



# How influenza pandemic control can lead to unpreparedness: modelling the ecotoxicity of pharmaceutical usage

Andrew Singer acsi@ceh.ac.uk

Centre for Ecology & Hydrology Wallingford, UK

# "Dilution is the Solution to Pollution"

- Many drugs are minimally metabolised in the body.
- As a general rule, if a drug persists in the body it will likely persist in the environment.
- Is there enough water available to dilute projected drug use during an influenza pandemic?
- If not, what's the potential impact?







#### PANDEMIC FLU

January 2007 Vol 62 Supplement I

A national frameworesponding to an in



Pandemic flu: clinical management of patients with an influenza-like illness during an influenza pandemic

Provisional guidelines from the British Infection Society, British Thoracic Society and Health Protection Agency in collaboration with the Department of Health

# What is Pandemic Preparedness?

... to slow the spread of influenza, through:

- 1) vaccines,
- 2) non-pharmaceutical measures
- 3) antivirals





# **Impact Assessment**







## 1. epidemic model







#### GLEaM – Global Epidemic and Mobility model

#### air mobility layer

- 3400 airports in 220 countries
- 20,000 connections
- traffic data (IATA, OAG)
- >99% commercial traffic

#### commuting mobility layer

- daily commuting data
- >30 countries in 5 continents
- universal law of mobility

#### demographic layer

- cells ¼° x ¼°
- tessellation around transportation hubs



www.epiwork.eu

#### Pharmaceutical Use Model During an Influenza Pandemic



 $R_0$  = number of secondary cases of influenza produced by 1 infected individual





# from body to waste



## **Baseline Antibiotic Use**

(excreted in England)



### results: antibiotics in WWTPs



# LF2000-WQX works

- Estimates water quality
   on a reach by reach basis
   starting at the top
- Makes a mass balance of the inputs to the reach
  - Sewage treatment plants, industrial discharges, tributaries
- New concentrations calculated at the end of the reach allowing for degradation of the compound of interest
- Output in GIS format





### **Determining Impact**



#### toxicity (0-100%)

'Potentially affected fraction' of sewage or river microbial species



#### EUCAST MIC Distribution - Reference Database 2010-11-10



# Ecotoxicity: Species sensitivity distributions based on Minimum Inhibitory Concentrations



# results: toxicity in WWTPs



# Spatial distribution of toxicity in WWTPs & Rivers



# **General Conclusions**

 A mild pandemic with a low rate of secondary infections is not projected to result in problems for sewage works or most UK rivers.

• A pandemic with an  $R_0 > ^2.0$  is likely to pose operational challenges to sewage works which could result in the release of untreated sewage into receiving rivers.

# **Impact**



disruption of WWTPs widespread river pollution

- contamination of rivers
- degradation of drinking water
- spread of antiviral and antibiotics resistance
- eutrophication :
  - loss of acquatic ecosystem (fish kill)
  - temporary loss of ecosystem function

# Solutions?

# VACCINATION!!

# **Priority Research**

- Empirically determine vulnerability of sewage works.
- Assess the short and long term risks to widespread antiviral and antibiotic release into the environment.
- Empirically determine vulnerability of drinking water to contamination.

# Pandemic usage of Pharmaceuticals www.prepare.org.uk



# Thanks to Collaborators...and you!

#### Vittoria Colizza

vcolizza@isi.it ISI, Turin Italy



# Heike Schmitt h.schmitt@uu.nl

Inst. Risk Assessment Sciences, Univ. Utrecht



### Duygu Balcan Alessandro Vespignani

Indiana University, Bloomington, USA



Johanna Andrews
Wei E. Huang
Dept Civil Structural
Engineering,
Univ Sheffield, UK



Virginie D. J. Keller Richard J. Williams Centre Ecology & Hydrology

