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Abstract 18 

Natural fluids approximated by the H2O-NaCl-CaCl2 system are common in a wide range of 19 

geologic environments, including sedimentary basins associated with hydrocarbon occurrences 20 

and MVT deposits, submarine hydrothermal systems, and other metamorphic, magmatic and 21 

hydrothermal environments. We present a comprehensive numerical model and Microsoft® 22 

Excel©-based computer program to determine the compositions of fluid inclusions in the H2O-23 

NaCl-CaCl2 system based on microthermometric and microanalytical data. The model consists of 24 

six polynomial correlation equations that describe liquid salinity as a function of NaCl/CaCl2 25 

ratio and melting temperature on each of the ice, hydrohalite, halite, antarcticite, CaCl2·4H2O and 26 

CaCl2·2H2O vapor-saturated liquidus surfaces. The cotectic and peritectic boundaries are 27 

determined from the intersections of the liquidus surfaces. The model is implicitly internally 28 

consistent and topologically correct. 29 

The model expands upon the compositional range of applicability and the data types that can 30 

be used for compositional determination. It reproduces experimental data for all compositions 31 

that lie within the H2O-NaCl-CaCl2·4H2O compositional triangle in the H2O-NaCl-CaCl2 system 32 

and yields accurate reproductions of the H2O-NaCl and H2O-CaCl2 binaries. Furthermore, in 33 

comparison to previously published models, the one presented here eliminates systematic errors, 34 

wavy isotherms and cotectic and peritectic curves with local “bumps.” 35 

 36 

37 
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List of Symbols 38 

ni number of moles of component i 39 

Xi Mole fraction of component i  [= (ni)/(ntotal)] 40 

Ψ The molar fraction of NaCl relative to NaCl + CaCl2   41 

 [= (XNaCl)/(XNaCl + XCaCl2)] 42 

Φ The weight fraction of NaCl relative to NaCl + CaCl2 43 

 [= (wt.% NaCl)/(wt.% NaCl + wt.% CaCl2)] 44 

Ω The molar fraction of CaCl2 relative to H2O + CaCl2 45 

 [= (XCaCl2)/(XCaCl2 + XH2O)] 46 

Tm,x Temperature (°C) at which solid phase x melts on the one-solid-stable vapor-47 

saturated liquidus surface. 48 

Tpb,x Temperature (°C) at which solid phase x melts on either a cotectic or peritectic 49 

phase boundary curve, in the presence of liquid plus vapor plus another solid. 50 

Subscripts x: ice (= H2O solid); hh (= hydrohalite); h (= halite); ant (= 51 

antarcticite); Ca4h (tetrahydrate = CaCl2·4H2O); Ca2h 52 

(dihydrate = CaCl2·2H2O = sinjarite) 53 

Smol Total salinity on a mole fraction basis [= XNaCl + XCaCl2]. 54 

Swt
 Total salinity on a wt.% basis [= (wt.% NaCl + wt.% CaCl2)] 55 

ai Regression coefficient. 56 

57 
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Introduction 58 

Aqueous fluids in which NaCl and CaCl2 are the two most abundant salts and which may 59 

be adequately described by the system H2O-NaCl-CaCl2 are common in many geologic 60 

environments. Fluids of this composition are commonly found in sedimentary basins (COLLINS, 61 

1975; LOWENSTEIN et al., 2003; HANOR and MACINTOSH, 2007), Mississippi Valley-Type Pb-Zn 62 

deposits (HAYNES and KESSLER, 1987; BASUKI and SPOONER, 2002; STOFFELL et al., 2008), 63 

Archean lode gold deposits (ROBERT and KELLY, 1987), skarn and greisen deposits (KWAK and 64 

TAN, 1981; LAYNE and SPOONER, 1991; SAMSON et al., 2008), iron-oxide Cu-Au (IOCG) -type 65 

deposits (XU, 2000), magmatic Cu-Ni deposits (LI and NALDRETT, 1993), crystalline rocks of the 66 

Canadian Shield (FRAPE et al., 1984), mafic pegmatoids associated with platinum deposits in  the 67 

Bushveld Complex (SCHIFFRIES, 1990) and elsewhere (NYMAN et al., 1990), and in sub-seafloor 68 

hydrothermal systems (VANKO, 1988; VANKO et al., 1988). Thus, fluid inclusions approximated 69 

by the system H2O-NaCl-CaCl2 are common in a diverse range of geologic environments, and a 70 

methodology to interpret microthermometric data obtained from these inclusions is necessary to 71 

better understand geologic processes such as diagenesis, hydrocarbon migration, evolution of 72 

hydrothermal systems, metal transport, metamorphism and crystallization of magmas. 73 

The best source of information concerning the compositions of paleo-geologic fluids 74 

comes from fluid inclusions (ROEDDER, 1984). The temperatures at which phase changes occur 75 

within a fluid inclusion during heating can be used to estimate the fluid composition, assuming 76 

that PTX phase relationships of representative fluid systems are available. In addition, the 77 

elemental ratios in saline aqueous inclusions can be determined by microanalysis, for example by 78 

laser ablation ICPMS (LA-ICPMS) (GÜNTHER et al., 1998), which provides an additional 79 

constraint for determining the fluid composition when combined with microthermometric data. 80 
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The system H2O-NaCl-CaCl2 (Fig. 1) is a three-component system, and the phase rule 81 

requires that two variables must be specified to determine a unique liquid composition on the 82 

vapor-saturated liquidus, whereas one variable is sufficient to determine a unique liquid 83 

composition on any vapor-saturated, two-solid-plus-liquid boundary (cotectic or peritectic 84 

curve). The temperatures of last melting of solid phases, either on a cotectic or peritectic curve 85 

(Tpb,x1) or on the one-solid liquidus (Tm,x2), are two possible sources of data; elemental ratios 86 

determined from LA-ICPMS represent another data source. (Note that whereas several previous 87 

studies of the H2O-NaCl-CaCl2 system have used the term “XNaCl” to refer to the weight ratio of 88 

NaCl relative to NaCl+CaCl2, we adopt the more common notation such that XNaCl refers to the 89 

mole fraction of NaCl, and we instead denote the weight and molar ratios of NaCl relative to 90 

NaCl+CaCl2 as Φ and Ψ, respectively). As discussed in detail below, depending upon which data 91 

are available, fluid inclusion compositions may be determined using a combination of either the 92 

temperature of melting on a cotectic or peritectic and a temperature of melting on the vapor-93 

saturated liquidus surface (Tpb,x1 + Tm,x2), or a temperature of melting on the vapor-saturated 94 

liquidus surface and the ratio of the amount of NaCl relative to the total amount of NaCl and 95 

CaCl2, (Tm,x + either Φ or Ψ – the two compositional ratios can be directly converted to one 96 

another via the molar masses of the species) or the temperature of melting of one phase on a 97 

cotectic or peritectic and the temperature of melting of a second phase on a cotectic or peritectic 98 

(Tpb,x1 + Tpb,x2). 99 

Compositions of H2O-NaCl-CaCl2 fluid inclusions can be approximated using 100 

graphically-displayed phase equilibrium data (e.g., KONNERUP-MADSEN, 1979; ROBERT and 101 

KELLEY, 1987) or using empirical or theoretical data (OAKES et al., 1990; WILLIAMS-JONES and 102 

SAMSON, 1990; NADEN, 1996; CHI and NI, 2007), and several computer packages have been 103 
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developed to interpret data from fluid inclusions whose compositions are approximated by the 104 

system H2O-NaCl-CaCl2 (NADEN, 1996; BAKKER, 2003; CHI and NI, 2007). While each model 105 

works well over a limited range of T-X conditions, none of the currently available models is 106 

equipped to calculate fluid inclusion compositions over the complete range in compositions 107 

reported for natural H2O-NaCl-CaCl2 fluid inclusions. Moreover, some of the previously 108 

published equations (OAKES et al., 1990; NADEN, 1996; CHI and NI, 2007) are characterized by 109 

structured residuals with respect to the experimental data, or have inflections (“bumps”) between 110 

data points and local extrema along calculated isotherms and univariant curves, as described in 111 

more detail below. Finally, none of the previously published models provide the ability to 112 

determine fluid compositions using the complete range of possible input data, such as the 113 

temperature of melting on a cotectic or peritectic and a temperature of melting on the vapor-114 

saturated liquidus surface (Tpb,x1 + Tm,x2), or a temperature of melting on the vapor-saturated 115 

liquidus surface and the weight fraction of NaCl relative to NaCl + CaCl2 (Tm,x + Φ), or the 116 

temperature of melting of one phase on a cotectic or peritectic and the temperature of melting of 117 

a second phase on a cotectic or peritectic (Tpb,x1 + Tpb,x2), as described below. The model 118 

presented here incorporates those aspects of previous models that have been shown to be 119 

consistent with the phase equilibria determined from experimental data, and adds new equations 120 

and methods to expand the T-X range of applicability, remove anomalies inherent in some 121 

previous statistical models, and expands the range of input data that may be used to estimate the 122 

composition of H2O-NaCl-CaCl2 fluid inclusions. 123 

The goal of this study is to provide a comprehensive set of empirical equations that 124 

describe the portion of the vapor-saturated H2O-NaCl-CaCl2 system that includes the range of 125 

compositions of natural fluid inclusions and the range of available experimental data. As such, 126 
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this study covers a region within the ternary system bounded by the H2O apex, the NaCl apex 127 

and the composition of CaCl2·4H2O on the H2O-CaCl2 binary (Fig. 1b). The equations derived in 128 

this study have been assembled into a Microsoft® Excel-based program to allow users to easily 129 

calculate fluid inclusion compositions in this complex system over the complete compositional 130 

range reported from natural fluid inclusions, using a variety of input data, including Tpb,x1 + Tm,x2, 131 

Tm,x + Φ or Tpb,x1 + Tpb,x2. The program is available as an electronic annex to this paper. 132 

We emphasize that the model developed in this study applies to stable equilibrium 133 

melting behavior in the system H2O-NaCl-CaCl2, but metastable melting phenomena are also 134 

frequently encountered in CaCl2-bearing fluids (e.g., POTTER and CLYNNE, 1978; ROEDDER, 135 

1984; VANKO et al., 1988; BAUMGARTNER and BAKKER, 2009). For instance, VANKO et al. 136 

(1988) reported that some of their synthetic H2O-NaCl-CaCl2 fluid inclusions could not be 137 

completely frozen, while others could only be frozen to a metastable phase assemblage. 138 

Likewise, LINKE (1958) and BAUMGARTNER and BAKKER (2009) report the occurrence of several 139 

metastable phase assemblages in the H2O-CaCl2 binary system. While we acknowledge that 140 

metastable behavior in the H2O-NaCl-CaCl2 system does occur, the model presented in this study 141 

specifically represents only the stable phase relations on the vapor-saturated H2O-NaCl-CaCl2 142 

liquidus. 143 

Vapor-Saturated Phase Relations in the H2O-NaCl-CaCl2 System 144 

Phase relations on the vapor-saturated liquidus of the H2O-NaCl-CaCl2 ternary system are 145 

shown in Figure 1. The system is characterized by at least eight fields in which a single solid 146 

phase is in equilibrium with liquid and vapor.  Six of these fields are described in this study; two 147 

additional fields in the high salinity, CaCl2-rich, low weight fraction NaCl (Φ) part of the system 148 

(near the CaCl2 apex; Fig. 1a) are not considered here because experimental data are not 149 
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available in that part of the ternary system (although these phases have been characterized along 150 

the H2O-CaCl2 binary, e.g. LINKE, 1958). Figure 1 shows phase relationships in the part of the 151 

system that includes the range of reported compositions of natural fluid inclusions. The phase 152 

boundaries shown in Figure 1c were calculated using the equations derived in this study and 153 

below we compare these calculated phase boundaries with experimental data. 154 

Each field shown in Figure 1 is labeled according to the solid phase that is in equilibrium 155 

with liquid and vapor. At low salinity, near the H2O apex, the stable solid phase on the liquidus 156 

surface is H2O ice (Fig. 1a, c). At intermediate to high salinity and Rwt > 0.04, halite (NaCl) is 157 

the stable solid phase (Fig. 1a, c). A field in which hydrohalite (NaCl·2H2O) is the stable solid 158 

phase separates the ice- and halite-stable fields (Fig. 1a, c). At intermediate to high salinity and 159 

Rwt < 0.04, calcium chloride hydrates are the stable solid phases: antarcticite (CaCl2·6H2O) is the 160 

stable phase from about 30 to 50 wt.% total salt, “tetrahydrate” (CaCl2·4H2O) is the stable solid 161 

from 50 to about 57 wt.% salt, and “dihydrate” (CaCl2·2H2O = sinjarite) is stable from about 57 162 

to 75 wt.% salt (Fig. 1a, c). To our knowledge, ternary experimental data are not available for the 163 

H2O-NaCl-CaCl2 system at salinities above 75 wt.% total salt, thus the CaCl2·H2O and CaCl2 164 

(anhydrous) stable fields are not included in this study (area near the CaCl2 apex on Fig. 1a 165 

labeled with a question mark, ?). Also shown in Figure 1c are the compositions of hydrohalite 166 

(61.86 wt.% NaCl on the H2O-NaCl binary), antarcticite (50.07 wt.% CaCl2 on the H2O-CaCl2 167 

binary), CaCl2·4H2O (60.63 wt.% CaCl2 on the H2O-CaCl2 binary) and CaCl2·2H2O (75.49 wt.% 168 

CaCl2 on the H2O-CaCl2 binary). 169 

The fields in which one solid is in equilibrium with liquid and vapor are separated from 170 

each other by peritectic or cotectic boundary curves. Ice and hydrohalite are separated by the ice 171 

+ hydrohalite (I+HH) cotectic, which extends from the ternary eutectic point (E) at -52°C 172 
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(YANATIEVA, 1946) to the binary H2O-NaCl eutectic (E') at -21.2°C (HALL et al., 1988). Ice and 173 

antarcticite are separated by the ice + antarcticite (I+A) cotectic, which extends from the ternary 174 

eutectic (E) to the binary H2O-CaCl2 eutectic (E'') at -49.8°C (YANATIEVA, 1946). The 175 

hydrohalite and antarcticite fields are separated from each other by the hydrohalite + antarcticite 176 

(HH+A) cotectic curve, which extends from the ternary eutectic (E) to the first ternary peritectic 177 

(P1) at -22.4°C (YANATIEVA, 1946). The hydrohalite field is separated from the halite field by the 178 

hydrohalite + halite (HH+H) peritectic curve, which extends from the first ternary peritectic (P1) 179 

to the binary H2O-NaCl peritectic (P') at +0.1°C (LINKE, 1958). The halite field is separated from 180 

the antarcticite field by the halite + antarcticite (H+A) cotectic curve, which extends from the 181 

first ternary peritectic (P1) to the second ternary peritectic (P2) at +29°C (SCHIFFRIES, 1990). The 182 

halite field is separated from the tetrahydrate field by the halite + tetrahydrate (H+Ca4h) cotectic, 183 

which extends from the second ternary peritectic (P2) to the third ternary peritectic (P3) at 184 

approximately +45°C (estimated from the data of LINKE, 1958). The halite field is separated 185 

from the dihydrate field by the halite + dihydrate (H+Ca2h) cotectic curve, which extends from 186 

the third ternary peritectic (P3) to the fourth ternary peritectic at >110°C (LINKE, 1958). The 187 

antarcticite field is separated from the tetrahydrate field by the antarcticite + tetrahydrate 188 

(A+Ca4h) peritectic curve, which extends from the second ternary peritectic point (P2) to the first 189 

binary H2O-CaCl2 peritectic (P1'') at +30.1°C (LINKE, 1958). Tetrahydrate is separated from 190 

dihydrate by the tetrahydrate + dihydrate (Ca4h+Ca2h) peritectic curve, which extends from the 191 

third ternary peritectic point (P3) to the second binary H2O-CaCl2 peritectic (P2'') at +45.1°C 192 

(LINKE, 1958). The locations of other boundary curves that occur at higher salinity conditions 193 

close to the H2O-CaCl2 binary and near the CaCl2 apex are not known. A detailed summary of 194 
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the stable melting paths followed by H2O-NaCl-CaCl2 fluid inclusions having compositions in 195 

the various fields described above is provided in Appendix A. 196 

Sources of Experimental Data 197 

The experimental data used in the regression analysis are summarized in Table 1 and 198 

Figure 2. 199 

Phase Boundaries 200 

Phase boundaries on the vapor-saturated liquidus in the system H2O-NaCl-CaCl2 are 201 

broadly characterized by either cotectic relationships or peritectic relationships. Note that on a 202 

cotectic boundary, the phase change behavior that is observed upon heating is always 203 

“solid1+solid2→solid2+liquid →liquid”, whereas on a peritectic boundary, the reaction 204 

observed upon heating is “solid1+liquid→solid2+liquid→liquid”. In other words, as a fluid 205 

inclusion is heated, the inclusionist would observe two solids shrinking (melting) along a cotectic 206 

curve until one disappeared leaving behind the second solid and liquid, whereas s/he would 207 

observe one solid growing at the expense of the other along a peritectic curve. 208 

In addition to the T-X data along the cotectic and peritectic phase boundaries summarized 209 

in Table 1 and Figure 2, SCHIFFRIES (1990) reported the temperature at the second peritectic 210 

point (P2) of +29°C, which provides an additional constraint on the location of the A+Ca4h, 211 

A+H and Ca4h+H phase boundary curves. 212 

Liquidus Surfaces 213 

In addition to compositions that lie on each divariant liquidus surface, data for the 214 

univariant boundary curves (peritectics or cotectics) adjacent to the surface were included in the 215 

regression for each liquidus surface. For example, in modeling the hydrohalite field, data from 216 
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the I+HH, HH+A and HH+H phase boundaries were used in addition to the hydrohalite-only 217 

liquidus data. For each liquidus field, the number of data points that have been used in the 218 

regression, including data within the field and those on the phase boundary curves, are listed in 219 

Table 1. 220 

For the halite liquidus, the high temperature data of CHOU (1987) were omitted from the 221 

regression analysis, but these data are in excellent agreement with those of STERNER et al. 222 

(1988). In addition, the experimental data analyzed in this study include several liquidus 223 

temperature measurements along the anhydrous NaCl-CaCl2 binary (ZHANG et al., 1995), but 224 

those data are not included in the data set for regression. 225 

For the tetrahydrate liquidus, LINKE (1958) reports multiple polymorphs of CaCl2·4H2O 226 

coexisting with different salinity liquids. We have followed the suggestion of POTTER and 227 

CLYNNE (1978), who point out that consideration of the phase rule indicates that the “beta” and 228 

“gamma” polymorphs are metastable, and so we have included only the “alpha” polymorph 229 

solubility data of LINKE (1958). 230 

Equations Describing the Liquidus and Phase Boundary Curves 231 

The liquidi in a ternary system are divariant surfaces, and thus the total salinity (Swt) can 232 

be represented as a function of the weight fraction of NaCl relative to NaCl + CaCl2 (Φ) and the 233 

temperature of melting of the last solid phase on the vapor-saturated liquidus (Tm,x). The cotectic 234 

and peritectic curves are univariant lines and therefore both Φ and Swt can be represented as a 235 

function of the temperature of melting of solid phase x on the cotectic or peritectic (Tpb,x). 236 

Previous studies have generally approached the problem of regression modeling of the vapor-237 

saturated liquidi of ternary systems by fitting separate univariant regression equations to the 238 

experimental data on the phase boundary curves (e.g., STERNER et al., 1988; NADEN, 1996). 239 
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While that approach often produces a system of equations with small errors with respect to the 240 

experimental data, it also generally yields a model that is not internally consistent because 241 

predicted phase boundary curves will not necessarily intersect at the invariant points (eutectic 242 

and peritectic points) and predicted isotherms of adjacent fields will not always intersect at the 243 

univariant curves as they should. The approach taken in this study has been to regress the data 244 

for each liquidus surface, and weight the cotectic and peritectic curve appropriately to ensure that 245 

univariant curves represent the intersection of the adjacent liquidus surfaces. This approach has 246 

two advantages: First, it yields a model that is implicitly internally consistent, and secondly, it 247 

provides additional constraints on liquidus fields that are represented by sparse experimental 248 

data. For example, the only data available for the tetrahydrate field are along the H2O-CaCl2 249 

binary (as described above). However, isotherms are available at the intersections of the 250 

tetrahydrate field with the adjacent antarcticite, halite and dihydrate fields, and these data, 251 

combined with data along the H2O-CaCl2 binary, provide reasonable constraints on the locations 252 

of isotherms within the tetrahydrate field. 253 

Regression analyses were conducted using SAS© JMP 8 statistical software. The 254 

experimental data on each liquidus surface were regressed to find the equation that best satisfied 255 

three criteria: First, the equation was required to accurately reproduce the experimental data; 256 

secondly, the resulting isotherms were required to be smooth and monotonic, meaning free of 257 

local extrema and inflections; and thirdly, the equations for adjacent liquidus surfaces were 258 

required to intersect such that the cotectic and peritectic phase boundaries predicted by the 259 

intersection were consistent with experimental data. The percent residuals of each equation with 260 

respect to the experimental data were calculated by the expression {(1 - 261 

calculated/measured)*100%}. 262 
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Ice field 263 

Salinities of fluid inclusions for which H2O ice is the final solid to melt are described by the 264 

following equation, modified from NADEN (1996): 265 

 

 

Swt = ai
i=0

5

∑ Tm,ice
i + ai

i=6

7

∑ Φ(i−5) + a8Φ Tm,ice
2 + a9Φ Tm,ice

5 − 0.185exp(−Tm,ice − 52) (1) 266 

where Tm,ice is the final ice melting temperature in degrees Celsius and the ai’s are fitting 267 

parameters given in Table 2. We have added the exponential term at the end of the equation 268 

originally provided by NADEN (1996) to improve the intersection with the antarcticite field, as 269 

discussed below. The equation for the ice liquidus surface of CHI and NI (2007) (their Eqn. (4)) 270 

is based upon extrapolation from their I+HH boundary, and is therefore valid only at high 271 

salinity (Tm,ice ≤ -21°C), and it shows significant structure in the residuals as a function of salinity 272 

(Fig. 3). The equation of OAKES et al. (1990) (their Eqn. (2)) fits the data well at salinities from 0 273 

to 25 wt. %, but provides a poorer fit to the higher salinity data of YANATIEVA (1946), with a 274 

negative-sloped, apparently linear structure in the residuals in this range (Fig. 3). Equation (1) 275 

does not reproduce the lowest salinity experimental data as well as the equation of OAKES et al. 276 

(1990), but it provides a better fit in general over the entire salinity range of the ice field (Fig. 3). 277 

For these reasons, Eqn. (1) is recommended as the general equation for the ice field, and is 278 

adopted for all figures and examples herein, while the equation of OAKES et al. (1990) may be 279 

preferable if all data to be analyzed have a Tm,ice ≥ -15°C. The numerical model described later 280 

offers users the option to select the equation of OAKES et al. (1990) if their microthermometric 281 

data are in the range in which that model predicts values that are in better agreement with 282 

experimental values.  283 
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Hydrohalite field 284 

The salinity of fluid inclusions in which hydrohalite is the final solid phase to melt is 285 

described by: 286 

 

 

Smol = ai
i= 0

2

∑ (Tm,hh + 52)i + a3Ψ
−1 + aiΨ

i−2

i= 4

5

∑ + aiΨ (Tm,hh + 52)i−4 + a8Ψ
2(Tm,hh + 52)

i= 6

7

∑  (2) 287 

with the ai’s listed in Table 2. Residuals associated with calculation of the total salinity in terms 288 

of weight percent (Swt) using Eqn (2) are generally within ± 5 % of experimental values, 289 

excluding one outlier (Fig. 3). Equation (2) does not significantly improve on the residuals 290 

associated with the equation of NADEN (1996) for the hydrohalite field (Fig. 3); however, the 291 

equation of NADEN (1996) tends to over-fit the data, and isotherms generated using NADEN's 292 

equation have local extrema between data points, (at some temperatures crossing the H+HH 293 

peritectic curve to predict compositions that are within the halite field) (Fig. 4). Isotherms 294 

generated using Eqn. (2) are smooth and without local extrema (Fig. 4), and thus better reflect 295 

the geometry of the hydrohalite liquidus surface. 296 

Halite field 297 

The liquid salinity on the halite liquidus is described by: 298 

 

 

Smol = ai(Tm,h
i= 0

3

∑ + 52)i + a4Ψ−1 + ai
i= 5

6

∑ Ψ (Tm,h + 52)i−3

+ ai
i= 7

9

∑ Ψ2(Tm,h + 52)i−7 + exp(−Tm,h − 52)
 (3) 299 

Values of the fitting cofficients ai are listed in Table 2. Residuals for Eqn. (3) are shown in 300 

Figure 3. In addition, the data of ZHANG et al. (1995) along the NaCl-CaCl2 binary are predicted 301 

by Eqn. (3) to within ± 4 %, even though the ZHANG et al. data were not included in the 302 

regression analysis. In comparison to Eqn. (3), the equation of NADEN (1996) for the halite 303 
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liquidus surface predicts wavy isotherms with local extrema, compared to the smooth, monotonic 304 

isotherms generated using Eqn. (3) and shown on Fig. 5. The equation of NADEN (1996) also 305 

does not adequately reproduce the high salinity H2O-NaCl binary data of STERNER et al. (1988) 306 

(Fig. 3). WILLIAMS-JONES and SAMSON (1990) developed a theoretical equation to calculate 307 

halite solubility on the halite liquidus surface, and they report their results graphically as 308 

isotherms on the ternary phase diagram. WILLIAMS-JONES and SAMSON (1990) do not provide an 309 

error analysis of their model, and their model cannot be compared directly to our results because 310 

they do not provide the values for the Pitzer parameters, which they obtained from graphical 311 

interpolation. However, based on visual inspection, the isotherms presented by WILLIAMS-JONES 312 

and SAMSON (1990) appear to be in good agreement with those predicted by our Eqn. (3). 313 

Antarcticite field 314 

The salinity on the antarcticite liquidus surface is described by the following relationship:  315 

 

 

Smol = ai(Tm,ant + 52)i

i= 0

5

∑ + aiΨ
i−5(Tm,ant + 52)i−6

i= 6

7

∑  (4) 316 

Values of the fitting parameters, ai, are listed in Table 2. Residuals associated with Eqn. (4) are 317 

all within ± 5 % of the experimental values (Fig. 3). To our knowledge, no equations have been 318 

published previously that describe the relationship between salinity and temperature on the H2O-319 

NaCl-CaCl2 ternary antarcticite liquidus surface. 320 

Tetrahydrate and dihydrate fields 321 

Quantitative representation of the tetrahydrate and dihydrate fields is limited by the 322 

scarcity of available experimental data; however, the narrow compositional range of these fields 323 

(Fig. 1c) limits the absolute error in the weight fraction of NaCl in the solution (Φ) to <0.058. 324 

The form of each of the equations for the tetrahydrate and dihydrate fields was based in part on 325 
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the requirement that the cotectic and peritectic curves bounding these fields must be predicted by 326 

the intersection of the equations for the adjacent liquidus fields, because the locations of 327 

isotherms in those fields are better constrained than those in the tetrahydrate and dihydrate fields 328 

and thus provide a means of checking the validity of the expressions for those fields. The salinity 329 

on the tetrahydrate liquidus surface is described by 330 

 

 

Smol = ai
i= 0

2

∑ (Tm,Ca 4 h + 52)i + Ψ
i= 3

4

∑ (Tm,Ca4 h + 52)i−3 + exp(100Ψ −10) (5) 331 

and the salinity on the dihydrate liquidus surface is described by 332 

 

 

Smol = ai(
i= 0

3

∑ Tm,Ca 2h + 52)i + a4Ψ  (6) 333 

The ai parameters are listed in Table 2. Residuals of Eqn. (5) are all within ± 2 % of 334 

experimental values, and those for Eqn. (6) are within ± 3 %. 335 

Comparison with data for the binary systems 336 

The equations described above for modeling the ternary H2O-NaCl-CaCl2 system may 337 

also be used to predict liquidi for the binary H2O-NaCl and H2O-CaCl2 systems using Eqns. (1) 338 

to (6), as shown on Figure 6. The predicted H2O-NaCl eutectic (E') is at -21.18°C, compared to 339 

the experimentally determined -21.2°C (HALL et al., 1988). The predicted H2O-NaCl peritectic 340 

point (P') is at +0.14°C, compared to the experimental value of +0.1°C (LINKE, 1958). The 341 

predicted H2O-CaCl2 eutectic point (E'') is at -49.9°C, compared to the experimentally 342 

determined temperature of -49.8°C (YANATIEVA, 1946). The predicted first and second H2O-343 

CaCl2 peritectic points (P1'' and P2'') are at +30.0°C and +44.7°C, respectively, compared to the 344 

experimental values of +30.1°C and +45.1°C (LINKE, 1958). 345 
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Phase Boundary Curves 346 

Each univariant curve is represented by the intersection of the adjacent divariant surfaces, 347 

rather than by a separate equation, as discussed above. For example, the liquid composition on 348 

the I+HH cotectic is represented by the intersection of the ice and hydrohalite liquidi, or in other 349 

words by the collection of T-X conditions that simultaneously satisfy Eqns. (1) and (2). 350 

Metastable extensions are not represented in this model. Residuals associated with determining 351 

the total salinity in weight percent (Swt) and the weight fraction of NaCl (Φ) along the phase 352 

boundary curves by this method are shown in Figures 7 and 8, respectively. Residuals associated 353 

with salinity estimation are all within ± 4 % for the I+HH and HH+A cotectics, and within ± 6 % 354 

for the HH+H peritectic curve and H+CaCl2·nH2O cotectics (Fig. 7). Percent residuals associated 355 

with estimation of Φ on the phase boundary curves are generally larger, with ± 20 % for the 356 

I+HH curve, ± 5 % for the HH+A curve, ± 60 % for the HH+H curve, and ± 50 % for the H+ 357 

CaCl2·nH2O curves (Fig. 8). These large percent errors in part reflect the fact that Φ is a small 358 

number (< 1), such that small absolute errors yield large percent errors. It also reflects some 359 

scatter in the experimental data that we intentionally did not attempt to over-fit, owing to our 360 

requirement that the phase boundary curves predicted by the equations must be smooth and 361 

monotonic. 362 

Identifying pairs of liquidus equations that provided smooth cotectic and peritectic curves 363 

that accurately reproduced the experimental values involved some trial and error. In some cases, 364 

while the individual equations for the liquidus fields adequately reproduced data in those fields, 365 

their intersections sometimes showed significant offset in isotherms on the cotectic or peritectic 366 

curves, or did not intersect at experimentally-determined T-X conditions on these curves, or 367 

produced topologies for the curves that were not supported by experimental data. As an example, 368 



Steele-MacInnis et al. The system H2O-NaCl-CaCl2 (v. 081310) 

18 

we found that the equation for the H+HH peritectic curve from NADEN (1996) that describes the 369 

weight fraction of NaCl (Φ) as a function of the melting temperature of hydrohalite on the 370 

peritectic curve (Tpb,hh) is over-fitted and predicts an unrealistic curvature, whereas the 371 

intersection of Eqns. (2) and (3) from this study is comparably much smoother (Fig. 9). BAKKER 372 

(2003) incorporated the equations of OAKES et al. (1990) and NADEN (1996), without 373 

modification, into a computer package that added the option to model the univariant curves by 374 

the intersections of the adjacent liquidus surfaces (the same approach taken in this study). 375 

However, the equations of NADEN (1996) for the hydrohalite and halite liquidi intersect along a 376 

wavy curve with local extrema in salinity, which causes anomalous predictions from the 377 

computer package of BAKKER (2003), whereas Eqns. (1) and (3) from the present study intersect 378 

more smoothly and without extrema (Fig. 10). 379 

Some structure is observable in the residuals associated with the H+CaCl2·nH2O cotectics 380 

and the HH+A cotectic (Figs. 7 and 8). This structure could be reduced or eliminated by 381 

adjusting equations for the adjacent fields; however, this approach would then compromise the 382 

degree to which those equations for the adjacent fields would reproduce experimental data for 383 

those fields. As such, we chose to give preference to achieving the most accurate fit on the I+HH 384 

and HH+H boundaries, because phase changes along those boundaries are reported more 385 

commonly in studies of natural fluid inclusions. Thus, we have to some extent sacrificed the 386 

fidelity with which data along the less commonly reported HH+A and H+CaCl2·nH2O curves are 387 

reproduced. However, we believe that this approach is justified because the antarcticite, 388 

tetrahydrate and dihydrate fields encompass a very narrow range of weight fraction NaCl (Φ < 389 

0.05), and the liquid salinity on each of those liquidi surfaces is not very sensitive to the weight 390 
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fraction of NaCl. Furthermore, since Φ is always < 0.05 in this part of the system, relatively large 391 

percent errors translate into small absolute errors in the weight fraction of NaCl in the inclusion. 392 

Methodologies For Determining Inclusion Bulk Compositions 393 

The model presented here allows fluid inclusion compositions to be determined using a 394 

variety of input data, including the melting temperature of a phase on a cotectic or peritectic 395 

boundary and the temperature of melting of the last solid on the liquidus surface (Tpb,x1 + Tm,x2), 396 

or the temperature of melting of the last solid on the liquidus surface and the weight ratio of 397 

NaCl in the inclusion determined from microanalysis (Tm,x + Φ), or the melting temperature of 398 

two phases on a cotectic or peritectic boundary, either melting simultaneously (Tpb,x1 = Tpb,x2) or 399 

at different temperatures (Tpb,x1 + Tpb,x2). The following sections describe the methodologies to 400 

determine bulk composition using the various types of input data. 401 

Final melting on a cotectic curve (Tpb,x1 = Tpb,x2, two solid phases dissolve simultaneously) 402 

In the simplest case where two solids dissolve simultaneously on a cotectic curve, the 403 

bulk composition is uniquely specified by the melting temperature in accordance with the phase 404 

rule. The measured melting temperature can be used to calculate the fluid inclusion composition 405 

by solving for the intersection of the adjacent surfaces at that temperature, in other words by 406 

finding the value of the weight fraction of NaCl (Φ ) for which the two adjacent liquidus surface 407 

salinity equations yield the same salinity at the measured temperature of melting. For example, 408 

consider a fluid inclusion in which ice and hydrohalite dissolve simultaneously at -25°C. The 409 

salinity in the ice field at -25°C and a given weight fraction of NaCl (Φ) can be found from Eqn. 410 

(1), while the salinity in the hydrohalite field at -25°C and Ψ can be estimated from Eqn. (2). By 411 

iteration, we find that a weight fraction of NaCl, Φ, of 0.57 yields a liquid salinity of 24.7 wt.% 412 
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at -25°C in both Eqns. (1) and (2). Thus, the intersection of the ice and hydrohalite liquidus 413 

surfaces  occurs at a salinity of 24.7 wt.% (NaCl + CaCl2) and a weight fraction of NaCl of 0.57, 414 

and this represents the bulk composition of the fluid inclusion. 415 

Last melting temperature (Tm,x) and NaCl weight fraction (Φ)  416 

If available data include the melting temperature of the last solid obtained from 417 

microthermometry, and the weight fraction of NaCl (Φ) determined by microanalysis (e.g., LA-418 

ICPMS), the fluid bulk composition is determined by finding the intersection of the isotherm of 419 

the final melting temperature with the pseudobinary defined by the NaCl weight fraction (Φ). 420 

Those two variables may be input directly into the appropriate equation (with Φ converted to Ψ 421 

where required). As an example, consider a fluid inclusion that contains a halite daughter mineral 422 

that dissolves at 200°C, and has a weight fraction of NaCl relative to NaCl + CaCl2 (Φ) of 0.7 423 

based on LA-ICPMS analysis of the inclusion. A weight fraction of NaCl of 0.7 equals a molar 424 

fraction, Ψ, of 0.815, and substituting those values of Ψ (0.815) and Tm,h (200°C) into Eqn. (3) 425 

yields a total salinity on a mole fraction basis, Smol, of 0.116, which corresponds to a total 426 

salinity of 33.1 wt.%. 427 

Two unique melting temperatures, Tpb,x1 + Tm,x2 or Tpb,x1 + Tpb,x2 428 

If available data include two unique melting temperatures from microthermometry – 429 

either a cotectic (or peritectic curve) melting temperature (Tpb,x1) plus the temperature of melting 430 

of the last solid phase on the liquidus (Tm,x2), or a cotectic melting temperature (Tpb,,x1) plus a 431 

univariant peritectic melting temperature (Tpb,x2) – various calculation procedures may be used 432 

depending on which solid phases and phase changes are involved. On Figure 11, the ternary 433 

system is divided into several numbered fields that identify compositions within the H2O-NaCl-434 
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CaCl2 ternary that involve the same phase changes as input data or follow similar calculation 435 

procedures. 436 

Field 1 – Tpb,hh < Tm,ice 437 

During heating from the eutectic temperature, fluids with compositions in field 1 (Fig. 438 

11) lose hydrohalite along the I+HH cotectic and ice is the last solid phase to melt on the ice 439 

liquidus surface. The composition of the liquid at the temperature of hydrohalite dissolution on 440 

the cotectic is determined from the intersection of the hydrohalite and ice liquidi at the 441 

temperature of hydrohalite melting (Tpb,hh), from Eqns. (1) and (2). After hydrohalite disappears, 442 

because the last remaining solid is pure H2O ice (solid solution between solid phases in this 443 

system is negligible), the weight fraction of NaCl (Φ) of the liquid phase does not change during 444 

continued heating and ice melting, and the liquid composition moves directly towards the H2O 445 

apex. Thus, the weight fraction of NaCl (Φ) determined from the temperature of hydrohalite 446 

melting on the cotectic and the final ice melting temperature (Tm,ice), can be input directly into 447 

Eqn. (1) to determine the bulk salinity. 448 

Field 2 – Tpb,ant<Tm,ice 449 

The calculation procedure to determine the composition of fluids that exhibit antarcticite 450 

dissolution on the I+A cotectic, followed by final melting of ice on the ice liquidus surface (field 451 

2; Fig. 11) is analogous to that for fluids in field 1, substituting Tpb,ant for Tpb,hh, and substituting 452 

Eqn. (4) for Eqn. (2). 453 

Field 3 – Tpb,ice<Tm,hh 454 

For fluid inclusions in which ice is the phase that disappears along the I+HH cotectic and 455 

which subsequently show hydrohalite as the last solid to melt on the hydrohalite liquidus (field 3; 456 
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Fig. 11), the liquid composition at the temperature of ice melting on the I+HH cotectic is 457 

determined from the intersections of Eqns. (1) and (2), as described previously for field 1. After 458 

ice melts on the ice-hydrohalite cotectic curve, with further heating the liquid composition 459 

evolves along a straight line extending from the composition of the liquid at Tpb,ice to the 460 

composition of hydrohalite (61.86 wt.% NaCl). The intersection of that line with the isotherm of 461 

hydrohalite dissolution yields the unique bulk fluid composition. As an example, consider a fluid 462 

inclusion in which ice melts on the I+HH cotectic at -25°C and hydrohalite is the last solid to 463 

melt at -10°C. At the last ice melting temperature, the liquid contains 14.3 wt.% NaCl and 10.4 464 

wt.% CaCl2, from the intersection of Eqns. (1) and (2) at Tpb,ice = -25°C. The fluid inclusion bulk 465 

composition lies on a mixing line between the composition of the liquid on the I+HH cotectic 466 

and the composition of hydrohalite. The equation of the mixing line can be determined using the 467 

slope and intercept method, where the x- and y-axes are wt.% NaCl and wt.% CaCl2, 468 

respectively, and the input xy coordinates are the compositions of liquid (14.3 wt.% NaCl, 10.4 469 

wt.% CaCl2) and hydrohalite (61.9 wt.% NaCl, 0 wt.% CaCl2). The equation of this line (in xy 470 

coordinates) is also the equation of the vertical plane containing the line (in xyz coordinates, 471 

where the z-axis is temperature), because the linear equation of the mixing line is independent of 472 

temperature. Thus, by iteratively solving for the pair of values of wt.% NaCl and wt.% CaCl2 473 

that satisfy both this linear equation and Eqn. (2), we find the bulk composition. In our example, 474 

a composition of 16.4 wt.% NaCl and 9.9 wt.% CaCl2 satisfies both equalities, and is thus the 475 

bulk fluid composition of the inclusion. 476 

Field 4 Tpb,ant<Tm,hh 477 

For fluid inclusions that exhibit antarcticite melting in the presence of hydrohalite along 478 

the HH+A cotectic, followed by hydrohalite final melting (field 4; Fig. 11), the calculation 479 
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procedure is analogous to that for field 3, the only difference being that Tpb,ant is substituted for 480 

Tpb,hh, and the liquid composition on the HH+A boundary is determined from the intersections of 481 

Eqns. (2) and (4).  482 

Field 5 Tpb,hh<Tm,h 483 

Fluid inclusions that have compositions within field 5 (Fig. 11) show halite as the last 484 

solid phase to melt, and hydrohalite as the next-to-last solid phase to melt. The calculation 485 

procedure for fluid inclusion compositions in this field depends on the input data that are 486 

available. 487 

For fluid inclusions in field 5 with compositions to the high-salinity side of the line 488 

extending from CaCl2·6H2O to NaCl·2H2O (Figs. 1 and 11) (field 5a), the sub-solidus 489 

assemblage is halite+hydrohalite+antarcticite, and first melting occurs at the first peritectic P1 490 

(Fig. 1). At this temperature (-22.4°C), antarcticite is consumed and the liquid composition 491 

subsequently evolves along the HH+H peritectic curve, until hydrohalite is consumed at Tpb,hh. 492 

The liquid composition at Tpb,hh is determined from the intersection of Eqns. (2) and (3). The 493 

liquid composition on the peritectic curve is recast in terms of the molar proportion of CaCl2 494 

relative to CaCl2+H2O (Ω) according to: 495 

 Ψ =
Smol − SmolΨmol

1− SmolΨmol

 (7) 496 

Upon departure from the HH+H peritectic curve, the value of Ω of the liquid remains constant 497 

with further heating, as the liquid composition evolves along a straight line towards the NaCl 498 

apex. The fluid inclusion bulk composition is found as the intersection of the vertical plane 499 

containing that line of constant Ω with the isotherm of final halite melting. 500 
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For fluid inclusions in field 5 that lie within the ice-hydrohalite-antarcticite triangle  (fields 5b 501 

and 5c) (Fig. 11), first melting occurs at the eutectic and the liquid composition evolves along 502 

either the HH+A or HH+I curve until either ice or antarcticite is consumed, after which the liquid 503 

composition evolves across the hydrohalite field along a straight line towards the composition of 504 

hydrohalite. Upon intersecting the HH+H peritectic curve, halite nucleates and the liquid 505 

composition evolves along the HH+H curve until hydrohalite is consumed. The liquid 506 

composition then evolves along a straight line towards the NaCl apex with further heating until 507 

halite is completely consumed. For each of the fields 5b and 5c, there are thus three melting 508 

temperatures that may be observed and recorded (Tpb,ice (or Tpb,ant) + Tpb,hh + Tm,h), and any pair 509 

of these is sufficient to fix the bulk fluid composition. VANKO et al. (1988) describe the methods 510 

by which either pair of these data may be used to determine the fluid bulk composition. If the 511 

data available are Tpb,hh and Tm,h, the method used to calculate the inclusion composition is the 512 

same as outlined above for field 5a. However, as discussed by ROEDDER (1984) and VANKO et 513 

al. (1988), the final melting of hydrohalite can be difficult to observe, and hydrohalite may 514 

persist metastably for several degrees Celsius above the equilibrium melting temperature. For 515 

those reasons, it is sometimes more practical to measure Tpb,ice + Tm,h (VANKO et al., 1988). In 516 

that case, the liquid composition is determined at Tpb,ice using Eqns. (1) and (2), and the equation 517 

of the straight line that extends from the cotectic liquid composition at Tpb,ice to the composition 518 

of hydrohalite (as described above for field 3) (Fig. 12). The intersection of the vertical plane 519 

containing that line with the isotherm of Tm,h on the halite liquidus (Eqn. (3)) represents the bulk 520 

fluid composition (VANKO et al., 1988) (Fig. 12). Fluid inclusions with compositions in field 5c 521 

are treated in a similar manner to those in field 5b, substituting Tpb,ant for Tpb,ice, and substituting 522 

Eqn. (4) for Eqn. (1). 523 
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Field 6 Tpb,ant, Ca4h or Ca2h<Tm,h 524 

The calculation method for fluid inclusions that exhibit cotectic melting of one of the 525 

three CaCl2 hydrates in the presence of halite, followed by halite dissolution as the last solid 526 

phase, is similar for each of the three halite+CaCl2·nH2O cotectics. Field 6a includes fluid 527 

inclusion compositions for which antarcticite disappears on the H+A cotectic, field 6b includes 528 

those that lose tetrahydrate along the H+Ca4h cotectic, and field 6c includes those that lose 529 

dihydrate on the H+Ca2h cotectic (Fig. 11). The method employed for each of these fields is to 530 

determine the liquid composition (Ω) on the cotectic at the temperature of last hydrate melting 531 

from the intersection of Eqn (3) with either Eqn. (4), Eqn. (5) or Eqn. (6) (depending on the last 532 

hydrate to melt). The fluid inclusion bulk composition is found as the intersection of the vertical 533 

plane containing the line of constant Ω with the isotherm of final halite melting (Tm,h). 534 

Field 7 – Tpb,x<Tm,ant, Ca4h or Ca2h 535 

Field 7 (Fig. 11) includes a narrow compositional range near the CaCl2 binary, and is 536 

characterized by at least seven possible melting sequences and pairs of input data, although 537 

observation of melting sequences in this part of the system has yet to be reported unequivocally 538 

for natural fluid inclusions. 539 

Because the weight fraction of NaCl (Φ) in this part of the system is everywhere less than 540 

0.05, the fluid bulk composition can be estimated with reasonable precision from Tm,CaCl2·nH2O 541 

alone. The liquid Φ on the appropriate cotectic or peritectic curve can be determined directly as 542 

outlined for the other fields, by the intersection of the adjacent liquidi, and the bulk composition 543 

lies on the straight line that extends from that composition to the composition of the final melting 544 

of solid CaCl2 hydrate. Again, the weight fraction of NaCl (Φ) in the bulk fluid in this part of the 545 
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system does not significantly affect the calculated total salinity and, in the absence of a next-to-546 

last melting temperature, Φ must be between 0-0.05. 547 

Description of the Numerical Model 548 

The numerical model developed in this study has been built into a Microsoft® Excel© program 549 

that estimates H2O-NaCl-CaCl2 fluid inclusion compositions. The program is available for 550 

download as an electronic annex to this paper. Compositions that may be calculated using the 551 

model are defined by a triangle bounded by the H2O apex, the NaCl apex and the composition of 552 

CaCl2·4H2O on the H2O-CaCl2 binary (Fig. 13). For comparison, the compositional limits of 553 

other published numerical models (CalcicBrine (NADEN, 1996); Aqso1e and AqSo2e (BAKKER, 554 

2003); “H2O_NaCl-CaCl2” (CHI and NI, 2007)) are also shown in Figure 13. The compositional 555 

range of the numerical model developed in this study extends the applicability to fluid inclusions 556 

that have liquid compositions that evolve along an antarcticite-bearing cotectic curve, as well as 557 

fluid inclusions that exhibit first melting at the first or second ternary peritectic, for which the 558 

composition cannot be determined using the previously published models. The programs 559 

“H2O_NaCl_CaCl2” (CHI and NI, 2007) and “AqSo2e” (BAKKER, 2003) do not allow the input 560 

of a known weight fraction of NaCl (Φ) to calculate fluid inclusion bulk composition. 561 

Furthermore, “AqSo2e” (BAKKER, 2003) does not allow the input of the combination of melting 562 

of ice on a cotectic or peritectic (Tpb,ice) and melting of halite on the liquidus surface (Tm,h). 563 

  564 

Examples of Application of the Model to Natural Fluid Inclusions 565 

Application of the numerical model developed in this study to interpretation of natural 566 

fluid inclusions can be demonstrated using data from previously published studies. Where 567 
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available, data for individual fluid inclusions have been input into the numerical model derived 568 

in this study to determine bulk fluid compositions.  In other cases, ranges of measured 569 

temperatures of phase transitions have been input into the model to estimate ranges in fluid 570 

compositions. 571 

Fluid inclusions that show ice as the final solid phase to melt are reported in many studies 572 

(e.g., see BASUKI and SPOONER (2002) for references). The “Stage III” inclusions in epidote of 573 

LAYNE and SPOONER (1991) are used as examples here to demonstrate the applicability of the 574 

numerical model developed in the present study. The compositions of these fluid inclusions, 575 

determined using the microthermometric data of LAYNE and SPOONER (1991) in the numerical 576 

model developed in this study range from 17.4 to 26.5 wt.% total salt, and a weight fraction of 577 

NaCl (Φ) of 0.064 to 0.081 (Fig. 14). These compositions are in good agreement with those 578 

reported by LAYNE and SPOONER (1991), differing by less than 1 wt.% total salinity for each 579 

inclusion (Table 3). 580 

Fluid inclusions in which hydrohalite is the last solid to melt have been reported by, 581 

among others, NYMAN et al. (1990), LAYNE and SPOONER (1991), and XU (2000). The 582 

microthermometric data of NYMAN et al. (1990) are reported only as temperature ranges, and the 583 

minimum and maximum melting temperatures were used to estimate the range of fluid inclusion 584 

compositions using our numerical model (Fig. 14; Table 3). The range in salinities determined 585 

here based on the microthermometric data of NYMAN et al. (1990) is 26.4 to 30.4 wt. % NaCl, 586 

with a range in weight fraction of NaCl (Φ) of 0.16 to 0.63, whereas NYMAN et al. (1990) report 587 

salinities of 26 to 27 wt.% NaCl and Φ from 0.6 to 0.7. The difference in Φ reported by NYMAN 588 

et al. (1990) compared to values determined in this study is likely due to the inaccuracy 589 

associated with graphically interpolating isotherms in the hydrohalite field that was used in the 590 
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previous study, compared to the numerical methods used here. However, the bulk salinities 591 

estimated by NYMAN et al. (1990) are in good agreement with those estimated here. 592 

Natural fluid inclusions that show halite as the final solid to melt are described by VANKO 593 

et al. (1988), NYMAN et al. (1990), SCHIFFRIES (1990), LAYNE and SPOONER (1991) and XU 594 

(2000). Microthermometric data from VANKO et al. (1988) for individual fluid inclusions in 595 

quartz from a vein in hornblendite from the Mathematician Ridge, East Pacific Rise, have been 596 

used to estimate fluid inclusion compositions (Fig. 14). Those fluid inclusions from VANKO et al. 597 

(1988) in which ice melts in the presence of metastable halite have been excluded in this 598 

example. The compositions of the fluid inclusions determined using our numerical model are in 599 

good agreement with the compositions determined by VANKO et al. (1988), differing by less than 600 

2 wt.% for each inclusion (Table 3). 601 

Microthermometric data from “Type 1” and “Type 3” inclusions from the Bushveld 602 

Complex reported by SCHIFFRIES (1990) include cotectic melting temperatures of various CaCl2 603 

hydrates. SCHIFFRIES (1990) did not estimate a bulk fluid composition due the uncertainty in 604 

locating the H+A and H+Ca2h cotectic curves, and the small number of experimental data in this 605 

part of the phase diagram (SCHIFFRIES, 1990). The “Type 1” inclusions exhibit eutectic melting, 606 

and the liquid evolves along the H+A cotectic before losing antarcticite (Tpb,ant) and undergoing 607 

final melting by halite dissolution (Tm,h). The data for “Type 1” inclusions indicate salinities 608 

ranging from 46 to 51 wt.% total salt and weight fraction of NaCl (Φ) ranging from 0.15 to 0.24 609 

(Fig. 14; Table 3). The “Type 3” inclusions of SCHIFFRIES (1990) show first melting at the 610 

second ternary peritectic (P2) (Fig. 1), and the liquid evolves along the H+Ca4h cotectic before 611 

losing tetrahydrate (Tpb,Ca4h), and the last solid phase to melt is halite (Tm,h). The ranges of 612 
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Tpb,Ca4h and Tm,h from SCHIFFRIES (1990) indicate salinities for the “Type 3” inclusions of 49 to 613 

54 wt.% total salt, with Φ ranging from 0.14 to 0.25 (Fig. 14; Table 3). 614 

No examples are given in Figure 14 and Table 3 of fluid inclusions in which antarcticite 615 

is the last solid phase to melt, because fluid inclusions of this type have not been unequivocally 616 

identified in previous studies. The apparent lack of fluid inclusions of this type may be due in 617 

part to the narrow compositional range of the antarcticite field (Fig. 1), but also possibly due to 618 

the difficulty of recognizing antarcticite in fluid inclusions (see ROEDDER, 1984). For example, 619 

ROBERT and KELLEY (1987) identified salt hydrate as the last melting phase of some H2O-NaCl-620 

CaCl2 fluid inclusions from gold-bearing quartz veins at the Sigma Mine, but were unable to 621 

determine whether the phase was hydrohalite or antarcticite. ULMER-SCHOLLE et al. (1993) 622 

report antarcticite as the final solid phase to melt in fluid inclusions in diagenetic quartz from the 623 

Delaware Basin (Texas and New Mexico), but the identification was based on melting 624 

temperatures up to +3.1°C for fluid inclusions with homogenization temperatures of 53-81°C 625 

(ULMER-SCHOLLE et al., 1993). Fluid inclusions with such low homogenization temperatures 626 

tend to eliminate the vapor bubble upon freezing, due to the volume expansion associated with 627 

the water-ice transition, and thus the melting temperatures were obtained under vapor-absent 628 

conditions. Under such conditions, the temperatures of solid-liquid phase transitions cannot be 629 

properly interpreted with respect to experimental data for the vapor-saturated liquidus 630 

(ROEDDER, 1967). As shown by ROEDDER (1967), a final melting temperature of +3.1°C is not 631 

incompatible with metastable melting of ice in the pure H2O system under vapor-absent 632 

conditions. 633 

Although fluid inclusions that have antarcticite as the final solid phase to melt have not 634 

been unambiguously identified, fluid inclusions with low NaCl weight fraction (Φ) (e.g., KWAK 635 
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and TAN, 1981; LAYNE and SPOONER, 1991) as well as those described by SCHIFFRIES (1990) in 636 

which the liquid composition evolves along the H+A and H+Ca4h cotectics, indicate that fluid 637 

compositions in the CaCl2-rich portion of the phase diagram occur in nature. Furthermore, 638 

Raman analysis has been used to identify CaCl2 hydrates in fluid inclusions (DUBESSY et al., 639 

1982; SAMSON and WALKER, 2000; BAUMGARTNER and BAKKER, 2009). The numerical model 640 

developed in this study allows fluid compositions to be determined in this part of the phase 641 

diagram, and will be useful if fluid inclusions with high salinity and low weight fraction of NaCl 642 

(Φ) are discovered in the future. 643 

 644 

Summary 645 

The empirical equations developed in this study completely describe the geometry of the 646 

liquidus surface and cotectic curves for the part of the H2O-NaCl-CaCl2 phase diagram between 647 

the H2O apex, the NaCl apex and the composition of CaCl2·4H2O on the H2O-CaCl2 binary. The 648 

numerical model described herein incorporates this comprehensive set of equations to allow fluid 649 

inclusion compositions to be determined anywhere within that compositional range, using a 650 

variety of combinations of input data. The model has been applied to estimate compositions of 651 

natural fluid inclusions using microthermometric data reported in the literature. The Microsoft® 652 

Excel© program that implements the model to estimate fluid inclusion compositions is available 653 

for download as an electronic annex to this paper. The authors recommend that the model 654 

presented here should be used in preference to CalcicBrine. 655 
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Appendix A. Stable Melting Paths of H2O-NaCl-CaCl2 Fluid Inclusions 782 

The compositions of natural fluid inclusions that are described by the system 783 

H2O-NaCl-CaCl2 may be determined based on the temperature and sequence of phase 784 

changes observed during heating from low temperatures. The temperatures of phase 785 

changes and the sequence of phase changes, in turn, depend on the bulk composition of 786 

the inclusion. The temperature of first melting provides an indication of which 787 

representative system is appropriate for interpreting the fluid inclusion composition, and 788 

may also provide an indication of the compositional range (e.g., first melting at the 789 

eutectic versus first melting at a peritectic point). However, the phase changes that are 790 

most often used to determine bulk compositions of fluid inclusions from 791 

microthermometric data are the melting temperatures of the last and next-to-last solid 792 

phases, so it is not necessary to measure the temperatures of all phase changes. The 793 

reader is referred to SCHIFFRIES (1990) for a complete discussion of the many potential 794 

stable melting pathways in the H2O-NaCl-CaCl2 system, and to VANKO et al. (1988) and 795 

BAUMGARTNER and BAKKER (2009) for some examples of metastable melting sequences. 796 

Note that if the last or next-to-last solid phase to melt is metastable, it can lead to 797 

misinterpretation of the fluid inclusion composition, as discussed by ROEDDER (1984) 798 

and BAUMGARTNER and BAKKER (2009). 799 

Fluid inclusions approximated by the system H2O-NaCl-CaCl2 and having 800 

compositions that lie within the ice-hydrohalite-antarcticite triangle (triangle "1"; Fig. 1b) 801 

are characterized by the subsolidus assemblage ice+hydrohalite+antarcticite, and have 802 

first melting at the ternary eutectic (E) at -52°C (Fig. 1c). The vapor bubble (the presence 803 

of which is required to demonstrate vapor-saturated conditions) is considered to be of 804 
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negligible mass and does not contribute to the fluid composition (except perhaps for high 805 

temperature (≥ 400°C) fluid inclusions that contain a vapor bubble larger than a few 10’s 806 

of volume percent at the time of last melting). Inclusions with compositions that lie 807 

within the hydrohalite+halite+antarcticite triangle (triangle “2”; Fig. 1b) contain the 808 

subsolidus assemblage hydrohalite+halite+antarcticite. For these compositions, first 809 

melting occurs at the first peritectic point (point “P1”; Fig. 1c), and the first solid phase to 810 

be consumed is antarcticite. SCHIFFRIES (1990) has also identified fluid inclusions that are 811 

liquid-absent at room temperature and characterized by the sub-solidus assemblage 812 

antarcticite+halite+tetrahydrate (triangle "3"; Fig. 1b) and exhibit first melting at the 813 

second ternary peritectic (P2) (Fig. 1c) at +29°C (SCHIFFRIES, 1990). Fluid inclusions 814 

showing second peritectic (or higher) first melting behavior are liquid-absent at room 815 

temperature and can be easily overlooked or mistaken for mineral inclusions during 816 

routine petrographic examination (SCHIFFRIES, 1990). 817 

 Natural H2O-NaCl-CaCl2 fluid inclusions that show ice as the last solid phase to 818 

melt have been described in many studies and are common in MVT deposits (e.g., see 819 

BASUKI and SPOONER, 2002). For inclusions that have ice as the last solid phase to melt 820 

the liquid composition may evolve along either the I+HH cotectic (path E→a1; Fig. A1-821 

a) or the I+A cotectic (path E→a3; Fig. A1-a) during heating from the eutectic 822 

temperature, depending on the bulk composition. Thus, the melting temperature of ice 823 

(Tm,ice) will be preceded by melting of hydrohalite (Tpb,hh) (path E→a1→a2, Fig. A1-a) 824 

for inclusions that contain more than 0.058 weight fraction of NaCl (Φ) relative to NaCl 825 

+ CaCl2, corresponding to the composition at the eutectic,  but the melting temperature of 826 
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ice will be preceded by Tpb,ant (path E→a3→a4, Fig. A1-a) if the bulk composition lies to 827 

the CaCl2-rich side of the eutectic composition (Φ = 0.058). 828 

For fluid inclusions whose bulk composition lies within the hydrohalite field, 829 

hydrohalite is the last solid phase to melt and either ice or antarcticite must be the next-830 

to-last solid phase to melt. Thus, the melting temperature of hydrohalite (Tm,hh) is 831 

preceded by either the melting of ice (Tpb,ice; path E→b1→b2; Fig. A1-b) or the melting 832 

of antarcticite (Tpb,ant; path E→b3→b4; Fig. A1-b). The fluid composition evolves 833 

directly toward the composition of hydrohalite upon departure from the I+HH or HH+A 834 

cotectic (path segments b1→b2 and b3→b4, respectively; Fig. A1-b), until final melting 835 

occurs by hydrohalite disappearance (points “b2” and “b4”; Fig. A1-b). Natural fluid 836 

inclusions that show hydrohalite as the last solid to melt have been described by NYMAN 837 

et al. (1990), LAYNE and SPOONER (1991) and XU (2000). 838 

Fluid inclusions with bulk compositions in the halite field may lose ice on the 839 

I+HH cotectic (path E→c1→c2 →c3→c4; Fig. A1-c) or lose antarcticite on the HH+A 840 

cotectic (path E→c5→c6 →c7→c8 ; Fig. A1-c). For example, consider a fluid inclusion 841 

with bulk composition shown by point “c4” in Figure A1-c. First melting occurs at the 842 

eutectic (point “E,” Fig. A1-c), where antarcticite is completely consumed. The liquid 843 

composition then evolves along the I+HH cotectic upon further heating until ice is 844 

completely consumed at point “c1” (Fig. A1-c). Then, the liquid composition evolves 845 

across the hydrohalite field along a straight line toward the composition of hydrohalite on 846 

the H2O-NaCl binary. Upon intersection of the HH+H reaction curve at point “c2” 847 

hydrohalite reacts to produce halite + liquid. The liquid composition then evolves along 848 

the HH+H peritectic curve as halite grows at the expense of hydrohalite, until all 849 
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hydrohalite is consumed at point “c3”, and the liquid composition then evolves along a 850 

straight line towards halite with further heating, until final melting of halite at point “c4”, 851 

representing the fluid inclusion bulk composition (Fig. A1-c). This melting sequence can 852 

theoretically yield temperatures for the melting of ice along the I+HH cotectic (Tpb,ice) 853 

(point “c1”; Fig. A1-c) (or melting of antarcticite along the HH+A cotectic, (Tpb,ant) 854 

(point “c5”)), the melting of hydrohalite along the HH+H peritectic (Tpb,hh) and the 855 

melting of halite on the vapor-saturated halite liquidus (Tm,h) (Fig. 2c). However, in 856 

practice the disappearance of the first phase to melt, either ice or antarcticite, may be 857 

difficult to recognize, or the melting temperature of hydrohalite may be difficult to 858 

determine accurately owing to sluggish melting or metastability, for instance due to the 859 

kinetic barrier to halite nucleation on the HH+H peritectic curve. Fluid inclusions that 860 

follow this melting sequence have been described in natural samples by VANKO et al. 861 

(1988), NYMAN et al. (1990), LAYNE and SPOONER (1991) and XU (2000).  862 

Fluid inclusions with compositions in the halite field can also exhibit liquid 863 

evolution along one or more of the halite-CaCl2 hydrate cotectics. For example, consider 864 

a fluid inclusion with a bulk composition shown by point “c10” in Figure A1-c. This bulk 865 

composition lies within the hydrohalite+halite+antarcticite triangle (triangle “2”; Fig. 1b), 866 

so the subsolidus assemblage is hydrohalite+halite+antarcticite. For this composition, 867 

first melting occurs at the first peritectic point (point “P1”; Fig. A1-c), and the first solid 868 

phase to be consumed is antarcticite. The liquid composition then evolves along the H+A 869 

cotectic until it intersects the second peritectic point (point “P2”; Fig. A1-c), at which 870 

point antarcticite reacts to produce tetrahydrate + liquid. Once antarcticite is completely 871 

consumed, the liquid composition evolves along the H+Ca4h cotectic with further 872 
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heating, until tetrahydrate is completely consumed at point “c9” (Fig. A1-c), after which 873 

the liquid composition evolves along a straight line toward the composition of halite 874 

(NaCl) until halite is completely consumed at point “c10”, representing the fluid 875 

inclusion bulk composition. In theory, this melting sequence can provide values for Tpb,ant  876 

(the second peritectic temperature) and Tpb,Ca4h along with Tm,h. Natural fluid inclusions 877 

exhibiting this sequence of phase changes have been described by SCHIFFRIES (1990). 878 

As pointed out by SCHIFFRIES (1990), several phase change sequences corresponding to 879 

compositions within the expected range of geologic fluid compositions have yet to be 880 

reported in natural H2O-NaCl-CaCl2 fluid inclusions. Most notably, natural fluid 881 

inclusions in which the last solid phase to melt is a CaCl2 hydrate have yet to be 882 

unequivocally identified, although some previous studies have reported a salt hydrate, 883 

thought to be antarcticite, as the last solid phase to melt (e.g., ULMER-SCHOLLE et al., 884 

1993), and final melting of CaCl2 hydrates has been observed in synthetic H2O-CaCl2 885 

fluid inclusions (BAUMGARTNER and BAKKER, 2009). Several possible sequences of 886 

phase changes are contained within the compositional range of the CaCl2 hydrate liquidi 887 

(e.g., paths E→d1→d2 and E→d3→d4; Fig. A1-d). 888 

889 
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 890 

Figure Captions 891 

  892 

Figure 1. Vapor-saturated liquidus phase relations in the H2O-NaCl-CaCl2 system. (a) A 893 

distorted, schematic representation of the ternary H2O-NaCl-CaCl2 system 894 

showing the relative locations of the liquidus fields. (b) The shaded region on 895 

the ternary diagram shows the part of the system that is modeled in this study. 896 

The numbered triangles show fields of sub-solidus phase assemblages. Bulk 897 

compositions within triangle “1” contain the equilibrium assemblage 898 

ice+hydrohalite+antarcticite when frozen; those in triangle “2” contain 899 

hydrohalite+halite+antarcticite when frozen; and those compositions in triangle 900 

“3” contain halite+antarcticite+tetrahydrate when frozen. (c) Phase boundaries 901 

(cotectic and peritectic curves) and isotherms calculated using the equations 902 

developed in this study (see text for discussion). The invariant points and 903 

univariant curves are labeled according to the terminology described in the 904 

text. Arrows on the univariant curves point up-temperature.  905 

 906 

Figure 2. Summary of sources of experimental data for the H2O-NaCl-CaCl2 system 907 

used in this study. The data are sorted according to the phase assemblage on 908 

the vapor-saturated liquidus, and the source of the data (see the legend). The 909 

phase boundary curves were calculated from the equations derived in this study 910 

(described in detail in the text). 911 

 912 
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Figure 3. Residuals, in percent difference between experimental and calculated values 913 

{(1 - calculated/measured)*100%}, associated with the liquid salinity on the 914 

vapor-saturated liquidi of ice (a), hydrohalite (b), halite (c) and antarcticite (d) 915 

as a function of the experimental salinity. Calculated salinities are based on the 916 

melting temperature of the last solid on the liquidus (Tm,x) and the weight ratio 917 

of NaCl relative to NaCl + CaCl2 (Φ) calculated from Eqns. (1) to (4). The 918 

symbols used for the residuals correspond to the equation used and the source 919 

of experimental values to which the predicted values are compared (see the 920 

legend). 921 

 922 

Figure 4. Comparison of the composition (salinity vs. NaCl weight ratio) on the -10°C 923 

isotherm on the vapor-saturated hydrohalite liquidus predicted by the equation 924 

of NADEN (1996) (dashed line) and by equation (2) from this study (solid line). 925 

Experimental data on the -10°C isotherm from YANATIEVA (1946) are shown 926 

as open circles. 927 

 928 

Figure 5. Comparison of the salinity on the +94.5°C isotherm on the vapor-saturated 929 

halite liquidus predicted by the equation of NADEN (1996) (dashed line) and by 930 

equation (3) from this study (solid line). Experimental data on the +94.5°C 931 

isotherm from the NATIONAL RESEARCH COUNCIL (1928) are shown as open 932 

circles. These experimental data were chosen for comparison because of the 933 

large number of data points extending over a wide range of compositions along 934 

the +94.5°C isotherm in the NRC report.  935 
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 936 

Figure 6. Liquidus curves for the H2O-NaCl (top) and H2O-CaCl2 (bottom) binary 937 

systems, calculated from Eqns. (1) to (6). Experimental data are from 938 

NATIONAL RESEARCH COUNCIL (1928) (halite); YANATIEVA (1946) (ice, 939 

hydrohalite, halite, antarcticite); LINKE (1958) (ice, hydrohalite, halite, 940 

antarcticite, tetrahydrate, dihydrate); POTTER and CLYNNE (1978) (halite, 941 

antarcticite, tetrahydrate, dihydrate); STERNER et al. (1988) (halite); and OAKES 942 

et al. (1990) (ice). 943 

 944 

Figure 7. Residuals, in percent difference between experimental and calculated values 945 

{(1 - calculated/measured)*100%}, associated with liquid salinity on the 946 

I+HH, HH+H, HH+A and H+CaCl2·nH2O phase boundary curves as a function 947 

of temperature from Eqns. (1), (2), (3), (4) and (6), plotted against the 948 

experimental salinity. Symbols used are the same as for Figure 3. 949 

 950 

 Figure 8.  Residuals, in percent difference between experimental and calculated values 951 

{(1 - calculated/measured)*100%}, associated with Φ on the I+HH, HH+H, 952 

HH+A and H+CaCl2·nH2O phase boundary curves as a function of temperature 953 

from Eqns. (1), (2), (3), (4) and (6), plotted against the experimental weight 954 

fraction of NaCl (Φ). The dashed vertical line in the I+HH residuals plot (upper 955 

left) shows the eutectic composition. Symbols used are the same as for Figure 956 

3. 957 

 958 
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Figure 9. Comparison of the weight fraction of NaCl in the liquid (Φ) as a function of 959 

temperature on the HH+H peritectic curve predicted by the equation of NADEN 960 

(1996) (dashed line) and by the intersection of equations (2) and (3) from this 961 

study (solid line). Experimental data (solid triangles) are from YANATIEVA 962 

(1946) and LINKE (1958). 963 

 964 

Figure 10.  Comparison of the liquid salinity as a function of temperature on the HH+H 965 

peritectic curve predicted by the method of intersection of adjacent liquidus 966 

surfaces from NADEN (1996), implemented by BAKKER (2003) (dashed line) 967 

and by the Equations (1) and (3) from this study (solid line). Experimental data 968 

(solid triangles) are from YANATIEVA (1946) and LINKE (1958). 969 

 970 

Figure 11. Phase relations in the H2O-NaCl-CaCl2 system under vapor-saturated 971 

conditions showing the eleven different composition fields, based on the 972 

sequence and temperatures of the final two (or three) solids to melt during 973 

heating. See text for discussion of phase changes corresponding to each field 974 

and identification of symbols. 975 

 976 

Figure 12. Schematic heating sequence for a fluid inclusion with a composition within 977 

field 5b (Fig. 11), showing the melting events that may be observed during 978 

microthermometry. Isotherms of the relevant phase changes are shown as 979 

dotted lines. Antarcticite is lost at the eutectic (point “E”), . The liquid 980 

composition then evolves along the I+HH cotectic with further heating until 981 
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ice is consumed at point “a” (Tpb,ice). At this point, because hydrohalite is the 982 

only solid phase present, the liquid composition evolves along a straight line 983 

towards the composition of hydrohalite with further heating (segment a→b). 984 

The HH+H curve is intersected at point “b,” where halite nucleates (Tpb,hh*). 985 

On further heating, the liquid composition evolves along the HH+H peritectic 986 

curve (segment b→c), until hydrohalite is consumed at point “c” (Tpb,hh). At 987 

this point, halite is the only remaining solid phase, so with further heating the 988 

liquid composition evolves towards the NaCl apex until intersecting the Tm,h 989 

isotherm at point “d,” which is the bulk fluid inclusion composition. Note that 990 

the bulk composition lies along the mixing line “a-NaCl·2H2O” (between the 991 

liquid composition at Tpb,ice and pure hydrohalite), and the mixing line “c-992 

NaCl” (between the liquid composition at Tpb,hh and pure halite), therefore any 993 

pair of Tpb,ice, Tpb,hh or Tm,h, is sufficient to fix the bulk composition. 994 

 995 

Figure 13. Comparison of the compositional ranges over which the model presented in 996 

this study (top) and previously published models of the H2O-NaCl-CaCl2 997 

system are valid (middle and bottom). Top: The compositional range of 998 

applicability of the model presented in this study. Middle: The shaded field 999 

shows the range of applicability of the model AqSo1e (BAKKER, 2003) and is 1000 

also the range for the model of CHI and NI (2007), except for a small region 1001 

near the H2O-CaCl2 binary as described in the text.  Bottom: The shaded area 1002 

shows the range of applicability of the model AqSo2e (BAKKER, 2003) and 1003 

CalcicBrine (NADEN, 1996).  1004 
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Figure 14. Examples of H2O-NaCl-CaCl2 fluid inclusion compositions determined from 1005 

published microthermometric data (sources listed in the legend) using the 1006 

model developed in this study. Isotherms of measured melting temperatures 1007 

shown in thin sold lines; pseudobinaries of liquid composition determined 1008 

from measured cotectic melting temperatures shown as thin dashed lines. See 1009 

text for description of the data and Table 3 for comparison of the results with 1010 

those of the original studies. 1011 

 1012 

Figure A1.  Example melting pathways, or liquid lines of ascent (up temperature), for 1013 

select compositions in the H2O-NaCl-CaCl2 system. (a) A fluid with 1014 

composition “a2” shows first melting at the eutectic (point E, -52°C) where 1015 

antarcticite is consumed. The liquid composition evolves along the I+HH 1016 

cotectic until hydrohalite is consumed at point “a1” (Tpb,hh), after which the 1017 

liquid evolves toward the H2O apex until ice is consumed at point “a2” (Tm,ice), 1018 

representing the fluid inclusion bulk composition. A fluid with composition 1019 

“a4” shows hydrohalite melting at the eutectic (point “E”) and the liquid 1020 

evolves along the I+A cotectic until point “a3,” (Tpb,ant) where antarcticite 1021 

melts, with final melting at point“a4” (Tm,ice), representing the fluid inclusion 1022 

bulk composition. (b) A fluid of composition “b2” will show the same initial 1023 

melting sequence as that for composition “a2” except that ice is consumed 1024 

before hydrohalite on the I+HH cotectic at point “b1” (Tpb,ice), whereupon the 1025 

liquid composition evolves directly towards the composition of hydrohalite 1026 

until Tm,hh at point “b2”. For composition “b4” ice is lost at the eutectic (point 1027 
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E) and the liquid composition then evolves along the I+A cotectic until Tpb,ant 1028 

at point “b3” where antarcticite is consumed. The liquid then evolves along a 1029 

straight line toward the composition of hydrohalite until Tm,hh at point “b4”. (c) 1030 

For composition “c4” first melting occurs at the eutectic (point “E”) where 1031 

antarcticite is lost. The liquid then evolves along the I+HH cotectic until ice is 1032 

completely consumed at point “c1” (Tpb,ice). The liquid composition then 1033 

evolves directly towards the composition of hydrohalite until the HH+H curve 1034 

is intersected at point “c2”, whereupon halite begins to grow at the expense of 1035 

hydrohalite, and the liquid composition evolves along the HH+H peritectic 1036 

curve. Hydrohalite is finally consumed at point “c3” (Tpb,hh), and the liquid 1037 

composition then evolves towards the NaCl apex until halite melts at Tm,h 1038 

(“c4”), representing the fluid inclusion bulk composition. Fluid inclusions with 1039 

composition “c8” follow an analogous pathway, but lose ice at the eutectic 1040 

(point “E”) and next lose antarcticite on the HH+A cotectic at point “c5” 1041 

(Tpb,ant). The liquid composition then evolves toward the composition of 1042 

hydrohalite until the HH+H curve is intersected at point “c6,” where halite first 1043 

nucleates. The liquid composition then evolves along the HH+H curve as halite 1044 

grows at the expense of hydrohalite with further heating. Hydrohalite is 1045 

completely consumed at point “c7” (Tpb,hh), whereupon the liquid composition 1046 

evolves directly toward the composition of halite until reaching Tm,h at point 1047 

“c8”, representing the bulk composition. Fluid inclusions with composition 1048 

“c10” have first melting at the first ternary peritectic point (“P1”) where 1049 

hydrohalite is lost, and the liquid evolves along the H+A cotectic until 1050 
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intersecting the second ternary peritectic point (“P2”), where a reaction occurs 1051 

and tetrahydrate grows at the expense of antarcticite by incongruent melting. 1052 

The liquid composition then evolves along the H+Ca4h cotectic until 1053 

tetrahydrate is completely consumed at point “c9” (Tpb,Ca4h). The liquid then 1054 

evolves towards the NaCl apex until final halite melting at point “c10” (Tm,h). 1055 

(d) For a fluid inclusion with bulk composition “d2,” first melting occurs at the 1056 

eutectic (“E”) where hydrohalite is consumed. The liquid then evolves along 1057 

the I+A cotectic curve until ice is completely consumed at point “d1” (Tpb,ice), 1058 

whereupon the liquid composition evolves directly towards the composition of 1059 

antarcticite until antarcticite is completely consumed at point “d2” (Tm,ant). A 1060 

fluid inclusion with composition “d4” loses ice at the eutectic (point “E”), after 1061 

which the liquid evolves along the HH+A cotectic until hydrohalite is 1062 

consumed at point “d3” (Tpb,hh). The liquid then evolves towards the 1063 

composition of antarcticite until antarcticite is consumed at point “d4” (Tm,ant).  1064 
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Table 1. Summary of the number of published experimental T-X data points for the H2O-NaCl-CaCl2 system used in this study. 
 Solid phase(s) on cotectic and peritectic curves and on liquidus surfacesa 
Source I+HH I+A HH+H HH+A H+A H+Ca2h I HH H A Ca4h Ca2h 
National Research Council (1928)         19    
Yanatieva (1946) 9 3 6 7 8  57 30 13 20   
Linke (1958)   4  1 2 21 1 57 15 7 12 
Potter and Clynne (1978)         11 4 5 5 
Vanko et al. (1988)         10    
Oakes et al. (1990) 1      168      
Oakes et al. (1992) 3            
Sterner et al. (1988)         8    
Sub-total       246 31 118 39 12 17 
Totalb 13 3 10 7 9 2 262 61 137 58 12 19 
(a) I = ice; HH = hydrohalite; H = halite; A = antarcticite; Ca4h = tetrahydrate; Ca2h = dihydrate 
(b) For each one-solid liquidus surface, the total number of data points used in the regression analysis is the sum of the subtotal (data 
on the one-solid surface) plus the number of data points for the adjacent boundary curves.
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Table 2. Coefficients for Equations 1-6. 
 
ai 

Ice 
(Eqn. 1) 

Hydrohalite 
(Eqn. 2) 

Halite 
(Eqn. 3) 

Antarcticite 
(Eqn. 4) 

Tetrahydrate 
(Eqn. 5) 

Dihydrate 
(Eqn. 6) 

a0 0.46685 0.06039097042 0.0586472647 0.06467408472 1.041627135 0.096475342 
a1 -2.0508125 -2.967800E-5 2.2759389E-4 6.9903747E-4 -0.02232533 1.677838E-3 
a2 -0.08997493 7.0463278E-6 0 -2.607825E-5 1.3792920E-4 -1.3572629E-5 
a3 -2.5468641E-3 1.237133E-3 8.8841217E-9 1.0162876E-6 -2.95841861 4.5571671E-8 
a4 -3.7319837E-5 -1.290978E-3 1.2272697E-3 4.3288357E-9 0.032785047 -0.11534086 
a5 -2.1478861E-7 -5.219129E-3 -3.9989511E-6 1.1648119E-10   
a6 -1.138304 -3.178747E-6 -6.680437E-9 0.06779525838   
a7 0.269882 -1.408898E-7 0.0284636532 -1.0833486E-3   
a8 6.8878422E-3 1.0353807E-3 0    
a9 1.37774273E-8  3.1094576E-6    
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Table 3. Compositions of natural fluid inclusions estimated using the numerical model developed in this study. The 
compositions reported in the original studies are shown for comparison.  
     Salinity Φ 
Source Measured melting temperatures From 

Source 
This Study From 

Source 
This Study 

Layne and Spooner (1991) Tpb,hh Tm,ice     
 -44.5 -33.5 27 26.5 0.081 0.081 
 -49.1 -31.3 26.1 25.6 0.069 0.064 
 -49.2 -23.4 23.1 22.3 0.065 0.064 
 -49.6 -22.6 22.8 21.9 0.070 0.063 
 -45.9 -21.7 22.4 21.5 0.076 0.075 
 -46.6 -19.3 21.2 20.3 0.075 0.072 
 -43.7 -18.0 20.3 19.7 0.079 0.085 
 -46.5 -18.0 20.4 19.6 0.069 0.073 
 -45.6 -17.5 20 19.4 0.075 0.076 
 -47.2 -14.2 17.9 17.4 0.073 0.070 
Nyman et al. (1990) Tpb,ice Tm,hh     
 -41.0 to -25.0 -9.6 to -7.0 26 to 27 26.4 to 30.4 0.6 to 0.7 0.16 to 0.63 
Vanko et al. (1988) Tc,ice Tm,h     
 -30.9 +278 41 39.7 0.74 0.70 
 -34.8 +402 51.3 50.7 0.87 0.85 
 -29.9 +288 41.5 40.1 0.76 0.72 
 -30.8 +286 41.5 40.2 0.75 0.71 
Schiffries (1990) –“Type 1” Tpb,ant Tm,h     
 +22 to +29 +161 to +201 - 46.5 to 50.3 - 0.15 to 0.24 
Schiffries (1990) –“Type 3” Tpb,Ca4h Tm,h     
 +31 to +38 +173 to +225 - 49.8 to 53.9 - 0.14 to 0.25 
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