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Abstract

A numerical model is presented for horizontally uniform, turbulent, oscil-
latory flow above a flat rough bed. It is applied to cases of surface
wave-induced and tidal boundary-layer flows. The formulation of the prob-
lem involves the governing horizontal wmomentum equations, and closure
assumptions which relate the turbulent shear stresses to the mean velocity
gradients in the flow. The closure scheme adopted, for whatever applica-
tion of the model, is a fairly standard description of the turbulence field
in terms of the turbulent emergy equation. This equation, together with
various turbulence scaling laws, allows the eddy viscosity to be determined
as a function of height and phase angle in the wave cycle. The calculated
eddy viscosity distribution is used in the finite difference solution of
the governing momentum equations.

Although some comparisons with experimental and theoretical results are
described, the wain emphasis of the present report is on the capability and
performance of the numerical model. Initially, the formulation and finite
difference scheme 1is discussed. Next, results for rectilinear, “deep’,
wave—induced flows are presented, for which the boundary-layer is contained
within the flow region being modelled. Here comparisons are made with
exact analytic solutions and with previous experimental results. Finally,
results for oscillations of tidal period in shallow water, including the
effects of rotation, are presented, for which the boundary layer occupies
the entire flow region from the bed to the free water surface. The present
model results are compared both with results from a previous numerical
model and with a set of current meter observations.

It is concluded that the model is a useful tool for the study of rough tur-
bulent oscillatory boundary-layers, and that it predicts quite well the
gross features of both surface wave—induced and tidal flows.



1. Introduction.

Previous studies of oscillatory rough turbulent boundary-layer flow have
been based on both analytic and numerical models. Such models have been
developed principally to determine the velocity and shear stress fields 1in
surface wave-induced and tidal flows. The results have been used to quan-
tify, for example, drag coefficients, boundary-layer thicknesses and phase
leads of bed shear stress over the oscillating free—stream flow or pressure
gradient. Ultimately, model results may be used to calculate energy dissi-
pation rates in turbulent oscillatory flows, and to estimate sediment tran-
sport rates.

The formulation is very similar for the wave and tidal cases, but while the
earth’s rotation can be ignored in the wave problem and, hence, only one
velocity component need be considered, in the tidal case rotation is impor-
tant and two horizontal velocity components must be included. 1In addition,
of course, the oscillation periods are very different in the two cases.

Analytical models of the oscillatory boundary—-layer are necessarily based
on simplified representations of the turbulent flow above the bed. The
solutions obtained have generally been based on simple prescriptions for
the eddy viscosity. For example, for oscillatory turbulent flow above a
flat rough bed, the assumption of an eddy viscosity which is constant in
both time and space gives rise to a turbulent ’‘shear wave’ solution, akin
to the solution presented by Lamb (1932, Art. 345) for laminar flow. A
much more realistic description, based on standard scaling arguments for
turbulent flow, involves the eddy viscosity increasing linearly with height
above the bed. An analytical solution has been obtained on this basis by
Smith (1977) for the wave case, and by Prandle (1982) and Soulsby (1983)
for the tidal <case. Similar solutions based upon rather more elaborate,
though steady, representations for the eddy viscosity have been obtained by
Kajiura (1968), Johns (1969), Brevik (1981) and Long (1981).

More realistic time-varying formulations for the eddy viscosity, based upon
representations of the Reynolds’ stress in terms of Prandtl’s mixing length
hypothesis, have been adopted by Bakker (1975) and Johns (1975). However
these approaches have relied, ultimately, on numerical computations in the
solution of the problem. More recently, Johns (1977) has used finite~
difference methods to solve the momentum and turbulent energy equations for
oscillatory boundary-layer flow. In particular, he has calculated the bed
shear stress, and has derived an expression for the wave drag coefficient
in terms of the bottom roughness.

The present report is also concerned with a numerical (finite-difference)
model of rough turbulent oscillatory boundary-layer flow, and results have
been obtained for the cases of surface wave-induced and tidal flows. It
has mnot been the aim of the study to develop a new turbulence model.
Rather, a standard formulation closely similar to that ot Vager and
Kagan (1969), Johns (1977) and others, has been adopted. The model is for
uniform, rough turbulent, oscillatory flow above a flat bed; effects asso-
ciated with wvariations in bottom topography and surface elevation are not
treated. The early results were obtained for rectilinear (one-dimensional),
‘deep’, wave-induced flows for which the boundary-layer was contained
within the flow region modelled. Subsequently, results were obtained for



two-dimensional oscillations of tidal period in shallow water, for which
the boundary-layer occupied the entire flow region from the bed to the free
water surface. The same turbulence formulation was adopted for both cases.
It follows that results for the combined effects of waves superimposed on a
current may be obtained on the basis of the present model, though such
results are not presented in this report.

The common core of the model, for whatever application, consists of the
governing horizontal momentum equations. These include acceleration, rota-
tion, friction and forcing terms, but neglect advective terms since the
flow is assumed to be horizontally uniform. The turbulence closure assump-
tion involves the description of the turbulence field in terms of the tur-
bulent energy equation and various turbulence scaling laws. On this basis,
the eddy viscosity is determined as a function of height and phase angle in
the cycle, and it is then used directly in the finite difference scheme for
the solution of the horizontal momentum equations. The philosophy underly-
ing the model is that it should provide an adequate and accurate descrip-
tion of the processes in the boundary-layer, while being no wore compli-
cated than can be justified by the present capability of making laboratory
and field observations to verify the principal assumptions on which it is
based. The turbulence model describes the generation, diffusion and dissi-
pation of turbulence energy which, potentially at least, is a measurable
quantity in the field. The relationships between the turbulence energy,
eddy viscosity and mixing length are less readily verifiable, but have been
found to be adequate by several previous workers. Smith and Takhar (1977),
comparing three tidal models with increasing degrees of complexity of tur-
bulence closure, found that the simplest of the three gave as good agree-
ment with data as the more complex ones, and accordingly a model with that
level of closure has been adopted here.

The central aim of the present report is to describe in some detail both
the method adopted in the solution of the governing differential equations,
and also the performance of the model. For potential wusers of such a
model, the report should provide a suitable introduction to its capabili-
ties. Initially, in Section 2, the formulation is presented, and the fin-
ite difference method of solution is discussed. Two depth transform
options (logarithmic and log-linear) are discussed, and detailed comments
are made about the selection of the time/space grid and about the various
problems wich may arise in running the model. In Sections 3.1 to 3.7
results are presented for a series of tests carried out with a simplified
version of the model, corresponding to the uniform rectilinear oscillation
of a ‘deep’ flow above a flat rough bed. 1In Section 3.1 the full tur-
bulence closure scheme is replaced by an eddy viscosity which is assumed to
be constant in both time and space. The model results obtained on this
basis are compared with an exact analytical solution (cf.
Lamb, 1932, Art. 345). This provides a check on the finite-~difference
method of solution, though the unsuitabilty of a logarithmic grid for this
example 1leads to some discrepancies. In Section 3.2 a similar comparison
is made, but with an analytical solution based on an eddy viscosity which
increases linearly with height above the bed (Smith, 1977). For this more
appropriate assumption for use with a logarithmic grid, rather closer
agreement 1is achieved between the analytical and numerical solutions. In
Section 3.3 the full turbulence closure scheme is reinstated, and some
tests are conducted with different choices for the time and space grids.



Next, in Section 3.4 the model results are compared with measurements of
horizontal wvelocity made in an oscillating water tunnel by Jonsson and
Carlsen (1976). Despite some difficulty in forming an adequate basis for
comparing the model and experimental results, good agreement is found. In
Section 3.5 results based upon various representations for the dissipation
term in the turbulent energy equation are compared. Also, results based
upon the time—varying mixing length formulation adopted in the model are
compared with model results obtained with a steady mixing length which sim-
ply increases with height above the bed; the results of this comparison
indicate that the model is rather insensitive to the choice of mixing
length. In Section 3.6 results are presented for the wave drag coeffi-
cient, the boundary-layer thickness and the phase lead of the bed shear
stress over the free-stream oscillation. Where possible, comparisons have
been made with previous experimental and theoretical results, and the
agreement is generally reasonable. Next, in Section 3.7 the sensitivity of
the model 1is assessed in relation to variations in three constants in the
turbulence closure scheme. In principle, these constants may be used to
tune the model for particular applications. In Section 3.8 results are
presented for a simple rectilinear oscillation of tidal frequency in shal-
low water. The emphasis here is on variations in the model results associ-
ated with different representations for the dissipation term in the tur-
bulent energy equation. A more comprehensive examination of model results
for waves of tidal frequency, including the effects of rotation, is
described in Section 4. Firstly, in Section 4.1 the present model results
are compared with the equivalent model results of Vager and Kagan (1969).
Although the formulation is the same, the results differ somewhat, most
probably due to the very different choices adopted for the grid levels,
Finally, in Section 4.2 the model results are compared with a set of
current meter observations made near the Scillies. In general the agree-
ment is good, though some detailed aspects of the observations are not
reproduced by the model.



2. Model Description.

The model presented here is for uniform oscillatory rough turbulent
boundary-layer flow in water of finite depth. The formulation is essen-
tially the same as that of Vager and Kagan (1969), and is similar to that
of Johns (1977). The derivation of the equations and the closure scheme
are discussed by these and other authors, and will not be attempted here.
However, the details of normalisation and discretisation of the governing
equations differ. The model is driven by the oscillatory current forcing
the system, and requires values for the water depth and the bed roughness.
The specified current is used to determine the horizontal level gradients
driving the f£flow. The surface elevation does not vary in the model; in
other words, depth variations associated with the forcing flow are assumed
to be negligible.

The governing equations are as follows :

du _du ) du
£ T v o= g A+ Hrg) (v
av _av o) dv
EE + rAu = d_t + ‘AU + az( Kaz ) (2)

Terms: Acceln | Coriolis | Driving Force | Friction

with U = U cos(wt) and V = V, cos(wt—@)

where (u,v), t, z and K are the horizontal components of velocity, the
time, the height above the bed and the eddy viscosity repectively; Ais
the Coriolis parameter; and the components of the forcing flow (u,v)
are defined by their amplitudes (U,,V,), their relative phase differ-
ence @ and the frequency w.

The boundary conditions on (1) and (2) are of zero velocity at the bed
(z = z,) and zero stress at the free surface (z =z ) :

(u,v) = (0,0) at z =z, (roughness length)
(3)
du _ Ov _ _ *
and ng = Ké; =0 at z = z, (free surface) .

The components of shear stress 7] and 7; are defined throughout the depth
by :

In the earliest test runs with a one-dimensional model, an alter-

native surface boundary condition u = U at z = 2z, was used. This is

appropriate when the boundary-layer is contained within [z, ,z, 1.
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T du 1 dv
—_— = — LA . .
z Kd and E;— KEE where e is the water density. (4a)

The bed shear stress can also be determined from the depth integrated
defect equations of motion, derived from (1) and (2)

T '{éﬁ‘ ',’\“‘_’d}

¢ ot
— (4b)
Tow —{9—"13 + AW }
¢ ot x
2
where W, =u-U, W, =v-Vand f = Jf dz.
z’u

The closure of Equations (1) and (2) is achieved by relating the eddy
viscosity K empirically to a mixing length 1 and the turbulent energy b.
The turbulent energy equation, incorporating the rate of dissipation of
energy € as a function of 1 and b, can be used together with an intrinsic
relationship for mixing length to complete the system of equations. The
equations which comprise the turbulence closure scheme in the model are:

L 2
3 _ (a_u) (_61) b, _
at_K{bz+az v 508D -, (3)
Terms: Generation [ Diffusion | Dissipation
clb&@
€ = 22—, K=cl Wb, (6)

and

|
b2 {3 b2
= -k 1 {dz 1_} ' 7

where K> is the Von Karman constant and k&, c and c¢

o , are constants*%,

The boundary conditions on (5) are of zero energy flux across the bed and
free surface :
db

o K 5% 0 atz =2z, and z =2z, . (8a)

** Constant values : = 0.73, c,= (0. 046) » ¢, = (0. 046) and Von
Karman’s constant K:— O 4 taken from Vager and Kagan (1969).
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The near bed condition on (7) is that 1 and z, are related by :

12Kz, as z -z, (8b)

Using (8b), Equation (7) can be integrated to the form

x
X/ Y4 -
1=Kb* Jb"dz + z,b (/a)

z,

which is more easily implemented in the model than (7) itself; an Euler-
Maclaurin summation has been used to evaluate the integral in (7a).

The variables were non-dimensionalised, and then a depth transform applied
to enable the difference scheme to work with depth intervals which provide
adequate detail in the boundary-layer where the current 1s approximately
logarithmic. The depth transform may be log or log-linear depending on
requirements. Full details of these transformations and of the transformed
equations are given in Appendix A. These equations (transformed vari-
ables : z =¥ , others f = £°) apply to the depth domain ¥ € [0.0,1.0],
and the wmotion oscillates with a period of 2w. Thus the discretization
over depth and time is

3S= 1/ M and ¥ = 27w/ N

where the number of height intervals M, and the number of time intervals
per cycle N, are specified.

The tridiagonal systems for the solution of equation (1) are presented in
Appendix B. The discretised variable notation is as follows :

Ll ]

f,. 1s the value of £ at‘§;= (m-1)8% and t" = ndt for
m = 1,M+]l and n an integer.

The boundary conditions at the bed (¥ =0.0) are implemented directly as
follows :

v (9

o/

]
o

and b; = b; implementing

Qi
(724

The free surface conditions (8) (at ¥ = 1.0) can be implemented in two
ways

7 / / 7 / ¢
1) Uuez = Um s Vaea T Vam & bM«rJ. =b “m
ot / , ) (10)
4 ' ¥
2) Upyy = Uy L AT & bm*’ = by o

The use of 1) or 2) is not critical when the boundary~layer is contained
within the water depth ( z,) but, if this is not the case, then only
option 2) will work. (Note : Subscripts 0 and M+2 denote computational
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levels outside the flow region. They are introduced in order to satisfy the
gradient boundary conditions.)

The difference form of the non-linear expression for € in Equations (6)
poses problems, since ideally it should be evaluated at the half time
steps. Various forms have been tried and these are described in
Appendix B.

The initial conditions vary depending on what starting values are avail-
able. When none are available, a ‘dead-cold start’ defines values as fol-
lows

uf & v/ = 0.0
uh =UGat t'=t]), v. =0.0 for m=2,M+l
bl = 0.0001 exp ( -20.0 5=%)

]
1, & K:‘ calculated from equations (6) and (7a),
(t, = —nOSt'is chosen so that U'(t;) is approximately zero and the
v momentum equation (2) is not applied until V' = 0,0,)

If starting values are available (eg. steady current values for u, v, b, 1
and K) then a “cold start’ option is possible, where the values are first
read by the model program and then nondimensionalised accordingly. In
order to restart from a previously generated solution, the ‘hot start’
option allows the starting values to be read directly from a solution file.

2.1. Implementation and Behaviour

Two versions of the model are available. One, as described above, is appli-
cable in two dimensions, the other is one-~dimensional and neglects v and A.
The one-dimensional version is derived from an earlier program, so the
notation and structure is very different from the two-dimensional version.

In order to run the models, the various model parameters must be set. In
particular, the values of z,, z, and the driving current defined by its
amplitudes (Us,Vs ), period and phase difference @ between components** must
be selected for the conditions being simulated, eg. 10s period waves in
10m of water or an M, tide in 20m water.

The values of M and N defining the discretisation have optimum values. If

either 1is too small the solution misbehaves and small oscillations (of
s

order 8t) appear, especially in the time series and vertical profiles of

*¥% In the standard program a single frequency is used. For other
options, eg. additional 1st harmonic terms, the software may be
easily modified.
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shear stress. With large values, however, the computer costs grow dramati-
cally without any improvement in the solution. The choice of M must be
influenced by both the definition of the profile structure near the bed and
the value of 2z, 1in the depth transform (see Appendix A). An empirical
study of the effect of z, on the resolution of the profiles with respect to
depth is given in Appendix C. For some model parameters, the convergence
of the solution (in time) may be very slow. An initial choice of N much
smaller than required for an adequately behaved solution may be used from a
dead-cold start to develop the flow in the upper reaches, before changing
to a value of N more suitable for the near-bed layer.

When starting the model from dead cold, the dissipation term & (Eqn. 6) 1is
represented by (Bl) of Appendix B. After a specified time, this represen-
tation is changed to a time centred one. However, there are some parameter
settings for which negative energy values are produced using the time cen-
tred formulation (eg. tides in shallow water when the boundary-layer is not
contained within the water depth). One point of warning when running the
model from dead cold is that it sometimes requires considerable nursing
through the warm—up period. The run time parameters may need adjusting and
the convergence parameter should be checked every few cycles. The time
series of energy and/or stress should occasionally be plotted to check for
oscillations of order &t%

In the shallow water case, finite oscillatiouns develop in the time series,
which cannot be eliminated by increasing N. However this problem can be
overcome by smoothing occasionally over 3 consecutive time steps. The
smoothing prevents oscillations from developing and, apparently, does not
seriously affect the solution.

The model is programmed in a versatile way so that different options can be
implemented simply by changing input parameters and subroutines (eg. the
various start-up modes and different implementations of the free-surface
boundary condition). If further tailoring is required the software can be
easily modified (eg. more than one constituent for the driving current).
In addition to the trials and applications mentioned in the next section,
the one~dimensional model has been used successfully to study the effects
in the boundary-layer of free-stream flows which are not purely sinusoidal.
Also both the one~ and two—dimensional models have been used to study the
structure of the boundary-layer associated with the combined action of sur-
face waves and currents.
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3. Applications of the model to uniform rectilinear flow.

The model tests described in this section were carried out with a reduced
set of equations and boundary conditions, corresponding to a simple, uni-
form, rectilinear, oscillatory free-stream flow.

3.1, Constant viscosity : 1 Dimension

In this simple case an anmalytic solution of the governing equations can be
obtained (Lamb, 1932, Art. 345). This enables a comparison to be made with
results from the 1-D numerical model, in which the full turbulence closure
scheme is replaced by a constant eddy viscosity. The parameter settings
used for this example are :

z, = 0.0lcm, z, = 1000cm, U, = 100cm/s , w= 2W/10§J,

Logarithmic depth transform, M = 25 and N = 60,
Upper boundary condition: u = U at z =z, with t'= ndt -T/2,

With K = constant (K = 100cm” /s) the non-dimensionalised analytic solution
to equations (1) and (3) (with v and A set to zero) has the form :

v’ = sin(t’) - exp(—ﬂl(z’-z;)) sin(tl—ﬂ‘(z'-z;)) (11)

(i)

The associated bottom stress is

where

o

%" = 2sin(/,) K'B'sin(t"+7/,) .

The u” profiles from the model agree very well with the analytic solution
at least for z > l.0cm (see Figure 1). Below this, the vertical gradient
of u” from the model is about 24% less than the theoretical value. This
is, most probably, due to the unsuitability of the logarithmic spacing of
computational levels for this comparison.

Alternative bottom stress estimates were made using :

1) two implementations of equation (4b) :
:
= —g—t, {wa dg} (12)
o

and
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7

z,
» = ——g—t, «{ jw’ dz’} (13)

x,
/ v / *
where W =u'~U and ¥ is defined in Appendix A ;

and 2) exact values for u’ from Equation (11) in the same difference
approximation as used for the bottom stress evaluations within the
model.

All the above bottom stress estimates are plotted with respect to time in
Figure 2. Both estimates given by Equations (12) and (13) are in closest
agreement with the theoretical values. The estimates using Equations (4a)
and (B4) with u’ from the model are the worst, although larger values of M
and N might improve them (cf Section 3.3). It is interesting to note that
using the difference equation (B4) with exact values of u’ gives a curve
about 13% less than the true %’curve; this indicates the error due to the
difference approximation to the velocity gradient.

3.2, Viscosity K = Koz : 1 Dimension

In this more realistic case for rough turbulent oscillatory flow, an ana-
lytic solution (see Smith, 1977) can also be compared with a suitably modi-
fied version of the model. The input parameters used were as follows :

z, = 0.00lcm, 2z, = 100cm, U, = 100cm/s, <« = 2w/10s ,

Logarithmic depth transform, M =25 and N = 60 ,

Upper boundary condition: u = U at z = z, with t'= ndt’ -7/2,

For these parameter settings, with viscosity as a linear function of depth,
the appropriate value of K, is 2.2cm/s. The velocity profiles through half
a cycle agree with the analytic results to within lO’”UO. This implies
that the method accurately solves the diffential equations and that a loga-
rithmic spacing of computational levels is appropriate. Such a spacing 1is

generally expected to be appropriate for rough turbulent boundary layer
flow.

From the comparison between different bottom stress estimates (Figure 3),
the velocity gradient estimates based on equation (4a) give better agree-
ment in terms of both amplitude and phase than the estimates based on equa-
tion (12). These results are contrary to those obtained in Section 3.1.

The integral for (12) was evaluated by an Euler-Maclaurin summa-
tion, while that for (13) was evaluated by summing trapezoidal
areas.
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3.3. Fully Turbulent Model : 1 Dimension

In the two previous sub-sections, the eddy viscosity was forced to take
simple analytic forms. In this section the viscosity is computed using
equations (A5) to (A7a). The parameter settings used were as follows

zo = 0.0lcm, 2z, = 100cm, U, = 100cm/s, e« = 2%/10g"

Logarithmic depth transform, M = 25 & 40, N = 60 & 120

>

Upper boundary condition: u = U at z = z, with t'= nSﬁL"VZ.

These runs were made to assess the influence of M and N on the agreement
between various estimates of bottom stress (cf. Section 3.1). As can
readily be seen from the 4Z,plots in Figure 4, there is an oscillation, of
order Sﬁ', in the velocity gradient estimates for N=60 which is not present
for N=120. The phase agreement of both bottom stress estimates is also
improved by doubling the value of N.** The increase of M from 25 to 40,
while yielding negligible difference in the velocity profiles, reduces the
difference between the two bottom stress estimates. This test implies that
an appropriate choice of values for M and N is one which achieves accept-
able agreement between the two bottom stress estimates.

Note : During these tests, the standard convergence parameter (0.01) for
the iterative 1loops was reduced to 0.005 with negligible effect on the
agreement between the two bottom stress estimates.

3.4. Comparison with experimental data : 1 Dimension

The most suitable data set for comparison with model results in the one-
dimensional case has been provided by Jonsson and Carlsen (1976). These
authors have made detailed measurements of the velocity structure of rough
turbulent flow in an oscillatory water tunnel. Horizontal velocities were
measured at various levels above the bed through a wave cycle. These meag—
urements were then used to determine vertical profiles of shear stress,
assuming zero stresszat height z = z4 above the bed

S -
E = J dt ( U u ) dz .
*

*%
In fact, the program run for N=120 bad the same order of run

time as did that for N=60, indicating that the iterative loops con-
verged more rapidly.
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The parameter settings to simulate Jonsson and Carlsen’s Test No. 1 were as
follows# :

z, = 0.07666 cm, z, = 23cm, U, = 213.36cm/s, w = 27/8.39s ',

Logarithmic depth transform, M 25, N =120,

Upper boundary condition: u = U at z = z,.

Although the actual water depth 1in the experiment was 23cm, Jonsson and
Carlsen defined the free-stream flow as the region above z4= 17.25cm, and
assumed the stress to be zero at this level. However, in the absence of
velocity measurements near the roof of the oscillatory water tunnel, there
may be some uncertainty about the true zero-stress level,

The free-stream velocities were harmonically analysed to obtain the most
significant constituents (using w as the fundamental frequency). This gave
a velocity amplitude of 213.36cm/s at frequency « , which was used as the
value of Us; in the model. After normalisation, the driving velocity used
for the simulation was

U = T T @ + cos(t/) + a,cos(ZtI- ¢,) + azcos(3{ - ¢z)

-3 ’ / /
where a, = =0.39x10 ', t’ = ndt - (/2 + 8¢ ),
a, = 0.464x107 , @, = 2.7255r (156.2°) ,

L = 0.891x107* , ¢ = 3.109lr (178.1°) .

and N

Y]
1]

Figures 5 and 6 show the results of the comparison between model and exper-
iment, in terms of both profiles and time series of velocity and stress.
Since the model gave significant stress values at z,= 17.25¢m, the values
of shear stress calculated by Jonsson and Carlsen were adjusted at each
phase angle by adding the stress value from the model at Zge The agree-
ment is remarkably good in view of the fact that the model does not closely
simulate the experiment’s surface condition.

The model was also run with z, = 100cm which allowed the boundary layer to
develop fully. The free-stream velocity was attained at a height of about
50cm, significantly greater than the value assumed by Jonsson and Carlsen.
To some extent, this calls into question the basis for comparing the numer-
ical model and experimental results.

#

Jonsson and Carlsen’s height above the “theoretical’ bed was tak-
en as equivalent to the model’s z values.
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3.5. Alternative Dissipation and mixing length formulations : 1 Dimension.

The tests described below, relating to the dissipation term €& in Equa-
tion (6) and mixing length in Equation (7), were carried out using a
slightly irregular, non-sinusoidal, free-stream flow. The parameter set-
tings were as follows

z, = 0.0lem, 2z, = 100cm, U, =100cm/s, w = 2m/10s",

Logarithmic depth transform, M=25, N=120

and non-standard upper boundary condition:

/

v’ = cos(t) + 0.1 cos(2t=-37/2) with u' = U at z = z,(t/= ndt-1/2).

Dissipation formulation :

Since there was a choice of representations for the dissipation term, it
was thought prudent to make an assessment of their relative effects on the
solution. The model was run with the above input values for options Bl,
B2 and B3 (Appendix B). To give an objective assessment of the comparison,
an algorithm was devised to define, numerically, the overall difference
between two solutions. This algorithm is as follows

For a particular time t, , let the relative percentage difference
between two solutions S1 and S2 be

A= 100 » LEGD = £(52))

z Df

where D, = max {f(S1)} ie. D_. is the maximum f value
f Z f .
in the profile.

Then the difference at time level t, can be defined as

A max (A,) .

For the solution as a whole, the difference may be defined by the mean
91) and standard deviation (o) of the series,An, throughout the time
span of the solution.

Table 1. below gives the values of gp,cﬁ for each variable, comparing the
options Bl, B2 and B3.

The values of ju for all variables are less than 2%. This indicates fair
agreement between the three methods, though the difference between Bl and
B2, and Bl and B3, is rather greater than between B2 and B3.

For some input parameters, only method Bl maintains energy values that are
always positive. However, on the assumption that centrally differenced
methods are “better’, B2 and B3 should be used whenever possible. There 1is
little to choose between methods B2 and B3, but on a computer cost basis,
B3 is marginally more economical.
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Variables

Sl S2 u b K 1 T
/u o M o} M o M o j (o

Bl B2 | 0.21 0.1l1 1.47 0.64 | 0.59 0.16 | 0.13 0.02 | 0.75 0.25
Bl B3 | 0.21 0.16 1.03 0.56 | 0.61 0.17 0.17 0.01 | 0.66 0.23
B2 B3 | 0,06 0.05 | 0.41 0.28 { 0.14 0.01 | 0.07 0.0l | 0.33 0.18

Table 1 : The percentage means and standard deviations of .Z&N for each
variable from solutions with the dissipation formulations Bl, B2
and B3.

The above tests were conducted purely on modelling considerations, and the
conclusion should be reconsidered when adequate field data is available.
However, the agreement between the various options is probably closer than
that which could be achieved with real data, so an absolute preference for
the form of the dissipation term may not be feasible.

Mixing Length

Instead of using equation (7a) to represent the mixing length, the time
independent expression

1=Kz

was used to generate a solution (LL) using the parameters listed above and
with option B3 for the dissipation term. This solution was then compared
with that obtained with the same parameter settings but the standard
expression (Eqn. 7a) for 1 (LS), using the technique described above. The
(p,o) values are given in Table 2. Some values are artifically high due
to the large difference in 1 from the two solutions in the upper flow, in
conjunction with the definition adopted for A, . 1Included in Table 2 are
revised values for u, selected subjectively from the individual values of

Azand 4,.

The main difference between the K and 1 values in this comparison occurs in
the flow above about z = 1.0cm. Comparative plots of these profiles are
shown in Figure 7. The agreement between u, b and % values is fair, as 1is
shown in the time series plotted in Figure 8. From these, it is readily
seen that, when the linear expression for the mixing length is wused, the
amplitudes of b and? are slightly increased by amounts (<5%) which vary
with depth, and that phase shifts are introduced. It is also clear that u,
b and 7 are fairly insensitive to the large changes in mixing length near
the surface. Unless some real eddy viscosity profiles were available for
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Variables
S1 S2 u b K 1 1
M o M o ! o M o M (o2
LS LL 3.1 3.0 9.6 3.1 91. 2. 82. 0.1 14.6 5.7
LL LS 3.1 3.1 9.4 2.4 185. 15. 442, 0.2 13.7 3.7
Revised 2.0 8.0 <10. <5, 10.?

Table 2 : The percentage means and standard deviations of A, for each vari-
able from solutions using different mixing length formulations.

comparison, it would not be easy to justify the preference for the mixing
length formulation (7a), apart from the fact that it introduces time depen-
dency. The test indicates that the results from the model are relatively
insensitive to the formulation chosen for the mixing length.

3.6, The boundary layer thickness and wave drag coefficient : 1 Dimension

Rather than using individual parameter settings as the input to the model
(as in Sections 3.1-3,5), the one-dimensional version of the model was
modified to accept the two non-dimensional parameters which uniquely define
the solution of the problem. These two parameters are the ratio of water
depth to roughness length, and the ‘relative roughness’ A/k,,where A is
the excursion amplitude defined by A = U, /w and kg is the equivalent bed
roughness defined by k4 = 30z,:

U,
30wz,

R =2 and -£é= (14)

The other parameters needed by the program can be derived from RZ and A/kg,
namely :

/ l 4 ¥

Ze T 30 Al i R

The free-stream flow was defined as

v’ = cos(t’) where t’ = ndt - 7/2.

This modified version of the model was run with the following parameter
settings
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for RZ = 10000 :-
A/kS =1, 5, 10, 50, 100, 530 and 1000;
ror RZ = 300 (as for the Jonsson & Carlsen (1976) experiment) :-

A/k =100 .
s

Various estimates of the boundary layer thickness were made for each solu-
tion :

from the velocity profile corresponding to the peak free-stream flow :

1. §, . the lowest z value at which the velocity attains the value v’
(cf. Figure 1. of Jonsson, 1978).

2. Sz .. the highest level at which the computed profile differs by less
than 1% from a logarithmic profile.

3. 85 . the highest z value at which u” - v is greater than 0.01,

from the energy profile corresponding to the peak value of turbulent
energy at the bed ’

4, Sb . the level at which the energy is 17 of its value at the bed.

These values, normalised by A, the excursion amplitude, are plotted against
A/kg, the relative roughness, in Figure 9. Whatever definition is adopted,
the normalised boundary layer thickness § /A decreases with increasing
A/kg. The largest values are for &, /A, which indicates the presence of tur-
bulent energy in the region of free-stream flow as defined in terms of
velocity. Energy is diffused into this region, and there it is dissipated;
the absence of velocity shear ensures no energy generation. The total
boundary layer thickness §/A, as defined in terms of velocity, is almost an
order of magnitude greater than the maximum thickness of the 1logarithmic
layer in the wave cycle (Sz/A), whatever the value of A/kg. The close
agreement between (§,/A) and (&, /A) indicates that, when the pressure gra-
dient is zero, the logarithmic layer extends upwards to approximately the
height at which the velocity first attains its wvalue in the free-stream
flow. Finally, the discrepancies which exist between the experimental
values of Jonsson and Carlsen for 8,/A and the model results are probably
due to the lack of an adequate basis for comparing the respective results
(see Section 3.4).

Following Jonsson (1978), the drag coefficient (or friction factor) £, is
defined by :
T, = 0.5 £, U
“max 7 € 'w Tpax
In Figure 10, f,, is plotted against the relative roughness. It can be seen
that the curves produced by the model are enclosed by previous empirical
and semi-empirical curves for the physically interesting range A/kg (>50).
The divergence of the results for A/ky < 50 is probably due to the inade-
quate representation of the turbulent energy system by the model for these
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values of relative roughness.

Another parameter which can be obtained from the solution is the phase
lead (8) of %' ahead of the free-stream velocity U Figure 10 shows © as a
function of A/ky and compares it with analytic wvalues obtained from
Smith’s (1977) model (described in Section 3.2) which is based on a linear
expression for K (K = K,z). There is little difference between the phase
leads predicted by the present model and Smith’s model, but both give
underestimates when compared with the experimental values of Jonsson and
Carlsen (1976). However this comparison may be unreliable for the reason
given in Section 3.4.

3.7, Sensitivity of the model to variations in ¢4 ¢ and & : 1 Dimension

In the turbulence closure scheme there are three constants («, c and ) to
which values must be assigned (note : c.= ¢ ¢, = ™). Here we are con-
cerned with the sensitivity of the solution to variations in each of these
constants. The parameter settings used for this investigation were as fol-
lows

= 0.0lem, z, = 100cm, U, = 100cm/s, @« = 27/10s"

Z

< 3

Logarithmic depth transform, M = 25, N = 120,

Upper boundary condition: u = U at z = z, with t'= n8t1ﬂ72.

In order to determine the model’s sensitivity to the three constants the
value of each was altered by +50%, and the solutions were compared using
the technique described in Section 3.5. The results are tabulated in
Table 3.

The solutions were also compared qualitatively by plotting time series and
profiles, and looking at the intermediate ValuesAz of the algorithm for
comparing two solutions. Considering each constant individually, the
effects of changing the constant’s value were as follows :

Sensitivity to o,

The effect of a change of %, on u is negligible and will not be discussed
further.

The plots of energy profiles and time series in Figure 11 indicate ampli-
tude and phase differences above about z = 0.8cm. For heights greater than
5cm, b is less when ¢, is lower, while below the reverse is true. This
means that the boundary layer thickness (5b) increases with increasing oy .
The differences in shear stress for ®¢, = 0.73+50% are slight. Below
z = 0.28cm, the agreement is good. Above this level, there are small
amplitude and phase differences which vary with depth. The boundary layer
thickness based on shear stress (ie. the level where || drops to 1% of
[T 1) is slightly reduced by decreasing o, by 50%. These effects are
illustrated in Figure 12.
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Variables
S1 82 K
pul o M o M o M o il (o

BS A+ |[0.6 0.4 6.3 2.0 59, 5. 45, 3. 4,0 1.3
BS A- | 1.0 0.8 8.7 3.5 56. 5. 42, 2. 6.4 3.0
A+ A— 1.5 1.1 150 5. 90. 30 600 lo 9.8 3.9
BS C+ | 0.5 0.3 18, 1. 11. 1. 4.2 0.4 1.8 0.3
BS C_ 0.4 0.3 41. 1. 200 2. 7.0 005 2.2 0.7
C+ C_ 008 0.5 72- 2. 310 4. llo 1-0 3.7 1.0
BS K+ | 14, 8. 92. 20, 494, 46, 224, 15. 104 28.
BS K" 26. 15. 74. 15- 99. lo 58. 3. 78. 16'
K+ K- | 37. 20. 86, 10. 100. 0. 86. 1. 89. 11.
Table 3 : The means and standard deviations ofAAn for each wvariable from

solutions
and K.
Solution BS uses ®,= 0.73, c = 0.046
)= 0.73+50%; Cc+, C- use
K = 0.4+450%, respectively.

obtained with different values of the constants &, C

and K = 0.4; Ar, A- use
c = 0.046+50%; and K+, K- use

Sensitivity to ¢

A 50% change in c has a negligible effect on u, a slight effect on” but a
significant one on b. The explanation for this is that, if Equation 6 is
to be satisfied, no change in u and 7 implies that b must change.

Reducing c by 50% decreases the amplitude of 7 slightly, as is shown in
Figure 13 where profiles and time series are plotted for ¢ = 0.046+50%.

The energy comparisons for c¢ = 0.046+50% are shown in Figure 14. " Increas-
ing c by 50% decreases the energy b by about 20%, while decreasing c by
50% increases b by 40%Z. Thus the effect of changing ¢ 1s not linear.
The profiles of b show that the boundary layer thickness 6; 1s only mar-
ginally affected by a change in this constant.

Sensitivity to K, = Von Karman’s constant

Changes in Von Karman’s constant significantly alter the solution. Profile
and time series comparisons for u, b and? for the three values K = 0.4 and
0.4+50% are shown in Figures 15-17.

The u profiles are altered so that the boundary layer thickness increases
withK. This effect applies also to b and % but here the magnitudes of the
changes are much larger. Table 4 gives an indication of these changes.
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Table 4: K. | 0.6 0.4 0.6

Ratios of the maximum values of K, | 0.4 0.2 0.2

b and at the bed for K =1, to

those for H=#, using b 1.8 2.6 4,6

the values Mo= 0.2, 0.4

and 0.6. T 1.8 2.7 4,7
Conclusions

1. Velocity is the least sensitive of the variables u, b and?”, to changes
in the constants, while energy is the most sensitive. Von Karman’s
constant affects the solution more significantly than either o¢, or c.

2, The constants may be adjusted to obtain better agreement between a
solution and real data. The choice of constant and size of ad justment
depend on what change in the solution is required.

3. It can be seen from the diagrams that, for some values of the con-
stants, the model is less stable and finite oscillations appear in the
time series of b and 7 at the lowest levels. (For this analysis, it
was not considered worthwhile removing these oscillations.)

3.8. Tidal oscillation in shallow water : 1 Dimension

The test now considered is for a simple reversing, uniform, oscillation of
tidal period, for which the boundary layer occupies the entire water depth,
This produces numerical modelling difficulties not encountered if the flow

is ‘deep’, 1ie. the boundary layer 1is contained within the depth. The
parameter settings were as follows

z, = Oulem, 2z, = 2000cm, U, = 100cm/s,
w= 2m/44700s” (M, tide),

Log-linear depth transform : z, = 1000cm, M = 50 and N = 120.

As a suitable free-surface boundary condition, Equation 3 was selected.
This implies zero stress at the free surface. Initial attempts to obtain a
solution using option 1) of equation 10 at the free surface, together with
dissipation term option B2, never succeeded because the energy values soon
became negative and the solution misbehaved drastically at the surface.
Using option Bl for the dissipation term and free-surface option 2) of
equation 10, the solution converged rapidly but with finite oscillations
(order 8t”) in the time series.
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At this stage, a modification to the mixing length formula was considered.
This consisted of a scaling coefficient (a function of depth) which would
reduce the mixing length to zero at the surface namely :

_ (z-z.) . _2
(1.0 0.99 z, =2.) with z, = 3 2% -

However this had an adverse effect on the solution, introducing an oscilla-
tion of order 38t above about z = 560cm and affecting the velocity pro-
files in a way which made them increase suddenly above this height before
being drawn back towards Ut It is relevant to point out here that the
modified mixing length procedure was also applied to a surface wave simula-
tion. In that case, the effect of modifying the mixing length scarcely
influenced the solution at all.

A reasonably well-behaved solution was eventually obtained by smoothing
each variable over three consecutive time levels, 2 to 4 times a cycle.
Since oscillations were found to develop whenever the bottom stress changed
sign, this fact was used to determine when to apply the smoothing func-
tion :

£(t7) = 0.25 (2£(t7) + £(t7+6t") + £(t' =-8¢")) .

The centrally differenced dissipation term, option B3, was implemented
satisfactorily provided it was replaced by option Bl whenever the energy
values turned negative. To dampen numerical oscillations, more frequent
smoothing was required, especially after option Bl had been implemented,
that is near phase angles corresponding to minimum energy levels.

Table 5 gives the results of the comparison of these two solutions, using
the method described in Section 3.5. The 7th half-cycle of the solution
using Bl is compared with the 5th half-cycle wusing B3. In each case, the
energy profiles appeared to have converged. The high o values are due to
large A, values during the low energy part of the half-cycle. The results
indicate that the solutions agree to within about 5%, The difference in
energy consists of small amplitude and phase changes, as shown in Fig-
ure 18.

Variables

S1 S2 u b K 1 T
A o o o i o n o Ju g

Bl B3 0.8 2.0 4.1 8.3 2.0 2.0 0.7 1.0 2.4 6.2

B3 Bl 0.8 2.0 4,1 8.6 2.0 2.0 0.7 1.0 2.4 6.1

Table 5 : The percentage means and standard deviations of A, for each vari-
able from tidal solutions in shallow water using different dissi-
pation formulations Bl and B3 (see Appendix B).
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From Figure 18b, it is apparent that there are still some oscillations left
in the solution. These could have been eliminated by smoothing at addi-
tional strategic points. Since for the phase angles of interest (those
close to the occurence of peak free-stream velocity) the solution was
well-behaved, this was not necessary.

The main reason for attempting the present exercise was to use the profiles
corresponding to near-peak velocity as a ‘steady’ current on which suitable
wave oscillations could be superimposed. This development was part of a
combined wave/current interaction study, which is described elsewhere.
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4, Applications of the model to uniform rotating flow

The tests described in this section were carried out with the full set of
boundary-layer equations and boundary conditions. The equations are appli-
cable to a uniform rotating flow, driven by a forcing current (U,V) (see
equations (1) and (2)).

4.1,
Comparison with the results of Vager and Kagan’s model : 2 Dimensions

Vager and Kagan (1969) obtained a numerical solution for turbulent tidal
boundary-layer flow, starting with the formulation described in Section 2,
but using a different discretisation and computational scheme, In order to
make a comparison with their results, the following parameter settings were
used in the present model

Z, l1.0cm, z, = 10000cm, Uy = 141.56cm/s ,

V, 281.12¢m/s , @ = =-1/2,
. 3 — -}
W= 7m/447008", A =0.998x10s , M= 40 and N = 60.
Dissipation term represented by B3. Logarithmic depth transform.
The two—dimensional version of the model was run wusing parameters that

were compatible with the non-dimensional ones used by Vager and
Kagan (V&K), namely :-

Z =0 R Yo o 2, f -f == where f & f are the phases of U & V,
z, U, x 'y 2 X y

LI 0.71 , and (J«f = 2« - 90,

w Wz,

The settings above do not yield quite the same values for V, /U, and JN» as
those ot V&K, but since they agree to within 1%, the solution was not rerun
for the present comparison. This discrepancy was due simply to a typing
error, made when the parameters for the program run were being set up,
which remained undetected until recently. The depth discretisation used by
V&K has 50 linearly-spaced intervals below z/z, = 0.05 and 200 above, which
is very different trom the 40 logarithmically spaced intervals used in the
present model.

In order to provide values for comparison with the present model solution,
the time series plotted by Vager and Kagan were enlarged 2-3 times and
values, at phase intervals of 7/4, were transferred directly to the model’s
time series plots. These values were then joined by “smooth’ curves. It
was estimated that this procedure for transterring V&K's results was accu-
rate to within about 5%. The model solution was plotted at z levels which
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were in closest agreement with those adopted by V&K.

The comparisons for the defect velocity components, turbulent energy and
eddy viscosity show reasonable agreement in view of the differences in the
computational schemes of the two methods (see Figures 19Y-21). The differ-
ences mostly amount to variations in amplitude, with the overall behaviour
of the curves being very similar. The defect velocities (Figure 19) are in
poorest agreement at the higher levels, which is probably due to the dif-
ferent depth discretisations. The energy series (Figure 20) agree very
well except at the bed, which is not readily explained. The most signifi-
cant differences are those for viscosity (Figure 21). Once again however,
despite amplitude difterences, the behaviour of the viscosity with respect
to time and depth is similar for both solutions.

The comparison illustrates that even when the same closure scheme is used,
the solution can be quite sensitive to the method of implementation.
Although the qualitative agreement between the results of the present model
and V&K’s model is reasonable, it tells us nothing about the ability of the
models to reproduce natural phenomena. The next section seeks to fulfil
this need by comparing a model solution with data from a current meter
string.

4.2, Comparison with current meter string data : 2 Dimensions

The parameter settings for this comparison were as follows

z, € [0.1,1.0]em, =z, =120m, w = 27/44100s"

1 b

U, V defined by various constituents,

-
Log=linear depth transform_:gEZOOOcm,f)= 1.112x10 s‘, M 40, N = 147,

Dissipation term represented by B3 after warm-up.

A string of 8 Aanderaa RCM4 current meters was deployed at a 120m deep site
in the Celtic Sea about 60nm west of the Scilly lsles. The area was
selected because it has a flat, horizontal, uniform bed which is teature-
less except for ripples in the silty sand. The measurements were made in
March 1Y83 in order to avoid thermal stratitication (an XBT profile con-
firmed that the water column was isothermal). Seven of the meters provided
data, from which 1l tidal cycles, over a 6 day period during the peak of
spring tides, were used to obtain ensemble-averaged velocity profiles over
one cycle. The 10 min values thus obtained were further averaged to give
profiles every 30 min. (In the remainder of this section, ‘data’ will
refer to these ensemble-averaged velocity profiles.) The series of values
for the top meter gave cycles of 12hr 15min which was the period adopted
for the model solution. A harmonic analysis of each series showed that
there was a non-zero mean of about Zcm/s at each level, possibly due to the
wind, which averaged about 10 knots over the 6 day period. Since the model
is designed for purely oscillatory flow, these means were subtracted from
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each velocity value. The resulting profiles, given in lable 6, have been
used in this comparison.

Height above bed 90.U 70.0 50.0 30.0 15.0 2.5 1.0
Means removed -2.62 -1.63 -2.15 -2.05 ~1.32 -1.55 ~-1.68
hr
-14.52 -13.48 -8.37 -5.81 -7.59 -2.88 ~1.96
-3,.11 ~2.12 2.15 3.79 2.30 4,18 4.53

0.96 8.83 13,46 13.86 11.35 12.04 10.91
20.42 18.68 21.79 22.92 21.29 19.86 16.55
29.04 27.60 31.18 31.25 28.29 23.52 19.95
35.65 35.86 37.55 38.02 34.44 26.77 22.56
40.45 40.05 41.96 41.54 37.44 28.60 24,32
41.35 42.15 43.74 42.81 38.23 28.90 24,20
41.39 42,00 42.71 40.24 35.16 27.34 23.10
38.01 39.54 38.99 36.09 31.06 23.96 20.82
32.56 34.36 32.99 29.63 25.80 19.87 17.97
25.05 27.88 24,77 21.82 19.18 14.72 13.40
16.70 19.31 13.34 11.55 10.52 7.21 6.14

6.58 8.59 3.33 1.57 1.92 0.09 -1.03
-2.72 -3.15 -6.80 -9.34 -7.25 -7.49 -7.11

-13.02 -11.71 -15.08 -20.87 -16.83 ~-15.70 -13.84
-22.51 =-23,22 -27.84 -29.54 -25.73 -21.72 -18.91
-29.91 -31.96 -36.57 =37.17 -32.12 -26.82 -22.92
-36.95 -39.61 -42.60 -42.44 -36.70 -29.21 -25.57
-42.,82 =44,24 -45,34 ~44.53 -39.39 -31.67 -26.80
-44,87 -46,69 -46,00 -43.64 -37.50 -31.02 -26.06
-42,98 -=45.48 -43.14 =-39.21 -34.33 =-27.63 -23.40
-38.59 -40,04 -36.77 =32,50 -29.74 -22.63 =19.59
-30.66 -31.18 =27.06 =22.,79 -22.38 -15.46 -13.57
-20.49 =-20.51 -15.62 ~-11.80 -12.64 =-7.42 -5.80

e © 6 & o o & & 8 & o e e o & o
cwvmoummouvounmouvwouvnmocuvnmcCcuoOoOumounuCc uOoOuL o

N, QOQOWWYWR NN UL LWWNDNNDE=OO

—

Table 6a : The ensemble average profiles for the u component (cm/s) of the
current meter data.

The z, values estimated from the velocities at lm and 2.5m ranged between
0.1 and 1l.0cm during the cycle. The model was run initially with
z, = O.4cm, the geometric mean of the calculated values, but later with
z, = 0.1 and 1.0cm to determine whether alternative values would improve
the agreement between the predictions and data.

Choices of M and z, were made as described in Appendix C, so that the
number of computational levels between each meter level was about equal and
greater than two. The meter levels with usable data were : 90, 70, 50, 30,
15, 2.5 and 1.0m. For convenience, the u— and v-components of velocity
were identified with the measured easterly and northerly components respec-
tively.

Neither the pressure gradients nor the true geostrophic currents were
available to drive the model so, as a first attempt, four constituents from
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Height above bed 90.0 70.0 50,0 30.0 15.0 2.5 1.0

Means removed 0.98 1.67 1.86 2.71 0.84 0.32 0.61
hr
0.0 18.91 20,50 20.84 19.06 18.15 15,55 13.24
0.5 25.58 26.74 26414 24,17 25,22 20,73 17.64
1.0 31,03 31.56 30.30 29.14 30.81 25,13 20,49
1.5 34,52 35,36 34,09 32.99 34,37 27.74 22,42
2.0 35.30 37.29 34,91 34,06 36.37 27.55 22,67
2.5 34,53 36.09 33.23 31.33 33.25 25.12 21.15
3.0 30.43 33.42 29,13 28,17 29.62 21,94 18.13
3.5 26.66 27.87 22.98 21.57 23.77 17.98 14,97
4.0 20.24 21.40 15.17 14.44 16.65 13.85 10.91
4.5 11.19 11.94 7.38 5.71 9.34 7.27 0.10
5.0 1.78 1.85 -1.36 -3.27 0.20 0.22 -0.05
5.5 -8.78 -8.73 -12.95 -13.03 -8.93 -7.44 -6.87
6.0 -17.32  -18.93 -22,U8 -21.86 =-17.96 -=14.47 -13.31
6.5 =24.70 -27.40 =28.72 =27.57 =25.41 =20.22 -17.97
7.0 -29.80 -33.19 -32.85 =31.55 =30,56 -~25.17 -21.24
7.5 =33.64 -37.42 -34,8l1 -32.56 =33.32 =28.55 -23.03
8.0 =-35.25 -38.10 -=34.62 -33,03 =34.,42 =28.52 ~22.38
8.5 =35.48 -=37.53 -31.75 -30.68 =33.18 =26.08 =21.47
9.0 =-32.99 -33.59 -27.21 -25.40 =29.03 -23.89 -19.27
9.5 -26.98 -28.71 -22.48 -19.91 -23.97 -18.84 -15.50
10.0 -20.01 -21.43 ~15.48 =-13.20 -18.93 -13.38 -10.68
10.5 -12,76 -11.55 ~7.51 -5.90 -10.76 -8.09 -6.15
11.0 -4,22 -1.24 1.58 2.11 -2.,97 -0.37 0,02
11.5 5.51 6.89 8.76 8.70 5.46 6.55 5.52
12.0 14,51 16.10 16,55 15.33 14.19 12.33 10.63

Table 6b : The ensemble average profiles for the v component (cm/s) of the
current meter data.

the 90m level data were used to synthesise a possible driving current. In
order to control the 9t oscillations that developed in the energy series,
smoothing 3 times per cycle was required. Convergence of the solution was
achieved by the 25th cycle. This solution was analysed at the 90 and 70m
levels and the harmonic constituents compared with those from the
equivalent current meter. Since the data at the YUm level might have been
influenced by surface wave conditions not included in the model, the 70m
level was also considered for matching purposes. On the assumption that at
the upper levels the model affects each constituent independently and
linearly with depth, the forcing current constituents were adjusted to
match the model with the data at either the 90m or the 70m level, and the
model was re-run with the adjusted inputs. Because the linearity assump-
tion is not completely valid, the agreement at the matching level is still
not exact, but it was felt that further iterations were not warranted. The
solutions from the 90m match and the 70m match were compared at each meter
level by plotting the velocity ellipses from the model over one cycle., The
solution which was matched at the 90m level gave poor agreement with the
data for all the other meter levels and was not considered further.
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However the agreement of the solution matched with the data at 70m is
quite good at all levels (see Figure 22). All subsequent comparisons were
made using profiles of the following properties of the tidal ellipse
corresponding to the fundamental constituent

« the semi-major axis (a)
. the ellipticity : semi-minor / semi-major axes (b/a)

. the ellipse orientation : the angle the first semi-major axis makes
with the positive x axis %)

. the ellipse phase : the angle between the vector of the first point in
the ellipse to & (U).

Since these last two values depend on the arbitrary direction of north and
the arbitrary time origin of the series, it is relative differences over
the depth that are of interest and not the absolute values. Hence for par-
ticular comparisons, the profiles of ¥ and U are matched at 70m and an
appropriate angle added/subtracted from the remaining values in the pro-
file. Agreement between the wmodel and the data is quite good tor the
semi—ma jor axis a, though the modelled profile has less curvature near the
bed than the data (Figure 23a). The modelled b/a profile (Figure 23b)
shows the same general trend as the data, but does not display as much
variation top-to-bottom. The modelled phase ({) profile (Figure 23c) also
trends the same way as the data, but shows only about half as much wvaria-
tion top-to—-bottom. The orientation (¥) data (Figure 23d) shows reasonable
ageement with the model at most heights, but the measured values of ¥ at 30
and 50m are out of line with the other values. The reason for this is not
known, but might be due to an as yet untraced error in the compass calibra-
tions.

Attempts were made to improve the agreement by altering the constants &, c,
K and parameter 1z, to other realistic values. The main aims were to
increase the difference in § between the top and bottom of the profile and
to increase the curvature of the a profile below 50m.

Reducing the diffusion of turbulent energy by setting ¢4, = 0.0l improved the
curvature only marginally (< 0.5%), and scarcely influenced the phase at
all (< 0.3%). The realistic range of values for ¢ was taken to be
[0.034,0.1], where 0.034 was estimated from atmospheric and marine
boundary-layer data (Soulsby, 1983) and O.1 is the wvalue of ¢ wused by
Dickey and Van Leer (1984). The values 0.034 and 0.l were both used to
obtain solutions, but again the ellipse properties were hardly changed
(<0.3%), though ¢ = 0,034 did at least alter the values of a in the
required direction. The variations due to setting K = 0.35 are shown in
Figure 23 (points marked with a “+’). Although not large (<1.5%), the
movements of both a and § were in the required directions.

Selecting z, at the extremes of the range produced the most significant
alterations in the ellipse properties (see Figure 23). A value of
z, = O,lcm slightly improved the curvature of a below 50m; but the phase U
values were shifted in the wrong direction. Increasing z, to l.0Ucm
slightly decreased the curvature of the a profile, but improved the near
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bed ¥ by about 1°.

None of these alterations produced the required 5° decrease in § at lm, and
the discrepancy cannot, as yet, be explained. However it is interesting to
note that, as with the comparison ot the model with Jonsson and
Carlsen’s (1976) experimental results (Section 3.4), the phase leads are
underestimated by the model. For all the alterations made, the semi-major
axis profiles are in reasonable agreement with the data, and the model also
displays the same trends in its b/a profiles as the data. With regard to
the orientations, if the suspect data values at the 50m and 30m levels are
ignored, the trends of the profiles obtained from the model solutions
agree well with the remaining data values.

From the comparisons made above, one may conclude that the model solution
predicts the gross behaviour of the turbulent boundary-layer. However it
fails to cope with the finer detail of the data, probably because the clo-
sure assumptions in the model do not represent the turbulent processes
quite well enough.
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5. Conclusions

The basic momentum equation is solved correctly by the model, as is shown
by the one-dimensional test cases using constant K and K = K,z. The use of
dif ferent representations for the dissipation term did not significantly
alter the solution of the full turbulence model. Although use of the
expression 1 =Kz for mixing length instead of the time-varying formulation
(Eqn. 7a) only affected the solution at higher levels in the model, Eqn. 7a
was selected to allow time variations in 1. The option of ‘clawing’ the
mixing length back to zero near the surface was examined, but not seriously
considered as an alternative, since for the case where it has most
relevance (ie. when the turbulent boundary layer extends to the surface) it
caused the solution to behave badly.

The sensitivity of the model to changes in the constants «, c¢ and K is
rather variable, changes in Von Karman’s constant K producing the most sig-
nificant effects. Changes in the constants &, c and K could in principle
be used to tune the model for particular applications. However, varying
these constants within physically realistic limits proved to be inadequate
to tune the model enough to fit a measured tidal data set (see Sec-—
tion 4.2).

For all the various parameter settings used, the solutions of the full tur-
bulent boundary layer equations (Eqns. 1-7) were well-behaved, though in
some instances they required smoothing to keep control of finite oscilla-
tions that developed in the energy and stress values. The solutions can be
used to study aspects of the vertical structure of turbulent flow. For
example, a boundary layer thickness analysis has been successful with
respect to a range of input parameters (Section 3.6). The prediction of
drag coefficients (or friction factors) has also been considered in respect
of the one-dimensional version of the model. Here, the computed values
agreed well with empirical estimates for a wide range of input parameters
(Section 3.6).

Although qualitative agreement of the model with Vager & Kagan's (1969)
numerical results was good, the quantitative comparison was disappointing.
This could be due to the different discretisation and computational schemes
used in the two cases.
The absolute test of the model’s capability involves comparing its predic-
tions with real data. This is difficult since the model does not represent
all the physical realities. Some of the assumptions, in addition to the
formulation itself, are

1. No change in surface elevation.

2. No surface stress, eg. due to wind.

3. Constant roughness length (z_) through time.

4, No topographical influences on the flow.

All these factors must be taken into consideration when comparing the
model’s results with real data.
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Despite the model not being entirely applicable to the experimental condi-
tions in Jonsson and Carlsen’s 19/6 Test 1, the one-dimensional solution
agreed remarkably well with their laboratory data.

The comparison of the two-dimensional model with current meter data from
near the Scillies indicated that the model predicts the first order
behaviour of the flow satisfactorily. It did not however reproduce the
finer detail of the data, which indicates that some of the turbulence clo-
sure assumptions could be improved.

All the tests and trials completed recommend the model as a useful tool to
study many aspects of the structure of oscillating, turbulent, boundary
layer flow. Since velocities are easily measured, they can be used to
match a solution. The solution can then be used to obtain whatever aspects
of the flow need to be studied, the choice being limited only by the need
to write the software to perform the analysis. The model is especially
useful for studying flow properties that cannot be realistically measured,
but which can be estimated from the solution. For example, an analysis of
the mean values of velocity, stress and energy can be used to estimate sed-
iment transport rates in oscillatory flow regimes.,
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Appendix A : Transformed equations.

Normalisation
The variables are non—-dimensionalised as follows
u v / ’ U / Vv
u,= /Uo’ V,_ /an t ~wt , U= /Uo’ V= /Uo’ ‘/7 = rA/u) ’
’ /b ‘
z z /Uc’ le/ x w/ ; b /Uc’ / % 3 /LJU:

Depth Transforms

The depth transform may be either log or log—linear depending on the value
specified for =z

x°
Log Log-Linear
g=l““§f>/m ‘S=ln(§‘;‘)+%7;—z—‘l’—2/XL
XL = 1InCC* - XL=1n(_§.‘_)+(Zn Zo)
zg z,
iff oz, = 0.0 Lff 2, # 0.0 & 25 = 2,00/ )
’X = XL z: exp(XL ) = %75%%

where X: is a depth transform constant used in the model.

Transformed equations
The differential equations solved in the model are as follows :

- Sl = k4 A )65; + B(S,7 5% (A1)
dv’ .o v’ v’
E/ + tu = P + A(S,Z )a.s.. + B(S)Z ) (AZ)
Y b ab ’ 5
g{/— A(’§,Z )¢ -S) + (ag) +0C A('S9Z )asz"' B(g’z ) - & (A5)
with
S IV A
u t’ ? v~ at ’
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/ s
K=r¢/l Vb s E = ’ (Ab)

3
, Y “h A ,
and 1=I<,b"}jb"’;\',vg)dg+ z. (bc)"} (A7a)
c

The boundary conditions

(w,v’) = (0,0) at = 0.0
) (A3)
' _ v’ _
3¢ " a¢ " 0.0 at § =1.0
and
g—%=0.0 at X = 0.0 and ¥ = 1.0
(a8)

12Kz as % — 0.0.
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Appendix B : Discretised equations and the tridiagonal systems.

l. Discretised equations.

The discretisation is as follows :
N time intervals / cycle : N * §¢ = 2

M height intervals : M x 9% =1

The differential equations are implemented at half time-steps (n+0.5)8tlfor
each Xm= (m-1)8¥ for m=1,M+l. The derivative replacements are as follows :

n+l "

df replaced by fm = fm
dt” St”
et A+l " n )
Eyi replaced by 1 ) fmu = Frany + frmnt = Fm-i s
3% 2 28% 25 |
3%t replaced by lﬂ;f:: - Zf:‘ + f:: + f;:,- Zf: + £
0%* 23 d¢* 3¢+ I

A !
where fm denotes the value of f at 3 and t = ngti

Values for 1, A and B (see Appendix A) are evaluated at levels m and time
(nt+0.5), by averaging the values at times n and n+l.

Ideally the representation for the dissipation term should be time-centred
about the nt0.5 step; but this does not always generate a well behaved
solution. The dissipation term of Equation (6) may implemented in various
ways. The term (b”)** may be expressed in one of three ways

7 N+l

b (B at o+, €(0,1) (B1)

>/ s N4LsHt o nelS

.
\
rd (o . “vl
(b,) " at mh0.5 = < 0.5 [ B (5, ) + (B 1 at nt0.5 (B2)

snes L m nVa
y 0.75 bn (b,) " + 0.25 (b,) = at nt0.5 (B3)

where s is an iteration parameter.,

The integral used to evaluate 1 may be approximated by the Euler-Maclaurin
summation :

X
(f(x) dx = &x [ f'=/2 +f +f, teieene + £, + f"/2].

‘X

&
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4
For the evaluation of the normalised shear stress, eg.q: given by

Lo Ko,
71 = K az/ - x a.s

the model uses the approximations

’ 4 - .
'%% = Eﬂu?sggﬁ:‘ for m=2,M
with = 4ua _232 — Y3 for m=l (B4)

and for m=M+l .

26%
Alternatively at m=M+1 ou’ EéﬁL:—E;L
% 33
/ "
ie. T. = 0.0 for free surface condition 2) of Eqn. (10)

/
The values of % are estimated in a similar fashion.

2. Tridiagonal System for Equations (Al) & (A2).

The approach adopted is fully discussed elsewhere (see Mitchell (1969) and
others). The tridiagonal system of equations for the solution of
Equations (Al) and (A2) is as follows

r/\-rl :\ol ';nﬂ R N " n+’z
- um-l mum -Kmumﬂ=“mum-l+ (z—ﬁa)um +5mum+l+ St [ Pu +J\ v ]m
A+ nei sl n " " Ay
‘ s s _ ’ - s 4 4 _ ‘
- xm vm.] + B‘ vm - xm vmfl - “Mvm—l + (2 ﬁn)vm + Km Vm+l + St [ PV uﬂ u ]m
ne+'ly na’ly

The values of v’,, and u’,. on the right hand sides, are evaluated using

nely ned P
£, =05 Cf, +£,)
"’l . : - .
where the value for f,, is from the previous iteration. The coefficients

are defined (for notation see Appendix A) by :
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i’\+/)_ ne'ly .
o = JAm _ Bm | Ot
~ ) 8%F 265 { 2

‘ ne'le
and ﬁ§ 1.0 + 3t’ A .
n

For a solution of this system of equations to be stable, the following con-
ditions must be satisfied

X, >0, ¥ >0, B >0and B>& +7 .

Since K>0 implies A>0, whence 8>0, and since(Xm-+3;==ﬁn— 1 is true, the
last two conditions are always satisfied. Thus only two conditions require
checking in the model.

Note: These conditions are occasionally violated while the solution 1is
warming up. However, provided the coefficients are ‘close’ to zero, the
program is allowed to continue.

3. Tridiagonal System for Equation (A5)

The tridiagonal system for the solution of Equation (A5) is as follows :

’ﬂfl In#l ,r\#l P ,n ’,‘ - s ; v’z

-ab +8Bb, -cb, ,=ab  + (2-5,)b ., +c, b, +tot [ AQ-€ ]

where a, = X o, y Co= 4, .

B = (1.0 +¢,(f5-1.0) )
- ne'/2
= u\*  dviz
and Q Ikas + (83) } .
Depending on the formulation of [bi" ] * s B, and (2-B_ ) are modified

accordingly. The present version of the model incorporates options (Bl)
and (B3), and the option required is selected by a model input parameter.
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Appendix C : Behaviour of the log-linear Transform

This appendix describes the behaviour of the log-linear depth transform
with respect to values of M and Z,+ The transform of z 9% is defined as
follows

ln(E—) + QE—:Eﬁg

TS z, z,
- z, (z,~-z.)
ln(z‘; ) + T

ie. z €lz,,z2,] = ¥ €(0,1].

In order to compare the log-~linear with the straight log transform ie

In(*/_ )
y = ——*%—
9
In®/ )
Zg
the z values equivalent to'§, = y, = (m-1)/M (zi,and zi, respectively) can
be compared.  The height 2z, where z3 and z3 differ by 10% will then
represent the proportion (p) of the transform which is logarithmic
pZ = (Z_f—h * 100.
[ [+]

Values of z, were determined for various values of 2.5 2,5, 2, and M, and a
relationship between p and z, was found to be :

p = Gz, Zy
where Gy, was strongly dependent on z, and only weakly dependent on z, and
M. Gx, was estimated for five values of z, (20000, 10000, 5000, 3500 and
2000cm) and a linear function fitted to the points (z, ,Gg, ) to obtain

_ _9.107

G
z

3
z, + 0.352x10 .

With some a priori knowledge of zp (or p) these last two equations could be
used to estimate a suitable value of z,. However, since M can be selected
only by a ‘trial and error’ approach, this method may as well be used also
to obtain a value of 24+ This simply requires the computational levels Z
for a wide range of M and Zg (with the particular values for z, and z; ) to
be calculated. Thereafter, the M and z, values which produce the most
suitably spaced z. over the water depth can be selected by observation.
The selection procedure is made much simpler if certain heights are of par-
ticular interest (eg. current meter positions).
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Appendix D : Iterative scheme for the solution of the model equations.

Specify input parameters (physical constants,
model constants, depth transform, time/space grid)

Initialise the vertical distributions of horizontal yelo-
city (u’,v’),turbulent energy (b’ ), mixing length 1’ and
eddy viscosity K’, at the timestep (n=0)

=
Lot

Set uﬁvibﬁl/and K at timestep (n+l) = ugv;b:l, and K at

timestep (n)

Y

Calculate P, and P, in Eqs (Al) and (A2) for the

prescribed forcing flow (U,V)

- 1

ISolve momentum equations (Al) and (A2) subject to (A3) 1
1

From calculated velocity distributions, estimate velocity
gradients as required for the solution of equation (A5)

- {

[Eglculate energy dissipation rate &l(at timestep (n+1/2))
y

Solve turbulent energy equation (A5) subject to (A8)

has converged over
uccessive half>

[ﬁFinal solution

until 17 '
distribution 5
converges LRecalculate 1 at timestep (ntl) ]
\
A From b and 1~ at timestep (n+l), recalculate € at
timestep (nt+l)
until K’ Recalculate K at timestep (n+l)
distribution —
converges
Calculate components of shear stress (TL,?;)
Y
imestep unles — .
4 4 ’ .
K distribution Final values of u ,v ,b ,1 and K at timestep (n+l)

become values at timestep (n)
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Figure 1: Comparison of velocity profiles from the model (with K=constant) and

the analytic solution [Eqn. (11)]. The inset gives the detail for
levels 1 to 5.

Model profiles
Analytic solution —memm T s e e

The phase angles t' are defined by t’ =(nSt -7/2)-2r where r is chosen
so that t' € [0,2r].
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Comparison of the model with the results from Jonsson and Carlsen’s
experiment :

a) velocity profiles
b) shear stress profiles.

The free stream velocity U/ is maximum at about t'= 0.02mr with
cos(t') = 1.0 at t'= 0.0 where t' = nbt' - (w/2+5t') - 67.

I
In Figure 5b, the model’s ¥ at z = 17.25cm has been added to
the Jonsson and Carlsen values to compensate for the model’s non-zero
values of stress calculated at this level.

Profiles from the model
Profiles of the Jonsson and Carlsen results, — — — — — — — —
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Figure 5b: Shear stress profiles.
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Figure 6: Comparison of the model with the results from Jonsson and Carlsen’s
experiment -

6a) Velocity time series,
6b) Shear stress time series.

Each time series is drawn relative to its own origin, with the base
lines 1indexed at the left of the graph by the corresponding computa-
tion level index. The computed series are similarly indexed at the
right of the graph.

The correspondence between the model and data levels is :

z Model’s Data
Index pA z
cm cm

26 23.0 23.25

22 9.23 9.25

16 2.35 2.25

12 0.94 1,05

8 0.38 0.40

6 0.24 0.25

Jonsson and Carlsen’s shear stress values are modified as in Figure 5.

Model’s values + 1 +
Ad justed Jonsson and Carlsen results hA— — ¥ — — =%
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Figure 6a: Velocity time series.
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Figure 7: Comparative profile plots for viscosity and mixing length for solu-
tions using :

i) the standard mixing length formula Eqn. (7a)
ii) the linear expressiond =Mz

The profiles are plotted at m/2 intervals over a cycle.
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Figure 8 : The comparison of time series for the solutions using different mix-
ing length formulae -

i) Standard formula Egn. (7a)  —-——-—
ii) Linear expression & =z

For each time series, the axis is shifted vertically; the correspond-
ing curves and base lines are indexed by their z level index :

nm = 1 8 11 12 13 15 16 17 20 26

N
1

0.010 0.132 0.398 0,575 0.832 1.74 2,51 3.63 10.96 100.0 cm
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Figure 8b: Energy time series.
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Figure 8c: Shear

stress time series.
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Figure 9: The normalised boundary layer thickness S/A plotted against the rela-
tive roughness A/k,.

For Rg = 10000 : ,
8, /A height where peak u’= max U
3,/A height where peak u'profile is 1% from logarithmic
83 /A height where peak u’- max U= 1%
Sz/A height where (peak b) / (peak b )

PO % +

1%

For R, = 300 :
8§, /A from model.
8,/A from Jonsson & Carlsen’s (1976) two experiments.
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Figure 10: The drag coefficient f,, and phase lead 8 of ¥, over U’, plotted as
functions of A/k¢ and compared with other relationships.

Kajiura (1968) (- - - - - ); Jomsson (1967,1978) (——);

Kamphuis (1975) (=—-—-~); Jonsson & Carlsen (1976) experi-
mental values (& ); Smith (1977) (~— — —); Model wvalues
for Ry = 10% (x ) and for A/kg= 100, Ry = both 104 and 300

(¥X).
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Figure 11: Sensitivity of model’s energy values to a change in the constant & .
Figure lla compares the vertical profiles and Figure 11b the time
series from solutions obtained using the values :

Ky + 50%2 = 1,095
and “b - 50% 0-3650 —_—_——————— = = ="

In 11b, the heights corresponding to the z level indices are :

m = 1 6 11 16 21
z = 0.01 0.06 0.40 2,51 15.85 cm

The profiles in 1lla are indexed by their phase angle/r where
t'= (n8t' -v/2) - 8m.
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Figure 11la: Energy profiles.
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Figure 11b: Energy time series.
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Figure 12a: Shear stress profiles.

Figure 12: The sensitivity of the model’s stress values to a change in the con-

stant Xy . The solutions were obtained with the values :

o + 50% = 1.095
and ™p - 50% = 0.365 = ———— —————

12a compares the vertical profiles of stress and 12b the stress time
series values. The details of the annotation are as for Figure 11,
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Figure 12b: Shear stress time series.
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Figure 13a: Stress profiles.

Figure 13: The sensitivity of the model’s stress values to a change in the
stant c.

con-
Figure 13a compares the vertical profiles, and 13b the time
series, from solutions obtained using :

c + 50% = 0.089
and ¢ - 50% 0.046,

The details of the annotation are as for Figure 11,
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Figure 13b: Stress time series.
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Figure 14: The sensititivity of the model’s energy values to a change in the

constant c. Figure lé4a compares profiles and l4b time series from
solutions obtained using :

c + 50% = 0,089
and c - 50% = 0.023.

The details of the annotation are as for Figure 1l.
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Figure 14b: Energy time series.
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Figure 15: The sensitivity of the model’s velocity values to a change in
Von Karman’s constant K. The solutions have been obtained using the

values :
K =0.4,
K + 50% = 0.6, ——— e -
and - 507 = 0.2

15a compares some vertical profiles and 15b some time series of velo-
city.

In 15b the heights corresponding to the z level indices are :

m = 8 12 16 20 26
z = 0.13 0.58 2,51 10.96 100.0 cm.

The phase angle annotation is the same as that for Figure 11.
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Figure 15a: Velocity profiles.
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Figure

15b:

Velocity time series.
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Figure 16: The sensitivity of the model’s energy values to changes in

Von Karman’s constant K. Figure 16a compares profiles, and 16b time
series, from solutions obtained with the values

k = 0.

4
K + 507 = 0.6
and K - 50%Z = 0.2

For details of the annotation see Figure 15.
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Figure 16b: Energy

time series.
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Figure l7a: Shear stress profiles.

Figure 17: The sensitivity of the model’s shear stress values to a change in
Von Karman’s constantk. Figure 17a compares profiles, and 17b time
series, from solutions obtained with the values :

K

= 0.4,
/0 + 50% = 0.6, R ——
and K - 50% = 0.2. —

For details of annotation see Figure 15.
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Figure 18:
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The comparison of energy values obtained by the model for an oscilla-
tory flow of tidal period in shallow water, using different formula-
tions for the dissipation term, namely :

LL m s

() —— (B1)

R

(b’ )%
e ; i ’ 3,
and  (b')% = 0.75 8" 4 0.25 (b N)E ——m— e — (83)

Figure 18a compares profiles, while 18b compares time series.

The z values corresponding to the level indices used in 18b are as
follows :

m = 1 7 16 25 50
z = 0.10 0.42 3,54 29,42 1843.5 cm

The phase angles t' in Figure 18a have been reduced to 1lie in the
interval [0,2r].
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Figure 19: The comparison of defect velocity components from the present model
with the results from Vager and Kagan’s (V&K) model. Figure 19a con-
tains the u and 19b the v component of velocity.

The z values equivalent to the level indices are :

m Model V&K
z/zy Zp

110 10
28 | 0.050 | 0.05
31 | 0.100 | 0.10
34 | 0.200 | 0.19
37 | 0.398 | 0.38

41 | 1.000 1.00

The present model’s solution
Points taken from the Vager & Kagan’s graphs x X x
The ‘smooth’ curves joining the V&K points. T p—
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Figure 20: Comparison of the energy time series from the present model with the
results from Vager and Kagan’s model. Annotation details are as for

Figure 19,
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Figure 21: Comparison of eddy viscosity time series from the present model with

the results from Vager and Kagan’s model. Details of the annotation
and indexing are as for Figure 19. Reliable comparisons were possi-
ble only for levels 34, 37 and 4l.
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Tidal velocity ellipses.

Comparison of the model’s velocity solution with the ensemble aver-
aged velocities obtained from current meters deployed near the Scil-
lies. The velocities at each meter level are plotted as ellipses
over one cycle. The model’s values plotted were obtained using con-
stituents for (U,V) which matched the mwmodel and data at 70m as
closely as possible.

Model’s velocity solution (u,v)
Velocities from current meter data r— - e — e

The arrow drawn on each ellipse marks the position of the first point
on the ellipse.

L -50cm/s
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Figure 23: Comparison of ellipse property profiles with those from current meter
data, using the present model’s solutions obtained for various values
of z, and two values of K.

Since the direction of north and the start of the time series are
arbitrary, the ellipse orientations (¥) and phases (J) can be shifted
so that they are identical at 70m without any inconsistency. The
ad justments made to each of the model’s ¥ and Y profiles are given in
the table below.

In order to provide as much detail as possible, the graphs are drawn
with oftset origins.

Current meter data values o

Model values using: Adjustments:

K Zo ¥, Xo

cm

0.40 0.4 0.0 +0.3
0040 0.1 —2.9 -1.8 ¢ 4 a o 0 u a
0.40 1.0 0.4 +0.1 | —————
0035 0.4 _lo6 _008 +
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Figures 23b: Profiles of the ratio semi-minor / major axes (b/a).
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