20 % for the 357 I+HH curve, ± 5 % for the HH+A curve, ± 60 % for the HH+H curve, and ± 50 % for the H+ 358 CaCl₂·nH₂O curves (Fig. 8). These large percent errors in part reflect the fact that Φ is a small 359 number (< 1), such that small absolute errors yield large percent errors. It also reflects some 360 scatter in the experimental data that we intentionally did not attempt to over-fit, owing to our 361 requirement that the phase boundary curves predicted by the equations must be smooth and 362 monotonic.

Identifying pairs of liquidus equations that provided smooth cotectic and peritectic curves that accurately reproduced the experimental values involved some trial and error. In some cases, while the individual equations for the liquidus fields adequately reproduced data in those fields, their intersections sometimes showed significant offset in isotherms on the cotectic or peritectic curves, or did not intersect at experimentally-determined T-X conditions on these curves, or produced topologies for the curves that were not supported by experimental data. As an example,

369	we found that the equation for the H+HH peritectic curve from NADEN (1996) that describes the
370	weight fraction of NaCl (Φ) as a function of the melting temperature of hydrohalite on the
371	peritectic curve $(T_{pb,hh})$ is over-fitted and predicts an unrealistic curvature, whereas the
372	intersection of Eqns. (2) and (3) from this study is comparably much smoother (Fig. 9). BAKKER
373	(2003) incorporated the equations of OAKES et al. (1990) and NADEN (1996), without
374	modification, into a computer package that added the option to model the univariant curves by
375	the intersections of the adjacent liquidus surfaces (the same approach taken in this study).
376	However, the equations of NADEN (1996) for the hydrohalite and halite liquidi intersect along a
377	wavy curve with local extrema in salinity, which causes anomalous predictions from the
378	computer package of BAKKER (2003), whereas Eqns. (1) and (3) from the present study intersect
379	more smoothly and without extrema (Fig. 10).
380	Some structure is observable in the residuals associated with the H+CaCl ₂ \cdot nH ₂ O cotectics
381	and the HH+A cotectic (Figs. 7 and 8). This structure could be reduced or eliminated by
382	adjusting equations for the adjacent fields; however, this approach would then compromise the
383	degree to which those equations for the adjacent fields would reproduce experimental data for
384	those fields. As such, we chose to give preference to achieving the most accurate fit on the I+HH
385	and HH+H boundaries, because phase changes along those boundaries are reported more
386	commonly in studies of natural fluid inclusions. Thus, we have to some extent sacrificed the
387	fidelity with which data along the less commonly reported HH+A and H+CaCl ₂ \cdot nH ₂ O curves are
388	reproduced. However, we believe that this approach is justified because the antarcticite,
389	tetrahydrate and dihydrate fields encompass a very narrow range of weight fraction NaCl (Φ <
390	0.05), and the liquid salinity on each of those liquidi surfaces is not very sensitive to the weight

391 fraction of NaCl. Furthermore, since Φ is always < 0.05 in this part of the system, relatively large 392 percent errors translate into small absolute errors in the weight fraction of NaCl in the inclusion.

393 Methodologies For Determining Inclusion Bulk Compositions

394 The model presented here allows fluid inclusion compositions to be determined using a 395 variety of input data, including the melting temperature of a phase on a cotectic or peritectic 396 boundary *and* the temperature of melting of the last solid on the liquidus surface $(T_{pb,x1} + T_{m,x2})$, 397 or the temperature of melting of the last solid on the liquidus surface *and* the weight ratio of 398 NaCl in the inclusion determined from microanalysis $(T_{m,x} + \Phi)$, or the melting temperature of 399 two phases on a cotectic or peritectic boundary, either melting simultaneously ($T_{pb,xl} = T_{pb,x2}$) or at different temperatures $(T_{pb,xI} + T_{pb,x2})$. The following sections describe the methodologies to 400 401 determine bulk composition using the various types of input data.

402 Final melting on a cotectic curve ($T_{pb,xl} = T_{pb,x2}$, two solid phases dissolve simultaneously)

403 In the simplest case where two solids dissolve simultaneously on a cotectic curve, the 404 bulk composition is uniquely specified by the melting temperature in accordance with the phase 405 rule. The measured melting temperature can be used to calculate the fluid inclusion composition 406 by solving for the intersection of the adjacent surfaces at that temperature, in other words by 407 finding the value of the weight fraction of NaCl (Φ) for which the two adjacent liquidus surface 408 salinity equations yield the same salinity at the measured temperature of melting. For example, 409 consider a fluid inclusion in which ice and hydrohalite dissolve simultaneously at -25°C. The 410 salinity in the ice field at -25°C and a given weight fraction of NaCl (Φ) can be found from Eqn. 411 (1), while the salinity in the hydrohalite field at -25°C and Ψ can be estimated from Eqn. (2). By 412 iteration, we find that a weight fraction of NaCl, Φ , of 0.57 yields a liquid salinity of 24.7 wt.%

- 413 at -25°C in both Eqns. (1) and (2). Thus, the intersection of the ice and hydrohalite liquidus
- 414 surfaces occurs at a salinity of 24.7 wt.% (NaCl + CaCl₂) and a weight fraction of NaCl of 0.57,
- 415 and this represents the bulk composition of the fluid inclusion.

416 <u>Last melting temperature $(T_{m,x})$ and NaCl weight fraction (Φ) </u>

417 If available data include the melting temperature of the last solid obtained from 418 microthermometry, and the weight fraction of NaCl (Φ) determined by microanalysis (e.g., LA-419 ICPMS), the fluid bulk composition is determined by finding the intersection of the isotherm of 420 the final melting temperature with the pseudobinary defined by the NaCl weight fraction (Φ). 421 Those two variables may be input directly into the appropriate equation (with Φ converted to Ψ 422 where required). As an example, consider a fluid inclusion that contains a halite daughter mineral 423 that dissolves at 200°C, and has a weight fraction of NaCl relative to NaCl + CaCl₂ (Φ) of 0.7 424 based on LA-ICPMS analysis of the inclusion. A weight fraction of NaCl of 0.7 equals a molar 425 fraction, Ψ , of 0.815, and substituting those values of Ψ (0.815) and $T_{m,h}$ (200°C) into Eqn. (3) 426 yields a total salinity on a mole fraction basis, S_{mol}, of 0.116, which corresponds to a total 427 salinity of 33.1 wt.%.

428 <u>Two unique melting temperatures, $T_{pb,xl} + T_{m,x2}$ or $T_{pb,xl} + T_{pb,x2}$ </u>

If available data include two unique melting temperatures from microthermometry – either a cotectic (or peritectic curve) melting temperature $(T_{pb,xl})$ plus the temperature of melting of the last solid phase on the liquidus $(T_{m,x2})$, or a cotectic melting temperature $(T_{pb,xl})$ plus a univariant peritectic melting temperature $(T_{pb,x2})$ – various calculation procedures may be used depending on which solid phases and phase changes are involved. On Figure 11, the ternary system is divided into several numbered fields that identify compositions within the H₂O-NaCl435 CaCl₂ ternary that involve the same phase changes as input data or follow similar calculation436 procedures.

437 Field $1 - T_{pb,hh} < T_{m,ice}$

438 During heating from the eutectic temperature, fluids with compositions in field 1 (Fig. 439 11) lose hydrohalite along the I+HH cotectic and ice is the last solid phase to melt on the ice 440 liquidus surface. The composition of the liquid at the temperature of hydrohalite dissolution on 441 the cotectic is determined from the intersection of the hydrohalite and ice liquidi at the 442 temperature of hydrohalite melting ($T_{pb,hh}$), from Eqns. (1) and (2). After hydrohalite disappears, 443 because the last remaining solid is pure H₂O ice (solid solution between solid phases in this 444 system is negligible), the weight fraction of NaCl (Φ) of the liquid phase does not change during 445 continued heating and ice melting, and the liquid composition moves directly towards the H₂O 446 apex. Thus, the weight fraction of NaCl (Φ) determined from the temperature of hydrohalite 447 melting on the cotectic and the final ice melting temperature $(T_{m,ice})$, can be input directly into 448 Eqn. (1) to determine the bulk salinity.

449 Field $2 - T_{pb,ant} < T_{m,ice}$

The calculation procedure to determine the composition of fluids that exhibit antarcticite dissolution on the I+A cotectic, followed by final melting of ice on the ice liquidus surface (field 2; Fig. 11) is analogous to that for fluids in field 1, substituting $T_{pb,ant}$ for $T_{pb,hh}$, and substituting Eqn. (4) for Eqn. (2).

454 Field $3 - T_{pb,ice} < T_{m,hh}$

455 For fluid inclusions in which ice is the phase that disappears along the I+HH cotectic and 456 which subsequently show hydrohalite as the last solid to melt on the hydrohalite liquidus (field 3;

457 Fig. 11), the liquid composition at the temperature of ice melting on the I+HH cotectic is 458 determined from the intersections of Eqns. (1) and (2), as described previously for field 1. After 459 ice melts on the ice-hydrohalite cotectic curve, with further heating the liquid composition 460 evolves along a straight line extending from the composition of the liquid at T_{pb.ice} to the 461 composition of hydrohalite (61.86 wt.% NaCl). The intersection of that line with the isotherm of 462 hydrohalite dissolution yields the unique bulk fluid composition. As an example, consider a fluid 463 inclusion in which ice melts on the I+HH cotectic at -25°C and hydrohalite is the last solid to 464 melt at -10°C. At the last ice melting temperature, the liquid contains 14.3 wt.% NaCl and 10.4 wt.% CaCl₂, from the intersection of Eqns. (1) and (2) at $T_{pb,ice} = -25^{\circ}C$. The fluid inclusion bulk 465 466 composition lies on a mixing line between the composition of the liquid on the I+HH cotectic 467 and the composition of hydrohalite. The equation of the mixing line can be determined using the 468 slope and intercept method, where the x- and y-axes are wt.% NaCl and wt.% CaCl₂, 469 respectively, and the input xy coordinates are the compositions of liquid (14.3 wt.% NaCl, 10.4 470 wt.% CaCl₂) and hydrohalite (61.9 wt.% NaCl₂, 0 wt.% CaCl₂). The equation of this line (in xy 471 coordinates) is also the equation of the vertical plane containing the line (in xyz coordinates, 472 where the *z*-axis is temperature), because the linear equation of the mixing line is independent of 473 temperature. Thus, by iteratively solving for the pair of values of wt.% NaCl and wt.% CaCl₂ 474 that satisfy both this linear equation and Eqn. (2), we find the bulk composition. In our example, 475 a composition of 16.4 wt.% NaCl and 9.9 wt.% CaCl₂ satisfies both equalities, and is thus the 476 bulk fluid composition of the inclusion.

477 Field 4 $T_{pb,ant} < T_{m,hh}$

478 For fluid inclusions that exhibit antarcticite melting in the presence of hydrohalite along
479 the HH+A cotectic, followed by hydrohalite final melting (field 4; Fig. 11), the calculation

480 procedure is analogous to that for field 3, the only difference being that $T_{pb,ant}$ is substituted for 481 $T_{pb,hh}$, and the liquid composition on the HH+A boundary is determined from the intersections of 482 Eqns. (2) and (4).

483 Field 5 $T_{pb,hh} < T_{m,h}$

Fluid inclusions that have compositions within field 5 (Fig. 11) show halite as the last solid phase to melt, and hydrohalite as the next-to-last solid phase to melt. The calculation procedure for fluid inclusion compositions in this field depends on the input data that are available.

488 For fluid inclusions in field 5 with compositions to the high-salinity side of the line 489 extending from CaCl₂·6H₂O to NaCl·2H₂O (Figs. 1 and 11) (field 5a), the sub-solidus 490 assemblage is halite+hydrohalite+antarcticite, and first melting occurs at the first peritectic P₁ 491 (Fig. 1). At this temperature $(-22.4^{\circ}C)$, antarcticite is consumed and the liquid composition 492 subsequently evolves along the HH+H peritectic curve, until hydrohalite is consumed at T_{pb,hh}. 493 The liquid composition at $T_{pb,hh}$ is determined from the intersection of Eqns. (2) and (3). The 494 liquid composition on the peritectic curve is recast in terms of the molar proportion of CaCl₂ 495 relative to $CaCl_2+H_2O(\Omega)$ according to:

496
$$\Psi = \frac{S_{mol} - S_{mol} \Psi_{mol}}{1 - S_{mol} \Psi_{mol}}$$
(7)

497 Upon departure from the HH+H peritectic curve, the value of Ω of the liquid remains constant 498 with further heating, as the liquid composition evolves along a straight line towards the NaCl 499 apex. The fluid inclusion bulk composition is found as the intersection of the vertical plane 500 containing that line of constant Ω with the isotherm of final halite melting.

501 For fluid inclusions in field 5 that lie within the ice-hydrohalite-antarcticite triangle (fields 5b 502 and 5c) (Fig. 11), first melting occurs at the eutectic and the liquid composition evolves along 503 either the HH+A or HH+I curve until either ice or antarcticite is consumed, after which the liquid 504 composition evolves across the hydrohalite field along a straight line towards the composition of 505 hydrohalite. Upon intersecting the HH+H peritectic curve, halite nucleates and the liquid 506 composition evolves along the HH+H curve until hydrohalite is consumed. The liquid 507 composition then evolves along a straight line towards the NaCl apex with further heating until 508 halite is completely consumed. For each of the fields 5b and 5c, there are thus three melting 509 temperatures that may be observed and recorded $(T_{pb,ice} (or T_{pb,ant}) + T_{pb,hh} + T_{m,h})$, and any pair 510 of these is sufficient to fix the bulk fluid composition. VANKO et al. (1988) describe the methods 511 by which either pair of these data may be used to determine the fluid bulk composition. If the data available are $T_{pb,hh}$ and $T_{m,h}$, the method used to calculate the inclusion composition is the 512 513 same as outlined above for field 5a. However, as discussed by ROEDDER (1984) and VANKO et 514 al. (1988), the final melting of hydrohalite can be difficult to observe, and hydrohalite may 515 persist metastably for several degrees Celsius above the equilibrium melting temperature. For 516 those reasons, it is sometimes more practical to measure $T_{pb,ice} + T_{m,h}$ (VANKO et al., 1988). In 517 that case, the liquid composition is determined at $T_{pb,ice}$ using Eqns. (1) and (2), and the equation 518 of the straight line that extends from the cotectic liquid composition at T_{pb,ice} to the composition 519 of hydrohalite (as described above for field 3) (Fig. 12). The intersection of the vertical plane 520 containing that line with the isotherm of $T_{m,h}$ on the halite liquidus (Eqn. (3)) represents the bulk 521 fluid composition (VANKO et al., 1988) (Fig. 12). Fluid inclusions with compositions in field 5c are treated in a similar manner to those in field 5b, substituting $T_{pb,ant}$ for $T_{pb,ice}$, and substituting 522 523 Eqn. (4) for Eqn. (1).

524 Field 6 $T_{pb,ant, Ca4h or Ca2h} < T_{m,h}$

525	The calculation method for fluid inclusions that exhibit cotectic melting of one of the
526	three CaCl ₂ hydrates in the presence of halite, followed by halite dissolution as the last solid
527	phase, is similar for each of the three halite+CaCl ₂ $\cdot n$ H ₂ O cotectics. Field 6a includes fluid
528	inclusion compositions for which antarcticite disappears on the H+A cotectic, field 6b includes
529	those that lose tetrahydrate along the H+Ca4h cotectic, and field 6c includes those that lose
530	dihydrate on the H+Ca2h cotectic (Fig. 11). The method employed for each of these fields is to
531	determine the liquid composition (Ω) on the cotectic at the temperature of last hydrate melting
532	from the intersection of Eqn (3) with either Eqn. (4), Eqn. (5) or Eqn. (6) (depending on the last
533	hydrate to melt). The fluid inclusion bulk composition is found as the intersection of the vertical
534	plane containing the line of constant Ω with the isotherm of final halite melting (T _{m,h}).

535 Field $7 - T_{pb,x} < T_{m,ant, Ca4h or Ca2h}$

Field 7 (Fig. 11) includes a narrow compositional range near the CaCl₂ binary, and is characterized by at least seven possible melting sequences and pairs of input data, although observation of melting sequences in this part of the system has yet to be reported unequivocally for natural fluid inclusions.

Because the weight fraction of NaCl (Φ) in this part of the system is everywhere less than 0.05, the fluid bulk composition can be estimated with reasonable precision from $T_{m,CaCl2:nH2O}$ alone. The liquid Φ on the appropriate cotectic or peritectic curve can be determined directly as outlined for the other fields, by the intersection of the adjacent liquidi, and the bulk composition lies on the straight line that extends from that composition to the composition of the final melting of solid CaCl₂ hydrate. Again, the weight fraction of NaCl (Φ) in the bulk fluid in this part of the

546 system does not significantly affect the calculated total salinity and, in the absence of a next-to-547 last melting temperature, Φ must be between 0-0.05.

548 **Description of the Numerical Model**

549 The numerical model developed in this study has been built into a Microsoft® Excel© program 550 that estimates H₂O-NaCl-CaCl₂ fluid inclusion compositions. The program is available for 551 download as an electronic annex to this paper. Compositions that may be calculated using the 552 model are defined by a triangle bounded by the H₂O apex, the NaCl apex and the composition of 553 CaCl₂·4H₂O on the H₂O-CaCl₂ binary (Fig. 13). For comparison, the compositional limits of 554 other published numerical models (CalcicBrine (NADEN, 1996); Agsole and AgSo2e (BAKKER, 555 2003); "H2O_NaCl-CaCl2" (CHI and NI, 2007)) are also shown in Figure 13. The compositional 556 range of the numerical model developed in this study extends the applicability to fluid inclusions 557 that have liquid compositions that evolve along an antarcticite-bearing cotectic curve, as well as 558 fluid inclusions that exhibit first melting at the first or second ternary peritectic, for which the 559 composition cannot be determined using the previously published models. The programs 560 "H2O_NaCl_CaCl2" (CHI and NI, 2007) and "AqSo2e" (BAKKER, 2003) do not allow the input 561 of a known weight fraction of NaCl (Φ) to calculate fluid inclusion bulk composition. 562 Furthermore, "AqSo2e" (BAKKER, 2003) does not allow the input of the combination of melting 563 of ice on a cotectic or peritectic ($T_{pb,ice}$) and melting of halite on the liquidus surface ($T_{m,h}$). 564

565 Examples of Application of the Model to Natural Fluid Inclusions

566 Application of the numerical model developed in this study to interpretation of natural 567 fluid inclusions can be demonstrated using data from previously published studies. Where

available, data for individual fluid inclusions have been input into the numerical model derived
in this study to determine bulk fluid compositions. In other cases, ranges of measured
temperatures of phase transitions have been input into the model to estimate ranges in fluid
compositions.

572 Fluid inclusions that show ice as the final solid phase to melt are reported in many studies 573 (e.g., see BASUKI and SPOONER (2002) for references). The "Stage III" inclusions in epidote of 574 LAYNE and SPOONER (1991) are used as examples here to demonstrate the applicability of the 575 numerical model developed in the present study. The compositions of these fluid inclusions, 576 determined using the microthermometric data of LAYNE and SPOONER (1991) in the numerical 577 model developed in this study range from 17.4 to 26.5 wt.% total salt, and a weight fraction of 578 NaCl (Φ) of 0.064 to 0.081 (Fig. 14). These compositions are in good agreement with those 579 reported by LAYNE and SPOONER (1991), differing by less than 1 wt.% total salinity for each 580 inclusion (Table 3).

581 Fluid inclusions in which hydrohalite is the last solid to melt have been reported by, 582 among others, NYMAN et al. (1990), LAYNE and SPOONER (1991), and XU (2000). The 583 microthermometric data of NYMAN et al. (1990) are reported only as temperature ranges, and the 584 minimum and maximum melting temperatures were used to estimate the range of fluid inclusion 585 compositions using our numerical model (Fig. 14; Table 3). The range in salinities determined 586 here based on the microthermometric data of NYMAN et al. (1990) is 26.4 to 30.4 wt. % NaCl, 587 with a range in weight fraction of NaCl (Φ) of 0.16 to 0.63, whereas NYMAN et al. (1990) report 588 salinities of 26 to 27 wt.% NaCl and Φ from 0.6 to 0.7. The difference in Φ reported by NYMAN 589 et al. (1990) compared to values determined in this study is likely due to the inaccuracy 590 associated with graphically interpolating isotherms in the hydrohalite field that was used in the

591	previous study, compared to the numerical methods used here. However, the bulk salinities
592	estimated by NYMAN et al. (1990) are in good agreement with those estimated here.
593	Natural fluid inclusions that show halite as the final solid to melt are described by VANKO
594	et al. (1988), NYMAN et al. (1990), SCHIFFRIES (1990), LAYNE and SPOONER (1991) and XU
595	(2000). Microthermometric data from VANKO et al. (1988) for individual fluid inclusions in
596	quartz from a vein in hornblendite from the Mathematician Ridge, East Pacific Rise, have been
597	used to estimate fluid inclusion compositions (Fig. 14). Those fluid inclusions from VANKO et al.
598	(1988) in which ice melts in the presence of metastable halite have been excluded in this
599	example. The compositions of the fluid inclusions determined using our numerical model are in
600	good agreement with the compositions determined by VANKO et al. (1988), differing by less than
601	2 wt.% for each inclusion (Table 3).
602	Microthermometric data from "Type 1" and "Type 3" inclusions from the Bushveld
603	Complex reported by SCHIFFRIES (1990) include cotectic melting temperatures of various $CaCl_2$
604	hydrates. SCHIFFRIES (1990) did not estimate a bulk fluid composition due the uncertainty in
605	locating the H+A and H+Ca2h cotectic curves, and the small number of experimental data in this
606	part of the phase diagram (SCHIFFRIES, 1990). The "Type 1" inclusions exhibit eutectic melting,
607	and the liquid evolves along the H+A cotectic before losing antarcticite $(T_{pb,ant})$ and undergoing
608	final melting by halite dissolution $(T_{m,h})$. The data for "Type 1" inclusions indicate salinities
609	ranging from 46 to 51 wt.% total salt and weight fraction of NaCl (Φ) ranging from 0.15 to 0.24
610	(Fig. 14; Table 3). The "Type 3" inclusions of SCHIFFRIES (1990) show first melting at the
611	second ternary peritectic (P ₂) (Fig. 1), and the liquid evolves along the H+Ca4h cotectic before
612	losing tetrahydrate ($T_{pb,Ca4h}$), and the last solid phase to melt is halite ($T_{m,h}$). The ranges of

613 $T_{pb,Ca4h}$ and $T_{m,h}$ from SCHIFFRIES (1990) indicate salinities for the "Type 3" inclusions of 49 to 614 54 wt.% total salt, with Φ ranging from 0.14 to 0.25 (Fig. 14; Table 3).

615 No examples are given in Figure 14 and Table 3 of fluid inclusions in which antarcticite 616 is the last solid phase to melt, because fluid inclusions of this type have not been unequivocally 617 identified in previous studies. The apparent lack of fluid inclusions of this type may be due in 618 part to the narrow compositional range of the antarcticite field (Fig. 1), but also possibly due to 619 the difficulty of recognizing antarcticite in fluid inclusions (see ROEDDER, 1984). For example, 620 ROBERT and KELLEY (1987) identified salt hydrate as the last melting phase of some H₂O-NaCl-621 CaCl₂ fluid inclusions from gold-bearing quartz veins at the Sigma Mine, but were unable to 622 determine whether the phase was hydrohalite or antarcticite. ULMER-SCHOLLE et al. (1993) 623 report antarcticite as the final solid phase to melt in fluid inclusions in diagenetic quartz from the 624 Delaware Basin (Texas and New Mexico), but the identification was based on melting 625 temperatures up to +3.1°C for fluid inclusions with homogenization temperatures of 53-81°C 626 (ULMER-SCHOLLE et al., 1993). Fluid inclusions with such low homogenization temperatures 627 tend to eliminate the vapor bubble upon freezing, due to the volume expansion associated with 628 the water-ice transition, and thus the melting temperatures were obtained under vapor-absent 629 conditions. Under such conditions, the temperatures of solid-liquid phase transitions cannot be 630 properly interpreted with respect to experimental data for the vapor-saturated liquidus 631 (ROEDDER, 1967). As shown by ROEDDER (1967), a final melting temperature of +3.1°C is not 632 incompatible with metastable melting of ice in the pure H_2O system under vapor-absent conditions. 633

634 Although fluid inclusions that have antarcticite as the final solid phase to melt have not 635 been unambiguously identified, fluid inclusions with low NaCl weight fraction (Φ) (e.g., KWAK

636	and TAN, 1981; LAYNE and SPOONER, 1991) as well as those described by SCHIFFRIES (1990) in
637	which the liquid composition evolves along the H+A and H+Ca4h cotectics, indicate that fluid
638	compositions in the CaCl ₂ -rich portion of the phase diagram occur in nature. Furthermore,
639	Raman analysis has been used to identify CaCl ₂ hydrates in fluid inclusions (DUBESSY et al.,
640	1982; SAMSON and WALKER, 2000; BAUMGARTNER and BAKKER, 2009). The numerical model
641	developed in this study allows fluid compositions to be determined in this part of the phase
642	diagram, and will be useful if fluid inclusions with high salinity and low weight fraction of NaCl
643	(Φ) are discovered in the future.
644	
644 645	Summary
644 645 646	Summary The empirical equations developed in this study completely describe the geometry of the
644 645 646 647	Summary The empirical equations developed in this study completely describe the geometry of the liquidus surface and cotectic curves for the part of the H ₂ O-NaCl-CaCl ₂ phase diagram between
644 645 646 647 648	Summary The empirical equations developed in this study completely describe the geometry of the liquidus surface and cotectic curves for the part of the H ₂ O-NaCl-CaCl ₂ phase diagram between the H ₂ O apex, the NaCl apex and the composition of CaCl ₂ ·4H ₂ O on the H ₂ O-CaCl ₂ binary. The
644 645 646 647 648 649	Summary The empirical equations developed in this study completely describe the geometry of the liquidus surface and cotectic curves for the part of the H ₂ O-NaCl-CaCl ₂ phase diagram between the H ₂ O apex, the NaCl apex and the composition of CaCl ₂ ·4H ₂ O on the H ₂ O-CaCl ₂ binary. The numerical model described herein incorporates this comprehensive set of equations to allow fluid
 644 645 646 647 648 649 650 	Summary The empirical equations developed in this study completely describe the geometry of the liquidus surface and cotectic curves for the part of the H ₂ O-NaCl-CaCl ₂ phase diagram between the H ₂ O apex, the NaCl apex and the composition of CaCl ₂ ·4H ₂ O on the H ₂ O-CaCl ₂ binary. The numerical model described herein incorporates this comprehensive set of equations to allow fluid inclusion compositions to be determined anywhere within that compositional range, using a
 644 645 646 647 648 649 650 651 	Summary The empirical equations developed in this study completely describe the geometry of the liquidus surface and cotectic curves for the part of the H ₂ O-NaCl-CaCl ₂ phase diagram between the H ₂ O apex, the NaCl apex and the composition of CaCl ₂ ·4H ₂ O on the H ₂ O-CaCl ₂ binary. The numerical model described herein incorporates this comprehensive set of equations to allow fluid inclusion compositions to be determined anywhere within that compositional range, using a variety of combinations of input data. The model has been applied to estimate compositions of

653 Excel© program that implements the model to estimate fluid inclusion compositions is available

654 for download as an electronic annex to this paper. The authors recommend that the model

655 presented here should be used in preference to CalcicBrine.

656

657 Acknowledgements

658	The authors thank Dave Vanko, Iain M. Samson and an anonymous reviewer for their comments
659	and suggestions that significantly clarified, improved and shortened an earlier version of this
660	manuscript. The authors also thank Associate Editor Bob Burruss for his comments and sage
661	advice on editorial issues. Thanks to Tobias Schlegel for testing the computer package and
662	suggesting some improvements to the user interface. This material is based upon work supported
663	by the National Science Foundation under grant nos. EAR-0711333 and OCE-0928472. The
664	Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech provided
665	support for Steele-MacInnis. Naden publishes with the permission of the Executive Director,
666	British Geological Survey (NERC).

668 **References**

- Bakker, R. J., 2003. Package FLUIDS; 1, Computer programs for analysis of fluid inclusion data
 and for modelling bulk fluid properties. *Chemical Geology* **194**, 3-23.
- 671 Basuki, N. I. and Spooner, E. T. C., 2002. A review of fluid inclusion temperatures and salinities
- 672 in Mississippi valley-type Zn-Pb deposits; identifying thresholds for metal transport.
- 673 *Exploration and Mining Geology* **11**, 1-17.
- Baumgartner, M. and Bakker, R. J., 2009. CaCl₂-hydrate nucleation in synthetic fluid inclusions.
- 675 *Chemical Geology* **265**, 335-344.
- 676 Bodnar, R. J., 1994. Synthetic fluid inclusions; XII, The system H₂O-NaCl; experimental
- 677 determination of the halite liquidus and isochores for a 40 wt% NaCl solution.
- 678 *Geochimica et Cosmochimica Acta* **58**, 1053-1063.
- 679 Chi, G. and Ni, P., 2007. Equations for calculation of NaCl/(NaCl + CaCl₂) ratios and salinities
- from hydrohalite-melting and ice-melting temperatures in H₂O-NaCl-CaCl₂ system.
- 681 *Yanshi Xuebao* **23**, 33-37.
- 682 Chou, I-Ming, 1987. Phase relations in the system NaCl-KCI-H₂O. Part III: Solubilities of halite
- in vapor-saturated liquids above 445°C and redetermination of phase equilibrium
- 684 properties in the system NaCl- H_20 to 1000°C and 1500 bars. Geochimica et
- 685 *Cosmochimica Acta* **51**, 1965-1975.
- 686 Collins, A. G., 1975. *Geochemistry of oilfield waters*. Elsevier Scientific Publishing Company,
 687 Amsterdam; New York.
- Dubessy, J., Audeoud, D., Wilkins, R., and Kosztolanyi, C., 1982. The use of the Raman
- 689 microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase
- 690 of fluid inclusions. *Chemical Geology* **37**, 137-150.

691	Frape, S. K., Fritz, P., and McNutt, R. H., 1984. Water-rock interaction and chemistry of
692	groundwaters from the Canadian Shield. Geochimica et Cosmochimica Acta 48, 1617-
693	1627.
694	Günther, D., Audetat, A., Frischknecht, R., and Heinrich, C. A., 1998, Quantitative analysis of
695	major, minor and trace elements in fluid inclusions using laser ablation - inductively
696	coupled plasma mass spectrometry: Journal of Analytical Atomic Spectroscopy, 13, p.
697	263-270.
698	Hall, D.L., Sterner, S.M. and Bodnar, R.J., 1988, Freezing point depression of NaCl-KCl-H2O
699	solutions. Economic Geology and the Bulletin of the Society of Economic Geologists, 83,
700	197-202.
701	Hanor, J. S. and McIntosh, J. C., 2007. Diverse origins and timing of formation of basinal brines
702	in the Gulf of Mexico sedimentary basin. Geofluids 7, 227-237.
703	Haynes, F. M. and Kesler, S. E., 1987. Chemical evolution of brines during Mississippi valley-
704	type mineralization; evidence from East Tennessee and Pine Point. Economic Geology
705	and the Bulletin of the Society of Economic Geologists 82, 53-71.
706	Konnerup-Madsen, J., 1979. Fluid inclusions in quartz from deep-seated granitic intrusions,
707	south Norway. Lithos 12, 13-23.
708	Kwak, T. A. P. and Tan, T. H., 1981. The importance of CaCl ₂ in fluid composition trends;
709	evidence from the King Island (Dolphin) skarn deposit. Economic Geology and the
710	Bulletin of the Society of Economic Geologists 76, 955-960.
711	Layne, G. D. and Spooner, E. T. C., 1991. The JC tin skarn deposit, southern Yukon Territory; I,
712	Geology, paragenesis, and fluid inclusion microthermometry. Economic Geology and the
713	Bulletin of the Society of Economic Geologists 86, 29-47.

714	Li, C. and Naldrett, A. J., 1993. High chlorine alteration minerals and calcium-rich brines in fluid
715	inclusions from the Strathcona deep copper zone, Sudbury, Ontario. Economic Geology
716	and the Bulletin of the Society of Economic Geologists 88, 1780-1796.
717	Linke, W. F., 1958. Solubilities, inorganic and metal organic compounds; a compilation of
718	solubility data from the periodical literature. Van Nostrand, Princeton, NJ.
719	Lowenstein, T. K., Hardie, L. A., Timofeeff, M. N., and Demicco, R. V., 2003. Secular variation
720	in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31, 857-
721	860.
722	Naden, J., 1996. CalcicBrine; a Microsoft Excel 5.0 add-in for calculating salinities from
723	microthermometric data in the system NaCl-CaCl ₂ -H ₂ O. In: Brown, P. E. and Hagemann,
724	S. G. Eds.)PACROFI VI, Madison, WI.
725	National Research Council, 1928. International critical tables of numerical data, physics,
726	chemistry and technology. McGraw-Hill, New York.
727	Nyman, M. W., Sheets, R. W., and Bodnar, R. J., 1990. Fluid-inclusion evidence for the physical
728	and chemical conditions associated with intermediate-temperature PGE mineralization at
729	the New Rambler Deposit, southeastern Wyoming. The Canadian Mineralogist 28, 629-
730	638.
731	Oakes, C. S., Bodnar, R. J., and Simonson, J. M., 1990. The system NaCl-CaCl ₂ -H ₂ O; 1, The ice
732	liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta 54, 603-610.
733	Oakes, C. S., Sheets, R. W., and Bodnar, R. J., 1992. (NaCl + CaCl ₂)[aq]; phase equilibria and
734	volumetric properties. In: Hall, D. S. and Sterner, S. M. Eds.)PACROFI IV Extended
735	Abstracts, Lake Arrowhead, CA.

- 736 Potter, R. W., II and Clynne, M. A., 1978. Solubility of highly soluble salts in aqueous media;
- Part 1, NaCl, KCl, CaCl₂, Na₂SO₄, and K₂SO₄ solubilities to 100° C. *Journal of*
- 738 *Research of the U. S. Geological Survey* **6**, 701-705.
- 739 Robert, F. and Kelly, W. C., 1987. Ore-forming fluids in Archean gold-bearing quartz veins at
- the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. *Economic Geology and the Bulletin of the Society of Economic Geologists* 82, 1464-1482.
- Roedder, E., 1967. Metastable superheated ice in liquid water inclusions under high negative
 pressure. *Science* 155, 1412-1417.
- Roedder, E., 1984. Fluid inclusions. *Reviews in Mineralogy* **12**, 644.
- 745 Samson, I. M. and Walker, R. T., 2000. Cryogenic Raman spectroscopic studies in the system
- NaCl-CaCl₂-H₂O and implications for low-temperature phase behavior in aqueous fluid
 inclusions. *The Canadian Mineralogist* 38, 35-43.
- 748 Samson, I. M., Williams-Jones, A. E., Ault, K. M., Gagnon, J. E. & Fryer, B. J. (2008). Source
- 749 of fluids forming distal Zn-Pb-Ag skarns: Evidence from laser ablation-inductively
- coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito,
- 751 Honduras. *Geology* **36**, 947-950.
- Schiffries, C. M., 1990. Liquid-absent aqueous fluid inclusions and phase equilibria in the
 system CaCl₂-NaCl-H₂O. *Geochimica et Cosmochimica Acta* 54, 611-619.
- 754 Sterner, S. M., Hall, D. L., and Bodnar, R. J., 1988. Synthetic fluid inclusions. V. Solubility
- relations in the system NaCl-KCl-H₂O under vapor-saturated conditions. *Geochimica et Cosmochimica Acta* 52, 989-1005.
- 757 Stoffell, B., Appold, M. S., Wilkinson, J. J., McClean, N. A. & Jeffries, T. E. (2008).
- 758 Geochemistry and evolution of Mississippi valley-type mineralizing brines from the Tri-

759	State and Northern Arkansas Districts determined by LA-ICP-MS microanalysis of fluid
760	inclusions. Economic Geology and the Bulletin of the Society of Economic Geologists
761	103 , 1411-1435.
762	Ulmer-Scholle, D. S., Scholle, P. A., and Brady, P. V., 1993. Silicification of evaporites in
763	Permian (Guadalupian) back-reef carbonates of the Delaware Basin, West Texas and
764	New Mexico. Journal of Sedimentary Petrology 63, 955-965.
765	Vanko, D. A., 1988. Temperature, pressure, and composition of hydrothermal fluids, with their
766	bearing on the magnitude of tectonic uplift at mid-ocean ridges, inferred from fluid
767	inclusions in oceanic layer 3. Journal of Geophysical Research 93, 4595-4611.
768	Vanko, D. A., Bodnar, R. J., and Sterner, S. M., 1988. Synthetic fluid inclusions; VIII, Vapor-
769	saturated halite solubility in part of the system NaCl-CaCl ₂ -H ₂ O, with application to fluid
770	inclusions from oceanic hydrothermal systems. Geochimica et Cosmochimica Acta 52,
771	2451-2456.
772	Williams-Jones, A. E. and Samson, I. M., 1990. Theoretical estimation of halite solubility in the
773	system NaCl-CaCl ₂ -H ₂ O; applications to fluid inclusions. <i>The Canadian Mineralogist</i> 28,
774	299-304.
775	Xu, G., 2000. Fluid inclusions with NaCl-CaCl ₂ -H ₂ O composition from the Cloncurry
776	hydrothermal system, NW Queensland, Australia. Lithos 53, 21-35.
777	Yanatieva, O. K., 1946. Solubility polytherms in the systems CaCl ₂ -MgCl ₂ -H ₂ O and CaCl ₂ -
778	NaCl-H ₂ O. Zhurnal Prikladnoi Khimii 19 , 709-22.
779	Zhang, Y., Han, Y., and Wang, S, 1995. Phase diagram of the ternary system SmCl ₃ -NaCl-
780	CaCl ₂ . <i>Thermochimica Acta</i> 254 , 383-90.
781	

782 Appendix A. Stable Melting Paths of H₂O-NaCl-CaCl₂ Fluid Inclusions

783	The compositions of natural fluid inclusions that are described by the system
784	H_2O -NaCl-CaCl ₂ may be determined based on the temperature and sequence of phase
785	changes observed during heating from low temperatures. The temperatures of phase
786	changes and the sequence of phase changes, in turn, depend on the bulk composition of
787	the inclusion. The temperature of first melting provides an indication of which
788	representative system is appropriate for interpreting the fluid inclusion composition, and
789	may also provide an indication of the compositional range (e.g., first melting at the
790	eutectic versus first melting at a peritectic point). However, the phase changes that are
791	most often used to determine bulk compositions of fluid inclusions from
792	microthermometric data are the melting temperatures of the last and next-to-last solid
793	phases, so it is not necessary to measure the temperatures of all phase changes. The
794	reader is referred to SCHIFFRIES (1990) for a complete discussion of the many potential
795	stable melting pathways in the H_2O -NaCl-CaCl ₂ system, and to VANKO et al. (1988) and
796	BAUMGARTNER and BAKKER (2009) for some examples of metastable melting sequences.
797	Note that if the last or next-to-last solid phase to melt is metastable, it can lead to
798	misinterpretation of the fluid inclusion composition, as discussed by ROEDDER (1984)
799	and BAUMGARTNER and BAKKER (2009).
800	Fluid inclusions approximated by the system H ₂ O-NaCl-CaCl ₂ and having
801	compositions that lie within the ice-hydrohalite-antarcticite triangle (triangle "1"; Fig. 1b)
802	are characterized by the subsolidus assemblage ice+hydrohalite+antarcticite, and have
803	first melting at the ternary eutectic (E) at -52° C (Fig. 1c). The vapor bubble (the presence

804 of which is required to demonstrate vapor-saturated conditions) is considered to be of

805	negligible mass and does not contribute to the fluid composition (except perhaps for high
806	temperature ($\geq 400^{\circ}$ C) fluid inclusions that contain a vapor bubble larger than a few 10's
807	of volume percent at the time of last melting). Inclusions with compositions that lie
808	within the hydrohalite+halite+antarcticite triangle (triangle "2"; Fig. 1b) contain the
809	subsolidus assemblage hydrohalite+halite+antarcticite. For these compositions, first
810	melting occurs at the first peritectic point (point "P1"; Fig. 1c), and the first solid phase to
811	be consumed is antarcticite. SCHIFFRIES (1990) has also identified fluid inclusions that are
812	liquid-absent at room temperature and characterized by the sub-solidus assemblage
813	antarcticite+halite+tetrahydrate (triangle "3"; Fig. 1b) and exhibit first melting at the
814	second ternary peritectic (P ₂) (Fig. 1c) at +29°C (SCHIFFRIES, 1990). Fluid inclusions
815	showing second peritectic (or higher) first melting behavior are liquid-absent at room
816	temperature and can be easily overlooked or mistaken for mineral inclusions during
817	routine petrographic examination (SCHIFFRIES, 1990).
818	Natural H ₂ O-NaCl-CaCl ₂ fluid inclusions that show ice as the last solid phase to
819	melt have been described in many studies and are common in MVT deposits (e.g., see
820	BASUKI and SPOONER, 2002). For inclusions that have ice as the last solid phase to melt
821	the liquid composition may evolve along either the I+HH cotectic (path $E \rightarrow a1$; Fig. A1-
822	a) or the I+A cotectic (path $E \rightarrow a3$; Fig. A1-a) during heating from the eutectic
823	temperature, depending on the bulk composition. Thus, the melting temperature of ice
824	$(T_{m,ice})$ will be preceded by melting of hydrohalite $(T_{pb,hh})$ (path E \rightarrow a1 \rightarrow a2, Fig. A1-a)
825	for inclusions that contain more than 0.058 weight fraction of NaCl (Φ) relative to NaCl
826	+ CaCl ₂ , corresponding to the composition at the eutectic, but the melting temperature of

827	ice will be preceded by $T_{pb,ant}$ (path E \rightarrow a3 \rightarrow a4, Fig. A1-a) if the bulk composition lies to
828	the CaCl ₂ -rich side of the eutectic composition ($\Phi = 0.058$).
829	For fluid inclusions whose bulk composition lies within the hydrohalite field,
830	hydrohalite is the last solid phase to melt and either ice or antarcticite must be the next-
831	to-last solid phase to melt. Thus, the melting temperature of hydrohalite $(T_{m,hh})$ is
832	preceded by either the melting of ice ($T_{pb,ice}$; path E \rightarrow b1 \rightarrow b2; Fig. A1-b) or the melting
833	of antarcticite ($T_{pb,ant}$; path E \rightarrow b3 \rightarrow b4; Fig. A1-b). The fluid composition evolves
834	directly toward the composition of hydrohalite upon departure from the I+HH or HH+A
835	cotectic (path segments $b1 \rightarrow b2$ and $b3 \rightarrow b4$, respectively; Fig. A1-b), until final melting
836	occurs by hydrohalite disappearance (points "b2" and "b4"; Fig. A1-b). Natural fluid
837	inclusions that show hydrohalite as the last solid to melt have been described by NYMAN
838	et al. (1990), LAYNE and SPOONER (1991) and XU (2000).
839	Fluid inclusions with bulk compositions in the halite field may lose ice on the
840	I+HH cotectic (path E \rightarrow c1 \rightarrow c2 \rightarrow c3 \rightarrow c4; Fig. A1-c) or lose antarcticite on the HH+A
841	cotectic (path E \rightarrow c5 \rightarrow c6 \rightarrow c7 \rightarrow c8; Fig. A1-c). For example, consider a fluid inclusion
842	with bulk composition shown by point "c4" in Figure A1-c. First melting occurs at the
843	eutectic (point "E," Fig. A1-c), where antarcticite is completely consumed. The liquid
844	composition then evolves along the I+HH cotectic upon further heating until ice is
845	completely consumed at point "c1" (Fig. A1-c). Then, the liquid composition evolves
846	across the hydrohalite field along a straight line toward the composition of hydrohalite on
847	the H ₂ O-NaCl binary. Upon intersection of the HH+H reaction curve at point "c2"
848	hydrohalite reacts to produce halite + liquid. The liquid composition then evolves along
849	the HH+H peritectic curve as halite grows at the expense of hydrohalite, until all

850	hydrohalite is consumed at point "c3", and the liquid composition then evolves along a
851	straight line towards halite with further heating, until final melting of halite at point "c4",
852	representing the fluid inclusion bulk composition (Fig. A1-c). This melting sequence can
853	theoretically yield temperatures for the melting of ice along the I+HH cotectic ($T_{pb,ice}$)
854	(point "c1"; Fig. A1-c) (or melting of antarcticite along the HH+A cotectic, (T _{pb,ant})
855	(point "c5")), the melting of hydrohalite along the HH+H peritectic ($T_{pb,hh}$) and the
856	melting of halite on the vapor-saturated halite liquidus $(T_{m,h})$ (Fig. 2c). However, in
857	practice the disappearance of the first phase to melt, either ice or antarcticite, may be
858	difficult to recognize, or the melting temperature of hydrohalite may be difficult to
859	determine accurately owing to sluggish melting or metastability, for instance due to the
860	kinetic barrier to halite nucleation on the HH+H peritectic curve. Fluid inclusions that
861	follow this melting sequence have been described in natural samples by VANKO et al.
862	(1988), NYMAN et al. (1990), LAYNE and SPOONER (1991) and XU (2000).
863	Fluid inclusions with compositions in the halite field can also exhibit liquid
864	evolution along one or more of the halite- $CaCl_2$ hydrate cotectics. For example, consider
865	a fluid inclusion with a bulk composition shown by point "c10" in Figure A1-c. This bulk
866	composition lies within the hydrohalite+halite+antarcticite triangle (triangle "2"; Fig. 1b),
867	so the subsolidus assemblage is hydrohalite+halite+antarcticite. For this composition,
868	first melting occurs at the first peritectic point (point "P1"; Fig. A1-c), and the first solid
869	phase to be consumed is antarcticite. The liquid composition then evolves along the H+A
870	cotectic until it intersects the second peritectic point (point "P2"; Fig. A1-c), at which
871	point antarcticite reacts to produce tetrahydrate + liquid. Once antarcticite is completely
872	consumed, the liquid composition evolves along the H+Ca4h cotectic with further

873	heating, until tetrahydrate is completely consumed at point "c9" (Fig. A1-c), after which
874	the liquid composition evolves along a straight line toward the composition of halite
875	(NaCl) until halite is completely consumed at point "c10", representing the fluid
876	inclusion bulk composition. In theory, this melting sequence can provide values for $T_{pb,ant}$
877	(the second peritectic temperature) and $T_{pb,Ca4h}$ along with $T_{m,h}$. Natural fluid inclusions
878	exhibiting this sequence of phase changes have been described by SCHIFFRIES (1990).
879	As pointed out by SCHIFFRIES (1990), several phase change sequences corresponding to
880	compositions within the expected range of geologic fluid compositions have yet to be
881	reported in natural H ₂ O-NaCl-CaCl ₂ fluid inclusions. Most notably, natural fluid
882	inclusions in which the last solid phase to melt is a $CaCl_2$ hydrate have yet to be
883	unequivocally identified, although some previous studies have reported a salt hydrate,
884	thought to be antarcticite, as the last solid phase to melt (e.g., ULMER-SCHOLLE et al.,
885	1993), and final melting of $CaCl_2$ hydrates has been observed in synthetic H_2O -CaCl ₂
886	fluid inclusions (BAUMGARTNER and BAKKER, 2009). Several possible sequences of
887	phase changes are contained within the compositional range of the CaCl ₂ hydrate liquidi
888	(e.g., paths $E \rightarrow d1 \rightarrow d2$ and $E \rightarrow d3 \rightarrow d4$; Fig. A1-d).
889	

890

891 **Figure Captions**

892

893	Figure 1.	Vapor-saturated liquidus phase relations in the H_2O -NaCl-CaCl ₂ system. (a) A
894		distorted, schematic representation of the ternary H_2O -NaCl-CaCl ₂ system
895		showing the relative locations of the liquidus fields. (b) The shaded region on
896		the ternary diagram shows the part of the system that is modeled in this study.
897		The numbered triangles show fields of sub-solidus phase assemblages. Bulk
898		compositions within triangle "1" contain the equilibrium assemblage
899		ice+hydrohalite+antarcticite when frozen; those in triangle "2" contain
900		hydrohalite+halite+antarcticite when frozen; and those compositions in triangle
901		"3" contain halite+antarcticite+tetrahydrate when frozen. (c) Phase boundaries
902		(cotectic and peritectic curves) and isotherms calculated using the equations
903		developed in this study (see text for discussion). The invariant points and
904		univariant curves are labeled according to the terminology described in the
905		text. Arrows on the univariant curves point up-temperature.
906		
907	Figure 2.	Summary of sources of experimental data for the H_2O -NaCl-CaCl ₂ system

used in this study. The data are sorted according to the phase assemblage on 908 909 the vapor-saturated liquidus, and the source of the data (see the legend). The 910 phase boundary curves were calculated from the equations derived in this study 911 (described in detail in the text).

912

913	Figure 3.	Residuals, in percent difference between experimental and calculated values
914		$\{(1 - calculated/measured)*100\%\}$, associated with the liquid salinity on the
915		vapor-saturated liquidi of ice (a) , hydrohalite (b) , halite (c) and antarcticite (d)
916		as a function of the experimental salinity. Calculated salinities are based on the
917		melting temperature of the last solid on the liquidus $(T_{m,x})$ and the weight ratio
918		of NaCl relative to NaCl + CaCl ₂ (Φ) calculated from Eqns. (1) to (4). The
919		symbols used for the residuals correspond to the equation used and the source
920		of experimental values to which the predicted values are compared (see the
921		legend).
922		
923	Figure 4.	Comparison of the composition (salinity vs. NaCl weight ratio) on the -10°C
924		isotherm on the vapor-saturated hydrohalite liquidus predicted by the equation
925		of NADEN (1996) (dashed line) and by equation (2) from this study (solid line).
926		Experimental data on the -10°C isotherm from YANATIEVA (1946) are shown
927		as open circles.
928		
929	Figure 5.	Comparison of the salinity on the +94.5°C isotherm on the vapor-saturated
930		halite liquidus predicted by the equation of NADEN (1996) (dashed line) and by
931		equation (3) from this study (solid line). Experimental data on the +94.5°C
932		isotherm from the NATIONAL RESEARCH COUNCIL (1928) are shown as open
933		circles. These experimental data were chosen for comparison because of the
934		large number of data points extending over a wide range of compositions along
935		the +94.5°C isotherm in the NRC report.

937	Figure 6.	Liquidus curves for the H_2O -NaCl (top) and H_2O -CaCl ₂ (bottom) binary
938		systems, calculated from Eqns. (1) to (6). Experimental data are from
939		NATIONAL RESEARCH COUNCIL (1928) (halite); YANATIEVA (1946) (ice,
940		hydrohalite, halite, antarcticite); LINKE (1958) (ice, hydrohalite, halite,
941		antarcticite, tetrahydrate, dihydrate); POTTER and CLYNNE (1978) (halite,
942		antarcticite, tetrahydrate, dihydrate); STERNER et al. (1988) (halite); and OAKES
943		et al. (1990) (ice).
944		
945	Figure 7.	Residuals, in percent difference between experimental and calculated values
946		$\{(1 - calculated/measured)*100\%\}$, associated with liquid salinity on the
947		I+HH, HH+H, HH+A and H+CaCl ₂ $\cdot n$ H ₂ O phase boundary curves as a function
948		of temperature from Eqns. (1), (2), (3), (4) and (6), plotted against the
949		experimental salinity. Symbols used are the same as for Figure 3.
950		
951	Figure 8.	Residuals, in percent difference between experimental and calculated values
952		{(1 - calculated/measured)*100%}, associated with Φ on the I+HH, HH+H,
953		HH+A and H+CaCl ₂ $\cdot n$ H ₂ O phase boundary curves as a function of temperature
954		from Eqns. (1), (2), (3), (4) and (6), plotted against the experimental weight
955		fraction of NaCl (Φ). The dashed vertical line in the I+HH residuals plot (upper
956		left) shows the eutectic composition. Symbols used are the same as for Figure
957		3.
958		

959	Figure 9.	Comparison of the weight fraction of NaCl in the liquid (Φ) as a function of
960		temperature on the HH+H peritectic curve predicted by the equation of NADEN
961		(1996) (dashed line) and by the intersection of equations (2) and (3) from this
962		study (solid line). Experimental data (solid triangles) are from YANATIEVA
963		(1946) and LINKE (1958).
964		
965	Figure 10	. Comparison of the liquid salinity as a function of temperature on the HH+H
966		peritectic curve predicted by the method of intersection of adjacent liquidus
967		surfaces from NADEN (1996), implemented by BAKKER (2003) (dashed line)
968		and by the Equations (1) and (3) from this study (solid line). Experimental data
969		(solid triangles) are from YANATIEVA (1946) and LINKE (1958).
970		
971	Figure 11	. Phase relations in the H_2O -NaCl-CaCl ₂ system under vapor-saturated
972		conditions showing the eleven different composition fields, based on the
973		sequence and temperatures of the final two (or three) solids to melt during
974		heating. See text for discussion of phase changes corresponding to each field
975		and identification of symbols.
976		
977	Figure 12	. Schematic heating sequence for a fluid inclusion with a composition within
978		field 5b (Fig. 11), showing the melting events that may be observed during
979		microthermometry. Isotherms of the relevant phase changes are shown as
980		dotted lines. Antarcticite is lost at the eutectic (point "E"), . The liquid
981		composition then evolves along the I+HH cotectic with further heating until

982		ice is consumed at point "a" ($T_{pb,ice}$). At this point, because hydrohalite is the
983		only solid phase present, the liquid composition evolves along a straight line
984		towards the composition of hydrohalite with further heating (segment $a\rightarrow b$).
985		The HH+H curve is intersected at point "b," where halite nucleates $(T_{pb,hh*})$.
986		On further heating, the liquid composition evolves along the HH+H peritectic
987		curve (segment b \rightarrow c), until hydrohalite is consumed at point "c" (T _{pb,hh}). At
988		this point, halite is the only remaining solid phase, so with further heating the
989		liquid composition evolves towards the NaCl apex until intersecting the $T_{\mathrm{m}, \hbar}$
990		isotherm at point "d," which is the bulk fluid inclusion composition. Note that
991		the bulk composition lies along the mixing line "a-NaCl \cdot 2H ₂ O" (between the
992		liquid composition at $T_{pb,ice}$ and pure hydrohalite), and the mixing line "c-
993		NaCl" (between the liquid composition at $T_{pb,hh}$ and pure halite), therefore any
994		pair of $T_{pb,ice}$, $T_{pb,hh}$ or $T_{m,h}$, is sufficient to fix the bulk composition.
995		
996	Figure 13.	Comparison of the compositional ranges over which the model presented in
997		this study (top) and previously published models of the $H_2O-NaCl-CaCl_2$
998		system are valid (middle and bottom). Top: The compositional range of
999		applicability of the model presented in this study. Middle: The shaded field
1000		shows the range of applicability of the model AqSo1e (BAKKER, 2003) and is
1001		also the range for the model of CHI and NI (2007), except for a small region
1002		near the H_2O -CaCl ₂ binary as described in the text. <i>Bottom:</i> The shaded area
1003		shows the range of applicability of the model AqSo2e (BAKKER, 2003) and
1004		CalcicBrine (NADEN, 1996).

1005	Figure 14. Examples of H ₂ O-NaCl-CaCl ₂ fluid inclusion compositions determined from
1006	published microthermometric data (sources listed in the legend) using the
1007	model developed in this study. Isotherms of measured melting temperatures
1008	shown in thin sold lines; pseudobinaries of liquid composition determined
1009	from measured cotectic melting temperatures shown as thin dashed lines. See
1010	text for description of the data and Table 3 for comparison of the results with
1011	those of the original studies.
1012	
1013	Figure A1. Example melting pathways, or liquid lines of ascent (up temperature), for
1014	select compositions in the H ₂ O-NaCl-CaCl ₂ system. (a) A fluid with
1015	composition "a2" shows first melting at the eutectic (point E, -52°C) where
1016	antarcticite is consumed. The liquid composition evolves along the I+HH
1017	cotectic until hydrohalite is consumed at point "a1" ($T_{pb,hh}$), after which the
1018	liquid evolves toward the H_2O apex until ice is consumed at point "a2" ($T_{m,ice}$),
1019	representing the fluid inclusion bulk composition. A fluid with composition
1020	"a4" shows hydrohalite melting at the eutectic (point "E") and the liquid
1021	evolves along the I+A cotectic until point "a3," (T _{pb,ant}) where antarcticite
1022	melts, with final melting at point " 4 " ($T_{m,ice}$), representing the fluid inclusion
1023	bulk composition. (b) A fluid of composition "b2" will show the same initial
1024	melting sequence as that for composition "a2" except that ice is consumed
1025	before hydrohalite on the I+HH cotectic at point "b1" ($T_{pb,ice}$), whereupon the
1026	liquid composition evolves directly towards the composition of hydrohalite
1027	until $T_{m,hh}$ at point "b2". For composition "b4" ice is lost at the eutectic (point

1028	E) and the liquid composition then evolves along the I+A cotectic until $T_{pb,ant}$
1029	at point "b3" where antarcticite is consumed. The liquid then evolves along a
1030	straight line toward the composition of hydrohalite until $T_{m,hh}$ at point "b4". (c)
1031	For composition "c4" first melting occurs at the eutectic (point "E") where
1032	antarcticite is lost. The liquid then evolves along the I+HH cotectic until ice is
1033	completely consumed at point "c1" ($T_{pb,ice}$). The liquid composition then
1034	evolves directly towards the composition of hydrohalite until the HH+H curve
1035	is intersected at point "c2", whereupon halite begins to grow at the expense of
1036	hydrohalite, and the liquid composition evolves along the HH+H peritectic
1037	curve. Hydrohalite is finally consumed at point "c3" ($T_{pb,hh}$), and the liquid
1038	composition then evolves towards the NaCl apex until halite melts at $T_{m,h}$
1039	("c4"), representing the fluid inclusion bulk composition. Fluid inclusions with
1040	composition "c8" follow an analogous pathway, but lose ice at the eutectic
1041	(point "E") and next lose antarcticite on the HH+A cotectic at point "c5"
1042	$(T_{pb,ant})$. The liquid composition then evolves toward the composition of
1043	hydrohalite until the HH+H curve is intersected at point "c6," where halite first
1044	nucleates. The liquid composition then evolves along the HH+H curve as halite
1045	grows at the expense of hydrohalite with further heating. Hydrohalite is
1046	completely consumed at point "c7" ($T_{pb,hh}$), whereupon the liquid composition
1047	evolves directly toward the composition of halite until reaching $T_{m,h}$ at point
1048	"c8", representing the bulk composition. Fluid inclusions with composition
1049	"c10" have first melting at the first ternary peritectic point ("P ₁ ") where
1050	hydrohalite is lost, and the liquid evolves along the H+A cotectic until

1051	intersecting the second ternary peritectic point (" P_2 "), where a reaction occurs
1052	and tetrahydrate grows at the expense of antarcticite by incongruent melting.
1053	The liquid composition then evolves along the H+Ca4h cotectic until
1054	tetrahydrate is completely consumed at point "c9" ($T_{pb,Ca4h}$). The liquid then
1055	evolves towards the NaCl apex until final halite melting at point "c10" ($T_{m,h}$).
1056	(d) For a fluid inclusion with bulk composition "d2," first melting occurs at the
1057	eutectic ("E") where hydrohalite is consumed. The liquid then evolves along
1058	the I+A cotectic curve until ice is completely consumed at point "d1" ($T_{pb,ice}$),
1059	whereupon the liquid composition evolves directly towards the composition of
1060	antarcticite until antarcticite is completely consumed at point "d2" ($T_{m,ant}$). A
1061	fluid inclusion with composition "d4" loses ice at the eutectic (point "E"), after
1062	which the liquid evolves along the HH+A cotectic until hydrohalite is
1063	consumed at point "d3" ($T_{pb,hh}$). The liquid then evolves towards the
1064	composition of antarcticite until antarcticite is consumed at point "d4" (T _{m,ant}).

	Solid phase(s) on cotectic and peritectic curves and on liquidus surfaces ^a											
Source	I+HH	I+A	HH+H	HH+A	H + A	H+Ca2h	Ι	HH	Η	А	Ca4h	Ca2h
National Research Council (1928)									19			
Yanatieva (1946)	9	3	6	7	8		57	30	13	20		
Linke (1958)			4		1	2	21	1	57	15	7	12
Potter and Clynne (1978)									11	4	5	5
Vanko et al. (1988)									10			
Oakes et al. (1990)	1						168					
Oakes et al. (1992)	3											
Sterner et al. (1988)									8			
Sub-total							246	31	118	39	12	17
Total ^b	13	3	10	7	9	2	262	61	137	58	12	19

Table 1. Summary of the number of published experimental T-X data points for the H₂O-NaCl-CaCl₂ system used in this study.

(a) I = ice; HH = hydrohalite; H = halite; A = antarcticite; Ca4h = tetrahydrate; Ca2h = dihydrate

(b) For each one-solid liquidus surface, the total number of data points used in the regression analysis is the sum of the subtotal (data on the one-solid surface) plus the number of data points for the adjacent boundary curves.

Table 2. Coefficients for Equations 1-6.

	Ice	Hydrohalite	Halite	Antarcticite	Tetrahydrate	Dihydrate
a_i	(Eqn. 1)	(Eqn. 2)	(Eqn. 3)	(Eqn. 4)	(Eqn. 5)	(Eqn. 6)
a_0	0.46685	0.06039097042	0.0586472647	0.06467408472	1.041627135	0.096475342
a_1	-2.0508125	-2.967800E-5	2.2759389E-4	6.9903747E-4	-0.02232533	1.677838E-3
a_2	-0.08997493	7.0463278E-6	0	-2.607825E-5	1.3792920E-4	-1.3572629E-5
a_3	-2.5468641E-3	1.237133E-3	8.8841217E-9	1.0162876E-6	-2.95841861	4.5571671E-8
a_4	-3.7319837E-5	-1.290978E-3	1.2272697E-3	4.3288357E-9	0.032785047	-0.11534086
a_5	-2.1478861E-7	-5.219129E-3	-3.9989511E-6	1.1648119E-10		
a_6	-1.138304	-3.178747E-6	-6.680437E-9	0.06779525838		
a_7	0.269882	-1.408898E-7	0.0284636532	-1.0833486E-3		
a_8	6.8878422E-3	1.0353807E-3	0			
<i>a</i> ₉	1.37774273E-8		3.1094576E-6			

			Sa	linity	Φ			
<u>Source</u>	Measured melting	g temperatures	From	This Study	From	This Study		
			Source	-	Source			
Layne and Spooner (1991)	$T_{pb,hh}$	$T_{m,ice}$						
	-44.5	-33.5	27	26.5	0.081	0.081		
	-49.1	-31.3	26.1	25.6	0.069	0.064		
	-49.2	-23.4	23.1	22.3	0.065	0.064		
	-49.6	-22.6	22.8	21.9	0.070	0.063		
	-45.9	-21.7	22.4	21.5	0.076	0.075		
	-46.6	-19.3	21.2	20.3	0.075	0.072		
	-43.7	-18.0	20.3	19.7	0.079	0.085		
	-46.5	-18.0	20.4	19.6	0.069	0.073		
	-45.6	-17.5	20	19.4	0.075	0.076		
	-47.2	-14.2	17.9	17.4	0.073	0.070		
Nyman et al. (1990)	T _{pb,ice}	$T_{m,hh}$						
	-41.0 to -25.0	-9.6 to -7.0	26 to 27	26.4 to 30.4	0.6 to 0.7	0.16 to 0.63		
Vanko et al. (1988)	$T_{c,ice}$	$\mathrm{T}_{\mathrm{m},h}$						
	-30.9	+278	41	39.7	0.74	0.70		
	-34.8	+402	51.3	50.7	0.87	0.85		
	-29.9	+288	41.5	40.1	0.76	0.72		
	-30.8	+286	41.5	40.2	0.75	0.71		
Schiffries (1990) –"Type 1"	T _{pb,ant}	$T_{m,h}$						
	+22 to +29	+161 to +201	-	46.5 to 50.3		0.15 to 0.24		
Schiffries (1990) –"Type 3"	T _{pb,Ca4h}	T _{m,h}						
	+31 to +38	+173 to +225	-	49.8 to 53.9	-	0.14 to 0.25		

Table 3. Compositions of natural fluid inclusions estimated using the numerical model developed in this study. The compositions reported in the original studies are shown for comparison.

