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Abstract 

The inorganic chemistry of 85 samples of bottled natural mineral waters and spring waters 

has been investigated from 67 sources across the British Isles (England, Wales, Scotland, 

Northern Ireland, Republic of Ireland). Sources include boreholes, springs and wells. Waters 

are from a diverse range of aquifer lithologies and are disproportionately derived from 

comparatively minor aquifers, the most represented being Lower Palaeozoic (10 sources), 

Devonian Sandstone (10 sources) and Carboniferous Limestone (9 sources). The waters show 

correspondingly variable major-ion compositions, ranging from Ca-HCO3, through mixed-

cation-mixed-anion to Na-HCO3 types. Concentrations of total dissolved solids are mostly 

low to very low (range 58–800 mg/L). All samples analysed in the study had concentrations 

of inorganic constituents well within the limits for compliance with European and national 

standards for bottled waters. Concentrations of NO3-N reached up to half the limit of 

11.3 mg/L, although 62% of samples had concentrations <1 mg/L. Concentrations of Ba were 

high (up to 1010 µg/L) in two spring water samples. Such concentrations would have been 

non-compliant had they been classed as natural mineral waters, although no limit exists for 

Ba in European bottled spring water. In addition, though no European limit exists for U in 

bottled water, should a limit commensurate with the current WHO provisional guideline 

value for U in drinking water (15 µg/L) be introduced in the future, a small number of 

groundwater sources would have concentrations approaching or in excess of this value. Two 

sources had groundwater U concentrations >10 µg/L, both being from the Welsh Devonian 

Sandstone. The highest observed U concentration was 13.6 µg/L. 

Solute concentrations in waters contained in glass bottles compared with waters in PET 

showed slightly though significantly higher concentrations of Al, Ce, Cu, La, Nd, Mn, Sn, W, 

Zn and Zr (rank-sum testing, p < 0.05). By contrast, Sb concentrations were significantly 

higher (p < 0.001) in samples contained in PET bottles. This accords with other studies that 

have recognised Sb contamination in water from PET bottles. However, in no cases did the 

concentration of Sb exceed or approach the national and European limit for Sb in natural 

mineral water/spring water (5 µg/L), the highest observation being 1.35 µg/L. 

Bottled water compositions were mostly similar in their major-ion characteristics to raw 

groundwaters from the equivalent aquifers in Britain, although concentrations of several trace 

elements (Al, Cd, Cu, Fe, Mn, Pb, and Zn) were appreciably lower, in some cases by one or 

two orders of magnitude. The most likely mechanism for the reduction is use of aeration, 
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settling and filtration to remove unstable constituents before bottling. The comparatively low 

concentrations of Cd, Cu, Pb and Zn are likely to be due to co-precipitation with/adsorption 

to precipitated metal oxides, although choice of resilient pipework (e.g. stainless steel) in 

bottling plants may also be a factor. Although for the most part the major ions in the bottled 

waters appear representative of the groundwater in their host aquifers, the results suggest that 

many of the trace elements have been modified significantly from natural compositions in 

situ. 
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1 Introduction 

The bottled water industry in the UK is worth around £1.5 billion per annum. Sales of UK 

bottled water nationally have risen from some 500 million litres per annum in the early 1990s 

to 1.6 billion litres in 2009 (BSDA, 2010), although the last couple of years have seen a 

decline in response to both the economic downturn and growing environmental awareness. In 

the early 1990s, there were around 37 recognised UK natural mineral waters (Robins and 

Ferry, 1992). This compares with around 80 today. Spring waters and bottled drinking waters 

increase the list of available options further. Around 78% of the bottled water on sale in the 

UK is from UK sources, the remainder largely being from other European countries, 

particularly France (e.g. BSDA, 2010). Around 72% of that sold is still water (non-

carbonated). 

In the UK, the natural mineral water, spring water and bottled drinking water industry is 

regulated by a number of statutory instruments that implement existing EC legislation. EC 

Directive 2009/54/EC repeals former Directive 80/777/EEC and amendments in 96/70/EC 

relating to the marketing and exploitation of natural mineral water; Directive 98/83/EC 

applies to water for human consumption other than natural mineral water and Directive 

2003/40/EC establishes the list, concentration limits and labelling requirements for the 

constituents of natural mineral waters. These collectively have produced a complex system of 

legislation. The Natural Mineral Water, Spring Water and Bottled Drinking Water 

Regulations 2007 consolidated these existing requirements and simplified the overall 

legislative framework, although four separate but parallel statutory instruments apply for 

England (OPSI, 2007), Wales, Scotland and Northern Ireland and two further amendments to 

these requirements have been issued in the four devolved regions/countries subsequently 

(OPSI, 2009; OPSI, 2010). Ireland also implements EC regulations on bottled waters via 

national legislation (SI No. 225 of 2007). 

Labelling as a natural mineral water requires that the water has been abstracted from a 

recognised groundwater source protected from known risks of pollution, is bottled at source, 

fulfils the requirements for physical, chemical and microbiological quality, has a consistent 

composition and has not been subject to treatment other than for limited purposes by 

recognised methods. These methods are oxidation by ozone-enriched air with filtration and 

decanting for removal of unstable elements such as Fe, Mn, S and As, physical addition or 
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removal of CO2, and removal where necessary of fluoride by activated alumina. Waters 

subjected to such treatments should be labelled as such (OPSI, 2007). 

Waters labelled as spring water must also be from a groundwater source (although a formal 

recognition process is not required) and must be bottled at source. There is no formal 

requirement for source protection from known pollutants. Spring waters may undergo 

treatments (disinfection by e.g. UV or microfiltration; softening or desalination) in addition to 

the treatment options allowed for natural mineral waters. They must also comply with 

regulations on physical, chemical and microbiological quality of water intended for human 

consumption but do not require demonstration of a consistent composition. Softened or 

desalinated waters must comply with a requirement for hardness not to reduce below 60 mg/L 

Ca, in recognition of the health benefits of hard water (OPSI, 2007). This presumably allows 

for some remineralisation of treated water in order to maintain compliance. 

Bottled drinking water (sometimes labelled as ‘table water’) can be from a variety of sources, 

including public mains supply, but may not be labelled as spring or natural mineral water. 

There are no restrictions on treatment, provided such treatments do not make the water unsafe 

for consumption and do not lead to a contravention of the relevant prescribed limits. 

One of the consequences of the complex legislative framework outlined above is that 

different limits exist for chemical constituents in natural mineral water compared to spring 

water and other bottled water. These are outlined in Table 1. 

The bottling companies are required to label natural mineral waters with their characteristic 

chemical composition and most bottled waters are labelled with major-ion and basic physical 

characteristics. However, the concentrations of trace elements are rarely provided. This 

contrasts with the information for many public-supply sources which is often available in 

summary form for a comprehensive suite of determinands e.g. on the web. This study 

provides a summary of the major- and trace-element compositions of a selection of bottled 

waters (natural mineral waters and spring waters) which are currently or have been recently 

available on sale in the British Isles. The chemical compositions are also compared with 

those of other groundwaters in Britain abstracted from the corresponding aquifers in order to 

identify systematic similarities and differences. The database represented in this study is 

distinct from that for UK waters reported by Reimann and Birke (2010) in their parallel study 

of bottled waters in Europe, but the studies contain some complementary observations. 



5 

 

2 Bottled waters in the British Isles 

Bottled waters in the British Isles are abstracted from a diverse range of aquifers (Figure 1), 

many of them considered minor in terms of groundwater storage. In England, the most 

significant water-supply aquifer is the Cretaceous Chalk (Figure 1), followed by the Permo-

Triassic Sandstone. Yet comparatively few bottled water plants in England abstract from 

these aquifers, and comparatively few are located in southern England. This is probably 

related in large part to the perceived greater marketability of sites located in rural and upland 

settings (e.g. Highland Spring water from the Scottish Midland Valley has the largest share of 

the UK sales market despite relatively large distances involved in transportation to markets in 

England). 

Many of the bottling plants abstract water from springs, which typically discharge young, 

oxic groundwater from shallow depths of circulation. Others abstract from borehole sources, 

or from mixtures of sources. Where specified on bottle labels or websites, depths of boreholes 

used for abstraction are in the range 27–250 m depth, the shallowest being within superficial 

Quaternary aquifers (Aqua Pura (2), Church Stretton) and the deepest from boreholes 

penetrating the Permo-Triassic Sandstone (Chase Spring water, Lichfield, Staffordshire). 

Many abstract groundwater from boreholes more than 50 m deep, in various aquifer 

lithologies. 

A few bottled waters have been identified, by radiometric dating and other techniques, as pre-

industrial waters, in some cases palaeowaters. Abbey Well water in Morpeth, 

Northumberland is abstracted from a borehole with a depth of 117 m in the Carboniferous 

Millstone Grit aquifer. Radiocarbon and tritium dating of the groundwater has established a 

model age of around 3000–4500 years (W.G. Darling, pers. comm., 2010). Radiocarbon and 

tritium dating has also been carried out of thermal groundwater (27.5ºC) from St Ann’s Well, 

the source for Buxton Spring water in Derbyshire. This has established that the water has a 

mixed origin with a proportion containing low though detectable concentrations of tritium 

(Edmunds, 1971; Evans et al., 1979) and an old tritium-free component with non-radiogenic 

carbon, together yielding a bulk age of some 5000 years (Barker et al., 2000; Evans et al., 

1979). The water discharges from fractures in the karstic Carboniferous Limestone aquifer 

and circulation depths as great as 1 km have been postulated for this spring source 

(Brassington, 2007). The groundwater discharging from St Ann’s Well appears to be sub-oxic 
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in composition (dissolved oxygen 1.6 mg/L at source; BGS unpublished data), though this 

may represent a mixture between anoxic old water and a younger more oxic fraction. 

3 Sample collection and analysis 

Bottles of water were collected from various retail outlets in Britain and Ireland during the 

period 2007–2010. All were non-carbonated forms. Bottles were opened in the laboratory, 

and aliquots decanted immediately into factory-new LDPE bottles, pre-rinsed with sample 

water. Three aliquots were collected. One was acidified with 1% (v/v) Aristar® HNO3 for the 

analysis of major cations, SO4 and trace elements by ICP-OES and ICP-MS. One was 

acidified with 1% (v/v) Aristar® HCl for the analysis of As by HG-AFS. A third was left 

unacidified for the analysis of anions (Cl, NO3, Br and F) by ion chromatography. All 

aliquots were unfiltered, with the exception of a subset of 20 samples from which additional 

filtered (0.2 µm) aliquots were separated in order to compare analyses with unfiltered 

aliquots prepared at the same time. The filtered aliquots were analysed by ICP-MS only. 

Arsenic analyses for samples collected in 2010 were analysed by collision-cell ICP-MS 

(Agilent 7500CX) rather than HG-AFS and SO4 was determined on the unacidified aliquot by 

ion chromatography. Additional analysis of I by ICP-MS was carried out for the 2010 

samples. 

Immediately after opening the bottles, waters were analysed for pH and alkalinity using a 

laboratory titrator. Quality-control standards and blanks were run regularly throughout the 

course of the analysis. Acid blanks were also run periodically to confirm the purity of the 

acid used to preserve the samples. No blank correction to the sample data was considered 

necessary. Analytical charge imbalances were <5% for all samples. For data cited in the 

Supplementary Tables (S1–S3), lower limits of quantification were taken as long-term 

laboratory values: approximately 6s (standard deviations) on long-term blank concentrations. 

However, for statistical handling, detection limits were taken as 3s on the in-run blank 

concentrations. Analyses were carried out in the BGS laboratories in Keyworth and 

Wallingford, UK. 

A total of 85 bottled water samples were analysed. These were from 67 separate groundwater 

sources (boreholes/springs/wells) from approximately 38 locations across the British Isles 

(England, Wales, Scotland, Northern Ireland and Republic of Ireland; Figure 1). Of the 85 

analyses, 18 were replicates using separate bottles bought at different times and places. 
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Sources were from a range of aquifer lithologies (Table 2). Of those sources sampled, 43 

(64%) were of natural mineral waters and 23 (34%) were spring waters. These roughly 

represent the proportions of waters sold in these categories in the UK (61% and 27% 

respectively) (BSDA, 2010). 

4 Results 

4.1 Chemical compositions 

Comparison of chemical analyses from the 20 paired filtered and unfiltered aliquots revealed 

that concentrations of major and minor ions in most cases differed by less than 5% (larger 

differences for trace elements were due to larger absolute errors at low concentrations; the 

concentrations were not systematically higher in unfiltered aliquots). As a result of the 

similarities, concentrations of analysed parameters in the unfiltered aliquots are taken to be 

representative of dissolved concentrations without a significant colloidal or particulate 

fraction. Hereafter, discussions relate to the compositions of the unfiltered aliquots. A list of 

samples investigated with background details is given in Table 3 and summary statistical data 

are given in Table 4. In addition, a full list of chemical compositions for the unfiltered 

aliquots of the bottled waters is given in Supplementary Tables S1–S3. 

Results for most major ions showed a broad agreement with the values quoted on bottle 

labels, though correlations were comparatively poor where the number of significant figures 

quoted on labels was small (e.g. for K). The highest alkalinity values quoted on labels 

(>400 mg/L HCO3) were generally not reproduced in laboratory measurements, the latter 

results being some 40% lower. Alkalinity values for Shepley and Ice Valley water, both from 

the Carboniferous Millstone Grit of Shepley, Yorkshire, were quoted as 412 mg/L, but the 

measured laboratory analyses were in the range 240–270 mg/L. Calcium concentrations were 

also lower in the laboratory analyses (11.6–14.8 mg/L) compared to the labelled 

concentrations (32 mg/L). These observations suggest some degassing of CO2 and 

precipitation of calcite since abstraction. Shepley water (as bottled) is saturated with respect 

to calcite (and dolomite). Loss of alkalinity through precipitation of iron oxide is also a 

possibility. Measured laboratory pH values were also higher for these samples, giving a range 

8.1–8.4 compared to “pH at source” values of 7.8. Again, this presumably relates to 

degassing of CO2 since abstraction. Comparisons of at-source and laboratory pH values were 

in general worst at the high-pH end of the range (>7.8). 
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Rank-sum testing showed no significant difference (95% confidence) in the concentrations of 

most parameters between the natural mineral waters and spring waters investigated in the 

study. Exceptions were for Br, Ca, Cl, Fe, HCO3, P and Se. In each case, these were higher (p 

<0.05) in the spring water samples, although the magnitude of the differences was small. 

4.2 Compliance in inorganic water quality 

Distributions of the major ions and selected trace elements in the bottled waters are shown as 

box plots in Figures 2 and 3. Boxes indicate the interquartile ranges, whiskers (no more than 

1.5 times the interquartile range, Tukey, 1977) and outliers. Distributions for elements that 

include non-detect data are derived using the robust regression-on-order-statistics (ROS) 

method within the NADA package in R (Helsel, 2005; Lee and Helsel, 2005). Where 

relevant, national/European limits for parameters in bottled waters are also given and in cases 

where limits differ between natural mineral waters and spring waters/bottled drinking waters 

(Table 1), the lowest limit is shown. The results indicate, unsurprisingly, that all measured 

water samples have inorganic compositions which comply with the relevant legal limits. In 

most cases, concentrations are much below the respective limits, sometimes by an order of 

magnitude or more. 

The two parameters with highest concentrations relative to prescribed limits are NO3 and Ba. 

The highest observed concentration for NO3-N is 6.3 mg/L (Table 3) compared to national 

and EC limits of 11.3 mg/L. The limit for Ba in natural mineral waters is 1000 µg/L although 

there is no limit for Ba in spring/bottled drinking waters. Concentrations of Ba in two of the 

bottled water samples were close to or above the natural mineral water limit, though in each 

case they were spring waters (1010 µg/L in one sample of Drench water; 971 µg/L in a 

sample of Purezza; Table 4). 

Concentrations of B reach up to 483 µg/L, just under half the limit for B in spring 

water/bottled drinking water (Figure 3). However, the highest concentration was from a 

natural mineral water (Montgomery Spring). The highest value in a water classed as spring 

water was 123 µg/L. 

No limit exists currently for U in European drinking water or natural mineral water 

(exception Germany). However, the WHO provisional guideline value for U in drinking 

water, promulgated in 2004, is 15 µg/L. Most bottled waters have concentrations much below 

this value, although two sources, both abstracting from Devonian (Old Red Sandstone) strata 
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and from the same location (Heartease, Powys, Wales), had concentrations close to the 

guideline value. Three analyses of Love One spring water gave values of 13.4, 13.6 and 

13.2 µg/L and one analysis of Radnor Hills natural mineral water gave a concentration of 

10.2 µg/L. FSA (2004) also reported high U concentrations in Radnor Hills natural mineral 

water: two separate analyses gave concentrations of 11 and 7.8 µg/L U. Love One water and 

Radnor Hills water are bottled by the same company. 

Likewise, no European/national limits exist for Mo in bottled water although the WHO 

guideline value for Mo in drinking water is 70 µg/L. The highest observed Mo value in the 

samples was an order of magnitude lower at 2.8 µg/L. 

Concentrations of As in the bottled waters lie in the range <0.2–4.2 µg/L and 88% are 

≤2 µg/L. All are less than half the European and national drinking water limit of 10 µg/L. 

Samples with >1 µg/L were all from either the Devonian (Old Red Sandstone), Carboniferous 

Limestone, Permo-Triassic Sandstone or Lower Palaeozoic aquifers (one sample was from an 

unspecified aquifer source in Ireland). 

Concentrations of F were well below the limit of 1.5 mg/L for spring water/bottled drinking 

water and at least an order of magnitude below the limit for F in natural mineral water 

(5 mg/L; Table 1). The highest observed F concentration was 0.58 mg/L. 

To the best of my knowledge, none of the spring waters tested has been softened or 

desalinated before bottling. Interestingly, most of the waters tested (spring waters and natural 

mineral waters) would contain insufficient Ca had they been subject to such treatment: 72% 

have concentrations <60 mg/L, the minimum set for softened or desalinated waters. 

4.3 Compositions in relation to bottle type 

In the UK, around 93% of bottled water is marketed in PET bottles, the remaining 7% mainly 

in glass (BSDA, 2010). Comparisons were made between the compositions of waters 

analysed from glass bottles (14 samples) and those from PET bottles (71 samples) to 

investigate whether the storage medium has any significant influence on the inorganic 

chemical composition of the waters. Rank-sum testing of samples divided into glass and PET 

groups showed slightly though significantly higher concentrations in glass samples of Al, Ce, 

Cu, La, Nd, Mn, Sn, W, Zn and Zr (p <0.05). Results also showed significantly higher Sb 

(p<0.001) in samples from PET bottles. As noted in Section 3.1 however, in no cases do the 
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concentrations of these elements exceed or even approach the respective statutory limits, 

maximum observed concentrations of Al, Cu, and Sb mostly remaining around an order of 

magnitude lower (highest observed concentrations being 14.6, 32.2 and 1.35 µg/L 

respectively). 

It was generally not possible to compare results for a single identifiable water source 

contained in separate glass and PET bottles as the two options appear to be rarely provided by 

the bottling companies (or at least they were not readily available). Highland Spring is an 

exception: analyses of two samples of Highland Spring water taken from bottles purchased in 

2010 (one each from glass and PET) also gave slightly higher concentrations of Al, Ce, La, 

Nd, Mn and Zr and lower Sb in the sample from the glass bottle (Cu measurements were 

within 3%, Sn and W measurements were identical and Zn concentration was lower in the 

glass sample; Tables S1–3). Further analysis would be required to assess whether the 

differences observed between the bottle types for this site are statistically significant. 

Ranges of concentrations for the elements identified as differing significantly are shown as 

box plots in Figure 4. The groups did not reveal significant differences in major-ion 

concentrations or pH that could have explained the dissimilarities in terms of real 

geochemical variation. Differences are therefore likely to be related to leaching of solutes 

from and/or adsorption to bottle materials. For a few elements (e.g. W, LREE), a substantial 

number of the observations were below the highest detection limit and some caution in 

attributing significance to the data is therefore required. 

Increased concentrations of Sb in water collected in PET bottles compared with those in glass 

have been reported in previous studies by Shotyk et al. (2006) and Shotyk and Krachler 

(2007a) and recently by Reimann et al.(2010a; 2010b). Relatively high Pb concentrations in 

water contained in glass bottles were reported by Misund et al. (1999), Shotyk and Krachler 

(2007b) and Reimann et al. (2010a), although significant differences for Pb between bottle 

types were not apparent in this study. Of the elements identified as being significantly higher 

in glass than PET in this study, many were similarly identified in the Reimann et al. (2010a) 

investigation. Correspondingly high concentrations were reported by these authors for Al, Ce, 

Cu, La, Nd, Sn, Zn and Zr, although concentrations were also noted to be higher in glass for 

Bi, Cr, Fe, Nb, Th, Ti, Y, many of the other REE and (as mentioned above) Pb, which did not 

show significant differences in this study. Although the Reimann et al. (2010a) investigation 

found a significant increase in Cr in water stored in green glass compared to that in clear 
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glass, this could not be investigated in the British bottled waters as few of the glass bottles 

collected were coloured. 

4.4 Compositions related to regional geological control 

The most frequently represented lithologies in aquifer sources of the bottled waters are Lower 

Palaeozoic (10 sources), Devonian Sandstone (10 sources) and Carboniferous Limestone (9 

sources) (Table 2). This suggests a preference by the bottled water industry for relatively 

minor aquifers as bottling sources. 

One of the key conclusions to be drawn from a Piper plot of the bottled waters of the British 

Isles (Figure 5) is the large variability in their chemical compositions. This is borne out of the 

wide variation in the nature of the aquifers from which the groundwaters have been 

abstracted (Table 2). Concentrations of dissolved solids are in general low, with TDS values 

in the range 58–800 mg/L. Water types vary from Ca-HCO3 through mixed-anion-mixed-

cation compositions to Na-HCO3 types. Total hardness varies from 19–460 mg/L (median 

161 mg/L) as CaCO3, the range encompassing very soft to very hard water. 

Despite the large variation, some consistency is apparent in the bottled waters from individual 

aquifer types (Figure 5). The few Chalk sources represented have Ca-HCO3 compositions, as 

expected for fresh groundwater in equilibrium with a pure calcium carbonate matrix. 

Groundwaters from Carboniferous Limestone are also Ca-HCO3 dominated but with a higher 

proportion of Mg, reflecting the higher Mg content of the carbonate minerals in this aquifer 

(e.g. Schofield and Adams, 1985). Relatively high Mg contents in the Permo-Triassic 

Sandstone samples are also a reflection of the presence and dissolution of dolomite in that 

aquifer (Edmunds and Smedley, 2000; Smedley and Edmunds, 2002). Groundwaters from the 

Carboniferous Millstone Grit have a larger range of major-ion compositions, trending 

towards Na-HCO3. This likely reflects the influence of ion-exchange reactions in the 

Millstone Grit, the occurrence of which has been noted in earlier studies (e.g. Banks, 1997). 

Ion exchange is also a major factor affecting groundwaters of Na-HCO3 composition from 

Jurassic Limestone (Edmunds and Smedley, 2005; Edmunds and Walton, 1983). Samples 

from granite have comparatively high Na/Ca ratios reflecting the influence of interaction with 

Na-rich, Ca-poor minerals in this rock type. Quaternary sand and gravel appears to have 

waters with mixed-ion compositions, probably in response to the mixed compositions of their 

host lithologies. 
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4.5 Compositions compared to British groundwater chemistry 

Figures 6 and 7 indicate the variations in major- and trace-element compositions respectively, 

for the bottled waters in comparison with British groundwaters, distinguished by aquifer. For 

the British groundwaters, data have been collated from numerous BGS datasets, including 

some datasets from studies on the baseline chemistry of groundwaters in England and Wales 

(Shand et al., 2007) and Scotland (e.g. O’Dochartaigh et al., 2006). Efforts were made to 

screen the data as well as possible to include only groundwater sources used for public and 

private supply. While it cannot be guaranteed that such sources only include those used for 

drinking water (such information is often not recorded specifically on sample collection), the 

screening has served to exclude obvious sources used for e.g. industry, irrigation and river 

augmentation. All groundwaters in the dataset are raw (untreated) waters, filtered (0.2–

0.45 µm depending on sampling purpose and vintage) and preserved at source. Box plots for 

the British groundwaters have been constructed, again, using the ROS method for non-detect 

data. 

For the groundwaters, large ranges are seen for some parameters because they are an 

amalgamation of samples taken from various parts of Britain with varying regional controls. 

Major-ion content (e.g. Na, Cl, SO4) is particularly variable in groundwaters from the Permo-

Triassic Sandstone, Chalk and Jurassic Limestone. Nitrate concentration also shows a large 

range in British groundwaters because of the effects of agricultural and domestic pollution at 

the high end (the significance of which varies from region to region and aquifer to aquifer) 

and because of denitrification at the low end (Figure 6). The range of nitrate concentrations in 

bottled waters is smaller for most aquifers. The lower maximum observed for natural mineral 

waters and spring waters possibly reflects the fact that the sources require the implementation 

of pollution protection measures (e.g. restricted agricultural practices within catchments). 

Such protection measures are also applied to sources used for public water supply (some of 

which are included in the British groundwater dataset), though not necessarily to private 

groundwater sources. 

For most major ions, the concentrations in bottled waters appear close to the interquartile 

ranges for the British groundwaters from the corresponding aquifers (Figure 6). Bottled 

waters from Lower Palaeozoic aquifers appear to have relatively high major-ion 

concentrations, however. 
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For most trace elements (Figure 7), the compositions of bottled waters are also broadly 

comparable with the groundwaters from the corresponding aquifers. However, concentrations 

of Al, Cd, Cu, Fe, Mn, Pb, and Zn are often notably lower in bottled waters. By contrast, Sb 

is consistently at the high end of the range in bottled waters (Figure 7), most likely reflecting 

the influence of the PET bottles. 

Figure 8 shows cumulative-probability distributions for most of the major ions in the bottled 

waters considered as a single group. These are compared to British groundwaters, 

distinguished by aquifer. The probability distributions for Ca and Mg in bottled waters lie 

close to the mid-range of concentrations observed in British groundwaters, with distributions 

and median values similar to those for groundwaters from the Carboniferous Millstone Grit. 

Concentrations of Na and Cl cross the spectrum of British groundwater compositions, with 

lowest concentrations being at the low end of, or in the case of Cl, below the British 

groundwater range, and highest concentrations in the mid range for British groundwaters 

(Figure 8). 

Alkalinity values vary comparatively little for most groundwater types, probably reflecting a 

solubility control by calcite. The high end of the alkalinity range for the bottled waters is 

comparable to that of most British groundwaters. The lowest values are below those in most 

British groundwaters, with the exception of those from the granites and the Lower Palaeozoic 

aquifers. As with other major ions, the cumulative-probability trend for alkalinity in bottled 

waters follows most closely the trend in Millstone Grit groundwaters. 

Concentrations of NO3-N also lie within the range of British groundwaters, although at the 

lower end of the range. For the groundwater dataset, highest concentrations are seen in 

groundwater from the Chalk, Jurassic Limestone and Quaternary sand and gravel aquifers, 

reflecting the particular vulnerability of these aquifers to pollution from agricultural and 

urban sources, in the case of the Chalk and Jurassic Limestone, at least under unconfined 

conditions. The clear inflexion in the NO3-N curve for Jurassic Limestone and Chalk 

groundwaters at around 3–4 mg/L most likely marks the juncture between groundwaters 

affected by anthropogenic inputs and natural baseline concentrations, with groundwaters 

having undergone denitrification at the lowest end of the range. Nitrate concentrations in the 

bottled waters are also relatively high in samples from the Chalk and Quaternary sand and 

gravel (the maximum observed value being 6.3 mg/L). For NO3-N, the distribution and 
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median values in bottled waters are most similar to those of groundwaters from the 

Palaeozoic aquifers (Figure 8). 

Cumulative-probability plots are shown for selected trace elements (Ba, F, U, Cu, Zn, Sb) in 

Figure 9. Concentrations of Ba also lie within the range of British groundwaters, albeit with a 

larger variation than observed in individual British aquifers. The closest similarities in 

distributions are with groundwaters from the Carboniferous Limestone and Quaternary sand 

and gravel aquifers. The highest observed concentrations in the bottled waters and 

groundwaters are comparable (ca. 1000 µg/L) although such concentrations are attained only 

rarely in the British groundwaters. The highest observed Ba values in the bottled waters are 

from the Millstone Grit (Drench) and the Carboniferous Limestone (Purezza) aquifers. 

Fluoride concentrations in bottled waters lie within the envelope of British groundwater 

compositions, closest to the cumulative-probability curves for the Chalk and Lower 

Palaeozoic aquifers. Highest groundwater concentrations are mainly found in the 

Carboniferous Limestone and Jurassic Limestone aquifers although, with a few exceptions in 

the Jurassic Limestone, these are rarely above the national and European drinking-water limit 

for F (1.5 mg/L). The high-F Jurassic Limestone groundwaters are old waters from a confined 

aquifer. As noted above (Section 4.4), these are dominantly of Na-HCO3 composition, having 

undergone a process of ion exchange (Edmunds and Smedley, 2005; Edmunds and Walton, 

1983). 

For U, the cumulative-probability distributions indicate that the upper end of the range for 

bottled waters is high relative to groundwater from British aquifers. Those British 

groundwaters with the highest U concentrations are derived from the Permo-Triassic 

Sandstone and Devonian Sandstone (Old Red Sandstone) aquifers (Figure 9). These aquifers 

are both continental red-bed sequences with notable lithological and mineralogical 

similarities. The main mineral associations of U are likely to be with metal oxides (goethite, 

haematite) on grain coatings and cements, phosphate minerals (Michie, 1970) and organic-

rich horizons (Metcalfe et al., 1999). Minor refractory minerals such as zircon and sphene also 

contain U but are unlikely to contribute significantly to the groundwater U concentrations. 

Concentrations of U in UK Permo-Triassic Sandstone sediments have been found in the 

range 0.5–5.1 mg/kg (Andrews and Lee, 1979; Haslam and Sandon, 1991), but with extremes 

up to 14 mg/kg (BGS, unpublished data). High concentrations of U in groundwater from 
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Permo-Triassic and Devonian red-bed sediments have also been noted in other studies 

(Reimann and Birke, 2010). 

The distributions for Cu and Zn indicate the much lower concentrations in bottled waters 

compared to British groundwaters, as outlined above. However, a marked inflexion in the 

bottled waters at a Cu concentration around 2 µg/L (and possibly also 5 µg/L Zn) suggests 

that these are distinct from the other samples. The high concentrations are in all cases from 

waters in Deeside, Scotland (Deeside and Royal Deeside water). These are waters from 

granite with relatively low pH values (labelling for Deeside water lists the pH at source as 

6.1). Samples in both glass and PET bottles from these sources were correspondingly high 

(Cu: 4.61 and 4.64 µg/L in glass and PET respectively; Zn: 7.6 and 8.0 µg/L in glass and PET 

respectively). The groundwaters from granite shown in Figure 9 also have some of the 

highest Cu concentrations among the British groundwaters. 

The cumulative-probability distribution for Sb in bottled waters (Figure 9) shows the 

increased concentrations relative to British groundwaters. The marked inflexion at around 

0.1 µg/L Sb distinguishes those samples stored in glass from those in PET bottles. 

Nonetheless, some British groundwaters also have relatively high Sb concentrations, notably 

some of the Permo-Triassic Sandstone and Chalk groundwaters. 

5 Discussion and conclusions 

The survey results indicate that bottled waters from the British Isles have generally low 

dissolved solids concentrations (TDS 800 mg/L or less, and often much lower). This contrasts 

with many bottled waters from other parts of Europe, including France, where consumers 

appear to have a taste for more mineralised compositions (Reimann and Birke, 2010; Robins 

and Ferry, 1992). The bottled waters are abstracted from a large number of aquifers, but 

comparatively few are derived from what are considered the main aquifers in the UK: the 

Chalk and Permo-Triassic Sandstone. In that sense therefore, they are not representative of 

UK groundwater abstracted for drinking water. 

Of the inorganic constituents investigated in the bottled waters, the elements showing 

concentrations most closely approaching bottled-water limits or guideline values were NO3, 

Ba and U. Concentrations of Ba in the sources studied would only achieve non-compliance if 

a limit for spring waters were to be introduced in line with that for natural mineral waters 

(1000 µg/L). Likewise, no limits currently exist for U in bottled waters in the UK or Ireland, 
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although the highest observed concentrations in the waters investigated approach the WHO 

provisional guideline value for U in drinking water of 15 µg/L. As there are numerous 

precedents for WHO guideline values being translated into national legislation some years 

down the line, it would not be unusual to expect a limit commensurate with the provisional 

guideline value for U in drinking water to be introduced in Europe for the bottled water 

industry in the coming years. The impact of such a move for most bottled water sources 

would be negligible, although some waters from the Devonian (Old Red Sandstone) aquifer 

could become non-compliant at a threshold of 15 µg/L. The bottled water samples from the 

Permo-Triassic Sandstone were also relatively high, but much below the WHO guideline 

value (maximum observed concentrations 4.1 µg/L) and hence less likely to be affected. 

The most recent European legislation regarding bottled waters to be introduced has concerned 

the treatment of waters for removal of excessive concentrations of F (>1.5 mg/L in spring 

waters/bottled waters). The highest observed F concentration in the bottled waters 

investigated in this study (0.58 mg/L), together with the observed concentrations in the 

British groundwaters generally, suggests that F concentrations in groundwaters from the 

British Isles rarely exceed this concentration (the only notable exception being deep, confined 

Na-HCO3 in the Jurassic Limestone of eastern England). For the most part, concentrations of 

F are unlikely to be so high that treatment to reduce F concentrations is necessary. Certainly, 

unlike in some other areas of Europe (Reimann and Birke, 2010), concentrations are highly 

unlikely to approach the limit of 5 mg/L imposed for natural mineral waters. High-F 

groundwaters that do exist in British aquifers are likely to be of otherwise limited potability 

through high salinity and/or Na concentrations. 

The major-ion compositions of bottled waters from the British Isles are highly variable 

depending on aquifer lithology. However, for most major ions, consistencies are apparent 

with the compositions of other groundwaters from the same aquifers, as represented by the 

British groundwater dataset used in this study. 

European legislation often cites distinctive chemical and microbial quality as a defining 

feature of bottled mineral water (e.g. “Natural mineral water is characterised by its chemical 

and microbiological composition, which distinguishes it from drinking water”; FSA, 2007). 

This may well be true if the water sources are different, but not necessarily in cases where 

both are derived from groundwater, indeed from the same aquifer. The inorganic chemical 

comparisons outlined in this study suggest, not too surprisingly, that if drinking water 
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supplied to the tap does constitute groundwater derived from the same aquifer as the bottled 

water, the two are likely to be similar, at least in their major-ion chemical characteristics. 

Some of the trace elements do however differ markedly. One area of difference between 

bottled waters and British raw groundwaters was in the distributions of dissolved Sb. The 

anomalous concentrations in many bottled waters, seen most clearly in the cumulative-

probability distributions (Figure 9), are most likely to reflect contamination from the PET 

bottles. Antimony (as Sb2O3) is used as a catalyst in the bottle manufacturing process 

(Reimann et al., 2010b). Nonetheless, the concentrations observed in the bottled waters 

investigated are less than the bottled-water limit for Sb (5 µg/L) and no increased health risks 

at such concentrations are known or implied. 

Some notable differences were also seen between the bottled waters and the raw British 

groundwaters from the corresponding aquifers in the elements Fe, Mn, Al, Cd, Cu, Pb and 

Zn. For Fe, Al and Mn the relatively low concentrations in bottled water can be explained 

most readily by removal processes involving aeration, settling and filtration before bottling. 

Such processes are rarely labelled on bottles but would be necessary at least in some cases, 

particularly iron-reducing groundwaters, to avoid precipitation and settling of iron oxides in 

the bottles. Such a treatment process could also explain the low concentrations of dissolved 

trace-metal cations (Cd, Cu, Pb, Zn) which would be reduced by co-precipitation with or 

adsorption to neoformed metal oxides. Lower concentrations of the trace-metal cations may 

also be due to choices of plumbing materials used in bottling plants, boreholes and pipework 

(e.g. stainless steel and plastic as opposed to more commonly used plain steel and copper). It 

should be stressed however, that these differences highlighted are between bottled waters and 

raw groundwater taken as representative of aquifer conditions, rather than groundwater 

supplied to consumers’ taps in a public-supply network. Public-supply waters are also 

typically treated where necessary by aeration, settling and filtration, in order to remove 

excess concentrations of Fe, Al and Mn and any other non-compliant trace elements. A 

detailed study comparing the concentrations of trace metals in bottled waters with treated 

groundwaters used for public supply from the same aquifers would be needed to ascertain 

whether major differences in concentrations of these trace metals exist between the two. 

The OPSI (2007) interpretation of a natural mineral water is that it can be “clearly 

distinguished from ordinary drinking water on account of the following characteristics having 

been preserved intact because of the underground origin of the water…its mineral content, 



18 

 

trace elements or other constituents…”. Despite this legislative definition, the study results 

suggest that the major-ion compositions of bottled waters (both natural mineral waters and 

spring waters) may or may not be distinct from ordinary drinking water depending on the 

source of the latter, and that while many trace elements are indeed likely to be preserved 

intact, several have been modified from their natural in-situ compositions. Some (e.g. Fe, Mn, 

Al and potentially Cd, Cu, Pb, Zn) look to have diminished by water-treatment processes, 

others (most notably Sb) increased as an artefact of the bottling process. 

One feature which may well distinguish the bottled waters from tapwater taken from 

corresponding groundwater sources is their microbiological quality. In public-supply drinking 

water, water treatments including disinfection are designed to minimise microbial 

contamination. For European bottled waters, disinfection in such a way as to remove the 

natural microbial flora is prohibited and the presence of certain microbial groups in bottled 

waters is expected and has long been recognised. Concentrations and species vary depending 

on local conditions (e.g. water/aquifer composition, bottle storage temperature, DOC content, 

bottle volume), but organisms of the genus Pseudomonas appear to dominate in many cases 

(Leclerc and Da Costa, 2005), including those in bottled waters sold in the UK (Armas and 

Sutherland, 1999). Studies have shown that microbiological populations increase with storage 

time, particularly during the first few days following bottling (Leclerc and Da Costa, 2005). 

Nonetheless, bottled waters in the British Isles are generally not marketed on their 

microbiological quality and results for microbial populations are not stated on bottle labels. 

The typical image of a bottled water is one of pure water abstracted from an aquifer without 

modification. The comparisons between bottled water compositions and groundwaters from 

the corresponding aquifers suggest that the major ions are for the most part similar and 

representative of the compositions of in-situ groundwaters. However for many of the trace 

elements, some major differences from natural in-situ conditions are apparent and there is 

strong evidence for modification. These arise from processes such as aeration and settling 

before bottling, coprecipitation/adsorption, and contamination from bottle materials. 
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Figure Captions 

Figure 1. Simplified geological map showing the locations of bottled mineral water sources 

(natural mineral waters and spring waters) in the British Isles sampled in this study 

(geological map of Ireland source: McConnell and Gatley, 2006, with permission). 

Figure 2. Box plots for major ions in the sampled mineral waters (n=85 sources). Boxes 

represent the inter-quartile range of the distribution, whiskers represent no more than 1.5 

times the inter-quartile range and outliers are shown as open circles. Where national (and EC) 

limits for parameters in bottled waters apply (i.e. Na, SO4, NO3-N, see Table 1), these are 

shown as horizontal red lines. 

Figure 3. Box plots for trace elements in sampled mineral waters (n=85 sources). Box plot 

construction is as in Figure 2. Where national (and EC) limits for parameters in natural 

mineral waters or spring/bottled waters apply, these are shown as horizontal red lines (lowest 

concentrations given in the event of more than one limit being prescribed); WHO guideline 

values are given for Mo and U since no European limits are prescribed for these elements. 

Figure 4. Box plots showing the concentrations of trace elements in bottled waters sold in 

glass compared with PET bottles. Parameters shown have small though significant 

differences (p<0.05) between the bottle types. Horizontal lines indicate highest detection 

limits. 

Figure 5. Piper plot of bottled mineral waters of the British Isles. 

Figure 6. Box plots for major ions in groundwaters from British aquifers (blue), compared 

with compositions of bottled waters in equivalent aquifers (red). 

Figure 7. Box plots for trace elements in groundwaters from British aquifers (blue), compared 

with compositions of bottled waters in equivalent aquifers (red). 

Figure 8. Cumulative-probability plots for selected major ions in bottled waters compared to 

British raw groundwaters. Horizontal lines indicate the position of the median values. 

Figure 9. Cumulative-probability plots for selected trace elements in bottled waters compared 

to British raw groundwaters. Horizontal lines indicate the position of the median values. 

Distributions for non-detect data are calculated for both bottled waters and British 
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groundwaters using either the Kaplan-Meier method (where <60% of the observations are 

non-detects) or ROS method (where >60% are non-detects). The methodology follows that 

described by Helsel (2005). 
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Table 1. UK (2007) limits for inorganic constituents in natural mineral waters, spring waters 

and bottled drinking waters (OPSI, 2007). 

Parameter Units NMW SW/BDW Parameter Units NMW SW/BDW 

Na mg/L  200 As µg/L 10 10 

SO4 mg/L  250 Cd µg/L 3 5 

NO3 mg/L 50
~
 50

~
 CN µg/L 70 50 

NO2 mg/L 0.1 0.5 Cr µg/L 50 50 

Ca mg/L  ≥60
*
 Hg µg/L 1 1 

pH   4.5–9.5
#
 Ni µg/L 20 20 

Al µg/L  200 Se µg/L 10 10 

Cu µg/L 1000 2000 Sb µg/L 5 5 

F µg/L 5000 1500 Pb µg/L 10 10 

Mn µg/L 500
$
 50 Ba µg/L 1000  

B µg/L  1000 BrO3 µg/L  10 
NMW: natural mineral water; SW: spring water; BDW: bottled drinking water 
~
11.3 mg/L as N 

*
For desalinated or softened waters 

#
Acceptable range 

$
Set on public health grounds; the limit for SW/BDW is on aesthetic grounds 
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Table 2. Summary of aquifers represented in the bottled water suite together with numbers of 

sources. 

Aquifer No. 

sources 

analysed 

Aquifer details 

Quaternary sand 

and gravel 

6 Superficial deposits dominant in valleys; high potential 

for groundwater throughflow (hence vulnerable to 

pollution), storage capacity may be low due to limited 

extent and thickness 

Chalk 2 Cretaceous pure limestone with some interbedded marls; 

dual-porosity aquifer, large storage capacity; the most 

significant aquifer in England in terms of water supply 

Jurassic 

Limestone 

2 Commonly oolitic limestone, purity of carbonate varies; 

dominated by fracture flow, some karst development, 

important aquifer in England 

Jurassic 

Sandstone 

1 Fluvial/estuarine sandstone, mudstone, siltstone 

intercalated with thin marine calcareous sandstone, 

mudstone and limestone; restricted flow due to 

intercalated mudstone; minor aquifer 

Permo-Triassic 

Sandstone 

7 Red-bed sandstones, conglomerates, and marls; 

intergranular flow important, large storage capacity; the 

second most significant aquifer in England and the most 

important in Scotland; large storage though less used in 

Northern Ireland 

Millstone Grit 7 Namurian (Carboniferous) hard cemented coarse 

sandstone and gritstone; dominated by fracture flow; 

minor aquifer 

Carboniferous 

Basalt 

(Scotland) 

7 Basaltic rocks with some interbedded sandstone; flow 

dependent on secondary permeability (e.g. lava flow 

margins); minor aquifer 

Carboniferous 

Limestone 

9 Dinantian impure limestone; fracture flow, sometimes 

karstic; an important aquifer in Wales and Ireland 

Devonian 10 Red-bed sandstones, conglomerates, siltstones, marls and 

calcrete; some primary permeability but dominated by 

fracture flow; locally important aquifer in Wales and 

eastern Scotland 

Lower 

Palaeozoic 

10 Mixed marine sandstone, mudstone (‘greywacke’); 

dominated by secondary permeability; limited storage; 

minor aquifer 

Granite 3 Mixed age (Caledonian, Hercynian) igneous intrusive 

rock, sometimes associated with mineralisation (Pb, Zn, 

Cu); dominated by fracture flow; minor aquifer 

Precambrian 2 Mixed metamorphic sequences; fracture flow, minor 

aquifer 

N.B. One bottled water did not specify source aquifer 
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Table 3. Sample sources and details of the sampled bottled waters. 

Source name Location Country Water 

category 

Sample No. Easting Northing Purchase date Bottle type Aquifer type 

Abbey Well Morpeth, Northumberland England NMW S07-00701 421100 585400 31/03/2007 PET Millstone Grit 

Abbey Well Morpeth, Northumberland England NMW S08-01387 421100 585400 18/07/2008 PET Millstone Grit 

Abbey Well Morpeth, Northumberland England NMW 12349-004 421100 585400 01/01/2010 PET Millstone Grit 

Aqua Pura (1) Armathwaite, Cumbria England NMW S07-00664 350400 541800 28/01/2007 PET PT Sandstone 

Aqua Pura (2) Church Stretton, Shropshire England NMW S07-00671 364600 292500 07/02/2007 PET Sand and gravel 

Ashbeck Mountain 

Spring Armathwaite, Cumbria England NMW S07-00672 350500 546000 07/02/2007 PET PT Sandstone 

Ashbeck Mountain 

Spring Armathwaite, Cumbria England NMW 12349-007 350500 546000 01/01/2010 PET PT Sandstone 

Ashbrook Mountain 

Spring Church Stretton, Shropshire England NMW S07-00695 364600 292500 27/02/2007 PET Sand and gravel 

Ballygowan 

Newcastle West, County 

Limerick Ireland SW S07-00690   20/02/2007 glass Carb Limestone 

Belu (A) 

Belu spring source, 

Wenlock Edge, Shropshire England NMW S07-00667 346800 287800 05/02/2007 glass Wenlock Limestone 

Belu (B) 

Source B, Trapp, Llandeilo, 

Carmarthenshire Wales NMW S07-00680 266000 217900 12/02/2007 PET Carb Limestone 

Blenheim 

Blenheim Park, Woodstock, 

Oxon England NMW S07-00685 444100 216000 15/02/2007 glass Jurassic Limestone 

Blue Keld 

Blue Keld spring, 

Cranswick, Yorkshire England NMW S07-00697 505100 449900 13/03/2007 glass Chalk 

Brecon Carreg 

Brecon Carreg, Trapp, 

Brecon Beacons Wales NMW S07-00686 266000 217900 16/02/2007 PET Carb Limestone 

Buxton 

St Ann’s Spring, Buxton, 

Derbyshire England NMW S07-00662 405400 374500 28/01/2007 PET Carb Limestone 

Buxton 

St Ann’s Spring, Buxton, 

Derbyshire England NMW 12349-005 405400 374500 01/01/2010 PET Carb Limestone 

Caledonian Campsie Fells, Lennoxtown Scotland NMW S07-00676 262800 692500 07/02/2007 PET Carb Basalt 

Caledonian Campsie Fells, Lennoxtown Scotland NMW 12349-003 262800 692500 01/01/2010 PET  

Carding Mill Church Stretton, Shropshire England NMW S08-01388 345800 294500 24/09/2008 PET Sand and gravel 

Celtic Spring 

Churchstoke, Montgomery, 

Powys Wales NMW S07-00706 327300 294000 31/05/2007 PET Ordovician/Silurian 

Chase 

Chase Spring, Elmhurst, 

Staffs England SW 12349-010 410500 313600 01/02/2010 PET PT Sandstone 
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Source name Location Country Water 

category 

Sample No. Easting Northing Purchase date Bottle type Aquifer type 

Clearview Spring Armathwaite, Cumbria England SW 12349-009 350400 541800 01/02/2010 PET PT Sandstone 

Cotswold Spring 

Dodington Ash, Chipping 

Sodbury, Gloucestershire England SW S07-00703 374600 178000 21/04/2007 PET Jurassic Limestone 

Deep River Rock 

The Green, Lambeg, 

Lisburn, County Antrim 

Northern 

Ireland SW S07-00691 140000 522400 20/02/2007 PET PT Sandstone 

Deeside 

Lower Spring, Pannanich 

Wells, Ballater, Deeside Scotland NMW S07-00663 338000 796800 28/01/2007 PET Granite 

Deveron Valley Macduff, Banff Scotland SW S07-00681 371400 864300 14/02/2007 PET Dalradian 

Drench Huddersfield England SW S07-00688 414280 417860 16/02/2007 PET Millstone Grit 

Drench Huddersfield England SW 12349-012 414280 417860 01/02/2010 PET Millstone Grit 

Eden Falls Armathwaite, Cumbria England NMW S08-01389 350400 541800 01/10/2008 PET PT Sandstone 

Fairbourne Springs 

Churchstoke, Montgomery, 

Powys Wales NMW S07-00677 327300 294000 09/02/2007 PET Ordovician/Silurian 

Fairbourne Springs 

Churchstoke, Montgomery, 

Powys Wales NMW S07-00709 327300 294000 12/04/2007 PET Ordovician/Silurian 

Glenburn Spring Campsie Fells, Lennoxtown Scotland NMW S07-00683 262800 692500 14/02/2007 PET Carb Basalt 

Glencairn Spring 

Glencairn Spring, 

Lennoxtown Scotland NMW S08-01392 262800 692500 01/10/2008 PET Carb Basalt 

Gleneagles Blackford, Perthshire Scotland NMW S08-01391 289600 708900 01/10/2008 PET Devonian Sandstone 

Glenpatrick 

Glenpatrick Spring, 

Powerstown, Clonmel, 

County Tipperary Ireland NMW S07-00694   21/02/2007 PET Carb Limestone 

Good To Go Ireland Ireland 

Pure 

natural 

water S07-01021   05/08/2007 PET  

Hadrian Spring 

Southwick, 

Northumberland England SW S07-00713 437300 558500 15/06/2007 PET Carb Limestone 

Hadrian Spring 

Southwick, 

Northumberland England SW S08-01386 437300 558500 06/09/2008 PET Carb Limestone 

Harrogate Spa 

Harlow Hill, Harrogate, 

Yorkshire England SW S07-00665 428700 454600 05/02/2007 PET Millstone Grit 

Harrogate Spa 

Harlow Hill, Harrogate, 

Yorkshire England SW 12349-001 428700 454600 01/09/2009 glass Millstone Grit 

Highland Spring HS1, Blackford, Perthshire Scotland NMW S07-00673 289630 708930 07/02/2007 PET Devonian Sandstone 

Highland Spring HS2, Blackford, Perthshire Scotland NMW S07-00702 289630 708930 13/04/2007 PET Devonian Sandstone 

Highland Spring Blackford, Perthshire Scotland SW 12349-006 289630 708930 01/01/2010 PET Devonian Sandstone 
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Source name Location Country Water 

category 

Sample No. Easting Northing Purchase date Bottle type Aquifer type 

Highland Spring Blackford, Perthshire Scotland SW 12349-008 289630 708930 01/01/2010 glass Devonian Sandstone 

Ice Valley Shepley, Huddersfield England NMW S07-01019 420100 409800 19/07/2007 PET Millstone Grit 

Kerry spring water 

Ballyferriter, Dingle 

Peninsula, County Kerry Ireland NMW S07-00692   21/02/2007 PET Devonian Sandstone 

Kilty 

Ballymena, County Antrim, 

Northern Ireland (100 

Railway Street) 

Northern 

Ireland SW S07-01022 125300 560000 05/08/2007 PET Sand and gravel 

Lakeland Willow 

Flookburgh, Grange-Over-

Sands, Cumbria England SW S07-00666 336800 474900 05/02/2007 PET Sand and gravel 

Lakeland Willow 

Flookburgh, Grange-Over-

Sands, Cumbria England SW S07-00679 336800 474900 12/02/2007 PET Sand and gravel 

Love One 

Love One Spring, 

Heartsease, Knighton, 

Powys (Radnor Hills) Wales SW S07-00699 334560 272530 18/03/2007 PET Devonian Sandstone 

Love One 

Love One Spring, 

Heartsease, Knighton, 

Powys (Radnor Hills) Wales SW S08-01390 334560 272530 29/09/2008 PET Devonian Sandstone 

Love One 

Love One Spring, 

Heartsease, Knighton, 

Powys (Radnor Hills) Wales SW 12349-015 334560 272530 20/02/2010 PET Devonian Sandstone 

Malvern Primeswell Spring, Malvern England NMW S07-00670 377700 244700 07/02/2007 glass Granite 

Malvern Malvern England SW 12349-019 377700 244700 24/02/2010 PET Granite 

Montgomery Spring Churchstoke England NMW S07-01077 327300 294000 22/10/2007 PET Ordovician/Silurian 

Montgomery Spring Churchstoke England NMW 12349-017 327300 294000 22/02/2010 PET Ordovician/Silurian 

Morrisons Still 

Spring Water Shepley, Yorkshire England SW S07-00700 420100 409800 18/03/2007 PET Millstone Grit 

Morrisons Still 

Spring Water Shepley, Yorkshire England SW 12349-016 420100 409800 20/02/2010 PET Millstone Grit 

O’Briens Spring 

water County Kerry Ireland SW S07-00693   21/02/2007 PET Devonian Sandstone 

Pennine Spring Huddersfield England NMW S07-00687 414280 417860 16/02/2007 PET Millstone Grit 

Princes Gate 

New House Farm, Narberth, 

Pembrokeshire Wales SW S07-01024 215900 211600 12/08/2007 PET Devonian Sandstone 

Priory Falls (1) 

Churchstoke, Montgomery, 

Powys Wales NMW S07-00704 327300 294000 07/05/2007 PET Ordovician/Silurian 

Priory Falls (2) Burnbrae, Lennoxtown Scotland NMW 12349-13 327300 294000 01/02/2010 PET Ordovician/Silurian 
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Purezza 

Pitreavie Business Park, 

Dunfermline Scotland SW S07-00682 310000 685500 14/02/2007 PET Carb Limestone 

Radnor Hills 

Heartease, Knighton, 

Powys Wales NMW 12349-020 334560 272530 28/02/2010 PET Devonian Sandstone 

Royal Deeside 

Upper East Spring, 

Pannanich Wells, Ballater Scotland NMW S07-00675 338000 796800 07/02/2007 glass Granite 

Scottish Natural 

Mineral Water Campsie Fells, Lennoxtown Scotland NMW S07-00669 262800 692500 05/02/2007 PET Carb Basalt 

Shepley Shepley, Yorkshire England SW S07-00698 420100 409800 18/03/2007 glass Millstone Grit 

Shepley Shepley, Yorkshire England SW S07-00705 420020 409960 30/05/2007 glass Millstone Grit 

Silverbrook Falls 

Churchstoke, Montgomery, 

Powys Wales NMW S07-00707 327300 294000 31/05/2007 PET Ordovician/Silurian 

Speyside Glenlivet 

Slochd Spring, 

Ballindalloch, Speyside Scotland NMW S07-00689 324300 820900 17/02/2007 glass Dalradian 

Springbourne 

Church Stoke, 

Montgomery, Powys Wales NMW S07-00678 327300 294000 12/02/2007 PET Ordovician/Silurian 

Springhill 

Springhill Farm, 

Fylingdales, North 

Yorkshire England SW 12349-018 493200 501600 22/02/2010 PET Jurassic Sst 

Still Perfectly Clear 

Silver Spring, Folkestone, 

Kent England SW S07-00708 622090 137550 05/06/2007 PET Chalk 

Strath Lomond 

StrathLomond Spring, 

Campsie Fells Scotland NMW S07-01026 262800 692500 06/10/2007 glass Carb Basalt 

Strathglen 

Strathglen Spring, Campsie 

Fells, Lennoxtown Scotland NMW S07-00684 262800 692500 14/02/2007 PET Carb Basalt 

Strathlomond 

Mountain Spring Campsie Fells, Lennoxtown Scotland NMW S07-00674 262800 692500 07/02/2007 PET Carb Basalt 

Strathmore Forfar, Fife Scotland SW S07-00696 345200 750400 03/03/2007 glass Devonian Sandstone 

Strathmore Forfar, Fife Scotland SW 12349-014 345200 750400 20/02/2010 glass Devonian Sandstone 

Thirsty Planet 

Harlow Hill, Harrogate, 

Yorkshire England SW 12349-011 428700 454600 01/02/2010 PET Sand and gravel 

Tipp Active 

Barrisoleigh, County 

Tipperary Ireland NMW S07-01020   31/07/2007 PET Carb Limestone 

Tipperary Kidz 

Barrisoleigh, County 

Tipperary (Devil's Bit 

Mountains) Ireland NMW S07-01023   11/08/2007 PET Carb Limestone 
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Total Fitness 

Houlston Manor, Myddle, 

Shropshire England NMW S07-01025 347800 324700 19/09/2007 PET PT Sandstone 

Ty Nant Bethania Wales NMW S07-00668 256200 263000 05/02/2007 PET Ordovician/Silurian 

Wenlock Spring Wolverton, Church Stretton England SW 12349-002 346800 287800 01/01/2010 PET Ordovician/Silurian 

Carb: Carboniferous; PT: Permo-Triassic 

NMW: natural mineral water; SW: spring water 
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Table 4. Summary data for the bottled waters; summary includes samples from each source 

represented only once (i.e. n=67), 3 sigma detection limits applied. 

Element Units n ncens min 10th 25th median 75th 90th max 

pH  67 0 6.46 6.89 7.37 7.74 7.97 8.09 8.49 

Ca mg/L 67 0 3.37 13.2 19.3 45.6 61 90.1 135 

Mg mg/L 67 0 1.88 2.96 4.44 7.58 15.4 23.4 58 

Na mg/L 67 0 4.57 5.78 6.83 17.6 32.6 57.8 91.6 

K mg/L 67 3 <0.5 0.54 0.86 1.92 2.9 6.62 19.5 

Cl mg/L 67 0 4.43 5.24 8.68 19.6 36.5 60 143 

HCO3 mg/L 67 0 17 40 95 218 271 352 417 

SO4 mg/L 67 0 0.31 5.14 7.23 10.2 24.5 48.7 145 

NO3-N mg/L 67 7 <0.05  0.153 0.727 1.9 3.92 6.33 

Al µg/L 67 20 <0.2   0.64 1.97 5.38 14.6 

As µg/L 67 34 <0.05   0.091 0.54 2.34 4.22 

B µg/L 67 47 <20 6.75 14.4 34.2 90.4 212 483 

Ba µg/L 67 3 <2 8.6 31.6 59.5 195 407 1010 

Br µg/L 67 4 <20 22 34 62 105 222 513 

Co µg/L 67 11 <0.01 0.006 0.043 0.102 0.198 0.33 0.446 

Cr µg/L 67 39 <0.2 0.045 0.064 0.12 0.238 0.405 0.908 

Cs µg/L 67 26 <0.01 0.003 0.009 0.0182 0.164 0.659 1.5 

Cu µg/L 67 21 <0.1 0.057 0.233 0.567 1.15 1.78 32.2 

Eu µg/L 67 51 <0.004    0.004 0.015 0.09 

F mg/L 67 3 <0.02 0.044 0.058 0.094 0.214 0.338 0.577 

Ge µg/L 57 25 <0.05   0.07 0.141 0.549 1.34 

I µg/L 10 0 0.751 0.751 0.973 2.32 4.93  11 

La µg/L 67 39 <0.002    0.008 0.0199 0.035 

Li µg/L 67 4 <0.5 0.424 1.24 4.9 21 47.6 128 

Mn µg/L 67 26 <0.01  0.02 0.0615 0.474 2.12 17.2 

Mo µg/L 67 9 <0.02 0.023 0.039 0.096 0.336 0.773 2.62 

Nd µg/L 67 45 <0.001   0.003 0.008 0.013 0.033 

Ni µg/L 67 7 <0.1 0.091 0.364 0.723 1.71 2.75 4.12 

Rb µg/L 67 0 0.093 0.291 0.487 1.4 3.22 9.72 18.4 

Sb µg/L 67 1 <0.01 0.027 0.196 0.294 0.389 0.562 1.35 

Se µg/L 63 50 <0.01  0.018 0.055 0.182 0.477 2.03 

Si mg/L 67 0 2.9 3.71 4.29 5.12 6.51 8.35 12.4 

Sr µg/L 67 0 2.99 38.3 90.8 185 399 589 2070 

Tl µg/L 67 51 <0.001   0.001 0.004 0.01 0.152 

U µg/L 67 3 <0.002 0.004 0.023 0.108 1.38 2.39 13.4 

V µg/L 67 22 <0.02 0.02 0.028 0.113 0.226 1.13 13 

Y µg/L 67 2 <0.05   0.024 0.054 0.094 0.21 

Yb µg/L 67 52 <0.005    0.005 0.007 0.096 

Zn µg/L 67 36 <0.5 0.114 0.20 0.418 0.889 2.59 8.04 

Zr µg/L 67 26 <0.002   0.005 0.028 0.103 0.128 

min, max: minimum and maximum observations; n: number of observations; ncens: number below 

detection limit 
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