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Summary 

 Modern automatic multi-electrode survey instruments have made it possible to use 

non-traditional arrays to maximize the subsurface resolution from electrical imaging surveys. 

Previous studies have shown that one of the best methods for generating optimized arrays is 

to select the set of array configurations that maximizes the model resolution for a 

homogeneous earth model. The Sherman-Morrison Rank-1 update is used to calculate the 

change in the model resolution when a new array is added to a selected set of array 

configurations. This method had the disadvantage that it required several hours of computer 

time even for short 2-D survey lines. The algorithm was modified to calculate the change in 

the model resolution rather than the entire resolution matrix. This reduces the computer time 

and memory required as well as the computational round-off errors. The matrix-vector 

multiplications for a single add-on array were replaced with matrix-matrix multiplications for 

28 add-on arrays to further reduce the computer time. The temporary variables were stored in 

the double-precision SIMD registers within the CPU to minimize computer memory access. 

A further reduction in the computer time is achieved by using the computer graphics card 

GPU as a highly parallel mathematical coprocessor. This makes it possible to carry out the 

calculations for 512 add-on arrays in parallel using the GPU. The changes reduce the 

computer time by more than two orders of magnitude. The algorithm used to generate an 

optimized data set adds a specified number of new array configurations after each iteration to 

the existing set. The resolution of the optimized data set can be increased by adding a smaller 

number of new array configurations after each iteration. Although this increases the computer 

time required to generate an optimized data set with the same number of data points, the new 

fast numerical routines has made this practical on commonly available microcomputers. 
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INTRODUCTION 

 In the past decade there have been many significant developments in the resistivity 

exploration method such that it is now one of the standard techniques used in engineering, 

environmental and mining surveys. Two-dimensional resistivity surveys are widely carried 

out, and even three-dimensional surveys are becoming more common in areas of very 

complex geology (Dahlin 1996; Auken et al. 2006; Chambers et al. 2006). The field 

applications range from agriculture (Samouëlian et al. 2003), groundwater exploration 

(Seaton & Burbey 2000), engineering site investigation (Kuras et al. 2007), environmental 

assessment (Dahlin et al. 2002), mineral exploration (Bingham et al. 2006) to even 

hydrocarbon mapping (Bauman 2005). 

The development of automatic multi-electrode survey instruments has made such 

surveys fast and economical. It has also enabled the user to select the optimum array for the 

survey problem. Most surveys still use conventional arrays such as the Wenner, 

Schlumberger, pole-pole, pole-dipole, dipole-dipole and gradient (Dahlin & Zhou 2004). 

Recently there have been significant developments in algorithms to automatically select 

arrays to maximize the resolution of the subsurface inversion model (Stummer et al. 2004). 

The 'Compare R' method by Wilkinson et al. (2006b) that directly calculates the model 

resolution has proved to be the best of these methods (Loke et al. 2010). However the 

'Compare R' method had the disadvantage of requiring much more computer time compared 

to other faster but less accurate methods that use approximations of the model resolution. 

Thus the main focus of this paper is on numerical and computational techniques to reduce the 

time required by this method using commonly available personal computer systems as many 

electrical imaging surveys are carried out by small geophysical companies.  

There is continuous demand for high-performance computing in the geophysical 

industry (Sava 2010) as more sophisticated survey and data interpretation techniques are 



developed to provide increasingly realistic models of the subsurface.  More recent trends 

place less emphasis on increasing CPU speed that has reached a plateau of about 3 to 4 GHz 

for common microprocessors.  There is now more emphasis on highly parallel computational 

models and more efficient memory to CPU data transfers (Camp and Thierry 2010) and the 

use of non-conventional techniques such as GPU programming (Kadlec & Dorn 2010; 

Moorkamp et al. 2010) to achieve a greater level of performance.  There have been several 

recent papers on high-performance computing techniques for seismic data processing which 

is the largest geophysical user of computer resources (Michéa & Komatitsch 2009; Clapp & 

Fu 2010). We discuss the use of similar techniques in the context of resistivity survey design 

in this paper. While some of the discussion is specific to the computer architectures used, the 

general principles can be applied to other systems and potential field problems that use 

similar numerical matrix algorithms.  

This paper describes the numerical and computational techniques devised to reduce 

the execution time of the optimization algorithm. Then a study is made of the optimum 

balance between computer time and model resolution in calculating the optimized arrays. 

This is followed by tests of the optimized arrays using a synthetic model. Finally, we 

compare the use of the simple damped (Levenberg-Marquardt) and smoothness-constrained 

versions of the least-squares equation for generating the optimized data sets. 

 

THEORY 

(a) Model resolution and point spread functions  

 The smoothness-constrained least-squares optimization method is frequently used for 

2-D inversion of resistivity data (Loke et al. 2003). The subsurface model usually consists of 

a large number of rectangular cells. The linearized least-squares equation that gives the 

relationship between the model parameters and the measured data is given below. 
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The Jacobian matrix J contains the sensitivities of the measurements with respect to the 

model parameters, C contains the roughness filter constraint, λ is the damping factor and d is 

the data misfit vector. ri-1 is the model parameter vector (the logarithm of the model 

resistivity values) for the previous iteration, while ∆∆∆∆ri is the change in the model parameters. 

It can be shown that the model resolution matrix R (Menke 1989) is given by 
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The main diagonal elements of R that give an estimate of the model cells resolution have 

values of between 1.0 and 0.0. The sum of the elements in each row of the R matrix is equal 

to 1.0 (Jackson 1972). A model cell has perfect resolution if the resolution value is 1.0 and all 

other row elements of the R matrix are 0.0. In practice, the resolution values are less than 1.0 

and decreases exponentially with depth (Loke et al. 2010).  The ‘Compare R’ method by 

Wilkinson et al. (2006b) attempts to determine the set of array configurations that will 

maximize the average resolution value for a homogeneous earth model.  

Some authors (Friedel 2003; Miller & Routh 2007; Oldenborger & Routh 2009) have 

proposed the use of the point spread function as another measure of the resolution capability 

of the data. The point spread function for a model cell consists of the corresponding column 

of the resolution matrix. A spread criterion, that is a weighted sum of the elements of the 

point spread function, is frequently used as it summarizes the information into a single 

number. The spread criterion (Miller & Routh 2007) value for the ith model cell, S(i), is 

given by the following equation. 
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where ijij dW += 1  

 1=∆ ij  for i=j, and 0=∆ ij  for i≠j.  

dij is the normalized distance (distance divided by the unit electrode spacing) between 

the centers of ith and jth model cells, α is a small value (0.0001) and m is the number of 

model cells. δj is the (normalized) area of the jth model cell. We also use the average spread 

criterion value, SCR, in this paper that is calculated using the following equation. ∑=
=

=
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In a later section of this paper, plots of the spread criterion values are displayed together with 

the model resolution values. 

If the data errors are known the least-squares equation can be modified by a data 

weighting matrix (Menke 1989; Farquharson & Oldenburg 1998). Similarly, a weighted form 

of the roughness filter and Jacobian matrix is sometimes used to impose an L1-norm 

constraint on the model roughness and data misfit (Farquharson & Oldenburg 1998) using the 

iteratively reweighted least-squares method. However, for this paper, we choose the simpler 

form in equations (1) and (2) so that the results can be directly compared with previous work 

by Stummer et al. (2004) and Wilkinson et al. (2006b). For the same reason, we also use the 

sensitivity values for a homogeneous half-space (Loke & Barker 1995) in calculating the 

resolution and spread values. 

(b) Array optimization algorithm 

For a system with N electrodes, there are N(N-1)(N-2)(N-3)/8 independent four-

electrode configurations. To reduce the number of possible arrays, arrays of the Gamma type 

configuration (Carpenter & Habberjam 1956) with crossed current and potential electrodes as 

well as those large geometric factors are excluded (Stummer et al. 2004). After excluding 

these less stable configurations, a local optimization procedure is used to select a subset of 



the comprehensive set of all the viable configurations that will maximize the model 

resolution. A small base data set consisting of the dipole-dipole configurations with the ‘a' 

dipole length of 1 unit electrode spacing and ‘n' dipole separation factor of 1 to 6 is initially 

selected. The change in the model resolution matrix R for each new array when added to the 

base set is then calculated. The configurations that result in the largest increase in the model 

resolution, and have a suitable degree of orthogonality to the existing configurations, are then 

added to the base data set (Wilkinson et al. 2006b). We also include the modification by Loke 

et al. (2010) whereby for arrays that are not symmetrical about the center of the survey line, 

the corresponding array configuration on the other half of the survey line is also included in 

the optimized data set. This ensures that the distribution of data points (and thus the resulting 

model resolution section) is symmetrical. In each iteration the number of new configurations 

added is normally set at about 9% of the present number in the base set. The model resolution 

for the new base data set (after adding the new configurations) is recalculated using equation 

(2). This is repeated until the desired number of optimized array configurations is selected. 

Further details on the optimization procedure are given in Wilkinson et al. (2006b) and Loke 

et al. (2010). For the following discussion, we rewrite equation (2) into the following form. 

ABR = , where JJA T= and  ( ) 1−
+= CJJB

T λ    (5) 

(c)  The original 'Compare R' method 

 Wilkinson et al. (2006b) used the Sherman-Morrison Rank-1 update (Golub & van 

Loan 1989) to calculate the main diagonal elements of the model resolution matrix of the 

base set plus the test configuration. The following set of updating formulae is used to 

calculate the new resolution matrix Rb+1 when a new array is added to the base set  
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g is the sensitivity vector for the new array, z=Bbg and µ = g.z. While this method proved to 

produce the arrays with the highest model resolution, it was also the slowest taking about 6 

hours on a 3 GHz PC to determine the optimum arrays for a 2-D survey line with 30 

electrodes (Wilkinson et al. 2006b). In order to use this method for longer 2-D survey lines, it 

is necessary to greatly improve its computational efficiency. The number of numerical 

operations required in equation (6) to calculate the diagonal elements of the updated model 

resolution matrix 1bR + for a single add-on array is proportional to m
2
 where m is the number 

of model cells. For the survey line with 30 electrodes, the number of arrays in the 

comprehensive data set is 51283. This increases to 166944 (40 electrodes), 411453 (50 

electrodes) and 854224 (60 electrodes). It is the huge number of possible add-on arrays in the 

comprehensive data set that causes the long computer time needed. 

This updating algorithm has three main steps; (i) calculate the updated elements for 

the A matrix that is stored in a temporary matrix Ab+1, (ii) a similar calculation for the B 

matrix that is stored in a temporary matrix Bb+1, (iii) finally multiply the two temporary 

matrices. In the implementation used by Wilkinson et al. (2006b), updating the A matrix took 

about 32% of the total time for one iteration. Updating the B matrix (including calculating z 

vector) took about 40%, the matrix multiplication (for the diagonal entries only) took about 

27% and the remaining 1% was used for miscellaneous operations such as finding the add-on 

arrays that gave the largest increase in the model resolution. 

The CPU in modern computer systems can operate at a much higher speed compared 

to the main memory. As an example, in the computer system used in this work, the CPU 

operates at a frequency of 2.66 GHz while the main memory (RAM) runs at 533 MHz. Thus 

the time taken to transfer data between the main memory and the CPU can be much longer 

compared to the time taken for the numerical operations within the CPU. The calculations 

were carried out on a 2.66 GHz Intel i7 Quad-Core system (with 12 GB RAM) with a Nvidia 



GTX 285 graphics card (with 1 GB RAM). In this test, we use the same damped least-squares 

formulation (C=I) and damping factor (λ=0.000025) as that used by Wilkinson et al. 

(2006b). 

(d) The matrix-vector method 

The first step to improving the program efficiency is to reduce the traffic between the 

main memory and the CPU. In order to achieve this, Loke et al. (2010) expanded equation (6) 

for Rb+1 into the following form. 
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In this paper, we further simplify the above equation by making using of the fact that z=Bbg 

and µ = g.z as follows. 
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This equation can be further reduced to 
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where y=Abz (note that A and B are symmetric matrices). Equation (8) only involves vector-

vector multiplication and subtraction. The bulk of the numerical calculations are in the matrix 

vector products Bbg and Abz required to generate the z and y vectors. The simplification of 

equation (7) to (8) further reduces the calculation time by about 5%. 

In equation (8) the change in the resolution matrix ∆∆∆∆Rb is calculated rather then the 

entire updated resolution matrix Rb+1. The main diagonal elements of ∆∆∆∆Rb are calculated one 

by one using equation (8), thus avoiding the use of the temporary matrices Ab+1 and Bb+1. 

This reduces the computer time and memory required. The number of times the main 

memory is accessed in equation (8) is drastically reduced. It is only necessary to access the 

matrices Ab and Bb (with m
2
 elements each) once to calculate the vectors z and y (each with 



only m elements) for a single add-on test configuration. The computer time can be further 

reduced by making use of the parallel processing capabilities of modern CPUs. 

The computer code was optimized so that all the calculations needed to update the 

model resolution values can be carried out ‘in situ’ within the CPU floating point registers to 

reduce the traffic between the CPU and main memory to a minimum. The time critical parts 

of code were written in assembly language (Leiterman 2005) so that the use of the available 

floating point CPU registers could be directly hand optimized. The SIMD (Single Instruction 

Multiple Data) registers in the Intel CPU are used for the floating point calculations (Gerber 

2002). Each SIMD register can store two double precision values. The SIMD instructions that 

can carry out two double-precision operations with a single instruction are used.  This allows 

the calculations of the updated resolution matrix values for two new test configurations to be 

carried out simultaneously.  The calculations for several pairs of the test configurations are 

then also carried out in parallel by using the multiple cores in modern CPUs (Chandra et al. 

2001; Chapman et al. 2008). The Intel i7 (Nahelem) processor has four physical cores, but it 

has a hyper-threading capability where each physical core can be used as two logical 

processors (Gerber 2002). The hyper-threading function can reduce the calculation time by 

up to 30%.  

In this study, the Intel i7 CPU was programmed as an eight cores processor. Together 

with the use of the SIMD registers, this means that the resolution matrices for 16 test 

configurations are calculated in parallel. Thus it is only necessary to transfer the elements of 

the Ab and Bb matrices once from the computer memory to the CPU for 16 test 

configurations. On the 2.66 GHz Intel i7 system, the computational time required for a survey 

line with 30 electrodes was reduced to about 200 seconds (Table 1). 

Table 1 here. 

(e) The matrix-matrix method 



 The bulk of the numerical calculations involve matrix-vector multiplications of the 

form z=Bbg and y=Abz. A single matrix-matrix multiplication is more efficient than a series 

of equivalent matrix-vector multiplications (Dongarra et al. 1998). The next step is to 

calculate the change in the resolution matrix elements for a large number of add-on arrays at 

the same time using the following equations.  

 GBZ b=  and ZAY b= , where [ ]kgggG ....21=  and [ ]k....zzzZ 21=   (9) 

The columns of the matrix G  consist of the sensitivity vectors gi for k different test array 

configurations. The optimum value for k was found to be 28 for 64-bit Intel CPUs with 16 

SIMD registers (Leiterman 2005).  In the matrix-vector method described previously, a single 

SIMD register (which can store two double precision values) was used to for the calculation 

of two z vectors with a single transfer of the elements of the Bb matrix from the memory to 

the CPU.  The matrix-matrix method essentially carries out this optimization further by using 

14 SIMD registers for the calculation of 28 z vectors. Using the eight (virtual) cores of the i7 

processor, the calculations for 224 z vectors can be carried out for a single transfer of the 

elements of the Bb matrix from the memory to the CPU. A similar optimization is made for 

the calculation of the Y matrix. It is only necessary to transfer each element of the A (or B) 

matrix from the computer memory to the CPU once where it can be used 224 times for the 

same calculations involving different add-on array configurations. Once a data value is 

transferred from the memory to the CPU, it is stored in a high speed internal data cache that 

can be accessed by the multiple CPU cores. This reduces the time taken by the memory 

transfer for these matrices by a factor of about 200 times. The matrix-matrix version of the 

updating formula reduces the calculation time for the 30 electrodes example by more than 

half to 87 seconds (Table 1). An examination of the times taken by the different program 

routines show that 76% of time is used in calculating the matrix-matrix multiplications in 



equation (9) for the 30 electrodes test (and 92% for the 50 electrodes test). Thus the next step 

is to reduce the time taken by the matrix-matrix multiplications. 

(f) The GPU matrix-matrix method 

The Intel CPU used has 4 physical cores but the Graphics Processor Unit (GPU) in the 

Nvidia GTX 285 graphics card has several hundred parallel computational units (Owens et al. 

2007; Nvidia 2008). The GPU is limited to simpler numerical operations than the CPU but it 

is well suited for matrix-matrix calculations. The calculations for 512 configurations can be 

carried out simultaneously (i.e. k in equation (9) is now 512) using the GPU. This reduces the 

calculation time for the 30 electrodes example to 50 seconds (Table 1). An examination of the 

times taken by the different subroutines in the program reveal that the major part is taken in 

transferring the data between the main computer (CPU) memory and the graphics card (GPU) 

memory. It takes about 60% of the overall time taken by the program, whereas the numerical 

calculations within the GPU for equation (9) take only about 0.2% of the overall time. The 

main bottleneck for the GPU program version is now the transfer rate of the data between the 

CPU memory and the GPU memory. The PCI-E 2.0 (Peripheral Component Interconnect 

Express) graphics card bus in the computer system used has a transfer rate of 500 MB/s. 

When the program was tested on an older computer system with a PCI-E 1.0 bus (that has a 

transfer rate of 250 MB/s), the time taken for the data transfer was almost doubled. This 

confirms that the transfer rate of data between the CPU memory and the GPU memory is the 

main limiting factor. It is only necessary to transfer the elements of the A and B matrices 

from the CPU memory to the GPU memory once in each iteration. However, the sensitivity 

vectors for different sets of the array configurations in the comprehensive data set have to be 

transferred repeatedly from the CPU memory to the GPU memory. Similarly, the results of 

the matrix-matrix products Z and Y are transferred from the GPU memory to the CPU 

memory for each set of 512 array configurations. 



(g) The single-precision GPU matrix-matrix method 

The following function FCR is used to the rank the improvement in the model 

resolution due to an add-on array. ∑∑∑ =
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The change in the resolution ∆Rb(j,j) can be several orders of magnitude smaller than 

resolution value Rb(j,j). Thus equation (8) is less sensitive to round-off errors compared to the 

direct use of equation (6).  The calculations for ∆∆∆∆Rb are next carried out in single-precision in 

the GPU to further reduce the computer time. Table 1 gives the computer time and average 

relative model resolution ratios achieved by the different versions of the 'Compare R' method. 

The average relative model resolution is given by ( ) ( )iiRiiR
m

S c

mi

i

br ,/,
1

1

∑=
=

=  where Rb(i,i) 

and Rc(i,i) are the base and comprehensive data set model resolutions of the ith cell for a 

model with m cells. The GPU single-precision version is about twice as fast as the double-

precision version while differences in the average relative model resolutions are less than 1%. 

To put the numerical improvements made in perspective, the double-precision and single-

precision GPU versions respectively take 50 and 29 seconds compared to 6 hours (21600 

seconds) in the original version by Wilkinson et al. (2006b) for the 30 electrodes example. 

The computer time has been reduced by more than two orders of magnitude. 

Figure 1a shows the change in the average relative model resolution with iteration 

number for survey lines with 30 to 60 electrodes. In general, there is an initial rapid increase 

in the model resolution followed by a slower increase. Figure 1b shows a plot of the average 

relative model resolution values against the ratio of the number of arrays in the optimized 

data set to the total number in the comprehensive data set. The optimized data sets for 

different survey lines have similar average relative resolution values when the ratio exceeds 

1.5%.  Table 1 also gives the total number of array configurations generated after 40 



iterations. For a survey line with 30 electrodes, there are 4618 optimized arrays 

configurations. This is much higher than that normally collected in most field surveys where 

about 200 to 500 data points are usually collected using conventional arrays (Wilkinson et al. 

2006a; Loke et al. 2010). Thus we next examine the use of the array optimization method for 

generating smaller optimized data sets. In the following tests, the double-precision GPU 

version of the routines is used. 

Figure 1 here. 

RESULTS 

(a) Optimizing the number of add-on arrays 

 In this section, we attempt to find the maximum average model resolution that can be 

achieved for a given number of array configurations by modifying one of the parameters in 

the local optimization method used to generate the optimized array data sets. The Sherman-

Morrison update calculates the change in the model resolution for a single add-on array. As 

the change in the model resolution depends on the existing base data set (through the A and B 

matrices that in turn depend the J Jacobian matrix), this method is only guaranteed to 

correctly identify the add-on array that gives the largest change in the resolution values. Thus, 

in theory, the optimal method to generate the data set is to add only the array (or symmetrical 

pair of arrays) that gives the largest increase in the model resolution values to the base data 

set after each iteration. However, this approach is very expensive in terms of computer time, 

particularly for the longer survey lines. Stummer et al. (2004) and Wilkinson et al. (2006a; 

2006b) increased the size of the optimized data set by 9% after each iteration.  

The tremendous reduction in the computer time achieved by the techniques described 

in the previous section now makes it possible to use a smaller step size when augmenting the 

optimized data set after each iteration. The calculations are made for a survey with 30 

electrodes. Figure 2a shows the change in the average relative model resolution when the size 



of the base data set is increased by 3, 4.5, 6 and 9 % respectively after each iteration for up to 

about 800 data points (since our interest is in generating small optimized data sets). The 

curves start to converge when the number of data points exceeds 700. However for less than 

600 data points there are significant differences in the model resolution achieved when 

different step sizes are used. The data set generated with 3% step size has a significantly 

higher resolution value compared to that generated with the 9% step size. The resolution 

curves for the 4.5 and 6 % step sizes lie in between the two curves. 

Figure 2 here. 

We also present results using a new ‘single step’ algorithm where only the array that 

gives the largest increase in the average relative model resolution is added to the base set 

after each iteration. In most cases when the array is not symmetrical about the center of the 

survey line, the corresponding array on the other half of the survey line is also added. In 

theory, both arrays give the same increase in the model resolution values when the 

distribution of the data points in the starting base set is symmetrical. Thus for most iterations, 

two arrays are added to the base set in each iteration in the ‘single step’ method. The ‘single 

step’ method produce array sets that have the highest average relative model resolution 

values (Figure 2a). It represents an upper bound for the model resolution (for the same 

number of data points) that can be achieved by the array optimization algorithm. 

Figure 2b shows the change in the average spread criterion value, SCR, with the 

number of data points. There is an initial rapid decrease in the average spread value followed 

by a slower decline after about 400 data points. The curves generated with the smaller step 

sizes have significantly lower average spread values for less than 500 data points after which 

the curves tend to converge. In general the average spread curves tend to mirror the behaviour 

of the average resolution curves with higher resolution values corresponding to lower spread 

values. 



Table 2 lists the number of iterations and computer time required needed to generate 

an optimized data set with 400 data points using the different step sizes. The average relative 

model resolution and spread criterion values are also given. The left side of Figure 3 shows 

the relative model resolution sections that give more information about the performance of 

the algorithm with different step sizes. The largest difference is in the lower part of the 

sections. The initial base set consisting of the 147 dipole-dipole arrays with a dipole length of 

1 meter and the ‘n’ factor of 1 to 6 has low relative model resolution values of less than 0.5 

below the top 3 meters (Figure 3a). The section for the optimized data set generated with a 

step size of 9% exhibits low resolution values below the depth of 6.4 meters, particularly 

around the 15 meters mark near the center (Figure 3b). This low resolution patch is 

significantly reduced when the step size is reduced to 6%. Reducing the step size to 4.5% and 

to 3% further increases the resolution values in the lower part of the model sections. Almost 

the entire section has relative resolution values of above 0.7 when the 3% or ‘single step’ 

sizes are used. Although the time taken to generate 400 data points with the 3% step about 3 

times that required with a 9% step size, the model resolution is significantly higher. The 

number of iterations (and computer time) required by the ‘single step’ method is more than 4 

times that required by a step size of 3%.  

Table 2 here. 

Figure 3 here. 

The right side of Figure 3 shows the spread criterion sections for the initial base set 

and the optimized data sets. The initial base set (Figure 3b) has large spread values below the 

first few meters reaching up to 108.3 at the bottom left and right corners of the section. The 

optimized data set with a 9% step size has much lower spread values with a maximum value 

of about 9.2. The spread values near the bottom of the model section are progressively 

reduced as the step size is reduced. The maximum spread value is reduced to 8.2 with a 3% 



step size, and to 8.0 with a ‘single step’ size. There is a close correspondence between 

increasing model resolution and decreasing spread values. 

Similar tests were carried out for surveys lines with up to 60 electrodes. As an 

example, Figure 4a shows the change in the average relative model resolution with number of 

data points using the different step sizes for a survey line with 50 electrodes. There is a 

significant increase in the resolution when the step size is reduced from 9% to 6% 

particularly for less than 2000 data points. The gap between the two curves become smaller 

as the data set size increases from 2000 to 2500 data points. There are smaller, but still 

significant, increases in the model resolution when the step size is reduced to 4.5% and 3%. 

The ‘single’ step method achieves significantly higher model resolution values compared to 

the 3% step size up to about 1500 data points. The average spread value curves (Figure 4b) 

show a similar pattern with the ‘single step’ method having the lowest spread values and the 

9% step size having the highest spread values with all the curves converging above 2000 data 

points. 

Figure 5 shows the relative resolution and spread criterion value sections for the initial 

base set (with 267 data points) and the optimized data sets (with 1000 data points) generated 

using the different step sizes. The initial base set with 267 dipole-dipole array data points has 

low relative model resolution values of less than 0.5 below the top 3 meters (Figure 5a). For 

the optimized data sets with 1000 data points, the relative model resolution sections show that 

most of the region below a depth of about 6 meters has values of less than 0.6 when a step 

size of 9% is used (Figure 5b), but has values of above 0.65 with a step size of 3% (Figure 

5e). The average relative resolution value is increased to 0.768 when a ‘single step’ size is 

used, compared to 0.662 and 0.733 with step sizes of 9% and 4.5%. The spread criterion 

sections show a gradual reduction in the spread values, particularly in the lower portion of the 

model sections, as the step size is reduced (right column of Figures 5).  Again, the greatest 



benefit of using a smaller step size is an improvement in the resolution of the lower part of 

the model section. The price of the higher resolution is much higher computer times required 

to generate the optimized data sets with the smaller step sizes (Table 3), particularly for the 

‘single step’ method.  The ‘single’ step size method took 3.8 hours to generate the optimized 

data set with 1000 data points, compared to 17 and 26 minutes using step sizes of 4.5% and 

3%. The use of a step size of between 3% and 4.5% probably represents the best compromise 

between maximizing the model resolution and reducing the calculation time for such long 

survey lines. 

Table 3 here. 

Figure 4 here. 

Figure 5 here. 

(b) Synthetic model inversion test 

Figure 6a shows a test model with 4 rectangular blocks at different depths in a 

background medium of 10 Ω.m below a 2-D survey line with 35 electrodes 1 meter apart. 

Three of the blocks have 100 Ω.m resistivity. One block has a gradational boundary rising 

from 20 to 100 Ω.m to simulate a smooth edge. The horizontal distance between the edges of 

the third and fourth deepest blocks is less than the depth to the deepest block. This makes it a 

more challenging test in separating the two deepest blocks compared to earlier test models 

used by Wilkinson et al. (2006a; 2006b) and Loke et al. (2010). Figures 6b and 6c show the 

apparent resistivity pseudosections for the Wenner-Schlumberger (Pazdirek & Blaha 1996) 

and dipole-dipole arrays. For both arrays, we use all the possible measurements subject to the 

restriction that the geometric factor does not exceed that that for a dipole-dipole array with 'a' 

equal to 1 m and 'n' equal to 6 (i.e. a geometric factor of 1056 m). This results in data sets 

with 599 and 530 data points respectively for the Wenner-Schlumberger and dipole-dipole 

arrays. The apparent resistivity pseudosection for the optmized array data set (using a 4.5% 



step size) with 599 data points is shown in Figure 6d for comparison. The contour pattern in 

the pseudosection has a more jagged appearance compared to the conventional arrays. This is 

because the data consists of a mixture of arrays of the Alpha and Beta types (Carpenter & 

Habberjam 1956) that have different responses to the subsurface resistivity. This is illustrated 

by the differences in the pseudosections of the Wenner-Schlumberger (an Alpha type) and 

dipole-dipole (a Beta type) arrays.  

Figure 6 here. 

The smoothness-constrained Gauss-Newton least-squares optimization method used 

for the inversion of the data sets is described in Loke and Dahlin (2002) and Loke et al. 

(2003). We use the ‘discrepancy principle’ technique (Farquharson and Oldenburg 2004) in 

selecting the damping factor. A relatively large damping factor value is initially used (usually 

about 0.10 to 0.30) that is reduced by half after each iteration until the desired data misfit 

value is obtained. We choose a target data misfit of 0.5% for the data sets without noise that 

is similar to the accuracy of the finite-difference forward modelling used. We show the 

inversion model for the first iteration where the data misfit falls below 0.5% for the noise-free 

test data sets. The final damping factor used at this iteration is usually between 0.005 and 

0.010. The smoothness-constrained inversion method using an L1-norm inversion was used 

(Loke et al. 2003). The same inversion settings were used for the different data sets. 

The two upper blocks in the resulting inversion model for the Wenner-Schlumberger 

data set after 6 iterations are fairly well resolved while the third deepest block is barely 

resolved (Figure 6e).  For the dipole-dipole data set, the third deepest block is fairly well 

resolved in the inversion model (Figure 6f). The deepest block shows up as an area of higher 

resistivity but it is not well resolved. The anomaly corresponding to this block is just barely 

separated from the third deepest block. 



 The next test is with the optimized data sets (with 599 data points) using step sizes of 

9% and 4.5%. The previous section showed that using a smaller step size can significantly 

improve the resolution. In the first optimized data set model (with a step size of 9%) the third 

deepest block is well resolved with a maximum resistivity of about 31 Ω.m, and the deepest 

block is now visible (Figure 6g) and clearly separated from the third block. The deepest block 

is even more clearly resolved (with a maximum resistivity of 17 Ω.m) in the inversion model 

for the optimized data set using a step size of 4.5% (Figure 6h). This agrees with the earlier 

observation that the data set using a smaller step size has significantly better resolution in the 

lower part of the model section. The optimized data sets using step sizes of 9% and 4.5% 

have average model resolution ratios of 0.770 and 0.804 respectively. 

 Figure 7 shows the results of tests when noise is added to the data sets. Zhou & 

Dahlin (2003) demonstrated that the error in resistivity field measurements varies inversely 

with the measured potential value. Gaussian random noise (Press et al. 1992) is added to the 

potential values (for a current of 1 Ampere) for the different array configurations to simulate 

such potential dependent noise. The potential values are then converted to apparent resistivity 

values by multiplying with the geometric factor. The amplitude of the potential noise is 

chosen so that the readings with the lowest potential (and also the largest geometric factor) 

have a noise level of 10 percent. The average percentage apparent resistivity noise depends 

on the geometric factors of the array configurations in the data set used. As an example, 

Figure 7a shows the dipole-dipole array data set with overlapping data levels with the 

potential dependent noise added. This should be compared to Figure 6c that shows the same 

pseudosection without noise. The largest differences between the two pseudosections are in 

the lower sections that correspond to measurements with the larger geometric factors. The 

inversion model for the Wenner-Schlumberger array (Figure 7b) shows small changes 

compared to the model without the noise (Figure 6e). This is because the array is relatively 



insensitive to noise. The average geometric factor for this data set is 123 m. In comparison, 

the dipole-dipole array data set that has an average geometric factor of 322 m is more 

sensitive to noise. This is also reflected in the data misfits of 0.9% for the Wenner-

Schlumberger model and 1.9% for the dipole-dipole array model. The lower part of the 

dipole-dipole array model where the deepest block is located has significant distortions 

(Figure 7c). The high resistivity zone corresponding to the deepest block is barely visible, 

unlike the model obtained for the same data set without noise (Figure 6f). The optimized data 

set with a 4.5% step size has a higher data misfit of 3.1% due to the higher average geometric 

factor of 569 m. The deepest block is still resolved (Figure 7d) although there is a slight shift 

in its position to the left. 

 Figures 7e and 7f show the inversion models for the dipole-dipole array and optimized 

data sets using the L-curve method (Farquharson and Oldenburg 2004) to automatically select 

the damping factor. While there are slight differences in the models obtained using the 

‘discrepancy principle’ method (Figures 7c and 7d), the models (Figures 7e and 7f) clearly 

show that the deepest block is much better resolved by the optimized data set although the L-

curve method selected a lower damping factor value (0.008) for the dipole-dipole array data 

set compared to the optimized data set (0.013). The lower damping value selected by the L-

curve method is probably due to the lower average noise level in the dipole-dipole data set 

(due to its lower average geometric factor compared to the optimized data set). The damping 

factor for the optimized data set selected by the L-curve method is slightly higher (0.013 

compared to 0.010) than that used by the model in Figure 7d. This results in slightly lower 

resistivity values for the deepest block (comparing Figures 7f and 7d) but the model also has 

fewer artefacts (such as the low resistivity area under the second upper block) due to the 

noise. 

Figure 7 here. 



(c) Array optimization using the smoothness constraint 

 In calculating the model resolution values, and consequently the optimized arrays, we 

have used the simple damped (Levenberg-Marquardt) least-squares method by setting the C 

matrix in equation (1) to be equal to the identity matrix I. This choice was made so that the 

results can be directly compared with earlier work by Wilkinson et al. (2006a; 2006b). 

However most 2-D resistivity inversion work use a smoothness-constrained least-squares 

method (deGroot-Hedlin & Constable 1990; Loke at al. 2003) where a roughness filter is 

used to minimize changes in the resistivity between adjacent model cells. The C matrix is 

then given by the following equation. 

 X

T

XZ

T

Z ddddC +=          (11) 

The roughness matrices Xd and Zd  differences the model parameters between adjacent 

lateral and vertical model cells. The structures of these matrices are described in the paper by 

deGroot-Hedlin & Constable (1990).  

 Figure 8a shows the relative model resolution section for the small optimized data set 

with 599 data points with a step size of 4.5% used in the previous section that was generated 

using the damped least-squares equation. For comparison, Figure 8c shows a similar relative 

model resolution section obtained using the smoothness-constrained least-squares equation. 

Note the high relative model resolution values of over 0.95 are more highly concentrated near 

the surface for the damped least-squares section compared to the smoothness-constrained 

least-squares section.  The smoothness-constrained section has a more uniform distribution of 

the high relative resolution values (with significantly higher values in the bottom half) 

compared to the damped least-squares section. A second test was carried out using a larger 

optimized data set with 2401 data points that is about four times the size of the small 

optimized data set. The relative model resolution section for the smoothness-constrained 

method (Figure 8d) has slightly higher values in the lower part of the model section 



compared to that obtained with the damped least-squares method (Figure 8b).  The 

corresponding spread criterion sections are shown on the right side of Figure 8. There is a 

decrease in the average spread value when the number of data points is increased for both the 

damped constraint (Figures 8e and 8f) and smoothness constraint (Figures 8g and 8h). The 

smoothness constraint sections have slightly higher average resolution and lower spread 

values than the damped constraint sections probably due to differences in the C matrix.  

Figure 8 here. 

The inversion models for the small optimized data sets generated by both methods are very 

similar (Figures 9a and 9c) with no significant differences. The deepest block in the model 

obtained from the inversion of the large optimized data set has a maximum value of 20 Ω.m 

(Figure 9b). This is slightly higher than the maximum value of 17 Ω.m in the inversion model 

of the small optimized data set (Figure 9a). The inversion model for the large optimized data 

set generated using the smoothness-constrained least-squares method achieves a higher value 

of 21 Ω.m at the location of the deepest block. The base of the block is also slightly better 

resolved (Figure 9d) compared to the model for large optimized data set with the damped 

constraint (Figure 9b) This could be due to the slightly higher relative model resolution 

values in the lower part of the smoothness-constrained model resolution section. Note that the 

third deepest block is significantly better resolved by both large optimized data sets (where it 

reaches a maximum value of about 46 Ω.m) compared to the small optimized data sets 

(maximum value of 36 Ω.m).  

Figure 9 here. 

 

CONCLUSION 

 Optimized arrays generated by maximizing the model resolution have significantly 

better resolution and greater depth of investigation than conventional arrays for 2-D 



resistivity surveys. The computer time required to generate the optimized arrays is greatly 

reduced by using numerical algorithms that can make the best use of the CPUs and GPUs in 

modern personal computer systems. The computer time was reduced through three steps. 

Firstly, the equation used to calculate the change in the model resolution for a single add-on 

array was simplified so that the final stage only involves vector-vector operations. Secondly, 

the computer program was optimized at the CPU level by reducing the time taken to transfer 

data between the main computer memory and the CPU registers through the use of matrix-

matrix multiplication algorithms, by storing the temporary variables in the CPU floating point 

registers, and by using the parallel processing capabilities of modern CPUs.  A final reduction 

in the computer time is achieved by using the graphics card GPU as a highly parallel 

mathematical coprocessor.  

The resolution for small data sets can be significantly improved by using a smaller 

step size for adding new configurations in the iterative algorithm used to generate the 

optimized data sets. For small optimized data sets the algorithm is largely insensitive to the 

type of model constraint used in the optimisation; the simple damped and smoothness-

constrained least-squares methods generally gave similar results in terms of the quality of the 

inversion models obtained. For larger optimized sets (where the number of data points is 

several times larger than used in conventional arrays), using the smoothness constraint can 

give slightly better resolution at depth. 

 While the discussion in this paper is focused on the array optimization problem, the 

techniques developed in this research can also be used to reduce the computer time required 

for other aspects of electrical and electromagnetic data interpretation (such as solving the 

least-squares equation, calculation of the model resolution matrix and calculating the forward 

model response using finite-element and finite-different techniques) that use similar matrix 

and vector operations. 



 Further research is being carried out to reduce the time required by the matrix-matrix 

GPU routines to transfer data between the CPU memory and the GPU memory. We are also 

testing a modified "Compare R" algorithm that minimizes the spread function instead of 

maximizing the model resolution. Research is also being undertaken on array optimization 

for 3-D surveys that has been made possible with the fast algorithms described in this paper. 

Ellis & Oldenburg (1994) showed that the smoothness-constrained least-squares inversion 

method can be modified to take into account a-priori information so as to improve its 

resolution in selected regions. We are currently investigating using similar modifications to 

the least-squares equation to improve the resolution of the optimized data sets. Other aspects 

of the array optimization problem such as the effects of different model discretizations, the 

data noise distribution and L1-norm constraints are also being studied.  
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Table 1. The times in seconds for 40 iterations (and average relative resolution ratio 

achieved) for the different versions of the 'Compare R' array optimization method. The 

number of data points in the optimized (base) data set generated after 40 iterations is shown, 

together with the total number of data points in the comprehensive data set. The ratio of the 

number of data points in the optimized base set with the total number in the comprehensive 

data set is given in percent. 

Number of 

electrodes 

Number of data points Matrix-

Vector  

Double-

precision 

Matrix-

Matrix  

Double-

precision 

GPU 

Matrix  

Double-

precision 

GPU 

Matrix  

Single-

precision 

 Base All Ratio 

(%) 

Time taken in seconds. 

(Average relative model resolution) 

30 4618 51283 9.00 202 

(0.958) 

87 

(0.958) 

50  

(0.958) 

29 

(0.955) 

40 6503 166944 3.90 1245 

(0.921) 

717 

(0.921) 

324 

(0.921) 

148 

(0.915) 

50 8386 411453 2.04 6118 

(0.886) 

3908 

(0.886) 

1405 

(0.886) 

577 

(0.880) 

60 10272 854224 1.20 19967 

(0.858) 

13944 

(0.858) 

4421 

(0.858) 

1760 

(0.850) 

 

Table 2. Results obtained for a 30 electrodes survey line with different step sizes for an 

optimized data set with 400 data points. In the single step method, only the array (or 

symmetrical pair of arrays) that gives the largest increase in average model resolution value is 

added to the base set. 



Step size 

(%) 

Number of iterations Time taken 

(s) 

Average relative 

model resolution 

Average spread 

criterion value 

Single 131 176 0.833 2.945 

3 34 41 0.824 2.972 

4.5 23 28 0.804 3.037 

6 18 22 0.794 3.066 

9 12 14 0.779 3.122 

 



Table 3. Results obtained for a 50 electrodes survey line with different step sizes for an 

optimized data set with 1000 data points. 

Step size 

(%) 

Number of iterations Time taken 

(s) 

Average relative 

model resolution 

Average spread 

criterion value 

Single 372 13552 0.768 3.723 

3 45 1568 0.751 3.801 

4.5 30 1046 0.733 3.860 

6 23 803 0.719 3.937 

9 16 557 0.662 4.070 

 



 

Figure 1. Change of the average relative model resolution with (a) iteration number and (b) 

ratio of number of arrays in optimized data set to comprehensive data set for survey lines 

with 30 to 60 electrodes. 



 

Figure 2. (a) Change of the average relative model resolution with number of data points in 

the optimized data set for a survey line with 30 electrodes using different step sizes.  (b) 

Similar plots showing change of the average spread criterion value with the number of data 

points. 



 

Figure 3. Relative model resolution sections for a survey line with 30 electrodes for (a) initial 

base set and optimized data sets with 400 points produced using (b) 9%, (c) 6%, (d) 4.5%, (e) 

3% and (f) single step sizes. The right column shows corresponding spread criterion value 

sections. 



 

Figure 4. (a) Change of average relative model resolution with number of data points for a 

survey line with 50 electrodes using different step sizes. (b) Similar plots showing change of 

the average spread criterion value with the number of data points. 



 

Figure 5. Relative model resolution sections for a survey line with 50 electrodes for (a) initial 

base set (267 data points) and optimized data sets with 1000 points produced using (b) 9%, 

(c) 6%, (d) 4.5%, (e) 3% and (f) single step sizes. The right column shows corresponding 

spread criterion value sections. 



 

 

Figure 6. (a) 2D test model. Pseudosections for (b) Wenner-Schlumberger, (c) dipole-dipole 

and (d) optimized (using a 4.5% step size) arrays. Inversion models for the (e) Wenner-

Schlumberger array,  (f) dipole-dipole array, (g) optimized array data set using a 9% step 

size, (h) optimized array data set using a 4.5% step size. 



 

Figure 7. (a) Dipole-dipole array pseudosection with noise added. Inversion model for (b) 

Wenner-Schlumberger array, (c) dipole-dipole array and (d) optimized array data set using a 

4.5% step size. Inversion models using the L-curve method for (e) dipole-dipole array and (f) 

optimized data sets.  



 

 

Figure 8. Relative model resolution sections for optimized array set for a survey line with 35 

electrodes using the damped least-squares method for (a) small (599 data points) and (b) large 

(2401 data points) data sets. Similar relative model resolution sections generated using the 

smoothness-constrained least-squares equation method for (c) small and (d) large data sets. 

Right column (e-h) shows corresponding spread criterion value sections for the different data 

sets. 



 

Figure 9. Inversion models for the optimized array data sets generated using a 4.5% step size. 

Results for (a) small (599 data points) and (b) large (2401 data points) optimized data sets 

generated using the damped least-squares method. Similar models for (c) small and (d) large 

optimized data sets generated using the smoothness-constrained least-squares method. 

 


