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INTRODUCTION

Antarctic marine environments are characterised by
intense seasonality. High nutrient concentrations in
seasonally ice-covered Antarctic coastal and shelf areas
lead to a massive phytoplankton bloom following the
melting of the ice sheet in spring and early summer. A
major part of this particulate organic material can be
deposited on the seafloor (e.g. Gutt et al. 1998, C. R.
Smith et al. 2002) where it is available as food for the
benthic community. The seasonality of nutrient input
is probably the most significant ecological feature of
Antarctic shelf environments (Clarke 1988, Arntz et al.
1994), where foraminifera, similar to deep-sea (Tietjen
1971, Paul & Menzies 1974, Coull et al. 1977, Thiel
1983, Snider et al. 1984, Gooday 1986, K. L. Smith et al.
2002) and other polar environments (Basov 1974, Basov
& Khusid 1983), often represent a substantial propor-

tion of the abundance and biomass of benthic commu-
nities. Experimental studies indicate that deep-sea spe-
cies can rapidly ingest a substantial proportion of fresh
organic matter after depositional events (Altenbach
1992, Levin et al. 1999, Moodley et al. 2002), leading to
increases in population sizes (Heinz et al. 2001, 2002).
The potential importance of foraminifera in the cycling
of organic matter is also suggested by the high respira-
tion rates of some common species of intertidal benthic
foraminifera, which may be 10 times higher than those
of naked amoebae of a comparable size (Hannah et al.
1994). In environments where they are abundant,
foraminifera may contribute significantly to the benthic
carbon cycle (Gooday et al. 1992, Moodley et al. 2000).
For example, it is possible that foraminifera, together
with bacteria, are responsible for the decomposition of
a major part of the labile organic matter deposited on
the deep-sea floor (Moodley et al. 2002).
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Selective feeding by a number of foraminiferal spe-
cies has previously been demonstrated under labora-
tory conditions (e.g. Bradshaw 1955, Murray 1963, Lee
1966, 1980, Muller 1975, Lee et al. 1988, Kitazato &
Ohga 1995), and has been suggested based on field
observations or implicated by isotope tracer studies
(e.g. Levin et al. 1999, Moodley et al. 2000). In contrast
to the previously mentioned studies, this study is the
first to directly demonstrate, by analysing full fatty-
acid profiles, the selective feeding by certain benthic
foraminifera in their natural environment after a
natural depositional event.

Fatty acids, in the form of different types of lipids,
are essential cellular components of all organisms.
They occur as phospholipids in cell membranes and
serve, for example, as energy-storage materials in the
form of triacylglycerols and wax esters. Certain fatty
acids can be used as biomarkers for marine microor-
ganisms such as microphytoplankton (e.g. Sargent &
Henderson 1995), or to trace the origin of particulate
organic matter on the seafloor (e.g. Boon & Duineveld
1996, Wakeham et al. 1997, Fileman et al. 1998). By
identifying individual components in a studied organ-
ism, fatty acid biomarker analyses allow conclusions to
be drawn regarding its food source, and thus facilitate
the direct observation of selective feeding on available
organic matter. Researchers studying fatty acid com-
positions of benthic organisms in the Arctic (Falk-
Petersen & Sargent 1982, Graeve et al. 1997, Falk-
Petersen et al. 2001) and the deep NE Atlantic
(Bühring & Christiansen 2001) were able to identify
their respective planktonic food sources and thus
demonstrate bentho-pelagic coupling. In this context,
(n-3) polyunsaturated fatty acids (PUFAs) such as

20:5(n-3) (Eicosapentaenoic acid: EPA), 20:4(n-6)
(Arachidonic acid: AA) and 22:6(n-3) (Docosa-
hexaenoic acid: DHA) are of particular interest. Poly-
unsaturated fatty acids are produced in large quan-
tities by marine phytoplankton organisms such as
diatoms and flagellates, for which some PUFAs can
serve as biomarkers (e.g. EPA for diatoms, DHA for
flagellates) (Sargent et al. 1987, 1995). Some Antarctic
and deep-sea bacteria may also produce PUFAs, but
no information is presently available about their rela-
tive abundances, biomass and potential contribution
to the PUFA pool (Nichols & McMeekin 2002). 

In this study, we used fatty acid biomarkers to evalu-
ate the role that some common foraminiferal species, at
a 560 m deep site on the Antarctic shelf, may play in
the processing of fresh phytoplankton-derived mater-
ial that is deposited on the seafloor. We specifically
addressed the fate of the ‘high quality’ component of
this organic matter, the PUFAs, during the early stages
of processing by the benthic community. This study is
part of the FOODBANCS project, which addresses the
impact and fate of biogenic particles derived from the
highly seasonal primary production on the seafloor, at
3 sites situated on the shelf off the western Antarctic
Peninsula (C. R. Smith et al. 2002).

MATERIALS AND METHODS

Study site. FOODBANCS site A (65° 10’ S, 64° 46’ W)
is located at a water depth of 560 m on the western
Antarctic Peninsula shelf, south-west of Anvers Island
(Fig. 1). Within the study area, the main pulse of phy-
todetritus deposition takes place between January and
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Fig. 1. Northern
Antarctic Peninsula
with FOODBANCS
study area (inlay).
dd = FOODBANCS
Site A, ZZ = sedi-

ment trap
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March, and the estimated mean annual primary pro-
duction in this region is 143 gC m–2 yr–1 (Smith et al.
1998a), although the amount of phytoplankton biomass
in the Antarctic Peninsula area is variable (Moline &
Prézelin 1996, Smith et al. 1998b). The bottom-water
temperature is fairly constant at ca. 1.1°C, and oxygen
concentrations are ~2 ml l–1. Sediments are muddy,
with approximately 1% organic carbon content, and
current velocities are low. No evidence of sediment
resuspension was observed on the 5 cruises to the site
over 15 months. A strong seasonal pulse of phyto-
plankton primary production was recorded in a sedi-
ment trap which was deployed further out on the shelf
throughout the duration of the project (Fig. 2).

Sampling procedure. Three replicate sediment cores
were taken at FOODBANCS Site A in October 2000 and
4 in March 2001, in each case from a single megacorer
drop (Megacorer Mark II-400, Bowers and Connelly). In
October, the 0 to 0.5 cm surface sediment layer of the
cores (10 cm2 diameter = 78.6 cm2 surface area) was re-
moved and sieved over a 150 µm screen using chilled
and filtered (45 µm) seawater, and the residue was
frozen at –80°C. The cores taken in March 2001 had a
2 cm thick layer of loose, recently deposited phyto-
detritus on top of the sediment surface. In this case, the
phytodetritus layer on top of the cores was homogenised
by gentle stirring before a 1 ml subsample of the phy-
todetritus was taken using a cut-off syringe. The re-
maining phytodetritus was then sieved, and the residues
and phytodetritus subsamples were frozen at –80°C.

In the laboratory, the most abundant species present
in the 2 sets of samples were established, and as many
specimens as possible were picked out of the residues
using a Wild dissecting microscope. Actual numbers
were: 29 to 36 specimens of Globocassidulina subglo-
bosa (150 to 200 µm) in 2 replicate cores, and 4 to 5

specimens of Quinqueloculina seminula (>250 µm) in 3
replicate cores (October 2000); 23 to 94 small speci-
mens (150 to 200 µm) of G. subglobosa, 4 to 15 of Thu-
rammina albicans (>250 µm) and 8 to 13 of Q. seminula
(>250 µm) in 4 replicate cores each (March 2001).
During the sorting procedure, the samples were kept
chilled in a small glass Petri dish, which was placed in
a larger Petri dish filled with ice and water. Only spec-
imens that were assumed to have been alive (and feed-
ing) at the time of sampling were picked out. Criteria
for selection were the presence of distinctly green- or
brown-coloured protoplasm and/or detrital material
around the aperture. The specimens were transferred
into different 1 ml glass vials containing chloroform
and methanol in a ratio of 2:1 (v:v). Phytodetritus sub-
samples were transferred into 10 ml glass vials con-
taining proportionally higher amounts of solvents (1 ml
sample + 9 ml solvent mix). Separate quantitative
faunal analyses were carried out on 4 (October 2000) or
5 (March 2001) replicate cores from each sampling
occasion.

Fatty acid analysis. Since only relatively small num-
bers of specimens were available, a highly sensitive
method adapted from Guezennec et al. (1996) and
Sonesson et al. (1987) was used, in which free fatty
acids are derivatized as Pentafluorobenzyl (PFB) esters
and analysed using a gas chromatograph coupled to an
electron capture detector (GC-ECD). Derivatisation of
the samples was followed by purification through high-
performance thin-layer chromatography (HPTLC). A
volume of 1 µl of the sample was then injected into the
gas chromatograph (Carlo-Erba Trace 2000 series) fit-
ted with a ZBWAX fused silica capillary column (30 m ×
0.32 mm internal diameter). Nitrogen, at a flow rate
of 35 ml min–1, was used as make-up and hydrogen at
2 ml min–1 as carrier gas. The following temperature
programme was run: initial temperature 80°C, increas-
ing to 190°C at a rate of 40°C min–1, then increasing
to 230°C at 4°C min–1. The temperature remained at
230°C for 47 min, followed by a cooling period of ca.
3 min back to 80°C. Individual fatty acids were identi-
fied using fatty acid standards (Marinol and Sigma 37
FAME Standard, derivatised as PFB esters).

All glassware used during extraction, saponifica-
tion and derivatization of the samples was first thor-
oughly soaked and washed with industrial detergent
(Decon), rinsed with hot tap water and subsequently
soaked overnight in distilled water. The glassware
was then heated overnight at 550°C in a muffle fur-
nace. Directly before use, every vial, including their
tops, was rinsed with solvent (chloroform:methanol,
2:1 v:v) before adding any reagent or sample. The
vials were closed with open-top screw caps with
Teflon-coated septa. New septa were used at every
step in the procedure.
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Fig. 2. Chl a flux into sediment trap at FOODBANCS Site B
(150 m above bottom, y1), vs seafloor phytodetritus score (y2,
histogram, 0 = no phytodetritus, 3 = full phytodetritus cover). 

Error bars = 95% CI
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The amounts of biomarker fatty acids in the samples
were converted from mol % to weight %. All percent-
ages of fatty acids are given in weight %. Univariate
statistical analyses (Kruskal-Wallis ANOVA) were
carried out on arcsine-transformed data. Multivariate
statistics (multidimensional scaling and pairwise com-
parisons, ANOSIM) were performed on untransformed
data using the software PRIMER (Version 5.1) (Clarke
& Warwick 1994, Carr 2001).

RESULTS AND DISCUSSION

Of the 3 species selected for this study1, Globo-
cassidulina subglobosa was the most abundant, repre-
senting on average 19% of the foraminiferal commu-
nity >150 µm in the 0 to 1 cm layer of the pre-bloom
assemblage (October 2000), and 21% in the post-
bloom samples from March 2001. The average size of
post-bloom specimens of G. subglobosa was 185 µm
(n = 50). Both Quinqueloculina seminula and Thuram-

mina albicans were less common, but considerably
larger in size (Q. seminula: 6.6% of the population in
October 2000, 0.3% in March 2001; Thurammina albi-
cans: 1.7% in October 2000 and 0.7% in March 2001).
On average, both species (Q. seminula and T. albicans)
measured between 250 and 300 µm. Thus, while G.
subglobosa obviously dominated the assemblage in
terms of abundance, the other 2 species were assumed
to be important in terms of biomass.

Following a late-summer phytoplankton bloom, a
significant amount of organic material was deposited
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October 2000 March 2001
G. subglobosa Q. seminula Phytodetritus G. subglobosa T. albicans Q. seminula
Weight SD Weight SD Weight SD Weight SD Weight SD Weight SD

(%) (%) (%) (%) (%) (%)

14:0 11.6 2.3 4.5 0.9 8.8 0.7 4.4 3.0 12.1 5.1 7.3 0.9
15:0 4.4 1.8 3.5 0.7 3.0 0.3 2.0 0.6 6.4 2.8 3.8 1.7
16:0 6.9 15.8 12.1 3.0 19.3 3.8 11.4 2.3 33.8 10.2 20.0 2.9
16:1(n-9) 2.5 2.1 2.9 1.9 4.1 3.6 1.8 0.3 3.6 2.2 1.6 0.6
16:1 (n-7) 2.7 1.8 2.6 1.4 15.3 6.8 5.9 1.0 4.4 3.1 5.5 3.2
16:1 (n-5) 1.4 0.6 2.3 0.6 5.7 2.9 4.5 1.0 2.0 1.0 4.3 0.7
16:4 (n-1) – – – – – – 0.6 0.1 0.2 0.1 – –
17:0 2.9 0.5 2.2 1.4 2.7 0.2 1.4 1.2 2.0 1.5 2.6 1.0
17:1 4.1 2.5 2.0 0.2 1.9 1.6 1.6 0.2 0.6 0.4 1.4 1.8
18:0 28.1 9.5 11.6 2.3 6.9 2.9 4.2 0.5 14.8 13.6 4.3 1.6
18:1 (n-9) 13.6 5.9 5.5 2.1 5.7 1.1 8.9 1.4 6.7 1.8 9.0 3.8
18:1 (n-7) 4.1 0.9 16.7 2.7 8.8 1.6 8.0 1.0 2.7 2.3 16.1 2.0
18:2 (n-6) 2.1 0.9 1.0 0.4 1.5 1.2 2.9 0.4 1.2 0.5 2.5 2.2
18:3 (n-6) 1.0 0.1 0.8 0.1 0.5 0.4 0.5 0.6 1.0 0.2 3.2 3.7
18:3 (n-3) 0.3 0.4 1.6 1.7 0.4 0.5 0.6 0.6 0.3 0.3 0.3 0.1
18:4 (n-3) 0.0 0.1 0.1 0.1 0.2 0.2 1.2 0.8 1.4 1.6 0.7 0.4
20:0 3.2 1.2 1.1 – 1.5 1.3 0.6 0.5 0.5 0.6 0.1 0.3
20:1 (n-9) 1.2 0.6 1.1 0.6 0.6 0.1 0.7 0.1 0.3 0.3 0.7 0.5
20:1 (n-7) – 0.1 0.4 – 0.8 0.2 0.6 0.1 0.2 0.2 1.9 2.9
C20 (I) 1.1 0.1 9.2 5.7 0.4 0.3 6.5 3.8 0.4 0.6 12.1 8.7
20:4 (n-6) 0.8 0.2 9.4 – 0.9 0.8 6.4 3.7 0.8 1.0 3.6 1.8
C20 (II) 0.6 0.2 0.2 0.3 0.2 0.2 4.3 2.4 0.1 0.2 0.7 0.6
20:4 (n-3) – – – – 0.1 0.1 1.4 0.2 0.3 0.4 0.2 –
20:5 (n-3) 0.9 0.3 3.8 1.3 0.3 0.3 12.4 1.4 0.3 0.5 0.5 0.4
22:0 2.3 0.9 1.2 0.1 5.2 2.7 3.4 0.6 2.9 2.0 0.7 0.2
22:1 (n-11) 1.4 0.3 1.2 1.5 3.1 3.1 0.6 0.4 – – 0.1 0.1
21:5 (n-3) 0.2 0.3 1.6 0.3 – – 1.0 0.1 – – 0.1 0.2
22:5 (n-3) – – – – – – 0.7 0.1 – – – 0.1
22:6 (n-3) 2.6 0.9 1.6 0.1 2.0 3.0 5.1 1.0 1.1 0.7 1.3 1.4
PUFAs 5.7 2.3 18.9 3.6 4.5 5.3 30.0 8.7 5.4 4.7 10.0 8.0

Table 1. Fatty acid compositon (in weight %) of common species (>150 µm) and phytodetritus at FOODBANCS Site A in October
2000 and March 2001. C20 (I) and C20 (II) = unidentified fatty acids of Globocassidulina subglobosa, Quinqueloculina 

seminula and Thurammina albicans

1Taxonomic notes. Globocassidulina subglobosa Brady, 1884
(=Cassidulina subglobosa Brady, 1881). Brady (1884), Plate
54, Fig. 17a–c; Loeblich & Tappan (1988), Plate 557, 
Figs. 18–23; Mackensen et al. (1993), Plate II, Fig. 9. As Cas-
sidulina subglobosa in Echols (1971), Plate 12, Fig. 2; Herb
(1971), Plate 4, Fig. 12.

1Quinqueloculina seminula Brady, 1881 (=Quinqueloculina
seminulum Linné, 1758). Brady (1884), Plate 5, Fig. 6; Loe-
blich & Tappan (1988), Plate 344, Figs. 8–13.

1Thurammina albicans Brady, 1884. Plate 37, Figs. 2–7
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at FOODBANCS Site A in March 2001, which was
recorded both in a sediment trap situated in relative
proximity to the study site, and in photographic images
of the seafloor in the study area (Fig. 2). The fatty acid
profiles of all 3 benthic foraminiferal species sampled
after this depositional event differed substantially from
each other, as well as from the surrounding phytodetri-
tus (Table 1), suggesting differing food preferences of
the foraminifera. These differences are significant in
all cases (p < 0.05 ANOSIM), which is also reflected
during multidimensional scaling of the complete fatty-
acid profiles of the investigated foraminifera and phy-
todetritus (Fig. 3). In the MDS plot, the 4 replicates of
the 3 foraminiferal species and the phytodetritus form
separate distinct groups, while the replicate samples of
Globocassidulina subglobosa and Quinqueloculina
seminula are grouped tighter than those of Thuram-
mina albicans, indicating greater feeding selectivity of
these 2 calcareous species, compared to the aggluti-
nated species.

The different behaviour, observed by multidimen-
sional scaling of the replicate samples, of foraminifera
and phytodetritus collected in March 2001 reflects pri-
marily their contrasting polyunsaturated fatty acid con-
tent. This is significantly higher in the 2 calcareous
species (p < 0.05, Kruskal-Wallis ANOVA) compared to
the surrounding phytodetritus (PUFAs = 4.5%), almost
7 times higher (30%) in the case of Globocassidulina
subglobosa and more than twice as high (10%) in
Quinqueloculina seminula (Table 1). In the case of G.
subglobosa, this seemed to result mainly from a selec-
tive ingestion of diatoms, since the diatom biomarker
20:5(n-3) (e.g. Ackman et al. 1968, Sargent et al. 1987,
Viso & Marty 1993, Dunstan et al. 1994) alone made up
ca. 41% of the polyunsaturated fatty acids in G. sub-
globosa. In contrast, the amount of PUFAs in Thuram-

mina albicans (5.4%) did not differ greatly from that
in the surrounding phytodetritus. Instead, T. albicans
contained a much higher proportion of saturated fatty
acids, such as 16:0 and 18:0, both products of degrada-
tion of unsaturated and longer-chain fatty acids, than
the 2 calcareous species. While the proportion of 16:0
and 18:0 in T. albicans was, at 48.6%, almost twice as
high as in the phytodetritus (26.2%), it was slightly
lower in Q. seminula (24.3%) and considerably below
the phytodetritus value in G. subglobosa, in which
these 2 fatty acids made up only 15.7% of the total fatty
acids. This indicates that T. albicans may have been
feeding on degraded material to a greater extent than
the other 2 investigated species.

A comparison of the fatty acid contents of a small
number of replicate samples of the 2 calcareous spe-
cies, collected previously in October 2000 (before the
summer bloom), with samples from March 2001 (after
the summer bloom) shows significantly higher (p <
0.05) amounts of polyunsaturated fatty acids in the
post-bloom samples of Globocassidulina subglobosa.
The opposite is the case with Quinqueloculina semi-
nula, in which the amount of PUFAs is higher in the
pre-bloom than in the post-bloom samples (Table 1),
although the difference is not statistically significant
in this case. Multidimensional scaling of the pre- and
post-bloom samples of Q. seminula and G. subglo-
bosa (Fig. 4) reveals that the fatty acid composition of
G. subglobosa in October 2000 (no phytoplankton-
derived matter) differed significantly (ANOSIM p <
0.05) from that in March 2001 (phytoplankton-
derived matter present on top of the sediment), while
that of Q. seminula is relatively similar on both
occasions.
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Fig. 3. March 2001. Multidimensional scaling of complete
fatty acid profiles of 4 replicate samples for each species and
phytodetritus (stress = 0.09). Z = phytodetritus, M = Quinque-
loculina seminula, F = Globocassidulina subglobosa, h = 

Thurammina albicans

Fig. 4. Multidimensional scaling of fatty acid profiles of
Globocassidulina subglobosa and Quinqueloculina seminula
in October 2000 (pre-bloom) and March 2001 (post-bloom) in
comparison (stress = 0.1). e = G. subglobosa, pre-bloom; F =
G. subglobosa, post-bloom; n = Q. seminula, pre-bloom; M = 

Q. seminula, post-bloom
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It seems that, of the 2 calcareous species, Globocas-
sidulina subglobosa shows a more specific response to
material derived from the phytoplankton bloom than
Quinqueloculina seminula, which is in agreement
with previous studies. G. subglobosa has previously
been observed to increase in abundance following
seasonal pulses of fresh phytodetritus (Gooday 1988,
1993). It is abundant in other areas of the Antarctic
which experience seasonal organic matter input (Ward
1983, Jones & Pudsey 1994, Schmiedl et al. 1997),
indicating a specific, significant response to phyto-
detritus input by this species. Some of the literature
for Q. seminula, in contrast, indicates a possibly wider
range of food preferences, including fresh, phyto-
plankton-derived matter when it is available, as well
as bacteria (e.g. Heeger 1990, Gooday & Rathburn
1999). This is supported by the observation of both
substantial amounts of 18:1(n-7), as well as polyunsat-
urated fatty acids in the post-bloom samples taken at
FOODBANCS Site A. 18:1(n-7) is widely distributed
in free-living marine bacteria, particulary methan-
otrophic and thiotrophic species, and is commonly
regarded as a bacterial biomarker (e.g. Gillan & Johns
1986, Bowman et al. 1991, Wakeham & Beier 1991,
Guezennec & Fiala-Medioni 1996, Pearson et al.
2001).

It has been firmly established that, as well as micro-
phytoplanktonic organisms, some Antarctic marine
bacteria, the majority of which are found in sea-ice,
may also produce polyunsaturated fatty acids, such as
EPA, AA and DHA (Nichols et al. 1993, 1997, Bow-
manet al. 1998a,b, Russell & Nichols 1999, Nichols &
McMeekin 2002). For this reason, high amounts of
any of these fatty acids may not always serve as
evidence for the presence of undegraded, phyto-
plankton-derived organic matter. However, although
bacterial densities in sea-ice can be considerable
(Palmisano & Sullivan 1983, Grossi et al. 1984, Sulli-
van & Palmisano 1984, Kottmeier et al. 1987), they
may contribute only a small part to overall carbon
production (Kottmeier et al. 1987). In contrast, rates
of spring phytoplankton primary production on the
Western Antarctic Peninsula shelf are high (e.g.
Bodungen et al. 1986, Smith et al. 1998b). In addition,
no pack ice was observed at FOODBANCS Site A on
any of the sampling occasions, although brash-ice
streams were present during the 2 spring cruises in
December 1999 and October 2000. Thus, it seems
reasonable to assume that the major part of poly-
unsaturated fatty acids in deposited, spring-bloom-
derived material may be of phytoplankton origin, and
that the high content of PUFAs observed in the 2 cal-
careous foraminifera after the depositional event re-
flects a feeding link between the protozoans and the
primary production in the overlying water column.

Implications for the benthic food web

As a group, foraminifera ingest a wide range of food
items and operate at various trophic levels, ranging
from unselective deposit feeding, or active selection of
certain food items (Lee 1980, Lipps 1983, Goldstein
1999), the uptake of dissolved amino acids (DeLaca et
al. 1980, 1981, DeLaca 1982) to carnivory (Buchanan &
Hedley 1960, Bowser et al. 1986, 1992, DeLaca 1986).
Many species appear to feed at a low trophic level, and
it has been widely assumed that they form an impor-
tant link in the benthic food web between small-sized
food items, such as bacteria or microalgae, and larger
metazoan species (Lipps & Valentine 1970, Lee &
Muller 1973, Brand & Lipps 1982, Gooday et al. 1992).
Our study suggests that the overall role of some spe-
cies of foraminifera in the benthic food web could be
more complex than this. The significant difference in
the PUFA content of Globocassidulina subglobosa
between pre- (October 2000) and post-bloom (March
2001) samples indicates that, while this species shows
a preference for the PUFA-rich part of phytoplankton-
derived organic matter, it only contains high amounts
of this component for a short period of time (during and
shortly after a depositional event).

PUFAs are thought to be essential for several func-
tions in higher marine organisms (which are generally
unable to synthesise them de novo), for example
for reproduction efficiency in zooplankton (Gulati &
Demott 1997), intracellular signaling in the nervous
system of marine mollusks (Piomelli 1991) or the neu-
ronal development of marine fish (Sargent et al. 1999).
A number of organisms have been shown to keep high
levels of polyunsaturated fatty acids in their cell mem-
branes in order to maintain membrane fluidity at low
temperatures or under pressure (e.g. sea-ice and deep-
sea bacteria: DeLong & Yayanos 1985, Hamamoto et al.
1994, 1995, Yano et al. 1997, Russell & Nichols 1999). In
an ecosystem context, Müller-Navarra et al. (2000) dis-
covered that low transfer-efficiencies between primary
and secondary producers in a hyper-eutrophic pelagic
ecosystem were very strongly linked to a low content
of eicosapentaenoic acid, 20:5(n-3) in the phytoplank-
ton community. Thus, low concentrations or a lack of
certain polyunsaturated fatty acids may significantly
limit the carbon transfer in aquatic environments.

Interestingly, the 2 calcareous species Globocas-
sidulina subglobosa and Quinqueloculina seminula
contained significant amounts (6.4 and 3.6%, respec-
tively) of 20:4(n-6) (arachidonic acid) (Table 1). Very
high amounts of this polyunsaturated fatty acid (16%
of total fatty acids) have previously been found in the
large agglutinated foraminiferan Bathysiphon capil-
lare from the NE Atlantic (Gooday et al. 2002). Arachi-
donic acid is a major component of the phospholipids
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of marine animals, and has a possible role in maintain-
ing cell membrane integrity in deep-sea organisms
and in cold adaptation (Harwood & Vigh 1998). There
is also accumulating evidence that it plays a vital role
in reproductive processes and development in higher
organisms (e.g. Leitz et al. 1994, Koven et al. 2001, Sor-
bera et al. 2001). The significance of the relatively high
amounts of this fatty acid in these 2 foraminiferal
species is unclear, but may have implications for its
availability within the benthic foodweb.

After depositional events, when they contain high
amounts of polyunsaturated fatty acids, species such as
Globocassidulina subglobosa would represent a valu-
able nutritional resource for other benthic organisms.
G. subglobosa is common around the Antarctic at
water depths from ca. 240 to 4500 m (e.g. Echols 1971,
Ward 1983, Mackensen et al. 1990, Ishman & Domack
1994, Jones & Pudsey 1994, Schmiedl et al. 1997).
However, it is unclear how many, and which, benthic
species depend on foraminifera as a food source. There
is evidence that juvenile gastropod species do not
choose calcareous foraminifera as food items for their
calorific value, but for the calcium carbonate in their
shells, which the predators then utilise for their own
shell growth (Hickman & Lipps 1983). Similar conclu-
sions may be drawn from a very detailed study of the
feeding behaviour of the predatory opisthobranch
gastropod Retusa obtusa from the Forth Estuary in
Scotland (Berry 1994). Benthic foraminifera made up
the largest part of the diet in growing juveniles, while
food preferences switched to enhanced uptake of the
gastropod Hydrobia ulva in reproductive specimens.
In addition, while many sediment-feeding organisms,
including those living in the deep sea, take up forami-
nifera together with other food items (e.g. Buzas &
Carle 1979, Brand & Lipps 1982, Buzas & Sen Gupta
1982, Buzas et al. 1989, Sokolova 2000), they may not
actually be digested by the organism in all cases. For
example, foraminifera have been observed to pass
the guts of the gastropod Littorina littorea relatively
unharmed, and may resume normal reticulopodial
activity on excretion (Walker 1971). The number of
specialised predators of foraminifera which have been
reported so far is low. Among these are Gastropoda
(Brand & Lipps 1982, Hickman & Lipps 1983), Isopoda
(Svavarsson et al. 1993, Gudmundsson et al. 2000) and
Scaphopoda (Langer et al. 1995). However, nematodes
have also been observed to enter foraminifera through
their aperture and feed on their protoplasm in a num-
ber of instances (A. Rathburn pers. comm. and S. B.
Suhr pers. obs.). Because of their great abundance in
benthic ecosystems, they may potentially be important
predators. Selective predation by nematodes on G. sub-
globosa or similar species after the deposition of fresh
organic matter, when they are rich in essential fatty

acids, could have implications not only for the benthic
food web and carbon cycle, but also for the foramini-
feral fossil record. Such selective predation would sig-
nificantly affect palaeoceanographic reconstructions,
for which G. subglobosa is widely used (e.g. Corliss
1979, Ishman & Foley 1996, Loubère 1996, Fariduddin
& Loubère 1997, Jian & Wang 1997, Jian et al. 1999).

The extent to which foraminifera serve as a link
between lower and higher trophic levels in benthic
food webs is a major unresolved question. The fatty
acid evidence from this study indicates that the 3 spe-
cies examined had different diets, and therefore poten-
tially different roles in the transfer of essential fatty
acids between different trophic levels. Our findings
demonstrate the necessity to consider foraminiferal
species individually in food web studies, rather than
treating them as a single trophic entity. The proposed
selective feeding of dominant species observed at our
study site on the western Antarctic Peninsula shelf
suggests that, if foraminifera act as a nutritional re-
source for metazoans, they may do so only for a short
period during certain times of the year (due to PUFA
enrichment shortly after a phytodetrital pulse). On the
other hand, the low number of predators described so
far that are specialised on foraminifera potentially
means that the selective feeding behaviour displayed
by some species of foraminfera may decrease the avail-
ability of polyunsaturated fatty acids for other organ-
isms in surface sediments. The relative importance of
foraminifera in these opposing roles merits further
investigation. In addition, the role of polyunsaturated
fatty acids in foraminiferal nutrition should be exam-
ined in more detail.
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