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Abstract 

If electrodes move during geoelectrical resistivity monitoring and their new 

positions are not incorporated in the inversion, then the resulting tomographic images 

exhibit artefacts that can obscure genuine time-lapse resistivity changes in the 

subsurface. The effects of electrode movements on time-lapse resistivity tomography 

are investigated using a simple analytical model and real data. The correspondence 

between the model and the data is sufficiently good to be able to predict the effects of 

electrode movements with reasonable accuracy. For the linear electrode arrays and 2D 

inversions under consideration, the data are much more sensitive to longitudinal than 

transverse or vertical movements. Consequently the model can be used to invert the 

longitudinal offsets of the electrodes from their known baseline positions using only 

the time-lapse ratios of the apparent resistivity data. The example datasets are taken 

from a permanently installed electrode array on an active lobe of a landslide. Using 

two sets with different levels of noise and subsurface resistivity changes, it is found 

that the electrode positions can be recovered to an accuracy of 4 % of the baseline 

electrode spacing. This is sufficient to correct the artefacts in the resistivity images, 

and provides for the possibility of monitoring the movement of the landslide and its 

internal hydraulic processes simultaneously using electrical resistivity tomography 

only. 
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Introduction 

Electrical Resistivity Tomography (ERT) is the most widely applied 

geophysical technique used to investigate landslides (Jongmans & Garambois 2007). 

It produces 2D or 3D images of the spatial subsurface resistivity structure of the 

landslide. Due to the strong dependence of resistivity on saturation, fracturing, clay 

content and weathering, it is often used to image failure surfaces (Perrone et al. 2004; 

Lapenna et al. 2005; Lebourg et al. 2005; Naudet et al. 2008; Sass et al. 2008). 

Repeated time-lapse resistivity surveys have been carried out to assess the effects of 

saturation in landslide-prone areas (Suzuki & Higashi 2001; Friedel et al. 2006; 

Jomard et al. 2007), and conceptual models have been developed to relate time-lapse 

resistivity changes to slope failure (Piegari et al. 2009). Recently several researchers 

have highlighted the possibility of continuously monitoring landslide bodies using 

automated resistivity tomography systems with permanently installed electrode 

networks (Lapenna et al. 2005; Meric et al. 2005). Prototype systems have now been 

deployed to monitor a number of active landslides using this approach (Supper et al. 

2008; Chambers et al. 2009; Lebourg et al. 2009). By providing information on 

subsurface hydrogeological changes with high spatial and temporal resolution, these 

systems aim to reveal the hydraulic precursors to landslide movement. 

Although time-lapse ERT is particularly well-suited to monitoring hydraulic 

processes (Kuras et al. 2009), the measured potentials do not depend solely on the 

resistivity, but also on the positions of the electrodes. In geoelectrical imaging these 

are usually assumed to be known and accurate. Recently several groups have 

quantified the systematic errors that are caused in resistivity data by errors in the 

positions of electrodes (Zhou & Dahlin 2003; Oldenborger et al. 2005; Wilkinson et 

al. 2008). Where permanently installed electrodes have been used for time-lapse 



monitoring, it has typically been assumed that the electrode locations are static. But 

this is clearly not the case if they are installed on an active landslide. To our 

knowledge, no-one has previously addressed the artefacts caused by mobile electrodes 

in time-lapse geoelectrical imaging (although Supper et al. (2008) qualitatively 

identified anomalous changes in potential which they attributed to landslide 

movement, and Zhou & Dahlin (2003) and Oldenborger et al. (2005) showed similar 

artefacts caused by a static misplaced electrode). However this problem has been 

recognised for several years in the related discipline of medical Electrical Impedance 

Tomography (EIT), since posture changes and breathing cause electrodes to move 

during imaging (Zhang & Patterson 2005). Research is ongoing in EIT imaging to 

invert the time-lapse impedance data to recover the unknown time-varying electrode 

positions simultaneously with the impedance distribution (Blott et al. 1998; Soleimani 

et al. 2006; Gómez-Laberge & Alder 2008; Dai et al. 2008; Li et al. 2008). Since 

medical EIT usually involves weak impedance contrasts, these approaches use one-

step linearised inversions that are less well suited to imaging the much stronger 

resistivity contrasts that occur in geoelectrical surveys. 

In this paper, we develop a new approach to recover the movements of 

permanently installed electrodes that are part of an array being used to monitor a 

landslide. We briefly describe the landslide research site and the Automated time-

Lapse ERT (ALERT) monitoring system, and we discuss the baseline image of the 

resistivity structure of the landslide body. Significant movements of the electrodes 

occurred due to landslide activity in the winter months after the baseline imaging. We 

show that, if the electrode positions are not corrected, these movements cause 

appreciable artefacts in later resistivity images. Although the effects on the data of 

resistivity changes and electrode movements are non-linear and coupled, by making 



reasonable assumptions we propose a method that allows the electrode positions to be 

determined independently. We discuss the validity these assumptions and identify 

situations where more sophisticated techniques might be required. Finally, by using 

real time-lapse data from the landslide research site, we demonstrate that we can 

identify and correct the electrode positions before inverting for the resistivity 

distribution. This removes the image artefacts and improves the fit between the model 

and the data without having to repeatedly visit the site to resurvey the electrode 

locations. 

Research Site 

The data sets in this paper were acquired from an active landslide site 12 km to 

the west of Malton, North Yorkshire, UK. The site is being monitored with an 

ALERT system (Kuras et al. 2009; Ogilvy et al. 2009) to study the hydraulics of 

landslide processes in near real-time. The system is battery powered with wind and 

solar recharging and operates fully autonomously with no need for user intervention. 

The ALERT instrument uses wireless telemetry (in this case GPRS) to communicate 

with an office based PC that runs control software and a database management 

system. The control software is used to schedule data acquisition, while the database 

management system automatically stores, processes and inverts the remotely streamed 

resistivity data. 

The landslide research site is located on a south facing valley side with a slope 

of approximately 12°. The bedrock geology, from the base to top of slope, comprises 

the Lias Group Redcar Mudstone Formation (RMF), Staithes Sandstone and 

Cleveland Ironstone Formation (SSF), and Whitby Mudstone Formation (WMF), 

which are overlain at the top of the hill by the Dogger Sandstone Formation (DF) (see 

Figure 1). The bedrock is relatively flat lying with a gentle dip of a few degrees to the 



north (British Geological Survey 1983). Slope failure at the site is occurring in the 

weathered WMF, which is highly prone to landsliding. The landslide is a very slow to 

slow moving composite multiple earth slide - earth flow, according to the 

classification scheme proposed by Cruden and Varnes (1996). The upper sections to 

the north are characterised by rotational slides with multiple minor scarps and 

cracking within the WMF, which evolve into heavily fissured earth flows that form 

discrete lobes of slipped material overriding the SSF bedrock to the south. Borehole 

logs from the western lobe (Figure 1) indicate a maximum thickness of slipped 

material within the earthflows of approximately 5 m. 

The data were collected from one of five permanently installed parallel linear 

electrode arrays running from the base to the top of the hill (dark and light blue lines, 

Figure 1). These formed an initially regular rectangular grid of 38 m × 147.25 m. 

Each linear array comprised 32 electrodes initially spaced at 4.75 m (Chambers et al. 

2009), and the inter-line spacing was 9.5 m. The array that was selected for this study 

ran along one of the active lobes of the landslide (dark blue line, Figure 1). Data were 

acquired from the arrays on a daily basis using a dipole-dipole measurement scheme 

with dipole lengths of a = 4.75, 9.5, 14.25 and 19 m, and dipole separations na, where 

n = 1 - 8. Each of the 516 measurements was made twice in reciprocal configurations 

(Parasnis 1988), with the mean of the two measurements being taken as the apparent 

resistivity for that particular configuration. The difference between the measurements 

was used to calculate the standard error in the mean for each configuration, which we 

refer to as its reciprocal error. This was used to estimate the levels of the random error 

in the data and to weight the data accordingly in the resistivity inversions. The 

distributions of reciprocal errors in the data sets are given in Table 1. The greater 

reciprocal errors in August 2009 compared to either March 2008 or March 2009 are 



due to the increased contact resistances typically encountered in the summer months 

caused by drying of the ground in the vicinity of the electrodes. The mean, minimum 

and maximum contact resistances in August 2009 were 535 Ω, 175 Ω, and 3415 Ω 

respectively. The corresponding values for March 2009 were 165 Ω, 115 Ω, and 

365 Ω. Nevertheless, even in August the data quality is still excellent, with over 90 % 

of the data having reciprocal errors <1 %. 

 
Table 1. Reciprocal error distributions 

Reciprocal error level Fraction of data set below reciprocal error level 
 March 2008 March 2009 August 2009 

0.10 % 75 % 72 % 52 % 
0.25 % 92 % 91 % 71 % 
0.50 % 98 % 98 % 84 % 
1.0 % 99 % 99 % 92 % 
5.0 % 100 % 100 % 97 % 

 

The ALERT system and electrodes were installed in March 2008 at which 

time the electrode positions were surveyed using the Leica SmartRover, a real-time 

kinematic GPS receiver with centimetric accuracy. The baseline dataset used in this 

study was acquired shortly after installation in the same month. The inverted 

resistivity image of these data is shown in Figure 2 and the raw data are shown as a 

pseudosection in Figure 3a. The data were inverted with the Res2DInv software using 

a finite-element method to permit the inclusion of topography, a complete Gauss–

Newton solver, and L2 model smoothness and data discrepancy constraints (Loke et 

al. 2003). Convergence was achieved after 5 iterations with an extremely good fit 

between the measured and inverted data, as indicated by an RMS error of 1.02 %. The 

image exhibits resistivity variations consistent with the expected stratigraphic 

sequence, with the mudstone formations significantly more conductive than the SSF. 

There is clear evidence of slipped conductive WMF material overlying the SSF 

between distances of 60 m and 80 m. Within the WMF, the higher surface resistivities 



in the vicinity of the main scarp are most likely due to increased localised fracturing. 

The position of the WMF / SSF boundary was inferred from the resistivity image, 

while the SSF / RMF boundary has been positioned to match the log of an auger hole 

at x = -6 m. In recent years, the active lobes of the landslide have been observed to 

move by many tens of centimetres per annum. Movement typically occurs in the 

winter months of January and February when the slope is at its wettest. During this 

period water can be observed accumulating in the basins caused by rotational slips 

near the top of the slope, and can be seen emerging from the front of the lobes. 

Drainage from the site also occurs along a spring line at the base of the SSF, where 

groundwater appears to be running off the surface of the less permeable underlying 

RMF. Recently installed piezometers have revealed elevated pore pressures at the 

failure planes within the slipped WMF and at the interface between the slipped WMF 

material and the underlying SSF, as indicated by head increases within the lobes of 

almost 2 m during the winter as compared to the summer months. 

In this paper, we consider two subsequent resistivity data sets, both acquired 

after the winter 2008/2009 period of movement had finished. The first of these sets 

was measured in March 2009 under similar saturation and temperature conditions to 

the baseline set of March 2008. The second was from August 2009, at which time the 

electrode positions were resurveyed. The raw data for March 2009 are shown as a 

resistivity pseudosection in Figure 3b and as a normalised pseudosection (i.e. divided 

by the baseline data) in Figure 3c. Similarly the August 2009 data are shown in Figure 

3d and Figure 3e. Inverted images of these data are shown in Figure 4a and Figure 4c 

respectively. The images and pseudosections were produced under the assumption 

that the electrodes had not moved from their March 2008 positions. Compared to the 

baseline set, there is noticeable new structure in the regions of the images highlighted 



by the dashed ellipses. This is revealed more clearly in Figure 4b and Figure 4d, 

which show the March and August 2009 images normalised to the baseline image. It 

is also worth noting that the RMS misfit errors (1.45 % and 1.46 % respectively) are 

somewhat larger than that of the baseline set. These changes are also clearly visible in 

the resistivity and normalised pseudosections in Figure 3, appearing as linear 

anomalies radiating from the region centred on electrode 9. The changes seemed 

unlikely to be due to the sudden appearance of genuine localised resistivity structures, 

since no similar anomalies were present in the baseline image or pseudosection. 

Therefore we concluded that they were most likely to be artefacts caused by the use of 

incorrect electrode positions. 

Effects of electrode movement 

To investigate further, we examined the effects on the measured apparent 

resistivities caused by changing the positions of the electrodes in linear dipole-dipole 

configurations. The electrode movements between March 2008 and August 2009 are 

shown in Figure 5 as longitudinal (along-line) and transverse (perpendicular) offset 

distances. The linear array runs approximately S-N from the bottom to the top of the 

active lobe, so positive longitudinal offsets are to the north (up the slope) and positive 

transverse offsets are to the east (towards a gully between adjacent landslide lobes). 

To quantify the effects of these offsets we examine the ratio ra of the measured 

apparent resistivity to its baseline value. This is calculated using the same geometric 

factor for the baseline and subsequent measurements; therefore ra is also given by the 

ratio of the measured transfer resistances. We also use a simplified analytical 

expression to model ra for electrode movements on the surface of a homogeneous 

half-space which also has a time-dependent resistivity. We denote the baseline 

distances between the electrodes A, B, M, and N to be AM, BM, AN, and BN, and the 



distances at the later time to be AM′, BM′, AN′, and BN′. We also denote the ratio of 

the homogeneous half-space resistivities to be r = ρ′/ρ. The apparent resistivity ratio 

for the homogeneous half-space is then given by 
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The effects of electrode movement and changing resistivity ratio are shown in Figure 

6. The along-line electrode spacing is taken to be 4.75 m, and a particular electrode 

(in this case electrode 9 at 38 m) is offset from its assumed position. Figure 6a shows 

the effect of a longitudinal movement of 1 m on the apparent resistivities of the 

dipole-dipole configurations with a = 4.75 m and n = 1 - 4. Similarly the effects of a 

1 m transverse movement on the same configurations are shown in Figure 6b. It is 

clear that the linear dipole-dipole configuration is much more sensitive to longitudinal 

electrode movements than transverse. It can be seen by comparing Figure 6a with 

Figure 6c, which shows the effects of simultaneous 1 m longitudinal and transverse 

movements, that the effect of the transverse movements is typically negligible (with 

the exception of n = 1 where the largest change is ra ≈ 1.6 in Figure 6a, and ra ≈ 1.5 in 

Figure 6c). In Figure 6d, the effects of changes in subsurface resistivity as well as 

electrode movements are shown. For each n-level we have used a different resistivity 

ratio r to approximate the effects of resistivity changes that vary with the depth-of-

investigation (Barker 1989). 

The sensitivity of a given configuration to longitudinal and transverse 

electrode movements can be calculated, in the case of a homogeneous half-space, 

from the expressions for the geometric factor  
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We consider the fractional changes in apparent resistivity |dρa/ρa| = |dK/K| caused by 

small longitudinal (dl) and transverse displacements (dt) on the slope. In each case the 

displacements are expressed as fractions of the unit electrode spacing, a. The results 

show that |dρa/ρa| ∝ |dl/a|, but that |dρa/ρa| ∝ |dt/a|2. Therefore for small 

displacements dl < a and dt < a it is clear that longitudinal offsets will cause greater 

changes than transverse offsets. We define displacement sensitivities in the 

longitudinal and transverse directions as Sl = |dρa/ρa| / |dl/a| and 

St = |dρa/ρa| / |dt/a|2 respectively. These are listed with their functional forms and 

numerical values for dipole-dipole and Wenner-Schlumberger configurations in Table 

2 and Table 3 respectively.    

It is interesting to note from Figure 6 that the magnitudes of the changes in ra 

caused by longitudinal electrode movement do not vary rapidly with n. This can be 

understood by examining the longitudinal sensitivities in Table 2. For dipole-dipole 

configurations dρa/ρa is only weakly dependent on n (in fact for large n it tends to a 

constant). Interestingly, for the Wenner-Schlumberger array dρa/ρa varies 

approximately as 1/n for displacements of the outer electrodes, although for the inner 

electrodes it again depends only weakly on n and tends to a constant. The results in 

Table 2 show that dipole-dipole measurements are somewhat more sensitive to 

longitudinal electrode displacements than Wenner-Schlumberger configurations, and 

hence are better suited to tracking movements of the electrodes using resistivity data. 



Table 2. Sensitivity Sl = |dρa/ρa| / |dl/a| of dipole-dipole and Wenner-Schlumberger configurations to 

longitudinal electrode movements 

 Dipole-Dipole Wenner-Schlumberger 
 Outer electrodes Inner electrodes Outer electrodes Inner electrodes 
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1 0.417 2.250 0.750 1.250 
2 0.583 1.667 0.417 1.083 
3 0.675 1.458 0.292 1.042 
4 0.733 1.350 0.225 1.025 
5 0.774 1.283 0.183 1.017 
6 0.804 1.238 0.155 1.012 
7 0.826 1.205 0.134 1.009 
8 0.844 1.181 0.118 1.007 

 

 

Table 3. Sensitivity St = |dρa/ρa| / |dt/a|2 of dipole-dipole and Wenner-Schlumberger configurations to 

transverse electrode movements 

 Dipole-Dipole Wenner-Schlumberger 
 Outer electrodes Inner electrodes Outer electrodes Inner electrodes 
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1 0.132 1.313 0.438 0.438 
2 0.128 0.528 0.132 0.132 
3 0.114 0.321 0.064 0.064 
4 0.101 0.229 0.038 0.038 
5 0.090 0.177 0.025 0.025 
6 0.081 0.144 0.018 0.018 
7 0.073 0.121 0.013 0.013 
8 0.067 0.105 0.010 0.010 

 

 

Table 4. Sensitivity Sh = |dρa/ρa| / |dh/a| of dipole-dipole and Wenner-Schlumberger configurations to 

perpendicular deformations of the surface 

 Dipole-Dipole Wenner-Schlumberger 
 Outer electrodes Inner electrodes Outer electrodes Inner electrodes 

n Sh Sh Sh Sh 
1 0.070 0.062 0.033 0.092 
2 0.180 0.086 0.009 0.142 
3 0.192 0.101 0.010 0.152 
4 0.192 0.111 0.009 0.156 
5 0.191 0.118 0.008 0.158 
6 0.190 0.124 0.006 0.160 
7 0.188 0.128 0.005 0.161 
8 0.186 0.132 0.005 0.162 



Another possible source of electrode displacements on a landslide is 

perpendicular movement of the surface caused by e.g. rotational slips or the 

development of scarps. We have calculated the sensitivity of dipole-dipole and 

Wenner-Schlumberger configurations to small deformations (dh) of the surface in the 

direction perpendicular to the slope using the R2 finite-element forward modelling 

code (Binley & Kemna 2005). The results were calculated for |dh/a| = 0.005, 0.01, 

0.02 & 0.05 and indicate that the sensitivity can be expressed as Sh = |dρa/ρa| / |dh/a|. 

Table 4 gives Sh as a function of n, and comparison with Table 2 shows that the 

sensitivity to perpendicular deformation is approximately an order-of-magnitude less 

than the sensitivity to longitudinal displacement. 

Having calculated the effects of electrode movements in a simplified 

analytical example, we used the same approach to examine the apparent resistivity 

ratios from the field measurements using the March 2009 and the baseline data sets. 

Figure 7a shows, in red, the measured apparent resistivity ratios and, in blue, the 

ratios calculated from the measured longitudinal movements (assuming no changes in 

the resistivity of the homogeneous half-space). Although the real resistivity 

distribution is clearly strongly heterogeneous, by using the ratio of the data the effects 

of the static heterogeneity are suppressed. This is similar to dividing by reference data 

to suppress 3D effects in 2D imaging (Ramirez & Daily 2001) and artefacts due to 

errors in electrode positions and boundary conditions (Gasulla et al. 2005). It also 

agrees with the findings of Zhou & Dahlin (2003) that electrode position errors cause 

similar effects in homogeneous and inhomogeneous models. The fit between the 

measured and calculated ratios is already good, with an RMS misfit error of 3.77 %. 

By including the measured transverse movements (Figure 7b) the fit is improved 

slightly to 3.69 %, with an obvious improvement only visible for the largest calculated 



ra on the n = 1 curve. Although static heterogeneity (i.e. spatial variation in subsurface 

resistivity) is suppressed by using ratio data, temporal variations in resistivity will 

affect the apparent resistivity ratio. To help account for these changes, as in Figure 6d, 

we include a bulk resistivity ratio r that varies as a function of the depth-of-

investigation (i.e. effectively with the n-level for a fixed dipole length a). This 

assumes that the time-lapse changes in resistivity are caused primarily by changes in 

temperature and saturation, and that these changes depend predominantly on depth. 

Note that changes in the resistivity distribution caused by mass movement may lead to 

spatially localised apparent resistivity changes that will not be well described by this 

term. But this is not expected to have a large effect in this case since the rate of lobe 

movement is quite slow (typically several decimetres per year). The use of a ratio 

term is appropriate here since resistivity is approximately proportional to saturation 

(Archie 1942) and inversely proportional to temperature (Hayley et al. 2007). The 

ratios were estimated simply by inspection of the measured and predicted data, and 

were found to be 1.00, 1.02, 1.03 and 1.03 for n = 1, 2, 3 and 4 respectively. They are 

close to unity since the saturation and temperature conditions would have been similar 

in March 2009 to the baseline conditions in March 2008. In Figure 7c these resistivity 

ratios have been applied in addition to the measured movements. This has improved 

the RMS misfit to 2.62 %. It is clear from Figure 7a - c that the greatest effect on the 

apparent resistivity ratios is caused by the longitudinal electrode movements, followed 

by the depth-dependent changes in the subsurface resistivity. The effect of transverse 

movements is, apart for a small number of n = 1 data, effectively negligible. By using 

the measured longitudinal electrode positions in the resistivity inversion, the 

subsurface image is significantly improved (as shown in Figure 7d and normalised to 

the baseline in Figure 7e). Comparison with Figure 4a and Figure 4b shows that the 



anomalous resistivity structures have been removed, and the RMS misfit of the 

resistivity inversion has improved to 1.02 %, the same as for the baseline model. Note 

that the depth-dependent resistivity ratios are not used in the resistivity inversion; 

their purpose is only to improve the fit between the modelled and observed resistivity 

ratios by accounting, albeit in an approximate fashion, for changes caused by 

subsurface resistivity variations rather than by electrode movements. 

The analysis of Figure 7 suggests that it should be possible to recover the 

longitudinal electrode offsets from time-lapse resistivity data by fitting the observed 

apparent resistivity ratios to those calculated for a homogeneous half-space. But the 

data were obtained under similar conditions to the baseline and so represent a nearly 

ideal case. It is important to examine how well or otherwise the calculated ra fit the 

data when saturation and temperature conditions differ from the baseline. Figure 8 

presents an analysis of the August 2009 data using the same approach. The calculated 

ra (blue lines) are identical to those for March 2009 since it is assumed that no 

movement occurred between these times (as noted earlier, movement of the lobe 

typically occurs in January and February). The observed ra (red lines) are 

considerably “noisier” than those in Figure 7, although this is likely to be due to 

changes in the resistivity distribution of the landslide as well as the observed increase 

in random noise (see Table 1). Despite less ideal conditions, the August ra data show 

similar behaviour to the March data; the RMS misfit values are higher but the 

measured longitudinal movements seem to account for the gross features in the 

observed ra values (Figure 8a). As in Figure 7, the fit improves slightly with the 

correction of the transverse offsets (Figure 8b), but is better still with the inclusion of 

estimated depth-dependent resistivity ratios (r = 0.89, 0.93, 0.96, 0.98 for n = 1, 2, 3 

and 4 respectively, see Figure 8c). Again, correcting the longitudinal electrode 



positions removed the anomalies in the resistivity image, and reduced the RMS misfit 

of the resistivity inversion to, in this case, 1.07 % (see Figure 8d and Figure 8e). The 

normalised resistivity image (Figure 8e) reveals a distinct layering. We speculate that 

the resistivity reduction in the top ~3 m of the image is due to the increased 

subsurface temperature compared to the baseline. Only 5.5 mm rain fell at the site in 

the week preceding the collection of the August 2009 data; therefore it seems unlikely 

that increased saturation would account for these resistivity decreases relative to the 

baseline conditions. It seems more probable that the saturation has decreased 

throughout the top ~10 m of the subsurface, leading to the observed increase in 

resistivity in the lower layer, and that this has been masked by the greater effect of 

increased temperature in the top ~3 m. Some supporting evidence for this 

interpretation is provided by ongoing temperature monitoring at the site, which 

indicates an average thermal diffusivity in the range 0.03 - 0.06 m2/day, giving an 

average characteristic depth of penetration of 1.9 - 2.7 m for surface temperature 

fluctuations. 

Electrode position inversion 

The preceding analysis shows that uncorrected movements in the longitudinal 

positions of electrodes on a linear ERT array cause significant artefacts in apparent 

resistivity data and the resulting inverted images. If these position offsets are 

measured and corrected, then the artefacts are removed and images of similar quality 

to those of the baseline can be recovered. Even in the presence of noise, the results 

suggest that a model based on longitudinal electrode movements on a homogeneous 

half-space combined with depth-dependent time-lapse resistivity changes can be used 

to predict the observed artefacts. By using the ratios of the observed data to the 

baseline, the effects of subsurface heterogeneity seem to be sufficiently suppressed to 



make inverting for the longitudinal electrode offsets a possibility using this simplified 

analytical model. 

To test this hypothesis we attempt to find the vectors of longitudinal electrode 

movements m and depth-dependent resistivity ratios r that minimise the merit 

function  

 jj

jj

j

i

i mmmef )(
2 ∑∑∑ ++= θβα , (4) 

where e = ra,pre – ra,obs is the data discrepancy vector between the predicted apparent 

resistivity ratios calculated from eq. 1 and the observed ratios, α and β are the weights 

of the model constraints, and θ is the Heaviside step function. The first term of the 

merit function imposes an L2-norm constraint on the data discrepancy, the second 

term is an L1-norm damping constraint on the length of the movement vector, and the 

third term applies a negativity constraint to the elements of the movement vector (the 

electrodes should move towards the origin, i.e. downhill). Note that the elements of r 

are allowed to vary freely without constraint. We minimise f using the 

FindMinimum[] function in the Mathematica computational algebra software. This is 

a Quasi-Newton method which uses the BFGS algorithm to update the approximated 

Hessian matrix (Press et al. 1992). Convergence was judged to have occurred when 

the relative change in f between subsequent iterations was <1 %. 

The results of this approach for the March 2009 data are shown in Figure 9a. 

The red line shows the measured longitudinal electrode movements, the blue line 

shows the movements predicted by minimising f. To obtain these results we used 

weights of α = 0.06 m-1 and β = 0.32 m-1 in eq. 4. The fit to the data is shown in 

Figure 9b for a = 4.75 m and n = 2 - 4. The n = 1 data is shown for completeness, but 

they were not used in the prediction of the longitudinal movements or the calculation 

of the RMS misfit since their sensitivity to transverse movements, although weak, 



cannot be neglected. The fitted depth-dependent resistivity ratios are also shown and 

agree very closely with those estimated by inspection in Figure 7c (the ratio for n = 1 

is taken from the Figure 7 estimate). The fit between the observed and predicted data 

is very good, with an RMS misfit of 1.82 %. The predicted electrode positions are all 

within 0.2 m (or 4 % of the unit electrode spacing) of their measured positions. Using 

the predicted electrode positions in the resistivity inversion produces an RMS misfit 

of 1.06 %, very close to that achieved using the measured positions. The resulting 

resistivity image (Figure 9c and Figure 9d) is also extremely similar (cf. Figure 7d and 

Figure 7e) and does not exhibit the anomalies that were present before the electrode 

positions were corrected (Figure 4a and Figure 4c). 

For the August 2009 data, levels of random noise and heterogeneous 

resistivity changes were greater, therefore the model constraint weighting factors were 

increased to α = 0.08 m-1 and β = 0.40 m-1. Despite this, the electrode positions could 

still be predicted to approximately the same level of accuracy. The predicted 

movements are shown in Figure 10a, and again are all within 0.2 m of the measured 

positions, although the number of larger discrepancies (in the range 0.1 - 0.2 m) has 

increased from 3 for the March data to 6. The fit to the data (as shown in Figure 10b) 

is reasonable, with an RMS misfit of 6.54 %. Once again, the fitted depth-dependent 

resistivity ratios agree very closely with those in Figure 8c, and the inverted resistivity 

image (Figure 10c and Figure 10d) is very similar to that for the measured electrode 

positions (Figure 8d and Figure 8e). While the RMS misfit of the resistivity inversion 

is slightly higher (1.15 % cf. 1.07 %), it is better than that of the uncorrected inversion 

(at 1.46 %). 

 

 



Discussion 

The above example has demonstrated that electrode movements on an active 

landslide can be recovered by inverting time-lapse geoelectrical data using a 

simplified analytical forward model. Whilst the primary intention of this study is as a 

proof-of-concept, we also aim to discuss some aspects of the general applicability of 

the method, namely the sensitivity of the inversion to the regularisation constraints; 

the applicability of the method in regions of stronger heterogeneity; and its 

applicability in regions of more rugged topography. 

 The model damping (α) and negativity (β) constraints were chosen to 

minimise the misfit between the inverted and the measured longitudinal movements. 

Generally, however, the measured positions would not be available when predicting 

electrode movements using this technique. Therefore it is desirable to assess the 

sensitivity of the results to the regularisation parameters. Figure 11 shows the mean 

misfit between the inverted and measured electrode movements as functions of α and β for the March 2009 data. The values highlighted by the vertical arrows 

(α = 0.06 m-1, β = 0.32 m-1) were used to generate Figure 9, but similar results would 

have been obtained for 0.01 m-1 < α < 0.10 m-1 and for β > 0.30 m-1. The insets in 

Figure 11a show that if the inversion is underdamped (e.g. α = 0 m-1) then large 

movements are accurately recovered, but nearly all electrodes with small or no 

movement are assigned spurious displacements of between 0.1 and 0.6 m. Conversely 

if the inversion is overdamped (e.g. α = 0.25 m-1) then the electrodes that do not move 

are correctly predicted, but the movements of the others are underestimated by up to 

0.6 m. In Figure 11b, the insets show that if the negativity constraint is too small, then 

spurious upslope movements can be predicted. Larger values of β produce results very 

similar to those in Figure 9a, which is to be expected since none of the electrodes 



actually moved upslope. However, it is possible in some cases that local upslope 

movement could actually occur (e.g. as a result of a rotational slip). It is likely that 

these displacements could be predicted by the inversion, since small upslope 

displacements can result even when β > 0 (e.g. see electrode 8 in Figure 9a). But the 

range of β that produced good predictions would have an upper limit in such cases, 

and it might be worth experimenting with different regularisation schemes instead 

(e.g. smoothness constraints (Loke et al. 2003) on adjacent electrode displacements). 

The position inversion method depends on approximating the movement-

induced changes in apparent resistivity ratios using a model with a homogeneous 

subsurface. In the preceding case history, the moving electrodes are being carried by a 

lobe of mudstone slipping over underlying sandstone with a resistivity contrast of 

approximately an order-of-magnitude. The thickness of the lobe in the resistivity 

images is ~5 m, which is similar to the maximum median depth-of-investigation of 

the data used to invert the electrode positions (for a = 4.75 m and n = 4, the median 

depth-of-investigation z1,4 = 5.8 m). To investigate the effects of stronger static 

heterogeneity on resistivity ratio data and on the resulting position inversion, we 

consider two simple models: a vertically faulted half-space (Figure 12a) and a 

vertically faulted half-space with a covering layer of thickness z1,4 (Figure 12b). The 

apparent resistivities were calculated using the method of images for the faulted half-

space (Patella 1997) and using the Res2DMod forward modelling software for the 

covered faulted half-space. The electrode spacing a = 4.5 m was chosen to simplify 

the model discretisation; this spacing giving a corresponding z1,4 = 5.5 m. In each 

case, the electrode immediately to the right of the fault at x = 2.25 m was moved in 

the -x direction i) closer to the fault (red arrows and ratio curves) and ii) across the 

fault (blue arrows and ratio curves). The ratio curves are shown in Figure 12 for a = 



4.5 m, n = 1 only, but all the data for n = 1 - 4 were used to invert for the electrode 

position. In each case the method was tested for resistivity contrasts of ρ2/ρ1 = 0.001, 

0.01, 0.1, 1, 10, 100, and 1000, although for clarity the data are only shown for 

contrasts of 0.1, 1, and 10. The results of the position inversion for the displaced 

electrode in the two models are shown in Table 5 and Table 6. The results suggest that 

the method can be applied with good success (i.e. recovering electrode positions to 

within 4 % of the unit electrode spacing) providing either i) that the movement does 

not cause the electrode to cross a resistivity boundary or ii) that the electrode is 

carried across a boundary by a moving layer of thickness comparable to the depth-of-

investigation of the data used in the inversion. If either of these conditions is met, then 

these results suggest that the position inversion will work well even in the presence of 

resistivity contrasts of up to three orders-of-magnitude. 

 

Table 5. Inverted electrode positions, x, from a vertically faulted half-space model with contrast ρ2/ρ1  ρ2/ρ1 Actual x Inverted x Actual x Inverted x 
0.001 0.75 0.93 -0.75 -2.24 
0.01 0.75 0.93 -0.75 -2.19 
0.1 0.75 0.90 -0.75 -1.77 
1 0.75 0.75 -0.75 -0.75 

10 0.75 0.63 -0.75 -0.35 
100 0.75 0.61 -0.75 -0.30 

1000 0.75 0.61 -0.75 -0.30 
 

Table 6. Inverted electrode positions, x, from a covered vertically faulted half-space model with 

contrast ρ2/ρ1  ρ2/ρ1 Actual x Inverted x Actual x Inverted x 
0.001 0.75 0.61 -0.75 -0.85 
0.01 0.75 0.62 -0.75 -0.84 
0.1 0.75 0.67 -0.75 -0.81 
1 0.75 0.75 -0.75 -0.75 

10 0.75 0.75 -0.75 -0.75 
100 0.75 0.75 -0.75 -0.77 

1000 0.75 0.74 -0.75 -0.77 
 



A further approximation used in the position inversion is that the apparent 

resistivity ratios are modelled assuming a flat surface. This should be valid providing 

that the topography is locally close to flat, i.e. undulating by <10° (Tsourlos et al. 

1999) on the length scale of the electrode configurations being used. However 

landslides often exhibit more rugged topography than this. In these cases it is likely 

that significant errors in the inverted positions would be caused by using the flat half-

space model. It might be possible to use a finite element modelling code to include the 

effects of topography, e.g. R2 (Binley & Kemna 2005). However, if the topography 

changes significantly during the movement period, it is unlikely that this could be 

recovered as well as the longitudinal displacements. This is because, as already shown 

in Table 4, the data are approximately an order-of-magnitude less sensitive to 

deformations of the surface than to longitudinal displacements. 

Conclusion 

If permanently deployed electrodes move from their assumed positions while 

they are being used for time-lapse resistivity monitoring, then artefacts will be 

introduced in the resulting images, degrading the quality of the fit to the data and 

obscuring the structure of the subsurface resistivity images. Therefore it is important 

to update the positions before the data is inverted to produce the image. Manual or 

automated resurveying of the electrodes locations for every time-lapse dataset would 

be costly and/or technically challenging.  

However, we have shown that it is possible to extract the electrode movements 

from the geoelectrical data and then use these to correct their positions in the 

resistivity inversion. Under certain circumstances (e.g. if the electrodes are being 

carried progressively downslope by a body of displaced material such as in a slide, 

spread or flow) using the ratios of the apparent resistivities to those of the baseline 



data can suppress the effects of static heterogeneities in the resistivity distribution. 

This allows the effects of electrode movement to be calculated from an analytical 

homogeneous half-space model. In these situations, the apparent resistivity ratios do 

not depend strongly on the resistivity distribution (only on the time-lapse changes 

between distributions), and the analytical model can be used to invert for the electrode 

position offsets by making simplifying assumptions about the nature of the time-lapse 

changes in the resistivity distribution (in this case that they are a function of depth 

only). 

We demonstrated this technique using data from a permanently installed linear 

electrode array running up an active lobe of a landslide. Two different time-lapse 

datasets were used that had a common baseline. The first set was acquired a year after 

the baseline under similar temperature and saturation conditions and represented a 

close-to-ideal case. The second set was taken 5 months later, and showed greater and 

more heterogeneous time-lapse variations in the recorded apparent resistivity data. 

However, in both cases the simple position inversion routine was able to predict the 

electrode displacements to within 0.2 m, or 4 % of the electrode spacing. Using the 

predicted positions in the subsequent resistivity inversion improved the fit to the data 

and removed the image artefacts that had been caused by assuming that the electrodes 

had not moved. 

We aim to use this technique to track the electrode movements during the next 

period of landslide movement. Our research is ongoing into using series of time-lapse 

datasets to constrain the evolution of the position offsets to be a smooth function of 

time. While the research presented here addresses movements parallel to the linear 

array, we will also investigate using measurements in the perpendicular direction to 

determine transverse offsets as well. This would enable us to use similar techniques to 



track the electrode movements in 2D, allowing for position-corrected 4D (i.e. 3D + 

time-lapse) inversion. The ultimate goal of this research is to combine the resistivity 

and position inversions into one algorithm, similar to those under development for use 

in medical electrical impedance tomography. This would enable the simultaneous 

reconstruction of the resistivity image and electrode positions in more complex 

situations with stronger transient heterogeneity and more rugged topography. 
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Figure 1. Site plan showing the location of the ALERT station, ERT monitoring arrays (dark and light 
blue lines), major geomorphologic features (top and base of the main scarp - black dashed lines; toe of 
the earth flows – dotted black lines) and bedrock geological boundaries (white dashed lines) between 
the Dogger Sandstone (DF), Whitby Mudstone (WMF), Staithes Sandstone (SSF) and Redcar 
Mudstone (RMF) formations. Borehole and piezometer locations are shown by filled and open circles 
respectively. (Aerial Photo © UKP/Getmapping Licence No. UKP2006/01) 



 
 
Figure 2. 2D resistivity image inverted from the baseline data set (March 2008). The inferred 
boundaries between the Whitby (WMF), Staithes (SSF) and Redcar (RMF) formations are shown by 
dotted black lines. Stratigraphic logs of boreholes are shown in greyscale. The main scarp and slipped 
WMF material are indicated by the black arrows.  



 
 

Figure 3. Raw data shown as resistivity and resistivity ratio pseudosections for (a) March 2008 
(baseline), (b) & (c) March 2009, (d) & (e) August 2009. 



 
 
Figure 4. 2D resistivity image inverted from the uncorrected (a) March 2009 and (c) August 2009 data 
sets. The images are shown normalised to the baseline image in (b) and (d). Anomalous features are 
highlighted by dashed ellipses. 



 
 
Figure 5. Changes in electrode positions between March 2008 and August 2009, shown as longitudinal 
(red) and transverse (blue) offset distances. 



 
 
Figure 6. Effects on the apparent resistivity ratio of (a) longitudinal electrode movement, (b) transverse 
electrode movement, (c) longitudinal and transverse movement, (d) longitudinal and transverse 
movement and depth-of-investigation dependent resistivity ratio r. Data are plotted against 
configuration midpoint distance for a = 4.75 m and n = 1 - 4. ra curves for subsequent n-levels are 
shown offset for clarity; for each n the light grey horizontal axis indicates ra = 1. 



 
 
Figure 7. March 2009 apparent resistivity ratios and inverted images. Measured apparent resistivity 
ratios (red) and calculated ratios (blue) for (a) measured longitudinal movement only, (b) measured 
longitudinal and transverse movement, and (c) measured longitudinal and transverse movement and 
estimated depth-dependent resistivity ratio r. Data are shown for a = 4.75 m and n = 1 - 4. For each n-
level the light grey horizontal axis indicates ra = 1. (d) and (e) Resistivity and normalised resistivity 
images obtained after measured longitudinal position corrections. 



 
 
Figure 8. August 2009 apparent resistivity ratios and inverted images. Measured apparent resistivity 
ratios (red) and calculated ratios (blue) for (a) measured longitudinal movement only, (b) measured 
longitudinal and transverse movement, and (c) measured longitudinal and transverse movement and 
estimated depth-dependent resistivity ratio r. Data are shown for a = 4.75 m and n = 1 - 4. For each n-
level the light grey horizontal axis indicates ra = 1. (d) and (e) Resistivity and normalised resistivity 
images obtained after measured longitudinal position corrections. 



 
 
Figure 9. March 2009 (a) measured (red) and predicted (blue) longitudinal electrode movements. (b) 
measured (red) and predicted (blue) apparent resistivity ratios and depth-dependent resistivity ratios r 
(Data fitted to a = 4.75 m and n = 2 – 4. Dashed lines show data not used in fit. For each n-level the 
light grey horizontal axis indicates ra = 1). (d) and (e) Resistivity and normalised resistivity images 
obtained after predicted longitudinal position corrections. 



 
 
Figure 10. August 2009 (a) measured (red) and predicted (blue) longitudinal electrode movements. (b) 
measured (red) and predicted (blue) apparent resistivity ratios and depth-dependent resistivity ratios r 
(Data fitted to a = 4.75 m and n = 2 – 4. Dashed lines show data not used in fit. For each n-level the 
light grey horizontal axis indicates ra = 1). (d) and (e) Resistivity and normalised resistivity images 
obtained after predicted longitudinal position corrections. 



 
 
Figure 11. Effects of varying (a) the damping constraint and (b) the negativity constraint on the misfit 
between the inverted and measured electrode movements. Results are for the March 2009 data.  Insets 
show the inverted (blue) and measured (red) movements for the constraint values indicated by the 
diagonal arrows. The vertical arrows show the constraints used in Figure 9. 



 
 
Figure 12. Dependence of apparent resistivity ratio ra on resistivity contrast ρ2/ρ1 in (a) a vertically 
faulted half-space and (b) a vertically faulted half-space with a covering layer of thickness equal to z1,4 
(the median depth-of-investigation of a dipole-dipole configuration with a = 4.5 m, n = 4). The red 
curves show ra for a = 4.5 m, n = 1 caused by an electrode displacement that does not cross the fault; 
the blue curves show ra for a displacement that crosses the fault. 


