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SUMMARY

surtace waves travelling in water of finite depth may be scattered by a
region of undulating bottom topography. This is a significant phenomenon both on
the continental shelf, where a wide variety of regular and irregular bed features
exists, and off beaches, where rather more regular, shore-parallel, bar structures
are commonly formed.

The present study i1s concerned with the idealized, two~dimensional, situation
in which long-crested surface waves are incident upon a patch of long-crested
regular bottom ripples. The principal question examined concerns the amount of
incident wave energy which is reflected by the ripple patch. A secondary questicn
concerns the nature of the wave field in the immediate vicinity of the ripple
patch and, more generally, the implications of the results for the stability of
ripples on the seabed.

Linear perturbation theory is used to show that the reflection coefficient
of a patch of sinusoidal ripples on an otherwise flat bed is both oscillatory in
the quotient of the length of the patch and the surface wavelength, and also
strongly dependent upon the quotient of the surface and bed wavenumbers. In
particular, it is shown that there is a resonant interaction between the surface
waves and the ripples 1if the surface wavenumber is approximately half the ripple
wavenumber. Due to the finite length of the ripple patch, there is a broad re-
sonance in respect of the ratio of these two wavenumbers, which is associated with
the reflection of incident wave energy. This phenomenon is such that surprisingly
few ripples, of relatively small steepness, are required to produce a substantial
reflected wave. The theory is used to predict not only the properties of the
reflection coefficient of the ripple patch, but also the nature of the wave field
over the ripples. In reso..ant cases, which are of particular interest throughout
this report, it is shown how the partially standing wave on the up-wave side of
the ripple patch gives way, in an almost linear manner over the ripple patch itself,
to a progressive (transmitted) wave on the down-wave side.

The theoretical predictions are compared with an extensive set of laboratory
observations made in a wave tank. For the experiments, a fixed patch of sinusoidal
ripples was constructed on an otherwise flat bed, mid-way between a wave generator
and a wave-absorbing beach. The properties of the surface wave field were deter-
mined with wave gauges, and reflection coefficients were determined with gauge
pairs. In resonant cases, measurements of the reflection coefficient of the
ripple patch support the theoretical predictions very well, for a wide variety of

parameter settings including the length of the patch; not only are the magnitudes
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of measured reflection coefficients in good agreement with the predictions, but
also the width of the main resonant peak is confirmed. In general non-resonant
cases, the measurements also support the theory, though the trend predicted for
the reflection coefficient is concealed somewhat by a (small) amount of wave energy
reflection from the beach. Comparisons between theoretical predictions and
experimental observations are made also for wave elevations measured in the region
of the ripple patch itself and, again, consistently good agreement is found.
Finally, the implications of the results for sediment transport on an
erodible bed are examined. Calculations of the (irrotational) bed velocity field
are made, and the results of one experimental run are described, in which the move-
ment of a thin veneer of sand throughout the ripple patch, and on either side of
it, was observed. It is clear, from both theory and observation, that incident
wave reflection by an existing ripple patch provides a mechanism for the growth
of new ripples on the up-wave side of the patch, having the same wavelength as the
existing ripples. This suggests that there may be a coupling between wave re-
flection and ripple growth on an erodible bed, which may have important implications
for coastal protection. However, it remains unclear from the results of the
present study whether the existing ripple patch is likely to be a stable, or an
unstable, feature on the bed, particularly in resonant cases in which there is a
significant amount of wave reflection. This matter calls for further theoretical

and experimental investigation.
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1. INTRODUCTION
1.1 Background to the present study

The interaction of surface water waves with undulating seabed topographv is
a problem of fundamental importance to coastal engineers. While it has been shown
that, in the nearshore zone, quite complex patterns of wave motion (eg edge waves)
may lead to beach cusps, shore parallel bars and even crescentic shore welded
sand bars (Holman and Bowen, 1982), the problem that concerns us in this study is
how waves are likely to interact with a pre-existing pattern of regular undula-
tions on the seabed. Such a pattern may consist of shore parallel bars formed by
plane reflections of low amplitude swell waves from a beach, leading to standing
waves of the type observed by Suhayda (1974). Alternatively, standing waves may
occur seaward of the surf zone as a result of the time varying breakpoint forcing
mechanism described by Symonds et al (1982). 1In this case a forced wave having
incident wave group periodicity is radiated seaward from the breaker zone. Such
a wave, interacting with incoming infragravity waves having periods in the range
30-300 s , might lead to standing waves and consequently bar formation. This
latter mechanism seems to be the most likely candidate for generating the multiple
shore parallel bars observed by Short (1975), which would require wave periods of
the order 100 s.

A pre-existing pattern of bottom undulations might also consist of tidally
generated features such as sand waves (eg Langhorne, 1982) or sand ridges lying
transverse to the general direction of wave propagation and, as such, may occur
well offshore away from the coastline. In general, surface wave/seabed inter-
actions may occur in any depth of water where the waves are able to "feel the
bottom". It follows that such interactions may occur for a wide range of surface

water wavelengths and bedform length scales,

1.2  The present study
The present study arose from some theoretical predictions (Davies, 1980,

1982a) concerning the interaction of long crested incident surface waves with iong
crested transverse bedforms. Essentially, it was shown that significant resonant
interactions, associated with wave reflection, may occur between surface waves and
bottom undulations provided that their respective wavelengths are in the approx-
imate (Bragg scattering) ratio of two to one. Furthermore, it was shown that the
coefficient of wave reflection for a patch of ripples on an otherwise flat bed is
oscillatory in the ratio of the length of the patch to the wavelength of the {ree
surface wave. These results were without any detailed experimental support until,

during a visit to the US Army Corps of Engineers, Coastal Engineering Research

13

e A e e e i e e e e o b R o v ot 41



Center, Fort Belvoir, Virginia, USA, the opportunity arose for one of the authors
(A D Heathershaw) to carry out an extensive set of measurements in a wave tank to
test the theory. Some preliminary aspects of this investigation have already been
described by Heathershaw (1982). 1In the light of some of the results from these
experiments, which were outside the scope of the original theoretical study, it
was thought desirable to extend the theory to give a more complete description of
the way in which surface waves interact with a patch of bottom undulations. Thus
the original theory has been extended (see §2) to enable comparisions between
measured and predicted wave properties both above the ripple patch (referred to as
the 'near field'), and on either side of it (the 'far field').

In §3, the experimental set-up is described and, in §4, the results are
presented. Initially in 84, results for the wave reflection coefficient are
compared with the theoretical predictions. Next, measured wave elevations
throughout the wave tank are examined; here a description is given of the likely
effects of transmitted waves being back-reflected onto the ripple patch by some
further reflector on the down-wave side (eg a beach). Finally, comparisons of
observed and predicted sediment movement in a wave-reflecting ripple system are
made on the basis of the near-bed velocity field both over the ripple patch, and

beneath the partially standing wave pattern on its up-wave side.

2. THEORY
2.1 Introduction

When surface waves are incident on a region of undulating seabed topography,
it is well known that wave energy may be scattered by the bedforms. In general,
incident waves travelling onto a bed roughness patch from any one direction may
be scattered into any other direction. For large roughness patches, this problem
has been treated by Long (1973), who examined the case of an arbitrary spectrum of
surface waves propagating over an arbitrary spectrum of bottom perturbations. A
rather simpler situation, which is of particular interest to workers in the field
of sediment transport and which is treated here, is that in which long-crested
waves are incident upon purely transverse bed features. 1In this special case,
there are only two types of interaction between the waves and the bed, namely
back-scatter (wave reflection) and forward-scatter (wave transmission). One
reason why this problem is of interest is that, on erodible beds, there is a
suggestion of a coupling between wave energy reflection and bedform growth, which

may have significant implications for coastal protection.
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In a previous paper, Davies (1982a) considered a two-dimensional problem in
which surface waves were incident upon a patch of sinusoidal transverse ripples on
an otherwise flat bed. The interaction between the waves and the ripples was
examined on the basis of linear perturbation theory, and results were obtained for
the reflected and transmitted waves for the "far field", well away from the region
of bed disturbance. Although the theory was strictly applicable only to small
roughness patches, the results indicated that, in certain circumstances, very few
ripples may be needed to produce a substantial back-scattered wave. Firstly, it
was shown that the reflection coefficient is oscillatory in the ratio of the
surface wavelength to the length of the roughness patch and, secondly, that it is
resonant if the surface wavelength is twice the bed wavelength. Taken together,
these two effects produce a resonant peak near this critical ratio of wavelengths,
the width of which decreases, and the intensity of which increases, as the number
of ripples in the patch increases. Both the oscillatory nature, and the resonance,
of the reflection coefficient have been established in a number of previous
related studies. The oscillatory nature has been identified by, for example,
Kreisel (1949), Newman (1965), Mei and Black (1969) and Fitz—Gerald (1977) and
also, for long surface waves, by Jeffries (1944); and the resonance has been at
the heart of Long's (1973) study, and has been discussed by various authors in a
wider context (eg Beckmann and Spizzichino (1963), Fortuin (1970)). It is
believed, however, that there has been no previous attempt to combine the two
effects in a single theory describing the interaction of surface water waves with
a region of undulating seabed topography (see the literature review of Davies
(1980)).

Results for the "near field", over the ripple patch, were presented by Davies
(1982b). As expected from previous related studies, the interaction between
surface waves and sinusoidal ripples was found to give rise to two new waves with
wavenumbers equal to the sum and difference of those of the surface waves and the
bedforms. The sum wave is always in the onward transmitted direction; the
difference wave is either in the onward transmitted direction, or is back
reflected, depending upon whether its wavelength is less than, or greater than,
that of the ripples, respectively. Unfortunately, the theory presented in this
earlier paper produced a physically unrealistic result at resonance, as a result
of the physically unrealistic assumption that the ripple patch was of infinite
horizontal extent; in particular, it produced an infinite reflection coefficient
for bed wavelengths equal to exactly one half of the surface wavelength. The

details of this infinite resonant interaction have been examined recently by
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Mitra and Greenberg (1982).

The contribution of the present paper is to draw the results of the two
earlier studies into a single framework. Essentially, the results of Davies
(1982a) for the "far field" are extended to some considerations of the '"near
field", for a physically realistic ripple patch of finite extent. While the sum
and difference waves are found to be present over the patch, two additional waves
are found there also; these waves are such as to produce a finite reflection
coefficient for all combinations of surface and bed wavelengths. Moreover, an
infinite number of trapped wave modes is found at both ends of the ripple patch.
Each of these modes decays exponentially with distance from the end of the patch
on which it is centred. When taken together with the various progressive wave
modes in the solution, the trapped modes ensure the continuity of the solution at
both ends of the patch.

In §2.2, the formulation of the problem is presented. This is a steady
state formulation based upon linear perturbation theory, involving the Fourier
transformation of the governing equation and boundary conditions in respect of the
horizontal space variable, and leading to a solution for the transform of the
perturbation potential. Section 2.2 includes some comments about a linear
friction term which is introduced into the analysis both to make the solution
determinate, and also to ensure that the waves in the perturbation soclution
satisfy the radiation, or Sommerfeld, condition. In §2.3, some functions are
obtained which are required in the analysis of the particular problem of
progressive surface waves incident upon a patch of sinusoidal ripples. In this
section, and throughout the remainder of the study, two particular cases are
treated. In the first, the unperturbed incident waves in the first order solution
are assumed to undergo no attenuation in amplitude as they travel across the
ripple patch. This amounts to the use of the theory in a pure form; but, in cases
in which there is a substantial reflected wave, it results in a physically unreal-
istic imbalance between the incident, reflected and transmitted wave energy fluxes.
Essentially, the solution provides an upper bound on the size of the reflected
wave, at least in resonant cases. The second particular case treated is that in
which an energy balance is imposed on the solution by an approach suggested by
Davies (1982a). This assumes, with good justification as it turns out, that the
attenuation of the incident wave amplitude is a linear function of distance across
the patch. On this basis, more realistic results are obtained. The solutions for
both the "mear" and "far fields", and for both unattenuated and attenuated

incident waves, are obtained by a contour integration method which is discussed in
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§2.4. Results for the general case in which 1 # 2k (1 = ripple wavenumber,

k = surface wavenumber) arc developed in £2.5, and for the special resonant case
in which 1 = 2k in §2.6. 1In §2.7, the wave reflection coefficient is discussed,
and some computed examples are presented which demonstrate the behaviour of the
solution throughout the flow field, The role of the trapped wave modes at the
ends of the ripple patch is illustrated, and the implications of the results for
bedform stability and sediment movement are considered.

Since we are concerned with an irrotational theory, we take no account of
the presence of a (thin) wave boundary layer above the impermeable bed. More
importantly, we assume that the flow above the ripples is always nonseparating.
This implies that the orbital excursion of the water particles at the bed level
(calculated for a notional flat bed) is less than the ripple wavelength (Sleath
(1975)). This is not a severe restriction in view of the ratios of surface to
bed wavelength which are of concern here, namely thoseratios which give rise to
substantial reflected waves. There are several further limitations on the theory,
which are stated in §2.7; however these do not prevent use of the results obtained

in a wide variety of physically interesting cases.

2.2 Formulation
This has been discussed previously by Davies (1980, 1982a), though in a

form slightly different from that presented here. As depicted in Fig 1, the bed

surface is prescribed about its mean level (y = -h) as
o -0 < x g/,
’S(x)= )Z(x) in Ll < x \<L3’ (1)
o) L,_\<x<oo

and the departure of the free water surface from its mean level (y = 0) is given
by n(x,t). The prescribed first order velocity potential is denoted by &(x,y,t),
and the second order perturbation potential, which expresses the interaction of
¢(x,y,t) with the bedforms, is denoted by ¢(x,y,t). The governing equation and

boundary conditions, correct to second order, are given by

2
V%=O in _isﬁso,~w<x<oo (2)

7t+é =0 on Y= 0O (kinematical condition). (3)

17



?7 - é = on Y= O (pressure condition) . (4)

¢ - é S + § {=0 oo Y =-ﬁ (kinematical condition), (5)
Y xx 4y

in which t is the time, g is gravity, and in which the subscripts indicate diff-
erentiation. A detailed derivation of these equations by standard power series
expansion methods, and a discussion of their limitations, have been given by
Davies (1980, Part 1, §3). In §2.7 these limitations are expressed as a series
of conditions involving the length scales introduced in §2.3 to define the surface
waves and the ripples. The surface boundary conditions (3) and (4) have been
linearized in the usual way. The bottom boundary condition has been linearized
also, and expresses the requirement that the component of fluid velocity normal
to the bed must vanish. In effect, bottom topography variations are treated as
small perturbations on a plane surface, such that the interaction between the
(first order) flow which would be present without the perturbations, and the per-
turbations themselves, involves a new source of (second order) fluid motion
situated on the plane surface. From Eqs (1) and (5) this new source can be seen
to be a vertical velocity perturbation on y = ~h which occurs in L, £ x = L,.

It follows that we may rewrite Eq (5) as

O -0 « x <« ;L,
¢ = -.\/o (l,t) in L, < 2 < Lz (6)
4

o L, < 2 < oo

where

Vi) =g 5+ 8 et - @

The effects of this disturbance on the fluid as a whole are described by Eqs
(2)-(4).

If we prescribe ¢ as a periodic function of time and seek a steady state
solution of Eqs (2)-(5), we find, for reasons which are well known, that this
solution is indeterminate. We therefore employ the device, described by Lamb
(1932, Art 232), of introducing into the formulation a small amount of friction
proportional to the relative velocity. Although the coefficient of friction is

set ultimately to zero, the device ensures the convergence of the integrals arising
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in the analysis, and it clarifies the way in which the radiation condition can be
satisfied. It should be noted that the introduction of linear friction is
essentially a mathematical device which does not accurately represent the way in
which dissipation occurs in the flow in reality. It enters the formulation as
an additional term in the equations of motion and, hence, appears in the surface
pressure condition; in particular, following the integration of the equations of

motion, the pressure condition (cf Eq (4)) becomes

3‘2-#;.:/‘%-_-0 on y=0o0 (4a)

in which p (>0) is the coefficient of friction. Eliminating n(x,t) between

Eqs (3) and (4a), we obtain

39 + ¢

¢

twégo on y=0. (8)

We now assume that ¢ and its first and second derivatives tend to zero as
. . 1 . .
|x| > = , in such a way that Fourier transforms exist in x. Thus Eqs (2), (8)

and (6) become

>

n
o

A
¢ in —i$3\<o)"°a<§‘w’ (9)
Y A

)

>

w
O NN
+
TO<

S

sé =0 on 4y=0, (10)

and
A bd Ex k2 Ex
§ | et he o L[ V) Fe
T -0 ™ Ly
= NGO sy an
1. Definition

#61.t) =J—'-—_
¢ (x. 4.t =f—:—J %égt)c oLE -
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The solution of Eq (9) is

e, u,t) = A(ELD cosh(by) + B (£, sinh (Ey) s
and we make this specific to the case of waves of frequency o by taking

A =A™ s BLaD =B ma A 69-ABO

The solution $(£,y,t) which satisfies Eqs (10) and (11) is then

) ) = 3§Cos£,(f‘j> + (o'z—_i/uc'> Slnf(?‘:\) ) .
¢(§‘j ) J:?Tr{(Uz-;yw')fcosLGK)-jgzsinﬂ(gf')} -/l"’ (g,t)

Upon taking the inverse transform, the velocity potential ¢(x,y,t) is

given by

e | Bk (1) o (oiued k(b gy D
¢( "ﬂﬂt> = 2”.{ {(o"-%a) coi(f‘)-g;ﬁ»ﬁ(é{)i _/L(§)e alg .

This integral determines the solution for both the "near" and "far" fields. The
form of Eq (12) differs from that of the equivalent integral obtained by Davies
(1982a,Eq (15)). In this earlier work, V,(x,t) was specified as a real function of
space and time and this resulted, upon inversion of the transformed potential, in
a purely real velocity potential. Here, for convenience,we takeV,(x,t) as the

real part of a complex function. Upon inversion of the transformed potential $,
this results in a complex form for ¢, from which the required velocity potential

is obtained by taking the real part. This may be demonstrated quite simply though,
for brevity, the details of the argument are not included here. In §2.3 the
function A(Z) is determined for both unattenuated, and attenuated, incident waves

and, in §2.4, the integral in Eq (12) is evaluated by a contour integration method.

2.3 The function A(E)
The function A(Z) depends upon both the nature of the bedforms and the
unperturbed first order motion. The bedforms are assumed to be sinusoidal ripples,

such that Y, (x) in Eq (1) is given by
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Yb(x) = b S;m(‘(z-i-é) s (13)

where b is the ripple amplitude, 1 is the ripple wavenumber and & is an arbitrary
phase angle. For continuity of bed elevation at the ends of the roughness patch,

and for convenience in making comparisons with the later laboratory results, we

write
m T mT
L,=L = i L,=-[__-.-__£ and §= O , (14)
where m is an integer. Thus there are m ripples in the patch, which is centred

on x = 0 and is of length 2L.

2.3.1 Case 1. Unattenuated incident waves,
We assume initially that the incident progressive waves are not attenuated

as they pass over the patch, and that the unperturbed velocity potential is given

by

é("’ﬂ'w - Sor ' Zfi (k?e) 3 cos (hxe—ot) (15)

where a, o and k are the surface wave amplitude, frequency and wavenumber,respecti-
vely. Equation (15) corresponds to waves propagating in the +x direction, in

which we note that &, k and the depth h are related by the dispersion equation
ot = sk fa..{(bC)- (16)
Using Eqs (1), (13), (14) and (15), we obtain V,(x,t) from Eq (7) as
'Vc(x,t) = C*{ lsin U?x-a—f) cos(/-az)-'-k cos{at—kx) sen e % s (17
where

C. =326k
* ocosk (RL)

21



It is convenient to take V{(x,t) as the real part of a complex function and, in
particular, as the real part of

ot

\/: (z,t) = V(o e
where, from Eq (17),

8

. ke (-Ox] p [ ilkex L(—k-é)z} .
V(:>=C,{-,:qc v el ] [a - €

It follows from Eq (11) that

m( L(E-R)L lf-RL) 5t
_/\_(E)=—C:-(-‘) {c - 6 } (E-k)z- {z, . (18)

Following the substitution of this expression into Eq (12), we may determine
the perturbation potential ¢ for both the near and far fields, subject to the con-
dition that solutions for the far field must only comprise waves satisfying the
radiation condition as x > * o, Now, as noted in §2.1, if the amplitudes of these
outgoing waves (and, particularly, of the reflected wave) are not negligible com—
pared with the amplitude a of the incident wave in the first order solution, then
the combined velocity potential (¢ + ¢) will, in general, violate the overall
requirements of energy conservation in the solution. This difficulty is overcome,

to a great extent, by the procedure described in the following section.

2.3.2 Case 2. Attenuated incident waves

If incident waves are reflected by the bed roughness patch, then the incident
wave amplitude must decrease in some way across the patch. Strictly, in the
assumed absence of any mechanisms of dissipation, the incident wave energy flux
must be balanced by the reflected and transmitted energy fluxes. For the reason
given above, this condition is not satisfied, in general, by incident waves which
are unattenuated across the patch in the first order solution. In fact, results
obtained later on the basis of Eq (17) may be considered as providing upper bounds
on the amplitude ax of the reflected wave. A procedure to impose an energy
balance on the solution was proposed by Davies (1982a). In this procedure, the
surface wave amplitude in the first order solution was assumed to decrease linearly

from its starting value a at x = -L to a new lower value ;T at x = +L, Values of
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éT and ;R’ the modified transmitted and reflected wave amplitudes well away from
the patch, respectively, were required to satisfy the equation

2 ~ 2 ~ 4
a* = a_ + a, -

-

The iteration method adopted is not discussed in detail here; essentially, it
involved the determination of a final value of the reflected wave amplitude ER from
an initial estimate of a based upon Eq (17). There is strong justification for
the assumption of linear attenuation of wave amplitude across the ripple patch, at
least in resonant cases, both from the results for the wave reflection coefficient
(see §2.7.1) which indicate a linear increase in ap with the number of ripples in
the patch, and also from the later experimental results (see §4)1.

The corrected results for attenuated waves in the first order solution are

obtained by replacing V.(x,t) in Eq (17) by V,(x,t) where
¥ ] a x (4.
M(”’Q:M("’t)'{i(’* L) + L (T'O} '

such that "Z (x,t) =V(x,t> at x = - L and V;(")t) = %——V:(x,t) at x=/[

(Note that tildes are used hereafter to denote the case in which the incident

surface waves are attenuated.) On this basis, the result equivalent to Eq (18) is

< c[ R (5 PE a-d, ifr (£eL%kD)
A@=-CED e 'f'&"'(e_m*-f* & Zmr Hf-k)"-(‘}z}

(5oL {_ L | a-d it (LK) H
ve (kY -¢* &  Zwr {(§-R0-€F

(19)

Clearly, Eq (18) is recovered if ;T = a

While the present approach has the obvious advantage that a proper energy
balance is achieved in the solution, it has the disadvantage that the redefined
first order waves (¥(x,y,t)) do not strictly satisfy the potential equation in
-L £ x £ L. (This is an implication arising from the introduction of the linear

attenuation term into the expression for the perturbing bottom velocity V (x,t).)

1.  The theory of Long (1973), when applied to the present geometry, also predicts
a linear attenuation of the incident wave with penetration into the scattering
patch (Long, personal communication).

23




However this drawback, which in practice is of minor significance, does not extend
to the perturbation solution, since the disturbance wave still satisfies Eqs (2)

to (5).

2.4 The contour integration method

We now consider the evaluation of the integral on the right hand side of Eq
(12) by contour integration. Initially, the approach adopted is to take £ as the
real part of a complex variable X = £ + iy, and to replace the path of integration
~» < § < », by a closed contour in the X - plane. This contour is chosen as a
semi-circle of radius r, which includes the portion -r <£< r of the real axis of
A. The semi-circle, which completes the contour, is chosen in either the upper or
lower half plane such that a physically admissible solution is obtained. 1In this
section, we identify all the singularities of the integrand in Eq (12), and we
show how certain groups of these singularities contribute to the solution in
different parts of the flow field. Where singularities lie on the contour of
integration, in particular on the £ - axis, the contour is indented. The
indentations are made in either the upper or lower half plane, such that the
contributions to the solution from the singularities in question enable the bottom
boundary condition (6) to be satisfied. Ultimately, as the radii of the indent-
ations tend to zero and as r - =, the required path of integration, namely the
¢ - axis, becomes part of the complete contour. Moreover, since the semi-circular
portion of the contour makes a contribution to the solution which tends to zero as
r + @ (see Davies (1980, Part 2, §2.1.1)), the required result for the velocity
potential is simply equal to the result obtained by integrating around the
complete contour.

We consider, firstly, the singularities associated with the term in the
brace in the denominator in (12). If we write X = £ + iy, these singularities are

at positions A = A, which satisfy the equation
(0_1._:‘,/,.,0'> cosk. (')F{) - 3“? Sin{(%.t) = 0. (20)

Each solution of this equation gives rise to a simple pole. Two poles lie close
to the real axis of A, at lp =k - iyk, and -k + ipk,(yx > 0, k, > 0), where Eq (16)
has been used in the solution of (20). The first of these is displaced slightly
into the fourth quadrant, and the second into the second quadrant, as a result of
the presence of the linear friction term. 1In addition, there is an infinite number

of poles (kp) closely adjacent to the imaginary axis of A. For non-zero u, these
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poles are subject to small real displacements from reference positions (A, = ix,)

determined, with u = 0, from solutions of the equation

or = - 3:z;'tan.(2;JC> . (21)

These poles are associated with trapped wave modes near both ends of the ripple
patch, while the poles on, or closely adjacent to, the real axis of A are
associated with travelling waves.

We consider next the singularities associated with the functions A(£) and
A(£), given by Eqs (18) and (19) respectively. We start by replacing A(E) and
A(Z) by A(A) and A()), respectively. TFor convenience, we write the function A(})

in the form

_A_()) - If(g> ei(ﬂ-k)L_‘_ Z(q)e_é(ﬂ-h)L , (22)

where

oy Ot
i(q) = C#() (A-R)*- £% ?

and (23)

. Clay A
£OD = GOy .

Note that both f;()) and f,()\) are singular if A = k * 1. Similarly, we write the

function A(}) in the form

A -7Zme

L(3-R)L Py ~i{3-k)L
+ £ e , (24)

where

I Y a-d. il 0% R
ORNIE '){57 (A-ky¥-€* @ 'Zw'f(:\-k)‘-{‘i"g’

and b (25)

5, m ¢4 -2 if" VL4
N = -Gl - * 2o |
£ =-C) { (2-k) - £* Q@ Zwr {(D-R)- ”fz?

/

25



Upon setting éT = a in Eqs (25), Eqs (23) are recovered, as expected. Also it may
be noted that, while f;(}) and f,()) have simple poles at A = k + 1, the functions
£1(2) and £2()) have both simple and double poles at these points. A further
important consideration is that, in the limits u+0 and 1 + 2k, the pole at (k - 1)
and the pole identified earlier at (-k + ipk,) approach one another; this
situation constitutes a special case which is later treated separately.

To obtain a physically meaningful solution, it is necessary to ensure that

the inversion integral (Eq (12)) is convergent. If we substitute Eq (22) (or

Eq (24) as appropriate) into Eq (12), define the function wu(l) by

}/:(’A) _ 97 cask(')u) -+ (a"-_i/«»a') sl (Qg) (26)

2rd (o2 o) ol (AL)- g 5in & (ALD}

and replace the limits of integration in (12) by integration around a closed

contour C in the A -plane, then (12) becomes

Me-2) ;(ot- ~i2ex) ((otehe)
Brend= | { I EH, yr ey |
[of

= I + I» s, say. (27

Here we have split the integral into two parts, I, containing the f; - term and I,
containing the £, - term. The convergence of these two integrals is governed by

the terms exp(iA(L - x)) and exp (-i)(L + x)), and the decaying parts of these

terms are

LAlL-2) ~X(L-2D )
e €

s

and p (28)
M Lexd X(Lez)
¢

/

respectively. We are now in a position to choose contours for integration which
ensure convergent solutions in the three regions x < -L, |x| <L and x > L. From
(12), it is required that, ultimately, each contour includes the real axis of A.

Our choice in the matter is in how to close the contours, and this is dictated by
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(28) as follows:

(1) if x < -L, the contours for both integrals I; and I, must be closed in the
upper half plane;
(ii) if

x| < L, the contour for integral I; must be closed in the upper half
plane and the contour for integral I, must be closed in the lower half
plane; and

(iii) if x > L, the contours for both integrals I; and I, must be closed in the
lower half plane.

Evidently, the division of the integral into two parts is necessary only if

)x{ < L. If x < -L or x > +L, the same contour is taken for I; and I, and the

function A()) may therefore be utilized in its original form. The significance

of this is that the function A(A) is nonsingular at A = k * 1, whereas the functions

f1()) and £,()) are singular at these points, as established earlier.

At this stage, the role of the linear friction term is apparent. As a
result of the displacements of the poles close to X = -k and +k into the second
and fourth quadrants respectively, the former pole is included in the contour of
integration only if C is taken in the upper half plane and the latter pole is
included only if C is taken in the lower half plane. Having established this,
we can dispense with the friction term and, in what follows, we take u = 0 and
simply refer to the positions of the poles as A = -k and +k.

In summary, the singularities to be considered are as follows:

(i) if x < -L, we have a simple pole at A = -k and an infinite number of simple
poles at A = iX, (X, > 0), as given by Eq (21);

(ii) if |x| < L, we have simple poles at A = -k and +k, simple (or both simple
and double) poles at A = k -~ 1 and k + 1, and an infinite number of simple
poles at A = iX, (X, § 0); and

(iii) 1if x > +L, we have a simple pole at X = k and an infinite number of simple
poles at A = iXy (X, < 0).

We shall find that the pole at A = -k is associated with the outgoing wave in

x < -L, and that the pole at A = +k is associated with the outgoing wave in x > L.

In |x| < L, there are contributions from these two poles, as well as from the poles

at (k £ 1), These latter contributions enable the bottom boundary condition to

be satisfied over the ripple patch and, in practice, this requirement dictates the
sense in which indentations around the two poles are made. The poles on the

imaginary axis of A ensure the smooth continuation of the solution at the ends of
the patch (x = #L).
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The required contours C; and C, are shown in Figure 2, and the inter-
pretation to be placed on the poles shown on the contours at X = -k and +k is as
given above. For convenience, we persist with the division of the integral into
two parts for the purpose of stating the results, though this is not strictly
necessary if |x| > L. Note that as the radius of the semi-circular portion
of each of the contours C; and C, tends to infinity, the contour encompasses all
the poles on the X-axis in the upper or lower half plane, respectively. The con-
tour itself includes the entire real axis of )\ as required; it may be shown that
the semi-circular portion makes no contribution to the final results, It remains
only to determine the residues of the various poles identified above, and to
construct the solution on the basis established in Figure 2. This is done in
§2.5 for the general case in which 1 # 2k, and in §2.6 for the special case 1 = 2k

in which the pole at k - 1 coincides with the pole at -k.

2.5 Solution for the general case (1 = 2k)

We consider the regions x < -L, x > L and |x| <L in turn, and state the
results in a general way. We denote the residues of the poles by R, with a sub-
script indicating the pole position and a superscript indicating which integral

(Iyor I,)is being considered.

2.5.1 Solution for x < -L

For both integrals I, and I, the contour Ci contains the pole at A = -k
(residue R_ ) and the poles on the positive imaginary axis (residues R say,
where j = 1, 2, 3 .... denote the positions X, = Y1y, X2, X3 «... given by Eq (21)
for Xg > 0).

For integral I, we have

()

0 " o
820 [ o - 2efR TR )
C G, J=!

(where the empty brace denotes the appropriate term of the integrand in Eq (27)),

and for integral I, we have

¢w = % a9 =2w;{/{fm+i{{?}- (30)
G, C, Js!
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It follows that the final result for x < -L is given by

0) (2)

Plxgt) = ¢ ~ é - (31)

- ¢,
2.5.2 Solution for x > +L

For both integrais I: and I, the contour contains the pole at A = +k
(residue Rk) and the poles on the negative imaginary axis (residues R—j’ say,
where j = 1, 2, 3 .... denote the positions Xp = -X1, X2, =X3 .... given by Eq (21)
for X4 < 0).

For integral I; we now have

(1))

9‘(: ‘%’ f }ad = -2mi {R:,+iR: 7§ ’ (32)

CZ c" J cl

and for integral I, we have

(2) @ 2) & (v
4 - _43 [ jdd =2 {R+Y RY (33)
Cz J:l
C.
where the minus signs are included on account of the need to integrate along the

£-axis in the £-positive direction. The final result for x > +L is given by

(2)

¢(x,:],t> = ¢l') + ¢ . (34)

c, c,

2.5.3 Solution for |x| <L

Part of the solution in |x| < L comprises terms identified above, namely

1 2
the terms ¢c1( ) and ¢ ( ). To these terms must be added contributions from
c

2
the poles at X = k £ 1, which we denote by ¢k-1 and ¢k+1' The solution for

|x| < L may therefore be written

¢(*"$’t)= ¢w ¢(z)+¢ . ¢ . (359

-
¢ g k-6 Thee

The essential requirement on ¢k 1 and ¢k+1 is that their sum satisfies the bottom
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boundary condition over the ripple patch, and this is achieved by indenting the
contours C; and C, as shown in Figure 2. The resulting solution (35) is then one
which also provides a smooth transition in ¢(x, y, t) across the ends of the ripple
patch (x = #L). Since, for integral I;, the direction of integration along the
real axis is as required but, for integral I,, this is not so, we may express the

contributions to the final solution as

(0 . ()
é-e = TCL ek-e - T Rk-g ) (36)
and
() . )
é,e = T Rh»! - T R‘"e s (37)

where R_1 and R 4 are the residues at X = (k-1) and (k+1) respectively, and
where the superscripts again denote the integral involved. The final result for

[x! <L may therefore be expressed by

' _ N (2 =
¢(x,y,t‘:>= ZWL[E-::*-J.ZRJ-, + Ek + E:R:;]
— . (38)

D) ) ") () ]

i [R),-R +R -R

k+e R-£ k-£

2.5.4 Residues

It remains only to calculate the residues for Eqs (29), (30), (32), (33), (36)
and (37). It was noted earlier that at each of the positions A = A given by Eq (20),
there is a simple pole provided that 1 = 2k. Now since each ofpthese positions

A= Ap is an ordinary point of the function

A cosf (3 o nl (D A=) (ot-kL)
= ‘j>2:rr; LN P

and also of the function

3‘) cosk (2yq) + (0:'—-_7-/ua-> sinh (93) . -iA(erx) (ot kL) ,
2 e e
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which appear in the integrands of I and I» in Eq (27) respectively, and since also

ZLC Q-J>, _ 'H2¢wsﬁ.éap¢{>

ey (0™~ imuc) cosh (AR) - gAsinh(IR) - 9 {2},7{, +sinh (2,)")} >

we obtain the following general results for the required residues. For integral

I,, and for the typical pole at A = Ap, we have

[

; . 2 i . "2(01".(’) i)
R, =y 1 (9,9« o%sink (3,1} ST ek BT

(A (L-2)  iot-hL) (39)

* 7,{(’;\?) & c 3

and, for integral I,, we have

) ) A4) e o¥sim . - Zwsk( ,)p£> .
IQ)’ =7 gg'f\, sk (2,9 ¢ & L(’),%)} 35204 + sk (22,4003

-2 (L*x) (ort+ kL)
* {{qp> a " € 7 L]

(40)

in which p has been set to zero. The particular results required are obtained
by taking Ap = -k, +k or iXy in (39) and (40), and hence in (23) or (25), as
appropriate,

Finally, we consider the residues at A = k % 1, Since the functions
£1(1) and %Z(A) in Eq (25) have both simple and double poles at A = k % 1, we
proceed with the calculations in a rather more formal way. Initially, we define

the function F(1) by

. -Ax
F(A) = »(D e(at ’

in which (1) is given by Eq (26) with py = 0, and we also write

A = A« A1) >

such that the integrand of I, in Eq (27) is F(A)A1()) and the integrand of I, is

F(O)A (V). For convenience, we write

N = kel g D= kot
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Consider firstly, the case of incident surface waves which are unattenuated

(Eqs (22) and (23)). 1In the neighbourhood of * = A1, ¥(A) is nonsingular and may

be expanded as a Taylor series, as follows:

¥ = ) (A (2)- -

By writing appropriate expansions for the remaining terms of both integrands in
the neighbourhood of A = X1, the required residues are given simply by the

coefficients of the terms in (A - Rl)_1. From the function F(A)A1(}), the

(1) (1)

residue R>\1 = Ry is given by
" ) -2, let-kL)
ha = - C*z( () e T e s (41)

and, from the function F(A)A2(}), the residue Rkl(Z) = Rk+1(2) is given by

() " lL+x . -
Rh , = —C*z’ﬂ-ﬂ,v(ﬂ,) g (% iloteke) (42)

Similarly, in the neighbourhood of X = A;, Y(}) is nonsingular and may be

expressed by

WD = ¥ (3) « (-2 ¥(3) .- - :

The results in this case are, from the function F(A)A; (),

0 ("

-l ' ¢ 'x)g; o=
- En-e } C_’;,(—)— r)z"k/az,) 6(L 6( Tk > (43)

and, from the function F(A)Az (X),

~ile+x)Ay, ((etekL)

) _ (2) .- C,,, (- ’)m.
R,A = RH ===, ¥(A)e e . (44)

&

The combined result for the poles at A = k + 1 may therefore be written as follows:
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(et=2,2 (ot-A,x)
§ = 2m{vl) 2GR epr(a)- o G

For incident waves which are attenuated, the same procedure is followed but
with f; () and f,(1), given by Eq (23), replaced by El(x) and £,(3), given by
Eq (25). The only essential difference in the results is that the double poles at
A = A1 and A2 draw additional terms into the coefficients of () - Al)_1 and

(» - Xz)-I. As usual, we denote all results for the case in which the incident

waves are attenuated by tildes, and we write

A = Ao~ AL

where the terms on the right hand side relate to integrals I; and I,, respectively.

In the neighbourhood of X = A1, the residue from the term F(A)RI(A) is given by

é;)= R—m =[,‘km),’,\‘ a, +V(q)(af-a) A : (L-x)+1/,/g)(&_5_ {2]

' * Amm
(46)
C (_‘)m- L-(L-z)q, (et -RLD
LT, et
and, from the term F(A)Rz(x), b
~(2) x (2) a- ar {a
R, = R =[-vtn, +yia) (2% ik
47

~C (—')m ~ilee?, lot+h)
. _._*T.__ . 6 c .

In the neighbourhood of A = ),, the residue from the term F(A)Kl(k) is given by
-~ (1} (1)

% Rh.e il

2

[#0) 5, G v ) (258) il il ol o) (2582 100

“Cu (1Y i (et-RO (48)
"—z ¢ e ,
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and, from the term F(A)A,(}), b

Ra =Qk

E2

2»1?1’

(49)

["P(’/\ * yf[gz)(a_;'it) _}'% L+ + (3D (a;E,),-L(Q,L]

- C* (_.,) -..(L-'-z)') (et RO
€

Note that results (41) to (44) are recovered from (46) to (49) respectively, by

setting iT = a. The combined result for the poles at X = X1 and X» in this case is

%1_% ey *I{a-ﬁa’,_ a-&, fx H'\"{g)‘) Lot ')x) ((),)’A ..(o»t')x)}
k

AR Ra a
(50)

_a-a, ¥ ;‘1/«/’))2

o

(et 3:) /ﬂ Y) i (ot- ,"x")z]

mm

In the cases of both unattenuated and attenuated incident waves, the sum of
the results for the poles at X = A; and A, satisfies the appropriate bottom
boundary condition over the ripple patch. All the other poles in the solution
satisfy a flat bed boundary condition (¢y =0 ony=-h). It remains only to
determine the functions ¢(X1), ¥ (A1), ¥(X2) and ¢y~ (X;), and these results are
listed in Appendix 2.1.

At this stage, let us summarize the results for the general case in which
12 2k. Inx < -L, the potential is given by Eq (31) and the residues in (29) and
(30) are given by (39) and (40). 1In x > +L, the potential is given by Eq (34) and
the residues in (32) and (33) are also given by (39) and (40). In |x| < L, the
potential is given by Eq (35), and this involves both terms which appear in (31)
and (34), and additional terms given by (45) or (50), as appropriate. In
diagrammatic form, the perturbation solution comprises the various parts shown in
Figure 3. Herein, each arrow represents a propagating wave mode, and against each
arrow is indicated the pole position with which the wave is associated. The
direction of travel of the wave is indicated by the arrow head; for example, the
(k + 1) -wave is in the onward transmitted (+x) direction, while the (k - 1) -wave
may travel in either direction depending upon whether k % 1. Note that, from
integral I,, there is a wave associated with the pole at (-k) which travels off

the patch in the negative x-direction. Similarly, from integral I,, there is a
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wave associated with the pole at (+k) which travels off the patch in the positive
x-direction. In the next section, we establish equivalent results for the special

case in which 1 = 2k.

2k
(k - D tends towards that of the

pole at A = -k, and each of the earlier residues R_k(l), R_k(z), Rk—l(l) and

(2)
Re-1

the up-wave side of the ripple patch (x < -L), it is necessary to recalculate the

2.6 Solution for the special case in which 1

As 1 + 2k, the position of the pole at A
becomes singular. For this reason, we treat 1 = 2k as a special case. On

result for the outgoing wave in the perturbation solution, since the residues

R_k(l) and R_k(z)

also to recalculate the earlier results for the region of the ripple patch itself

in Eqs (29) to (31) are separately singular. It is necessary

(|x| < L), on account of the merging of the two pole positions. In the case of
unattenuated incident surface waves, this merging gives rise to a double pole at

A = -k and, in the case of attenuated waves, to a triple pole. However, on the
down-wave side of the ripple patch (x > L), the solution is independent of the poles
at A = -k and A = k - 1, and so the earlier solution remains unaltered. Let us

consider the regions x < -L and |x| < L in turn.

2.6.1 Results for x < -L
In the general case in which 1 # 2k, the result for the outgoing wave in the

perturbation solution is given, as x »> —-=, by

¢(1,5,t) - 2"; {Rl') . Elz) } . (51)

~k -k

Now, if 1 = 2k, each of the terms f;(-k) and f,(-k) for unattenuated incident
waves, or £1(-k) and f,(-k) for attenuated waves, is singular, and it follows that
R_k(l) and R_k(z) are singular also. This is not the case for the sum of these
residues however, as may be demonstrated either by examining their sum in the limit
1 > 2k, or by considering the complete functions A()) or A()), as appropriate, and
calculating independently the residue of the entire integrand in (27).

For unattenuated incident waves, the function A()) is given by Eq (22). If

A = -k + q where q is small, and A()) is expressed as a series in powers of q, then

in the neighbourhood of X = X, = -k, and for 1 = 2k, we obtain

.A_(’Az*i) = _Cn- -"_z—r' * O(i)
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If the function ¥()) is also expressed as a series in powers of q, the leading

. . -1 . . . .
term is a term in q and this governs the residue of the integrand in Eq (27).

The final result for the potential may be expressed by

_ gkhost(bo)+ osinklks)  2coshlbf)  Camm iltrked
Plest)- k gi2khesmb el 2 C SRRSEY

If 1 = 2k, this result replaces the contributions for the general case, which

appear on the righthand side of Eq (51).

For attenuated incident waves, the function A(}) is given by Eq (24). Now,

in the neighbourhood of X = X = =k, we obtain

A6o)= -G [2(1- &) iz 1+ &)+ O(p »

and the final result for the potential is

¢(z,3,t)= Ahcosh (k) + s A(ke9) _ 2«»&.(/60 .= Ceu
k a3k +sab(208)F 2
(53)
L (ot+kx)

J20-8) e iz (1o B e

This reduces to Eq (52) if 5T = a, and the result replaces the contributions

arising from the terms on the right hand side of (51) in the special case in which

1 = 2k.

2.6.2 Results for |x| <L

In the special case in which 1 = 2k, we have
’).:k*{: Sk and ’AL: k"{:—k LY

so that the pole at A =A; coincides with the existing pole at A = -k (see Fig 2).
The way in which this merging of the poles occurs is complicated by the fact that,

in the general case (1 # 2k), integral I; involves a complete anticlockwise circuit
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around the pole at X = -k, but only half a circuit (indentation) around the pole
at (k - 1); by comparison, integral I, involves a half circuit (indentation)

around the pole at (k - 1), and no contribution from the pole at (-k). In Eq (38),
the contributions from the poles at (-k) and (k - 1) were expressed, for integral
I,, by

) )

2wl Q‘b + T R

k-¢

and, for integral I,, by

)
ni R, -

If we partition the result for I as follows:

Q) ) . nY
TCe ( le + ;ahﬁcj) + T }e-h
we can consider the first term to consist of contributions from two indentations
of the same type (ie anticlockwise half circuits) around the poles at (-k) and
(k - 1), and the second term simply to be a residual contribution from the pole at
(k). It follows that, in the limit 1 + 2k, only the result for the first term is
directly affected by the merging of the poles, and this result must be recalcu-
lated on the basis of a single half circuit (indentation) of the combined pole at
A = ~k. This new pole is a double or a triple pole for the cases of unattenuated
and attenuated incident waves, respectively. We express the result for the first
term by 7i R*xz(l), which is finite as required. However, as noted earlier, the
residue R_k(l) is singular if 1 = 2k, and so the second term of the partitioned
expression is singular also. We overcome this difficulty by rewriting the result

for integral I,, for the general case (1 # 2k), as follows:
()

(2) (2) .
i (RE+RE) « =i RY

In this form, we can again consider the first term to consist of contributions
from two indentations of the same type around the poles at (-k) and (k -1), and

the second term to be a residual contribution. As 1 » 2k, the result for the

37

e . a——————— 1 P



first term must be recalculated and again, on account of the partitioning, the new
result is obtained from a single half circuit of the combined pole at X = -k.

ii), is finite as required, whereas the result
2(2)
k

This result, which we express by -7miR
for the second residual term involving R, ” is singular. If we add the revised

contributions from integrals I and I,, we obtain the combined result

"

TCL Q*“z_ + T R_(: -l Rf) + Tl R‘Z)

%" .y

. ) (2) , ) (2}
= TC. (R;ﬁ — R""XL) += TCL (Q-k -~ R-k .
a2

By comparison with Eq (51), the residual terms may be seen to make a contribution
which is equal to exactly one half of the potential of the outgoing wave in
x < -L (Eq (52) or (53), as appropriate). So, although the residual terms are
separately singular if 1 = 2k, their sum is finite, as required.

The result for this special case in which 1 = 2k may be obtained alter-

natively by starting with the expression for the general case, namely

. pw . p® LA @
dri R-n T Rk-e T ek-l

and by formally investigating the limit 1 > 2k. This procedure has been carried
out as an independent check on the final results, for the cases of both unattenu-
ated and attenuated incident waves. However, since lengthy calculations are
involved, particularly in the latter case, the steps in this alternative argument
are not presented here.

The component parts of the solution are shown in diagrammatic form in Fig 4.
As compared with Fig 3, there are now two distinct contributions in ‘x] < L arising
from the pole at -k. The first is associated with the merging of the two poles
at (-k) and (k - 1) as 1 + 2k, and the second (marked with double arrowheads) is
associated with the residual terms identified above. The remaining contributions
in Fig 4 are either the same as, or are special cases of, those in Fig 3. The
brace around each pair of (-k) -terms indicates that it is the sum of these
(separately singular) terms which provides the finite outgoing wave in the pertur-
bation solution.

In summary, the action which we must take to obtain the solution for the

special case in which 1 = 2k is as follows:
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1. The contribution arising in the general case (1 # 2k) from the poles at

A= 2, =k ~1and » = -~k must be removed.

2. A new contribution, which accounts for the merging of the poles at A =k -1

and -k as 1 - 2k, must be included.

3. A further contribution, associated with the pole at -k and arising from the
residual terms discussed above, must be included.

We therefore replace Eq (38) by

¢(x,5,t) = 27ri[ i Q:) + R::) + g Q(;) ] + i + é’ ) (54)

J:l

where ¢,(x, y, t) is the potential arising both from the pole at A = A; and also
from the merging of the poles at A = A,, and ¢R(x,y,t) is the potential associated
with the residual terms.

We proceed by modifying, where necessary, the earlier analysis for the case
in which 1 = 2k. As far as the A; ~term is concerned, the analysis is unchanged,
that is R(l) and R(z) are unchanged. But as far as the X, ~term is concerned, in

A1 A1
the neighbourhood of X = X, it is now convenient to write

¥(2) = —i_‘—_’_f ’ﬁ(ﬂ) ) (55)

such that A = X, is an ordinary point of the function w*(k), and Y()A) itself has
a simple pole at this point. This is the essential difference between the present
argument and that which was adopted in obtaining the residues in Eqs (43) and (44).

We now have, therefore,

-9,

¥ = = {0~ (00K O+ 50-23% 0D~ -1 -

As in the previous section, we treat separately the terms F(A)A;(2) and F(A)A,(X).

For unattenuated incident waves, and for the term F(A)A;(2), we have

ADe

If we write A — X, = q and express the terms involving A as power series in q then,

L(&t-')z)

FMAN (D) =+ e

(A-R)L

in the neighbourhood of A = X;, we have
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FODA, (3= [Yle(“u * VII(’A)""][‘ 1 (L"‘)'"H-—;i +323_ - %_77}]

- Cg. (_‘)"“ Laz_(‘—"x) L(vt—k,t..)
2 € e .

The term in q 1 comprises three contributions, such that the new residue at ) = ),

is

Rm [y(ﬂ){ ((L-2)7, + ',\21),}‘%2 1/;’/‘)2.)][:-%] et ot-2, .

For the term F(A)A,(}), the following result is obtained by a similar argument:

v (Ut - qz,")

R‘:; [ O {2 -0, O] S

The potential ¢,(x,y,t) in Eq (54) is therefore

# et - < (Ry - Ry ) + < (R, - R.h.)

L

(56)

2 . T etD3)
=2nL[1/¢(g,).-_%"\_'.é(°¢“) Co [v«mgma Tﬂ__q.}a (qg] (et ]

which may be compared with (45). As shown earlier, the residual term is equal to

one half of the potential of the outgoing wave in x < -L, so that from (52)

Blogt)e s Soklodeotiohles 2 ntlel) Camm | HLotR
A L 'GI2kE « B (TREY} 2
- »(,t 20
= L - C* K2 il D) . (57)

If we combine (56) and (57), we obtain
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;(O't - q‘ x)

Sé-f-ﬁ = dni [V(’A) -C*’A
(58)

B} %&[t(ag%(-wﬂs {‘.‘q}"ﬂﬁl(@]é Mﬁ]

which may be substituted into Eq (54). It remains only to calculate v(xy), ¢*(A2)
and y,(1;), and these results are listed in Appendix 2.1. It might be noted,
finally, that the terms in (58) ensure that the bottom boundary condition is
satisfied over the ripple patch.

For attenuated incident waves, the argument is as given above, but with Ay

and A, replaced by A1 and ﬁz, respectively. The result for the A;-term is again
unchanged, that is R( ) and R(z) are unchanged and, for the )A,-term, we treat

separately F(A)Al(x) and F(A)AZ(A) For the term F(A)X; (}), we have

(ot-Ax) {A-RL

,l'(ﬂ) (59)

FOLO = ¥(Me

If we again write A — ), q, then in the neighbourhood of A = X2 we have

2 Legr 3
where
Y q—ar b-f
Ai = (29 ) Z"\."r ()Z ?
5 a
B =- "aL,;\z ’
and

_a A a-a, € 9
a0, a Zmw (22N

(@]
IS
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Expressing all the remaining terms of Eq (59) involving X as power series in q, we
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obtain
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The coefficient of the term in q_1, that is the residue R(l)

comprises six
*}\2, p

contributions and may be written

RY = [ (018 +ile-0B - 5(-h 1o ) {8 c(-R S+ 40D A ]

*3

(60)

-C. l'.(O’t‘qx,">
= e .

For the term F(A)KZ(A) we obtain, by a similar argument,

él’;) = [1/:(@9 $8, - i(Le)B, -5 (Lex) A J+ (0D 1B, - L{Ledh R+ 4 ;&W(D]

¥*

- Llet-2, =)
.—ZC*. 6 ) (61)
where
" _ a-&-,- of _ - A
AL - Qa Ly 3" - A' ’
Bo- 9,
and

£ o- D, a-d L O ,
= a  Zem  (3)

The potential ¢,(x,y,t) is given in this case by
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¢(*»mt) = wi (R RY) + mi ( 3. ) » (62)

in which, from (46) and (47),

~ ~ (2 Llet=-2,%) . .
Ry - Ry = -5 €77 [, (Bre) wia (a5 L0, 2

« w5 (2= “') if -2’)]

and, from (60) and (61),

ﬁ(-) _ ‘Rl’-) - _%&. i{et-2,%) [v,m‘l) ;é,,, ;_(L.x)él-H'.(L-rx)él-Lz(L-x')LK. *-‘i(L*xs.K; ;

%A, &Az
+_y:’(ﬂz>§é3-.-i.(L-x)Z’-&L(L#x)Z‘i*..i_'f;n(qD'Aj] .
where

A-A-K ., B =B-B aa (=C-E -

It might be noted that Eq (62) reduces to Eq (56) if 5T = a. As before the
residual term is equal to one half of the potential of the outgoing wave in x < -L

and so, from Eq (53), is given by

¢=.'_, ‘3k—ws&.(k‘5>+azs:;£.(ku), 2 cosh, (k) =G {4 I a) Lm'rr(’ a,-)'i
2

k 312kh + 5inh (KL} 2
R (etrked
o L e’ ,
> e (BB

The final solution for the case of attenuated incident waves in the special case
1 = 2k is obtained by substituting (62) and (63) in Eq (54), the bottom boundary
condition over the ripple patch being satisfied by the terms of (62). It remains

only to obtain expressions for ¥(X1), ¥" (A1), ¥, (A2), Y (X2) and ¥, (X2), and
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these are listed in Appendix 2.1.

2.7 Discussion
2.7.1 The reflection coefficient

We state here results which are obtained from the asymptotic behaviour of
the solution for the potential ¢ as x + —», and as x + +=, In particular, we
obtain an expression for the wave reflection coefficient, for use later in making
comparisons with the experimental results. The properties of the reflection co-
efficient have been discussed in detail by Davies (1982a), and are not repeated
here.

We define the wave reflection coefficient from the potential of the outgoing
perturbation waves in x < -L, and from the incident waves in the first order
solution. In the limit x - -, the former waves are given, from Eqs (29) - (31),

by the real part of

¢(x,.j)t> - 2t {Rl-) . R(:\J%

-k -k

For the general case in which 1 # 2k, and in which the incident waves are un-
attenuated over the ripple patch, the required residues are obtained from Eqs (39)

and (40), such that

Blery,d) = gk cost, (k) + *snb (Re) 2okt —Qﬁ(")m(z%).s;n(:zm Lotk

3k J2h& + sinb(2RAR (2R/g)*- | e ’
2 o (k{502 | Culy B20) sin (2R L) ej(,hkx) (64)

T i 2kLe s A@RRY  (RR) -

The reflection coefficient, KR’ is defined as the quotient of the coefficient of

cos(ot + kx) in (64) and the equivalent coefficient for the incident surface

waves in Eq (15), such that1

1. It is interesting to note that the modulus of this result for K_ is ob-
tainable from a general result quoted by Kreisel (1949) for reflection by a "low
gently sloping reef'.  Although, unfortunately, Kreisel simply states his result
without any discussion of the approximate conformal mapping employed in his
analysis, the two theories appear to yield the same result for the reflection co-
efficient in limiting cases in which the bottom undulations are very small.
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For the special case in which 1 = 2k, and for which the perturbation potential is

given by Eq (52), the reflection coefficient becomes

= —_Zbk . T ¢ = 2k) - (66)
Kz § 2kf + sinh (2R8D} 2 >

Equivalent results for the reflection coefficient may be obtained for incident
waves which are attenuated over the ripple patch. These results differ signifi-
cantly from those given by Eqs (65) and (66) only if KR 2 0.4 (see Davies (1982a)).
From Eq (66) it may be noted that, at resonance when 1 = 2k, the reflection
coefficient increases linearly in the number of ripples (m) in the patch. It
is for this reason that the earlier assumption of linear attenuation of incident
wave amplitude across the patch is reasonable, at least near to resonance. More
generally, Eq (65) reveals that, while the maximum value of KR is found near the
critical ratio of wavenumbers 2k/1 = 1 (in fact, at a value slightly greater than
unity, but which tends to unity with increasing m), the reflection coefficient is
also oscillatory in the ratio of the length of the ripple patch (2L) to the surface
wavelength. It might be emphasized here that the definition adopted for KR allows
its sign to change; 1in particular, KR takes a positive value at 2k/1 = 1 while,
for general values of this quotient, its sign depends upon the value of m. The
properties of KR are discussed in more detail in the later consideration of the
experimental results (§4). There it is demonstrated that surprisingly few bottom
ripples, of quite modest size, are needed to produce a substantial reflected wave.
For the outgoing waves on the down-wave side of the ripple patch, the poten-

tial in the asymptotic limit x » +» is given, from Eqs (32) - (34), by

¢(Z,g,t) = ~2nl § Qm + Qm} .

k Rk

For unattenuated incident waves, this gives simply

¢(Z,|3,t) = O' (67)

It is evident from Eqs (64) and (67) that the vertical velocity distribution

prescribed at the bottom boundary in Eq (17) is such as to produce an outgoing
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wave in the up-~wave direction only. However, in the case of attenuated incident
waves, there is a small outgoing wave on the down-wave side, the properties of

which have been discussed by Davies (1982a).

2.7.2 Properties of the waves over the ripple patch

We turn next to some detailed considerations of the properties of the waves
over the ripple patch, in which we utilize the complete solution in —» < x < =,
The elevation in the perturbation solution n(x,t) is given by Eq (4) (only the real
part of which is of interest), and the elevation of the first order incident waves
associated with Eq (15) is simply {a sin(kx - ot)}, 1In Figs 5 - 9, we show results
for a typical case near to resonance which relates to one of the later laboratory
experiments. The parameter settings are as follows: ripple amplitude b = 5 cm,
ripple wavelength (2m/1) = 100 cm, the number of ripples m = 10, the water depth
h = 41.7 cm, and the wave period (2n/0) = 1.23 s, from which it follows from (16)
that 2k/1 = 0.985. The incident waves are assumed to be unattenuated across the
ripple patch, so that the asymptotic behaviour of the perturbation solution is
given by Eq (64) as x > -», and by (67) as x » +w, From Eq (65), the reflection
coefficient in this case is KR = 0.509. The incident wave amplitude in the labora-
tory experiment was a = 1.62 cm, though this is not important (beyond the fact that
it well justifies the use of linear theory for comparison with the experimental
results) since the results in Figs 5 - 9 are all normalised with respect to the
incident wave amplitude a.

In each of Figs 5 - 9 results for the normalized elevation n(x,t)/a have

been expressed in the form:

ZE8 | F (e eosbot) + E, () sin(ot) (68)

where E;(x) and E,(x) comprise contributions from some or all of the poles shown

in Fig 2. The curves plotted in Fig 5 are for the perturbation solution only,

and show the instantaneous elevations E;(x), E,(x), -E;(x), and -E,(x) at the phase
angles ot = 0, 7/2, m and 37/2, respectively, together with the envelope curves

for wave elevation given by % JGEIT:_EZ?. The results show that, on the down-wave
side of the ripple patch (x > L), the water surface is motionless as required by

Eq (67). Between the down-wave end of the patch (x = L) and the up-wave end
(x = -L), the perturbation wave increases in size. Thereafter, in x < -L, the

wave propagates away from the ripple patch in the negative x-direction, with
amplitude ap = 0.509 a as given by Eq (64). The result of superimposing the

perturbation waves and the incident waves is shown in Fig 6, in which the elevation
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curves plotted are equivalent to those in Fig 5. Now the evolution of a partially
standing wave pattern is apparent in x| < L, with a fully developed partially
standing wave being present in x < -L. On the down-wave side, there is simply an
outgoing transmitted wave. Since the incident waves are assumed to be unattenuated
over the patch, this outgoing wave has elevation given by a sin(kx - ot). In the
later discussion of the experimental results, examples are included which illustrate
how results of the kind shown in Fig 6 are affected by the imposition of an energy
balance on the solution, in which the overall transmitted wave amplitude is con-
strained to satisfy the equation éT = fa? - éRz (see §2.3.2).

In Fig 5 the evolution of the perturbation wave in |x| < L is dominated by
the (-k) and (k - 1) -waves (see Fig 3). The (+k) and (k + 1) -waves have a
rather small influence on the results. This is the typical situation in cases
near to resonance. In general non-resonant cases, in which the perturbation
waves are confined to the region of the patch, the (k + 1) -wave has a greater
relative influence on the results. At the ends of the patch (x = #L), a smooth
transition in the solution is obtained as a result of the trapped wave modes
associated with the poles on the imaginary axis of A (see Fig 2). The properties
of the two most important trapped modes are shown in Fig 7. Here we have taken
the same example as in Figs 5 and 6, but have eliminated all the propagating wave
modes in the solution, and all but one of the trapped wave modes. The results
are plotted only for the regions near both ends of the patch, and in a manner con-
sistent with the elevation curves plotted in Figs 5 and 6 (though with a change
in the vertical scale, since the trapped waves are relatively small). In Fig 7(a),
surface wave motions are shown which are associated with the pair of poles nearest
to the real axis of A in Fig 2 (at X, = *0.0662 cm_I), while, in Fig 7(b), motions

are shown for the second pair of poles (at Xy = *0.1464 cm_1). The magnitudes of

these trapped waves at the ends of the patch (x = *L) may be seen to be of the
order of 0.015 and 0.005 times the amplitude of the incident wave, respectively,
or, to put it another way, about 37 and 17 of the magnitude of the reflected wave.
So, while their maximum effects are small in this case, they are not entirely
negligible. Away from the ends of the patch, the effects of the trapped modes
decay exponentially in x, the first mode having a more extensive effect than the
second, and so on. It will be noted that, while the outer envelope curves are
continuous at both ends of the patch, this is not so for the instantaneous surface
profiles, which are discontinuous. This emphasises the obvious fact that the
trapped modes cannot exist in the absence of the propagating modes. The sum of

all the trapped modes, including those in Figs 7(a) and (b), is shown in Fig 8,
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and the way in which a continuous solution is brought about across the ends of the
patch by the inclusion of these modes is shown in Fig 9. Continuity of both the
instantaneous elevation curves, and the envelope curves, may be seen to be estab-
lished by the inclusion of the trapped modes.

Finally, the horizontal velocity field (u = —¢X) assoclated with the waves
in Fig 6 is illustrated in Fig 10. Here the amplitude of the horizontal velocity
is shown as a function of horizontal distance (x) for discrete values of the
normalized depth (y/h), namely y/h = 0 (free surface), -0.5, -0.75 and -1.0 (bed).
Each of the curves has been normalized by U, = gak/c, the horizontal velocity
amplitude of the incident wave at the free surface, On the down-wave side
(x > L), the vertical attenuation of velocity is govermed by {cosh k(y + h)/cosh kh}
(see Eq (15)). On the up-wave side, the waves in the perturbation solution have
the same dependence, as may be seen from Eq (64). The behaviour of the velocity
field over the ripple patch is rather more complicated, on account of the way in
which the (k *+ 1) -waves are attenuated in the vertical direction. In general,
the effects of these waves are most pronounced at the bed level, and they are
strongly attenuated with distance above the bed. Near to resonance, however,
the attenuation of the dominant (k - 1) -wave is similar to that of the incident
wave. In Fig 10, it may be seen that the horizontal velocity amplitudes decrease
downwards from the free surface for all values of x which are off the ripple patch
(]x]| > L), but that this is not the case over the patch itself (|x| < L). Here,
both variations in the bed velocity amplitude, and also magnitudes of the bed
velocity amplitude for certain values of x, are rather larger than those at the
height y/h = -0.75. In the upper layers, the velocity amplitudes increase to
their peak values which are found at the surface. The vertical velocities in the
flow are generally small; in the present example, the tangential velocity ampli-
tude at the bed does not differ greatly from the horizontal velocity amplitude.
This is illustrated in Fig 11 where, for the same parameter settings as in Figs 5
to 10, instantaneous horizontal bed velocities are plotted for the phase angles
ot = 0, n/2, 7™ and 37/2, together with envelope curves which show the amplitudes
of both the horizontal and tangential bed velocity. At the ends of the ripple
patch (x = #L), it may be seen from Fig 10 that the trapped wave modes give a
smooth transition in the horizontal velocity amplitude at all levels, other than
the bed level where the velocity field is divergent. This anomaly, which is
apparent also in Fig 11, is associated with the discontinuities in the prescribed
bed slope at x = L (see Eq (13)); it has no general physical significance, and

should be ignored in any considerations of sediment movement on the bed surface.
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The divergence of the velocity field at x = %L, y = -h, is discussed in Appendix
2.2 where it is shown that, at all levels other than y = -h, the series expansion
for the horizontal velocity associated with the trapped wave modes is convergent.
The wider implications of results of the type shown in Fig 10, for sediment trans-
port and bedform stability, are discussed briefly in §2.7.4,and also in 584 where a

preliminary laboratory result is examined.

2.7.3 Limitations on the solution
There are certain physical limitations on the solution discussed earlier.

These arise on account of terms dropped in linearizing the boundary conditions,

and also on account of the general requirement of the method that o] << |o].
The limitations of the former kind have been discussed in detail by Davies (1980,
1982b), and may be stated as a set of simple conditions on the various length

scales in the problem, namely

ak, % ’ %‘&ﬁz ’ "'( » ny\_ and bk << '.

It has been shown also that the analysis breaks down if k >> 1. The requirement
o] << |#| imposes at the outset a condition on the size of the reflected wave.

In its pure form, the theory requires both the reflected and transmitted waves in
the perturbation solution to be small compared with the incident wave. However,

if an energy balance is established in the solution by the ad hoc procedure de-
scribed in §2.3.2, this condition may be relaxed. Unfortunately, if this pro-
cedure is adopted, the analysis becomes somewhat deficient in another respect;

in particular, the first order waves do not strictly satisfy the potential equation.
In view of this, it is reassuring to find quite close agreement between results

for a. calculated on the basis of both the pure perturbation theory, and the ad hoc

R

energy balance argument, at least for cases in which K, is not too large

R
(KR.S 0.4, say). In practice, it is necessary to correct first estimates of ag
from the pure theory only in resonant cases for which the reflection coefficient is
large. For example, in the limiting case in which the first estimate for ap is
such that ap = a, the size of the reflected wave may be shown to be overestimated
by 25%. However, this is the worst possible case and, for smaller waves in the
perturbation solution, the overestimates are considerably smaller, 1In general,

the first estimate of aR from the pure theory should be viewed as providing an
upper bound on the size of the reflected wave. It should be added here that the

perturbation solution may predict over-reflection, and that particular care should
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be exercised in interpreting any results which suggest that [aR] > a. The per-
turbation solution allows this situation to arise, since it is assumed that the
interaction between the incident waves and the ripples takes place over the entire
ripple patch. In practice, if complete reflection occurs, the interaction region
may be -L < x < L* where L, < L. The present formulation does not admit this
possibility, though it could be developed to do so. Finally, in the context of

a total approach to the problem of wave propagation over a region of undulating
seabed, the present theory is further limited by ignoring the effects of energy
dissipation by bottom percolation and bottom friction. However, despite all the
limitations mentioned above, the theory may be used in a variety of physically
interesting cases, including the laboratory experiments described later. Ulti-
mately, the strength of the theory lies in providing a good initial estimate for
the size of the reflected wave, as well as the details of the wave motion over the

ripple patch.

2.7.4 General implications of the results

The results obtained in §2 have been for sinusoidal surface waves incident
upon a patch of sinusoidal ripples. Since the theory on which the results have
been based is linear, it is possible to superimpose solutions and obtain results
for the general case in which a spectrum of waves is incident upon a spectrum of
bottom perturbations within the roughness patch. As far as the reflected wave is
concerned, this general interaction amounts to a superimposition of solutions like
(64) for each combination of surface and bed wavenumbers present. For the simple
case of the interaction of a spectrum of incident waves with a single constituent
harmonic of the bed roughness patch, the reflection coefficient given by (65) may
be seen to predict reflection of wave energy in preferred groups of wavenumbers,
the dominant group being that centred upon k = 1/2. In the general case, in which
there is a spectrum of bottom perturbations as well as a spectrum of surface waves,
the reflection coefficient will be a rather more complicated function than this,
though, in practice, it is one which may be determined quite easily.

For the simple case of sinusoidal ripples, the reflection of incident waves
at resonance (k ® 1/2) gives rise to a partially standing wave pattern on the up-
wave side of the ripple patch (Figs 6, 10 and 11). If the bed is erodible, this
suggests the possible development of new ripples on the up-wave side of the patch.
Under certain circumstances, which are discussed more fully in §4.4, the velocity
field may be shown to be consistent with the continuation of an existing sinusoidal

ripple patch on the up-wave side. Intuitively, it might be expected that accumu-
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lation of material would occur at positions on the bed with the smallest bottom
velocity amplitudes, and that erosion would occur at positions with the greatest
velocity amplitudes. It is argued in §4.4, however, that the situation may be
rather more complicated than this. Ultimately, for there to be a coupling between
wave reflection and ripple growth, accumulation and erosion must occur on the
existing ripple patch in a way which suggest ripple growth, rather than ripple
destruction, by the wave action.

In general non-resonant cases, the theory predicts that the bottom velocity
field over the ripple patch is such that there exist very marked variations in the
amplitude of the surface velocity from ripple crest to trough positions. In many
cases, these variations are confined to a near-bed layer, in that they are attenua-
ted upwards away from the bed. Moreover, they are not associated with reflected
or transmitted waves of any significance. The implications for sediment transport
of the general non-resonant case have been discussed by Davies (1982b), and a set

of field results has been interpreted quite successfully on the basis of the theory.

APPENDIX 2.1
Results for the functions y and Vg
The following results involving the functions ¥ and y, are required in

Eqs (45), (50), (58), (62) and (63). From Eq (26) we have, setting u = 0,

YD = HM G,

where

|
H(rn = o*cost (AL) - 3“5."‘4 (Qﬂ>

and

]

g% cosh. (Ay) + o*sind (Ag) .
G () 2w
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It follows that, for A = Ap,

¥(2) = HO) GO

and

v = HIW G )« HA)CH)

where H(X1) and G()A;) are obtained by setting A = A; in the expressions for H())
G()\), and in which

H(A) = =30t sk (O0)- Wk (94)- 852K (AA)]
{ o cosh (Ah) - q') sk (2.40%"

and

C/"(%) - oy N, cosh, (91'32; (S(A.zg —a'z> smh /%-:,) ]
2w D

The results for ¢¥(X;) and ¥~ (X;) are obtained by replacing A3 by X, in each of the
above expressions.

From Eq (55) we have

¥0) = (32 9(2) =-WYHADGN = HDGD . 5.
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It follows that

Y&(?AL) = P{*.Cng) C;<”);> >

Y2 = HOD G (W) + KOO G2 »

and
%' (0 = H0) G2 « 2H, (2 G(3.) « H. (2D G ()
in which
=2 (D.8)
H.(3) 3520 % + 5nh (20004
H () - A ek’ (BWR)
* 95204 + 5L (298K
0y Lk O lan0 3} ek OO |
Ho () =Szt s @y [352 fosnh ) {20,%e sk (0,00
and

"\ _ cosh(A.) § g'}i 4 - 26,4 E + sk (3,4 ga":\: Y+ 204
q (ﬂ ) - '
* 2}

The terms G(};) and G”();) are as in the expressions for ¥(X;) and ¢ (X;).
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APPENDIX 2.2
The divergence of the bed velocity at the ends of the ripple patch

It was pointed out in §2.7.2 that the bed velocity at both ends of the ripple
patch (x = %L, y = -h) is divergent and that, at all other points in the flow, the
velocity field is convergent. Ths is an anomalous result of no general signi-
ficance, and is associated with discontinuities in the prescribed bed slope at the
ends of the ripple patch (Eqs 1, 13 and 14). We show here briefly the reason for
the divergences in the velocity field, by examining the properties of the trapped
wave modes at the ends of the patch. We do not consider the propagating modes in
the perturbation solution, all of which are well behaved.

In the region x € -L, which we treat as a typical region for the present

discussion, the trapped wave modes are given, from Eqs (29)-(31), b

g2 { TR 3R

j=! Js!

in which, from (39) and (40),

i)

R.

T {‘3%"5(&3)4-05‘«(1,.3)} -2¢:os (KR fy)) im0

J L $2% A+ Sm(Z’KﬂX
and

(2) . v otsin - 2cos (Xoh) ¥ Xo(Lex) | (otehLl)
RJ. 2w% § 9%, cos(L)+ *sin (L)} - {2 Rw s LR L(x) e

where each value of j is associated with a solution X, = X.j of Eq (15). We may

consider, without loss of generality, the case of incident first-order waves which

are unattenuated over the ripple patch such that, from (23),

Ay e L) o (g L 12Xk i (A%} - %)
Fla =-few - ey St as i
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Since Xo > 0 for x € -L (see Fig 2) and since also, at the end of the ripple patch

(x = -L), we have

(-2 -,

= e and

Ko (L+x)
e =

[

. . . . (1) 2 . .
it is evident that the summations involving Rj and Rj are associated with the
trapped wave modes centred on x = +L and x = -L, respectively. Our present

)

concern is with the contribution from the summation ZRJ(2 therefore; in particular,
we consider whether this contribution converges or diverges at x = =L, It is only
at the end of the patch that the solution may diverge since, elsewhere in x < -1,
the exponential decay ( ~exp (Xo(L + x))) in each term of the series ensures its
convergence. At x = -L, the potential of the trapped wave modes may be expressed,

using (21), by

(otvkL)

¢ = ans(x,(j*f_))- 2 ’ ‘Z(iz.) e .

; RYf + sn (UL

For simplicity, and bearing in mind that we are interested here in the behaviour
of this series for large j, we may consider solutions of (21) to be given approx-
imately by X, = Xoj where

M._:J VL, 2,3, 4 ... .

T

.
i}

(These solutions are accurate for large j, though not for small j.) Now, for

large j, and therefore large X,, the real part of -f,(iX,) has the behaviour

Cua LY, . 2%k Cu(-1) 2k¢
(k*- K- €*) + 4% k* x>

and the imaginary part has the behaviour
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Co GV LH, . - (R-%2-¢7)

.
(R -2 - €*)* + 4 X k*

X,

C. -1

It follows that the series may be expressed by

m  {ot+hL) I Zkf . {
d~Cl) e JZM(K(“”O)'X,A'( e x,)’

the terms of which are accurate for large j. When horizontal velocities are
considered (u = —¢X), a multiplying factor (-X,) is introduced such that the

appropriate series (again in a form which is accurate for large j) is

GO L T it (o 5)

In the special case in which y = -=h (cos(X, (y + h)) = 1 for all j), the real
part of the summation $2k/x% clearly converges. However, the imaginary part
J
i%1/x. diverges, and it is for this reason that the horizontal velocity evaluated

at x = L, y = -h, diverges,

For the general case in which 0 > y > -h, we retain the cos(X,(y + h)) term
within the summation. As far as the real part is concerned, the fact that the
reduced series ZZk/Xi converges at the bed (y = -h) means that, by the comparison
test, the new séries 52kcos(Xo(y + h))/x5 1is absolutely convergent. For the
imaginary part iZcos(io(y + h))/X,, the situation is not quite so straight forward,
since the reduced series i%1/X, diverges at the bed. In the new situation,
alternating blocks of posi%ive and negative terms occur in the series as a result

of the cosine term, viz.

; § cos (Xol(4+h)) _ ik {cos(W(H%)) " ws{ﬁf;('*"'/ﬂ))+ cos(3"(’+%)).....§ .
xo T | k-1
J

The widths of the blocks depend upon the height (y/h); in particular, the widths

increase as (-y/h) tends to unity. Furthermore, the multiplying factors within
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the blocks (ie the values of the cosine terms for given y/h) are not, in general,

the same in adjacent blocks. In fact they are only the same if

1+ y/h =1/, e, Yy oeees (Note that these levels become increasingly

bunched towards the bed.) In these special cases, the series may be shown quite

simply to be conditionally convergent. More generally, however, the convergence

of the series at all the intermediate levels in O > y > -h may be inferred from

this, though we do not present a detailed justification for this statement here.
In conclusion, we have demonstrated that the divergences in the horizontal

bed velocity field at the ends of the ripple patch (x = L, y = -h) result from

the discontinuities in the prescribed vertical bed velocity field at x = 2L

(Eqs (6) and (17)). These discontinuities are due, in turn, to the discontinuities

in the prescribed bottom slope at x = L. Having taken the region x £ -L as a

typical region for the purpose of demonstrating the reason for one of the diver-

gences, we infer more generally that

i) the horizontal velocity, and hence the vertical velocity, are convergent
for all (x,y) except (x = %L, y = -h); and that

ii) the horizontal bed velocity is divergent at x = #L.

It might be noted, finally, that by a simple extension of the earlier arguments,

the velocity potential ¢ itself is convergent for all points (x,y) in the flow.

3. EXPERIMENTAL TECHNIQUES
3.1 Construction of the ripple patch

To test the results of the preceding section, and in particular Egs (65) and
(66), measurements were carried out by one of the authors (ADH) during a visit to
the Coastal Engineering Research Center, Fort Belvoir, Virginia, USA.

The tests were carried out in a glass walled wave tank, 45.72 x .91 x .91 m
(nominally 150" x 3' x 3'). Initially, calculations were made to determine the
optimum ripple wavelength from the range of possible surface water wavelengths,
the limiting factors being the available water depths and wave periods. A wave-
length of 1 m was chosen for the ripples, and a patch of ripples was built into a
false bottom in the tank. Details of the experimental set-up are shown schemati-
cally in Figure 12. The amplitude of the bedforms was chosen to be 5.0 cm (a
trough to crest height of 10.0 cm), this being the steepest case examined by
Davies (1982a, Figure 3), who also showed that 10 ripples of this steepness could
bring about almost total reflection of wave energy for limiting values of the
water depth. A 1 m wavelength for the bedforms also gave resonant wave periods

approximately in the centre of the range which could reasonably be tested in the
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tank (about .5 - 3.05 sec.), and thus permitted a detailed examination of the
oscillatory nature of the reflection coefficient. TInitially, 10 ripples were
built in the tank, with later tests being carried out on 4, 2 and 1 ripples,
respectively. As ripples were removed (from the down-wave end of the patch, see
Figure 12) they were replaced by plywood covered, and sand filled, sections of
false bottom. There was no facility for return flow through the false bottom.
The rippled test section (Figure 12) was built in-situ and consisted of a
2.5 cm thick sand cement shell overlying wet sand, which was contoured to sinu-
soidal plywood templates in 2 m units. Five such units were set in a 15 cm deep,
plywood covered and sand-filled, false bottom. At the far end of the tank, a 1:10
slope rubberized fibre wave absorbing beach was built to prevent waves from being
back~reflected onto the ripple patch. The beach was constructed so that, at the
highest water level examined, the longest period waves would have to travel over
about twice their own wavelength of beach material. Shorter period waves were
expected to be more readily absorbed by the beach than these long period waves.
The beach was anchored in the tank using stones and stainless steel clamps. Due
to the buoyant nature of the rubberized fibre, and the presence of trapped air, the
beach face could not be maintained entirely plane. Deviations from a plane beach

face were of the order of 10 cm between supports.

3.2 The wave generator

Monochromatic sinusoidal waves were generated using an electrohydraulic
piston type wave generator manufactured by Shore Western Manufacturing Inc of
Monrovia, California. Design characteristics of the generator are shown in Figure
13. This shows the design operating limits for wave periods in the range .5-20.0
sec, with bulkhead amplitudes of up to 40 cm (a stroke of 80 cm) attainable at wave
periods of about 3 sec. The generator was at all times operated within these
limits, with bulkhead amplitudes being chosen to comply with the limiting criteria
for the wave properties outlined in §2.7.3.

Wave period settings could be adjusted in increments of 0.01 sec. Independ-
ent checks on the accuracy of these settings were carried out in the range 0.6 to
3.0 sec by timing 30 oscillations of the wave generator bulkhead. The results,
which are summarised in Table 1, indicate agreement to within *.005s of the nominal
wave period setting. Following achange in the setting, the time taken for the wave
system in the tank to attain a steady state was usually of the order of 60 sec.
Since the time between successive sets of measurements was in general longer than

this (of the order of 3 minutes), the measurements described in §4 were
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representative of equilibrium conditions.

3.3 Wave measurements

Measurements of incident, reflected and transmitted wave heights were made
using CERC type parallel wire wave gauges. Details of these instruments may be
found in Kellum (1956) and Stafford (1972). The CERC wave gauges were of the
parallel wire resistance type and have a linear output. Similar wave gauges for
use with hydraulic models have been described by Fryer and Thomas (1975). The
gauges were not temperature compensated, and calibrations were carried out daily
or whenever the water in the tank was changed. The tank temperature was also noted
daily. Where measurements were made at different depths, this was usually done
with the water level falling so as to avoid the introduction of colder water into
the tank.

Two sizes of wave gauge were used for the measurements described in this
report. Measurements on 10 ripples, and with water depths in the range 25.0 -
62.5 cm, were made with gold plated brass wire gauges having a nominal length of
50.0 cm and a wire spacing of approximately 3.7 cm. The wire diameter was
approximately 0.25 cm. For measurements om 4, 2 and 1 ripples and with water
depths in the range 12.5 - 50.0 cm, miniature stainless steel wire gauges were
used. These had nominal wire lengths of 13.0 cm, with a wire separation of 1.5 cm
and wire diameters of approximately 0.10 cm. Comparisons between the small and
large gauges showed good agreement, with the small gauges underestimating the
large ones by, on average, 47. These comparisons are discussed later. Water
depths were determined to within an estimated 0.1 cm using a pointer gauge. All
gauges were mounted on stands which could be slid along the top of the tank on
rails.

To determine reflection coefficients the method described by Goda and Suzuki
(1977), which involves the synchronous measurement of surface elevations with a
gauge pair, was employed (see Appendix A). Incident and reflected wave trains are
ideally resolved by a pair of wave gauges having spacing Ax of 0.25)y, where Ay is
the wavelength. However, Goda and Suzuki (1977) have shown that this condition
may be relaxed, and that gauge spacings in the range .05 < Ax/\y < .45 are probably
acceptable. 1In this work, gauge spacings were maintained in the range
.15 < Ax/Ay < .35, Two pairs of gauges and a single gauge were used to make two

types of measurement:
(a) measurements of the variation in the reflection coefficient, and in the wave

height, over the entire ripple patch and on either side of it; the fifth (single)

gauge was positioned at the foot of the beach in these cases.
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(b) measurements of the reflection coefficient at a fixed point on the up-wave
side of the ripple patch, approximately mid-way between it and the wave generator,
and at a fixed point on the down-wave side of the patch, approximately mid-way be-
tween it and the wave absorbing beach. The fifth gauge was positioned mid-way
along the patch in these cases.

These two arrangements are illustrated schematically in Figure 12. In each case,
synchronous wave records were obtained from the five gauges, by sampling each

gauge 16 times per second (16 Hz) for 64 seconds, thus yielding 1024 data points
for subsequent spectral analysis by the fast Fourier transform (FFT) method.
Spectral coefficients were then combined to yield a reflection coefficient for each
gauge pair. The wave gauges were used also to determine variations in wave height

along the wave tank, and to obtain estimates of the wave steepness.

3.4 Wave filters

As a separate aspect of this study, tests were carried out on a series of
wave filters. In laboratory experiments of many kinds, it is necessary to minimise
re-reflection of wave energy from the blade of the wave generator. Normally this
is done by inserting wave filters between the test structure and the generator.
As part of the work carried out at CERC it was required to determine the wave trans-
mission and reflection characteristics of a series of rubberized fibre, or 'hogshair'
filters. These were constructed in modules, each module consisting of sheets of
rubberized fibre mounted transversely, on edge, across the wave tank in wire mesh
baskets. Each filter unit was approximately 0.30 m in length, and three such units
were built. The filters were positioned in the tank with aluminium supports
clamped to the edges. The filter length could thus be varied from 0.3 m to about
0.9 m, that is approximately half the incident water wavelength at resonance (for
ripples of 1 m wavelength). Full details of the filter design and characteristics

can be found in Appendix B.

4, EXPERIMENTAL RESULTS
4.1 Variation of the reflection coefficient with the ratio of the water wavelength
to the ripple wavelength.

The first experimental results described here are for the wave reflection
coefficient L the appropriate theoretical predictions being given by Eqs (65) and
(66). The variation of IKRI with the ratio of the water wavelength to the ripple
wavelength is shown in Figs 14(a) - t4(c) for m = 10, 4 and 2 ripples, respectively.

The results of the measurements from the up-wave pair of gauges (1 and 2) are given
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in Table 2. Where practicable, the quotient (2k/1) was varied through the range
0.5 < 2k/1 < 2.5 in steps of A(2k/1) = 0.01 for m = 10 and 4, and in steps of
A(2k/1) = 0.02 for m = 2. However, it may be seen that, for 2k/1 > 2, the re-
solution in (2k/1) is poorer than this as a result of the limited resolution in the
wave period (AT = 0.01 sec). The results shown in Fig 14 illustrate that fine
resolution in the wave period, and hence in the quotient (2k/1), is necessary to
resolve the predicted oscillations in [KR|, additional to the main resonance at
2k/1 = 1.

In Fig 14(a), the measured reflection coefficients for 10 ripples may be
seen to follow quite closely the general trend of the theoretical predictions.
The width of the main resonant peak is well established, and agreement is reason-—
able for values of (2k/1) up to about 2. For the cases of 4 and 2 ripples (Figs
14(b) and (c)), the theoretical predictions are again well supported by the
measurements, particularly in respect of the main resonant peaks. However, there
is generally more scatter in the results in these cases, probably due to the un-
wanted effects of wave energy reflection by the beach. This question is discussed
below. In each of Figs 14(a) to (c¢), the experimental results are compared with
theoretical predictions for incident waves which are assumed to be unattenuated
(see §2.3.1), and linearly attenuated (§2.3.2), over the ripple patch. (Reflected
wave amplitudes, for the case of linearly attenuated waves, have been calculated
from first estimates given by Eq (65) (or(66)) by the iterative procedure proposed
by Davies (1982a).) In the remaining sections, we refer to such results as being

based upon uncorrected and corrected theory, respectively. In the region of the

main resonant peaks in Figs 14(a) - (c), better agreement is achieved between the
measurements and the corrected, rather than the uncorrected, theory, as expected.

Figures 14(a) — 14(¢c) also show the measured wave reflection coefficients
for the wave absorbing beach (see Figure 12) for m = 10, 4 and 2 ripples, respect-
ively. These results were obtained using the down-wave pair of gauges (gauges 3
and 4), and are also tabulated in Table 2. For the case of 10 ripples, wave
reflection coefficients from the beach were of the order of KB = 0.1, or less,
corresponding to about 17 in terms of the incident wave energy. Tests on 4 and 2
ripples showed that measured reflection coefficients from the beach were in general
higher, of the order of KB =z 0.2, or about 47 in terms of energy. The reasons for
these differences are not clear. Comparisons between the small gauges used for
the tests on 4 and 2 ripples, and the larger gauges used on 10 ripples, showed that
the former underestimated K by only about 47, which would not account for the

differences in the measured values. (Further discussion on this point is included
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in §4.3.)

The importance of wave energy reflection by the beach in the present context
is that it introduces uncertainty into values of the reflection coefficient |KR|
based upon measurements made on the up-wave side of the ripple patch. This may be

demonstrated as follows:

Let KRT
KRt

KBT

and KBM

where each symbol denotes the magnitude of the reflection coefficient in question.

true reflection coefficient of the ripple patch,

measured reflection coefficient of the ripple patch,

true reflection coefficient of the beach,

measured reflection coefficient of the beach,

If we start by considering an incident wave of amplitude a, which is scattered by

the ripple patch (Figure 15(a)) to give a reflected wave of amplitude éR and a

~

transmitted wave of amplitude &5, emergy conservation requires that
~ % 2 2 2 2
a, =a - 4a, -.-.a(l—!(”

>

where éR = KRTa (see §2.3.2). Re-reflection of the reflected wave éR by the

generator is irrelevant in the present argument, provided that equilibrium con-

ditions have been attained by the waves (see §3.2). Such re-reflected waves
nerely contribute to the (equilibrium) incident wave a. What is relevant is the
possible reflection of the transmitted wave éT by the beach. Here we assume that

éT is partially reflected by the beach, and that the reflected wave, in turn, is

scattered by the ripple patch (Figure 15(b)), such that

A

O'B = Q, KB’_ ]
aan."— aakn'r °

Qgr = Q4 (/" k::;>%l‘= @ Acar ( /"k:;:) ’

(Re-reflection of the agp-wave by the generator is irrelevant, for the reason

and

stated above.) Further, we assume that re-reflection of the a__-wave by the beach

BR
is negligible. This is a reasonable assumption since any re-reflected wave would
. . . -2
= 3 2 . 2 .
have amplitude aBRKBT aTKRTKBT ; in practice, KBT v 10 7, so that little error
is involved if this term is ignored.

On the basis of the above assumptions, the pattern of incident, reflected

and re-reflected waves is as shown in Figure 15(c). On the up-wave side of the
ripple patch we have the incident wave a, the reflected wave éR = aKRT’ and the
transmitted wave from the beach agr = aKBT(1 - KiT). The phase angle of the

appTwave in relation to the other waves is unknown, though bounds can be placed on

the phase differences resulting from it, as shown later. Clearly, the measured
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reflection coefficient KRM has its maximum possible value when the contributions

from &, and ap, are in phase, that is when

K _ Gu+ Qo - K. kw(;-k:,),

RM Q

and it has its minimum value when the contributions are out of phase, that is when

= A8 0l

Kn'r - ka-r ( I - '<:-r>

On the down-wave side, we have the transmitted wave 3., the reflected wave

T!

ag and the re-reflected wave asr* By a similar argument, the minimum measured

reflection coefficient for the beach will be given when the transmitted and re-

reflected waves are in phase, that is when

= = 5

8 G, + Qgy s KK

K Q, — K 8T

and the maximum value will be given when

kK = Qg e Ker .
a4 - Q| |l - KKl

In practice, KBTKRT << 1, so that KBM = KBT'

It follows that bounds on the true reflection coefficient KRT’ in terms of

the measured coefficients, may be calculated from

KRH = kn-r = KBH (I—Km—)’—

This equation may be solved for ,» subject to the further assumption K2, << 1
T J p T L

to yield, as the final result for the bounds on the true reflection coefficient:

c Koo = Ko + ,
k:;r | + 2 k:;L ~ k:nu = k:SH

(in which the lower bound is replaced by KRT =0 if KBM > KFM)' The true re-
flection coefficient is therefore subject to a maximum error of #* KBM’ at least

provided that the following assumptions are valid:

(a) KM_'V O(O-t) » so that K:’_'\« O(O-Ol) which is negligible;
B K Ke << |
d 4 2
an (C) kk'r << 2‘(‘? << ' .
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The result above for the bounds on |KR[ is consistent with the measurements
in Figure 14. In the case of 10 ripples (Fig 14(a)), relatively low beach re-
flection coefficients (KB * 0.05) have enabled reliable estimates of IKRI to be
made through a number of secondary maxima on either side of the main resonant peak.
However, for 4 and 2 ripples (Figs 14(b) and (c)), rather higher values of KB have
concealed the true ripple reflection coefficient [KR{, at least for values of
(2k/1) on either side of the main resonant peak. It may be seen that the measured
values of the reflection coefficients for the ripples and the beach are of compar-
able size for 2k/1 < 0.75 and 2 k/1 > 1.25 in the case of 4 ripples (Fig 14(b)),
and for 2k/1 > 1.5 in the case of 2 ripples (Fig 14(c)). In these cases, it would
have been necessary to reduce considerably the amount of energy reflected by the
beach (below the present levels of about 4%) to have enabled theoretical predictions
for IKR] to be tested for values of (2k/1) outside the main resonant peak.

Figure 14(c) shows the results of wave phase angle calculations. The points
plotted represent experimentally determined values of (EI + ER), where €1 and e
are wave phase angles defined in Goda and Suzuki's method (see Appendix A,
equation (A.1)). It is argued in Appendix A that m-phase shifts in the sum
(eI + ER) are associated with sign changes in the elevation of the reflected wave
and hence, as noted in §2.7.1, with sign changes in the reflection coefficient KR
as defined by equation (65). For the case in which m = 2, the theory in §2
suggests that the sum (eI + eR) should remain constant in 0.5 < 2k/1 < 1.5, that
there should be m-phase shifts at either end of this range, constant values of the
sum in 0 < 2k/1 < 0.5 and 1.5 < 2k/1 < 2.0 and, thereafter, for increasing (2k /1),
further m-phase shifts at 2k/1 = 2.0, 2.5, 3.0, .... Although the values of
(EI +ER) in Figure 14(c) are plotted on a vertical scale which is arbitrary to #2m,
*4m ...., v-phase shifts should have the significance indicated above. It may be
observed that (;[ + eR) remains reasonably constant in the range 0.67 < 2k/1 < 1.31,
and also in the range 1.6 $ 2k/1 < 1.93, and that phase shifts occur in the ranges
0.5 <2k/1 < 0.6 and 1.45 < 2k/1 < 1.55. These phase shifts are not at discrete
values of (2k/1) as predicted, probably on account of the presence of the reflected
wave from the beach; this is connected, in turn, with the fact that the measured
values of [KR] do not fall to zero at either 2k/1 = 0.5 or 1.5. However, the
phase shift close to 2k/1 = 1.5 is approximately equal to . For 2k/1 > 2.0,
there is a suggestion of a general increase in (sI + sR), but this is probably
associated with the wave reflection by the beach. Despite some uncertainty,
there appears to be a strong suggestion in the measured results of the predicted

behaviour of (eI + eR). The detailed way in which the sum of the phase angles has
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been calculated is described in Appendix A.

4.2 Measurements of the variation of peak reflection coefficient as a function
of the quotient of ripple amplitude (b) and water depth (h), and of the
number of ripples (m) in the patch.

Figures 16 (a) - (d) show the results of experiments carried out to measure
peak reflection coefficients for different ripple amplitude to water depth
quotients (b/h), and different numbers of ripples (m). The earlier measurements
in Fig 14 showed considerable variations in [KR[ within the central resonant peak,
which may have been due either to reflection of wave energy by the wave absorbing
beach or, possibly, to the effects of additional resonances not described by the
perturbation theory in §2 (see Davies (1982b)). 1In the tests described herein,
time did not permit detailed measurements of |KR| over an extensive range of
values of (2k/1), for each combination of (b/h) and m values examined. It was
thus necessary to make measurements of lKRI over a limited range of (2k/1) values
in the vicinity of the main resonant peak, in an attempt to measure the maximum
value of ‘KR] for given values of (b/h) and m. Unfortunately, in practice, a
representative number of measurements was not always made.

The procedure adopted, for comparison of the observations with the theoret-
ical predictions, has been to average measurements of |KR| made in the vicinity of
the main resonant peak. This averaging has been carried out within a range of
(2k/1) values, centred on 2k/1 = 1 and representing, in each case, *10Z of the
total width of the main peak. The results are shown in Table 3 and Figure 17 as
means and standard deviations of the measured ]KR[ values lying within these
ranges. In Figure 17, the averaged 'peak’ IKR[ values are compared with both
uncorrected, and corrected, theoretical predictions for the maximum reflection
coefficient. For the cases of m = 10, 4 and 2 ripples, the averaged peak values
give good agreement with the corrected theory. However, for m = 1, the measured
values considerably overestimate the predictions; it is thought that this is due
partly to the unrepresentative nature of the measurements (see Figure 16a), and
partly to the effects of wave reflection by the beach. As mentioned in §2.7.3,
the theory predicts over-reflection (]KR| > 1) for certain parameter settings (see,
for example, the cases inFigure 16c for which b/h = 0.36 and 0.40, and in Figure 16d
for which b/h = 0.18 and 0.20). Although experimental results have been obtained

in such cases, no meaningful comparisons with the present theory are possible.
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4.3 Measurements of surface elevation and reflection coefficient over, and on
either side of, the ripple patch,

In order both to assess whether the measured values of lKRl discussed in
§4.1 and 4.2 were truly representative of the reflection coefficient, and also to
obtain a general understanding of the wave field throughout the tank, a series of
measurements was made with the gauge configuration shown in Figure 12, which was
moved along the tank in steps of 1 m. The resulting measurements of the amplitude
of the surface elevation both above the ripple patch, and on either side of it,
are shown in Figures 18a - 18i, and are tabulated in Table 4. The observations
were made at or near the predicted resonant peak, as were the results in Figure 16,
and the measured surface elevations have been compared with predictions of
elevation given by both the uncorrected and corrected theory (see §2.7.2). The
incident wave amplitude used in the comparisons was obtained by averaging the first
five values of aI(=a) tabulated for the up~wave side of the ripple patch in Table 4.
The results for m = 2, 4 and 10 ripples show good agreement with the theory, and
indicate clearly how the standing wave pattern on the up-wave side of the ripples
gives way to a purely progressive wave on the down-wave side (having an envelope
described by two parallel lines). On the down-wave side, agreement is better
between the measurements and the corrected, rather that the uncorrected, theory.
Moreover, the observations show how the incident waves are, to all intents and
purposes, linearly attenuated across the ripple patch, as assumed in §2.3.2. No
comparisons with theory have been possible in Figures 18h and 18i, for m = 10
ripples and water depths of h = 25.0 cm and h = 27.8 cm,respectively. For these
conditions, the theory predicts over-reflection (|KR| > 1, cf Figure 16d), and so
the measured values have simply been joined by a cubic spline to indicate their
overall trend.

In general, there is good agreement between the measured and predicted
positions of the partially standing wave pattern (fixed in space) on the up-wave
side of the ripple patch. This is seen in Figures 18(a) - (g) where the phase
angles of the measured and predicted envelopes of wave elevation are very similar.
In most cases however, there is evidence of a small progressive phase shift,
indicating a slight mismatch in wave period between the nominal value adopted for
the theoretical comparisons and the true experimental value. Calculations (see
Table 5) have shown that this may have given rise to cumulative discrepancies in
phase of 1°-3° for each wavelength of the incident wave. For the case of m = 10
ripples (Figures 18c - 18g), this implies wavelengths in the experiments which

were about 0.6-1.7 cm shorter than those predicted in the theoretical comparisons
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based on the nominal wave period settings. Such differences suggest true wave
periods which were 0.002 - 0.006 s lower than the nominal values, for typical
resonant waves with wavelength 200 cm in 50 cm depth of water. Table 1 shows
that, in the range 1.2 to 1.8 s, true wave periods were between 0.001 and 0.004 s
lower than the nominal settings. Since such differences are of the same order as
those which may be inferred from the measurements, the observed disagreements in
phase may be accounted for by a small experimental error in the wave period setting.
However, calculations on the data for m = 2 and m = 4 ripples (Table 5) suggest
that the mismatch may have been greater in these cases, possibly of the order of
0.02 ~ 0.03 s in the wave period setting. The reason for the poorer agreement in
these cases is not clear.

It is possible that other factors may have contributed to the observed phase
differences. For example, the cumulative phase shift described above may have
been superimposed on a constant phasé shift throughout the partially standing wave
pattern on the up-wave side (eg Fig 18(g)). It is possible that such a phase
shift may have been due, at least in part, to wave reflection by the beach. It
was shown in §4.1 that this effect introduces uncertainty into the measured values
of the reflection coefficient |KR|. By a simple extension of the earlier argument,
it may be shown that reflection by the beach may introduce also a constant phase
shift in the position of the envelope of the measured partially standing wave

pattern. The bounds on this phase shift may be expressed by
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and where KRT and KBT are the true reflection coefficients for the ripples and
beach, respectively. (This result has been obtained by assuming that

91 = /a, << 1; in particular, by neglecting terms of higher order in 6;, than

B’ R
01% in a series expansion for cos(l. The assumption that 8; is small is clearly

valid in near-resonant cases, such as those in Fig 18.) If we use the earlier
results in §4.1 to relate KRT and KBT to their equivalent measured values KRM and
KBM’ namely

we arrive at the final result for the bounds on the measured wave envelope:
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Here the worst possible case has been chosen, that is the case which maximises the
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bounds on the phase shift (and which has been distinguished from the result based
upon the true reflection coefficients by the change of subscript). In practice,
for the results in Figs 18(a) - 18(g), the values for the bounds()z are #5°, #2°,
+8°, #6°, £5°, #6° and +5°, respectively. (Note here that there are two antinodes
in each cycle of 360°.) The fact that these values are rather small, and that
cumulative phase shifts of 1° - 3° per wavelength were consistently observed,
supports the view that the disagreement in Figs 18(a) - 18(g) was most likely due
to a mismatch in wave periods and not due to reflection by the beach.

It should be noted, finally, that consistent underestimates of the water
depth in the wave tank might also have accounted for small progressive phase shifts.
However, for this effect to have produced phase shifts of 1° - 3°, for waves of
200 cm wavelength in a nominal water depth of 50 cm, the actual water depths would
have to have been 0.7 - 1.9 cm lower than indicated. Since water depths were set,
using a pointer gauge, to an estimated accuracy of #0.1 cm, this effect is unlikely
to have contributed significantly to the differences in Figures 18(a) - (g).

Reflection coefficients calculated by the method of Goda and Suzuki (1977)
are normally obtained from measurements made above flat beds. If the method is
used with measurements made above an undulating bed of the present kind, the values
obtained for the reflection coefficient need to be interpreted carefully, for the
reasons given in Appendix A. In particular, the values will depend upon the gauge
spacing and may contain quite marked local spatial variations. In the present
context, what is obtained by the method of Goda and Suzuki is a modified reflection
coefficient, K, which is such that K - 'KR' only on the up-wave side of the ripple
patch. Figures 19(a) - (i) show comparisons of the measured and predicted
reflection coefficientsat resonance, both over the ripple patch and on either side
of it,for m = 2, 4 and 10 ripples, and for different values of the ripple amplitude
to water depth quotient (b/h). The results are also tabulated in Table 4. It
should be noted that wave reflection measurements from gauges 1 and 2, only, have
been used throughout these comparisons. Table 4 shows that for the case of m = 10
ripples, with the large gauges, gauges 1 and 2 gave measurements which were in good
agreement with gauges 3 and 4. However, measurements for m = 2 and 4 ripples,
with the small gauges, show that gauge pairs 1 and 2, and 3 and 4, differed con-
sistently by as much as 0.1 in the measured reflection coefficient. Earlier tests
(§3.3) had shown that the small and large gauges gave results which agreed to with-
in 4%, and so the reasons for the differences in Tables 4(a) and 4(b) are not clear.
For consistency with other measurements (eg §4.1 and §4.2), it was decided to use

gauges 1 and 2 (large and small) throughout. However, gauges 3 and 4 were used
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to provide some of the surface elevation data discussed earlier; this data was not
found to include any spurious effects that might be attributable to the gauges
(Figures 18(a) and 18(b)).

Agreement between the observations and the theory in Figure 19 is generally
good, the best agreement again being achieved between the observations and the
corrected, rather than the uncorrected, theory. For small amounts of reflection
(eg Fig 19(c) in which IKRI ~v 0.15, m = 10 and b/h = 0.08), agreement between the
measured and predicted values of K is particularly good throughout the tank.
However, as b/h is increased and the amount of wave reflection becomes larger,
measured reflection coefficients tend to underestimate the theoretical values on
the up-wave side of the patch, and to overestimate them on the down-wave side. 1In
the case of m = 2 ripples (Figure 19(a), b/h = 0.32), the measured reflection
coefficients tend to overestimate the theory on both the up-wave and down-wave sides,
the best agreement being directly over the ripple patch. However, the results for
m = 10 and m = 4 ripples show better agreement. A particular, though as yet
unexplained (see §5.4), feature of the results is that the measured reflection
coefficients tend to rise to localized maxima just before the incident waves enter
the ripple patch, and fall to localized minima just as the waves leave the patch.
More generally, on the down-wave side of the patch, the non-zero measured values of
K indicate the effects of reflection by the beach while, on the up-wave side, the
tendency for values of K to decrease steadily towards the wave generator is probably
due to viscous dissipation in the tank, as discussed below. No theoretical results
are shown for those cases in which over-reflection was predicted. All measurements
of the present kind for m = 2, 4 and 10 ripples are summarized in Figs 20(a) - (c),
in which the trends in the reflection coefficient are indicated by cubic splines
fitted to the measured values.

It was suggested above that the tendency in Figs 19(c) - (i) and 20(c) for
the reflection coefficient K = IKR[ on the up-wave side to decrease towards the
wave generator was due to viscous dissipation in the tank. Although this effect was
generally a small one, it should be borne in mind in interpreting the results in
Figs 13, 14, 16 and 18, for which the wave gauges were at fixed positions mid-way
between the wave generator and the ripple patch. The estimates obtained for |KR|
with these gauge positions may have been slightly less than estimates which could
have been obtained with the gauges nearer to the ripple patch (but, necessarily,
outside the region of influence of the trapped wave modes at the end of the patch).
In order to obtain a rough estimate of the effects of dissipation in the tank, the
simple situation of waves propagating down the tank above a purely flat bed has

been examined (see Appendix C). The results obtained suggest that energy dissi-
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pation rates in the approximate range 8 - 647 of the energy generated by the wave-
maker may have occurred in the tank as a whole, depending upon the water depth and
the surface wavelength. The low value of 87 applies to relatively long wave-
lengths in relatively deep water (Aw = 400 cm, h = 62.5 cm), and the high value of
647 to short wavelengths in shallow water (Aw =80 ecmy, h = 12.5 cm).  However,
these rather large dissipation rates, for purely progressive waves, need to be
interpreted carefully in assessing the possible effects of dissipation on estimates
of the reflection coefficient in the present experiments. The particular question
of dissipation in the partially standing wave structure on the up-wave side of the
ripple patch is discussed in Appendix C, and it is concluded that dissipation will
have tended to cause underestimates in ]KRI for measurements made with gauges
positioned mid-way between the wavemaker and the ripple patch (Figs 14, 16 and 17).
It is concluded also that dissipation will have given rise to general decreases ir
measured values of [KRI with distance from the ripple patch on the up-wave side

(Figs 19 and 20).

4.4 Observations of sediment movement

Davies (1980, 1982a) suggested that, in resonant cases, the near-bed velocity
field associated with the partially standing wave pattern on the up-wave side of
the ripple patch may give rise, on an erodible bed, to preferred regions of de-
position and erosion of sediment (see also §2.7.4). It was argued that this
provides a possible mechanism for the growth of the existing ripple patch in the
up-wave direction and, further, that there may be a coupling between wave reflection
and the growth of new bedforms.

To test this supposition, sand of mean diameter 235 pm was distributed in a
thin (< 0.05 cm) uniform layer throughout the ripple patch, and for a distance of
2 m in the down-wave direction and 3.5 m in the up-wave direction. The tests were
carried out with m = 2 ripples, water depth h = 15.6 cm (b/h = 0.32), and a resonant
wave period of T = 1.73 s , The corresponding measured wave reflection co-

efficient was IKR[

]

0.34. Starting from rest the stroke of the wave generator
was increased until sand motion was initiated. The subsequent development of
ripples of small wavelength (0(5 cm)) was then recorded photographically at
intervals over a period of approximately 130 minutes. Small sand ripples were
first observed to occur both on the crests of the original long wavelength ripples,
and also in the up-wave direction in patches approximately 1 m apart (ie with the
same spacing as the original ripples). At the outset, these patches of small

ripples formed under the nodes of the partially standing waves on the up-wave side,
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where the wave-induced bed velocities were greatest. With increasing time, ripples
started to form up-wave of these nodes, with the largest ripples forming about

half way between the nodes and antinodes. The ripple heights increased with
increasing distance from the nodes such that, at the nodes, heights were typically
0.1 to 0.2 cm while, midway between the nodes and antinodes, heights were

typically about 1.5 cm and wavelengths were 5.5 cm (see Figure 21). These ripples
displayed an asymmetry, having their steepest faces in the down-wave direction.
Despite this, there was a net movement of sediment in the up-wave direction,
associated with the action of vortex shedding from the ripple crests. In general,
it might be expected that, for net sediment accumulation to occur close to an
antinode of surface elevation, ripple heights would increase in this direction,
even though the water particle excursions due to the waves decrease. The situation
on the up-wave side of the ripple patch may be contrasted with that on the down-
wave side, where small ripples, asymmetric in the down-wave direction, were
observed to grow and spread over the entire bed, with uniform height and spacing.
Typical ripple heights were about 0.5 to 0.8 cm, and ripple wavelengths were about
4 cm.

The development of the patch of small sand ripples on the up-wave side of the
original ripples is shown schematically in Figure 21, and a sequence of photographs
illustrating the evolution of the ripple patches during the 130 minute period is
shown in Figures 22(a) - (f). A photograph is also included of the ripple sheet on
the down-wave side (Figure 22(g)). To enable clear photographs to be taken in
still water, the wave generator was stopped for each photograph, and was then
restarted. The position of the ripple patches in relation to the standing wave
nodes and antinodes is illustrated in Figure 21. The positions of the nodes and
antinodes themselves were obtained from earlier measurements on 2 ripples with the
same ripple amplitude to water depth ratio (b/h = 0.32). Details of the wave field
giving rise to the observed sediment motion (Figures 22a — 22f) were also deter-
mined from these earlier measurements made without any sand in the tank. The
absence of sand, and hence small ripples, in the short section of the tank near
the original patch might have led to slightly different wave conditions compared
with those when sand was present, due to increased wave energy dissipation.
However, this effect was probably very small.

In Figure 23, theoretical results for the horizontal velocity field are
shown for the parameter settings in the above sediment transport experiment (m = 2,
h=15.6 cm, T = 1.73 sec). From equation (16) the water wavelength was 206.7 cm,

so that 2k/1 = 0.968 which indicates that the run was close to resonance. The
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predicted reflection coefficient for unattenuated incident waves is given from

equation (65) bv K = 0.455, and for attrenuared waves bv K_ = 0.433., These values

b
1oy N

may be compared with the measured value of {KRI = 0.34. For simplicity, the
horizontal velocity amplitude has been plotted, rather than the tangential; it may
be recalled from Figure 11 that the two results are closely similar over the ripple
patch. Also, the results plotted are for unattenuated incident waves, the results
for attenuated incident waves in this case being very similar. Velocity amplitudes
are plotted as functions of horizontal distance (x) for the heights (y/h) = 0 (free
surface), -0.5 and -1.0 (bed). The velocities at these heights are nearly in

phase in respect of variatioms in (x) but, as in Figure 10, are attenuated rather
differently over the flat and rippled parts of the bed. (Note that the divergences
in the predicted bed velocity field at the ends of the patch (x = %L, y/h = -1.0)
have no general significance, as explained in §2.7.2) For the present purpose, we
need only be concerned with the velocity amplitude at the bed, and what is of
interest is the relationship between this quantity and the threshold velocity
amplitude of the sand size in question (235 uym). For monochromatic waves with the
experimental wave period, and for a flat bed, Komar and Miller's (1975) formula
gives the threshold velocity amplitude as 11.4 cm s_l, or fl/UO = 0.89 in normal-
ised form as plotted in Figure 23. It may be seen that, on the down-wave side,

the threshold velocity amplitude is less than the predicted bed velocity amplitude.
This is consistent with the observed formation of a sheet of ripples of short
wavelength on the region of flat bed. On the up-wave side, where the reflected
wave gives rise to a partially standing wave pattern, the threshold velocity
amplitude 1s greater than the predicted velocity in certain parts of the bed
(marked "D'), and less in other parts (marked "E"). 1In the former parts, no
sediment motion should occur and deposition of sand may be expected. In the latter
parts, sediment motion may occur and erosion may be expected, particularly near
maxima of the bed velocity amplitude. Over the ripple patch itself predictions of
this kind, based upon Komar and Miller's threshold velocity amplitude result, are
complicated by the fact that the bed is not flat; in particular, on sloping parts

of the bed, rather lower threshold values are expected, depending upon the local
bottom slope. If we ignore this compiic=iion and treat the matter in the same way
as for a flat bed, we again arrive at the prediction of regions of deposition and
erosion on the bed. It may be seen from Figure 23 that, for both the flat and
rippled regions of the bed, the predictions of deposition "D" and erosion "E" were
reasonably well borne out by the experimental observations. On account of the

grain size in use, sediment motion occurred as bed load only; if there had been a




suspended load, deposition would possibly have occurred throughout the regions
marked 'D".

Previous observations of patches of rippled, and of unrippled, sand on a
flat erodible bed beneath partially standing waves have been made in the
laboratory by Kennedy and Falcon (1965, §4.3). However, the situation described
by these workers was rather different from that in the present experiment.
Firstly, the partially standing wave pattern in their experiment was caused by the
superimposition of incident waves and waves reflected by a beach. Secondly, their
observations were made in more active conditions than those which prevailed in the
present experiment, to the extent that the patches of ripples and of flat bed
coincided with relatively low and high near-bottom velocity amplitudes, respect-
ively. Furthermore, the positioning of the patches of ripples and of flat bed was
complicated both by the existence of significant drift velocities in the tank, and
by the asymmetrical nature of the bottom velocity field associated with the (steep)
incident waves. Despite all of these differences with the present experiment,
however, the observations of Kennedy and Falcon provide an interesting, and
contrasting, example of the effects of a partially standing wave structure on an
erodible bed.

The predicted and observed partially standing wave pattern on the up-wave
side of the ripple patch in the present experiment suggests, quite unambiguously,
that new ripples may develop on the region of flat bed as a result of wave
reflection by the existing, longer wavelength, ripples. Indeed, this has been
demonstrated clearly in the present experiment, in which it was found that
deposition (D) and erosion (E) of sand occurred in regions of the bed where the
predicted horizontal bed velocity amplitudes were minimum and maximum, respect-
ively. This pattern of deposition and erosion is suggested by intuition as the
most likely outcome of a standing wave structure above an erodible bed. However,
as argued by Davies (1980, Part 1 §7), the situation may not be quite as clearcut
as this intuitive argument suggests. The reason for this is that the residual
circulation cells resulting from bottom friction under a standing wave have a
rather complicated structure (Longuet-Higgins (1953), Noda (1968), Johns (1970),
Liu and Davis (1977)). 1In particular, for a smooth flat bed and a purely standing
wave, the direction of the residual velocity changes at a certain height above the
bed. 1If the boundary layer is laminar, this height is equal to 0.93 §, (Longuet-
Higgins, 1953) where §_ is the Stokes' layer thickness (= /53;75'in which vy is
the kinematic viscosity). If it is turbulent, the height is considerably larger

than this (Johns 1970). In both cases, water particle residual motions immediately
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above the bed, in the "inner" layer, are towards the positions of greatest
horizontal motion, and away from the positions where the motion is purely vertical;
that is, it is towards positions beneath nodes of elevation, and away from
positions beneath antinodes. This has been demonstrated by Noda (1969), who found
that vinyl pellets moving on a smooth bed accumulated beneath the nodes of a
standing wave. In the upper, or "outer", layer immediately above, the residual
motions are in the opposite directions. The implications of this rather compli-
cated velocity structure for sediment movement have been discussed by Johns. For
rough beds, and for laminar flow in the boundary layer, Johns has suggested that
any material in motion near the bed will probably be present in the "outer layer"
(by virtue of the very small "inner layer" thickness which, for the conditions
shown in Figure 22, was of the order of §, = 0.07 cm), and that the residual
velocity in this layer will probably give an indication of the direction and
magnitude of sediment transport. In the laminar case, therefore, the influence of
the residual velocity is consistent with the earlier intuitive argument. However,
in the physically more interesting case of a turbulent boundary layer, the greater
thickness of the inner layer suggests that sediment motion may be confined to this
layer within which the residual motion of water particles, and hence sediment, is
towards positions of greatest horizontal motion. In the turbulent case, therefore,
the intuitive and mass transport arguments suggest opposing tendencies. The true
result will depend to a large extent on the sediment grain size involved; in
particular, on whether the sediment is transported as bed load only, or as both
bed load and suspended load.

The laboratory experiments of Nielsen (1979) demonstrated ripple growth
beneath standing waves, with sediment accumulation occurring at the antinodes of
surface elevation. For the very fine sand used (Dso = 0.08 mm), Nielsen observed
an upwardly convected cloud of grains above the evolving ripple crests, and
interpreted his observations on the basis of the residual transport pattern
described above for a laminar boundary layer. As far as the present experiment is
concerned, it should be noted, firstly, that there was a partially standing wave
structure on the up-wave side of the ripple patch, rather than a purely standing
wave as in Nielsen's experiments. (This does not affect any of the general
implications of the qualitative argument above however.) Secondly, the boundary
layer was laminar (Reynolds number, RE = Ui/cvw = 3 x 103 where Ub = U,/cosh kh =
gak/ocosh kh; see also Appendix C), and sediment motion occurred as bed load only,
The observations of incipient ripple formation were consistent, therefore, both

with the intuitive argument and with the mass transport argument for the laminar
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case. The absence of a suspended load meant that ripple formation could not
proceed in the manner observed by Nielsen. Instead, regions of no motion on the
up-wave side of the patch marked regions of the bed which, in a more active flow,
might have evolved into ripple crests. Direct evidence of the laminar nature of
the flow was provided by dye tests, which showed that dye patches retained their
identity for considerable periods of time and did not disperse rapidly, as would
have been the case if the flow was turbulent.

It was argued in §2.7.4 that, for there to be a coupling between wave
reflection and ripple growth, accumulation and erosion of sediment must occur on the
existing ripple patch in a way which suggests ripple growth rather than ripple
destruction by the wave action. In the earlier discussion of Figure 23, it was
suggested on an intuitive argument that, if the effects of bed slope are ignored,
deposition and erosion should occur at the positions marked D and E, respectively,
and this theoretical prediction was quite well supported by the experimental
observations. However, these observations also suggested either the destruction of
the two existing ripples or, possibly, their overall movement in the up-wave
direction, by erosion of sand from the regions both of their crests and their down-
wave slopes, and deposition on their up-wave slopes. Unfortunately, with the
fixed bed in the present experiments, it was not possible to establish which of
these alternatives would have been the true outcome on a fully erodible bed of
single grain size. On the one hand, it may be argued that the existing ripples were
unstable, on the basis of both theory and experiment, since their crests were
subjected to large bed velocities. On the other hand, the peak bed velocities,
which were found down-wave of each crest position, suggest the possibility of bedform
migration, and hence stability. Clearly, this matter needs further experimental
investigation over a wide range of parameters settings (including grain size), not
least because of the complications which may arise in cases in which the flow in
the boundary layer is turbulent. There are further considerations which may be
relevant to the question of the stability of the existing bedforms. For example,
Sleath (1974, 1976) has shown that both auniformoscillation, and a progressive
wave motion, over a rippled bed give rise to residual circulation cells in which
the fluid near the bed is transported towards the ripple crests. In the present
context, the correct interpretation of this result for bedform stability and
growth again depends rather critically upon the manner in which sediment is trans-
ported. As a result of all these uncertainties, and also of the possible effects
of variable grain size (discussed below), it would be premature to conclude that
the existing ripple patch in the present experiment was either stable or unstable.

Rather than leaving this matter entirely for further investigation, we dis-
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cuss here finally some theoretical results obtained for the case of a ripple patch
comprising m = 10 ripples in water of depth h = 41.7 cm, corresponding to one of
Liae earller experimentat tuus (see riguleo toe dld ive). uoricontal beu velocity
amplitudes have been calculated over the entire patch, with an incremental spacing
of 2.5 em (= 1/40 x ripple wavelength), and for various values of 2k/l1 around the
resonant peak, namely 2k/1 = 0.95, 0.97, 0.99, 1.01, 1.03 and 1.05. For each of
these values, the positions of each of the bed velocity maxima and minima throughout
the patch have been established and, in Figure 24, these positions arecompared with
the fixed crest and trough positions. The results plotted are for unattenuated
incident waves, almost identical results being obtained for attenuated wawes. It
may be seen that the maxima and minima are displaced in the down-wave direction from
their respective crests and troughs. For fixed (2k/1), the displacements have a
general tendency to decrease in the down-wave direction. However, they generally
increase with (2k/1) itself. What the results indicate about the stability of a
patch of 10 ripples is again somewhat ambiguous. For the case in which 2k/1 = 0.95,
velocity maxima and minima may be seen to occur close to the positions of crests and
troughs, respectively. The displacements actually increase from zero at both ends
of the patch, to peak values of about 5 cm in the middle. The earlier intuitive
argument suggests that this is an unstable state, though, as we have suggested
earlier, other considerations may need to be taken into account before the true
result can be established. Through the resonant peak (2k/1 ~ 1), the displacements
from both the crest and trough positions steadily increase. For the case 2k/1 =
1.05, which is still strongly resonant, the maxima and minima at the up-wave end
of the patch are displaced by about 25 cm and 45 cm, respectively. The values then
diminish to zero in the down-wave direction. Evidently, the displacements in this
case are quite large, the extreme value of 45 cm bringing the first (significant)
velocity minimum to within about 5 cm of the next crest. This suggests that the bed
may be more stable for 2k/1 = 1.05 than for 2k/1 = 0.95, particularly at the up-
wave end of the patch. For all the values of 2k/1 investigated, there is the
further suggestion that the ripple pattern may migrate, probably in the up-wave
(-x) direction (as in the case discussed earlier in which m = 2). Finally, it might
be noted that, for 2k/1 = 1.05, secondary maxima and minima in bed velocity occur.
These complicate the interpretation of the results somewhat, though they stand apart
Irom the primary maxima and minima which govern the overall trends in the results.
The discussion above has been concerned with the situation in which the bed
comprises a single sediment grain size only. For abed comprising a mixture of

grain sizes, the question of the stability of a patch of ripples is more involved,
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as demonstrated by Scott (1954) in a laboratory study concerned mainly with
onshore/offshore sediment tramsport on a beach. Scott commenced his experiments
with an initial beach profile, and then allowed waves to "mold the beach until an
approximate equilibrium profile was obtained.'" The beach profile changes
involved the formation of a series of offshore bars, and in his description of
this process Scott makes the following observations: '"Reflections from the beach
were visible from the start of each run, but (a pronounced) standing wave did not
become visible before the offshore bars had formed. Evidently the bars caused
additional reflections which built up the amplitude of the standing wave ......
The nodes of the standing waves were in all cases over the offshore bars ......
In other words, the bars (ie ripple crests in our earlier terminology) were
subjected to greater horizontal velocities than were the regions between the bars
(troughs), and yet the bars were stable. This was explained by Scott in terms of
the observed tendency for coarser grains to be found on top of the bars, and for
finer grains to be found in the troughs between the bars. Clearly, this
phenomenon is highly relevant to the earlier discussion of the stability of bottom
ripples, though it is not a matter which we are able to pursue further here.

In conclusion, it would appear that further theory and experiment are needed
to clarify the central point of the present discussion, namely whether there is a
coupling between wave reflection by an existing ripple patch and the growth of new
ripples on its up-wave side. The theory required for such an investigation is
beyond the scope of the irrotational model described in §2. 1In particular, some
detailed calculations of the effects of bottom friction in the problem are needed
to determine the roles of the bottom stress, and of residual velocities, in
situations in which there may be suspended sediment motion, as well as bedload
motion. Tdeally, such work should be supported by a comprehensive experimental
study with a fully erodible bed, in which both the wave parameters, and the

sediment size, are varied over wide ranges.

5. DISCUSSION
5.1 The validity of the comparisons

Before the experiments described in §4 were carried out, it was thought
necessary to establish that the waves generated in the tank complied with the
limitations on the theory described in §2. This entailed determining optimum
settings for the wave generator and, in particular, appropriate settings for the
stroke (S). With this aim, tests were carried out with different water depths and

different amounts of wave reflection by the ripple patch.
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The limitations on the perturbation solution have been discussed in 52.7.3
where they were expressed as a set of criteria involving the various length scales
in the problem, namely

ak , %% » Skrgr , b, B2 ana bk <<,
where a is the incident wave amplitude (=H/2), k is the free surface wavenumber
(= Zﬂ/Aw), h is the water depth, b is the ripple amplitude and 1 is the ripple
wavenumber (= 2ﬂ/*R). Of these criteria, the one most easily violated, in
practice, was that which concerns the wave steepness ak (= WH/AW). Tables 2 and 3
show that typical wave steepnesses for the test described in this report were
usually at the low end of the range 0 < ak $ 0.16 (or 0 < H/.\w < 0.05), well
within the limitation above. However, in order to investigate the effects of
different settings of the wave generator for the present experimental set up, a
series of tests was carried out with m = 10 ripples. The purpose of these tests
was to establish whether variations occurred in the measured wave reflection
coefficient on the up-wave side of the ripple patch, as the wave steepness was
increased. The results in Figure 25 and Table 6 show that, for values of the
reflection coefficient ’KRiin the range 0 - 0.65, the amount of wave reflection
remained relatively constant with increasing wave steepness, and therefore stroke
(S), up to values of ak of about 0.16 (H/)\w ~ (0.05). The numbers above the data
points in Figure 25 indicate the stroke (S) of the wave generator in centimeters.
Since the majority of the tests described in this report (see Tables 2 and 3) were
carried with values of S of 2 cm, they were well within the required limits.

As far as the two remaining criteria involving the wave amplitude (a) are
concerned, the criterion involving (a/h) was well satisfied, since a was always
less than 2 cm and the depth (h) was always greater that 12.5 em. Thus a/h € 0.16,
though in general the quotient was much smaller than this limiting value. As far
as the limitation involving the Ursell parameter (a/k?h?®) is concerned, the
criterion is actually less severe than indicated above, and may be expressed by
a/k?h? << 8/3 (Davies 1982b). The worst case in the present experiments (see
Table 2b), was that in which Aw ~ 400 cm, h = 15.6 cm and a = 0.41 cm, so that
a/k?h3 = 0.44. A contrasting value for short wavelength conditions (Table 2b) was
that in which Aw =79.9 cm, h = 15.6 cm and a = 0.75 cm so that a/k?h? = 0.032.

In general, all the criteria involving the wave amplitude appear to have been
satisfied in the experiments. As a further check on this, the results of spectral
analysis of the measured data have been examined, in order to investigate the

linearity of the measured wave field. The results are described in the next

section.
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The three remaining criteria involve the ripple amplitude (b). Clearly, the
ripple steepness (bl) was fixed by the chosen ripple geometry (b=5cm, A= 100 cm),
so that bl = 7/10. (This value was chosen because of its similarity to actual
ripple and sandwave steepnesses.) The largest experimental value of the quotient
b/h was 0.4, and the largest value of bk was about 0.39. While these values are
perhaps larger than might have been desirable, the majority of the experiments
were carried out with significantly smaller values. Moreover, as argued in the
next section, spectral analysis has revealed that the wave field was almost always
linear; this would not have been so if, for example, b/h had been too large. So
we may conclude that the comparisons between the experiments described in §4 and
the theory in §2 were carried out with parameter settings which generally
satisfied the criteria in §2.7.3.

A final limitation on the theory was that the flow above the rippled bed was
always nonseparating. This requirement was satisfied in all of the experimental
runs described in §4., The criterion for nonseparating oscillatory flow above a
rippled bed is that the ripple wavelength (AR) is greater that the orbital
excursion (2Ab) of the water particles close to an equivalent flat bed (Ab = Ub/o
and U = gak/ocosh kh) (Sleath, 1975). 1In the present experiments, values of
2Ab/>\R were generally 0(10—1), and typically in the range 0.05 - 0.15. Although
the dimensionless parameter (2Ab/XR) takes no account of the presence of the
reflected wave over the patch, it is clear that there was no possibility of
separation in any of the experimental rums; this was confirmed by introducing dye
into the flow in some selected cases.

5.2 The linearity of the measured wave field

Calculations of the reflection coefficient were generally made in such a way
that the final results were relatively insensitive to any redistribution of wave
energy from the fundamental frequency, into the first and higher harmonics (see
Appendix A). However, since the theory in §2 assumes a monochromatic wave field,
it was thought desirable to re-examine the data in a sufficiently detailed way
that the presence of harmonics could be identified, and their causes could be
examined. Thus, all the wave gauge data was Fourier analyzed once again, both
over the standard measurement period of 64 sec, and also over reduced periods which
were chosen such that the truncated records contained an integral number of wave
cycles (see Appendix A). The results of this investigation revealed that, in the
overwhelming majority of experimental runs, more than 957 of the total wave energy
was at the fundamental frequency, most of the remainder being in the first harmonic.

In fact, in most cases, the fundamental accounted for 987%, or more, of the total
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energy. This provides a clear demonstration of the linearity of the wave field.
However, in certain cases, rather less energy was found in the fundamental
frequency; 1in particular, levels of 85 - 90% were measured in several runs. The
reason for the presence of a significant first harmonic in these runs has been
analyzed in relation to various of the non-dimensional parameters discussed in
§5.1, namely the wave steepness (ak), the wave amplitude to depth quotient (a/h),

the ripple amplitude to depth quotient (b/h) and the ripple amplitude to wave-

length quotient (bk). (It might be noted that bk = E%-. 2%- for the fixed bed
geometry in the experiments.) Each of these parameters was required by the theory

in §2 to remain small, a violation of this requirement being expected to give rise,
in each case, to nonlinearities in the wave field, that is to the presence of
harmonics of the fundamental. However, detailed analysis of all the available
data revealed no discernable reduction in the proportion of energy in the funda-
mental with increases in any of the four parameters investigated. Moreover, a
similar investigation carried out in respect of the reflection coefficient of the
beach KB also indicated no correlation of the kind sought. The only reasonably
distinct correlation was between low proportions of emergy in the fundamental and
low values of the wave steepness (ak). This rather unlikely result is probably
explained by the inability of the wave gauges to resolve very low waves adequately.
However, since there were many more runs at low values of wave steepness for which
the wave field was essentially linear, rather than partly nonlinear, this con-
clusion is, at best, tentative. The important point is that, for high values of
(ak), (a/h), (b/h) and (bk), the wave field was linear, as required for meaningful
comparisons with the theory.
5.3 Measurements of the reflection coefficient

The results shown in Figure 14 provide substantial experimental confirmation
of the two main features of the theoretical predictions in §2. Firstly, they
demonstrate the resonant interaction between the surface waves and the bottom
undulations for wavenumbers such that 2k/1 1 and, secondly, they confirm the
oscillatory nature of the wave reflection coefficient as 2k/1 is varied. Figure
14 shows that the measured values follow closely the trend of the predicted central
resonant peak, and even reproduce the trend in the adjacent secondary peaks (Fig
14a). As shown in §4.1, some loss of resolution is to be expected for values of
(2k/1) outside the central resonant peak, due to the effects of wave reflection by
the beach. In particular, it has been shown that the true ripple reflection co-
efficient has probably been estimated in the experiments only to within a range of

taint th i * i
uncertainty around e measured value KRM given by KRM KBM’ where KBM 1s the
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measured reflection coefficient of the beach. Since, in general, KRM was less
than 0.2 for values of (2k/1) outside the main resonant peak, a meaningful com-
parison with the theory in §2 may be expected only if KBM << 0.2, Only in the
case of m = 10 ripples was KBM << 0.2, and this was particularly so for 2k/1 > 1.3.
As expected therefore, Figure 14a shows the measurements following the general trend

of the theory down to quite low values of K_., (of the order of 0.05 and less).

However, in the cases of m = 4 and 2 rippleg% values of KBM were in the approximate
range 0.10 - 0.15, so that the theoretical predictions for KRM’ which were lower
than this, could not have been expected to be clearly resolved.

Phase angle comparisons were possible only in the cases of m = 4 and 2 ripples
and, of these, the measurements with 4 ripples were complicated by the presence of
large amounts of wave energy reflected by the beach. However, the tests with 2
ripples have provided some quantitative evidence to support the predicted m-phase
shifts in the wave reflection coefficient. (It will be recalled that KR changes
sign in the original formulation as 2k/1 is varied (Eq (65))). The solid line
step function in Figure 14(c) shows the predicted phase shifts.

The variation of the maximum possible wave reflection coefficient for a
given number of ripples in the patch, and a given quotient for the ripple ampli-
tude to water depth, is shown in Figure 17. The variation of the measured IKR]
values within the chosen #107 width limits around the main resonant peak has been
discussed in §4.2 (see Figs 16(a)-(d)). In Figure 17 this variation is indicated
by the standard deviation bars. Figure 17 shows that in the case of m = 10 ripples,
for which the representative measurements of peak reflection coefficient are showr
in Figure 16(d), the averaged peak reflection coefficient underestimates the pre-
dictions of the corrected theory by about 15% at b/h = 0.18. Measurements for
m = 4 ripples follow the predicted peak values quite closely up to b/h = 0.2 but,
above this, underestimate the corrected theory by about 10%. However, of these
comparisons, it may be seen from Figure 16(c) that only for b/h settings of 0.10,
0.12, 0.16 and 0.40 were representative values of |KR] obtained. In the case of
m = 2 ripples, measured peak reflection coefficients are in good agreement with the
theory, despite the lack of representative measurements within the #10% width
limits (Fig 16(b)). By comparison, the measurements on m = 1 ripple were not
representative of the true variation around the peak (Fig 16(a)), and the averaged
]KRI values consistently overestimate the predicted values by about 30%. (Additio-
nal uncertainty may have been introduced into these (relatively low) values of IKRI
by the effects of wave reflection from the beach.) Despite the lack of represent-

ative sampling, the results are generally supportive of the two main theoretical
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predictions evident in Figure 17, namely
(a) that the peak reflection coefficient increases linearly with the number

of ripples; and
(b) that for a given number of ripples, and a given ripple steepness, the

peak reflection coefficient increases both with increasing ripple

amplitude and decreasing depth.

5.4 Measurements of surface elevation and ripple reflection coefficient over,
and on either side of, the ripple patch

Further evidence of the way in which significant amounts of wave energy may
be reflected by a patch of bottom undulations has been provided by measurements of
surface elevation made throughout the tank in resonant cases. Figures 18(a)-(i)
show the envelopes of partially standing waves on the up-wave side of the ripple
patch; these give way to the (parallel line) envelopes of progressive waves on
the down-wave side, which leave the region of the ripple patch and travel towards
the beach. The results show also that the transition from partially standing to
progressive wave motions is gradual, and is accomplished in an approximately
linear manner over the full extent of the ripple patch.

This linear transition is confirmed in Figures 19(a)-(i), which show the
measured reflection coefficient falling steadily across the patch. For m = 10
ripples (Figs 19(c)-(i)), agreement between measured and predicted values of K is
generally good, at least over the ripple patch itself. However, only for small
amounts of reflection (eg b/h = 0.08, Fig 19(c)) is there also good agreement on
both the up-wave and down-wave sides of the patch, As the reflection coefficient
increases (Figs 19(d)-(i)), the measured values consistently underestimate the
theory on the up-wave side, and overestimate it on the down-wave side. The reason
for the discrepancies is mot entirely clear. It is possible that reflection of
wave energy by the wave absorbing beach, which manifests itself in the non-zero
values of K on the down-wave side (but which, as we have seen, was only of the
order of 1 - 47), may have provided an unwanted contribution to the wave field on
the up-wave side. In particular, waves reflected by the beach may have inter-
fered destructively with waves directly reflected by the ripples, and this may have
led to the observed reduction in the ripple reflection coefficient for values of
(b/h) greater than 0.08 (Figs 19(d)-(i)). By comparison, Figure 19(a), for m = 2
ripples and b/h = 0.32, shows the measured reflection coefficients over—
estimating the theoretical values by significant amounts on the up-wave side of the
ripple patch. This suggests that the phase angle of the wave reflected by the

beach, which propagates across the ripple patch towards the wave generator, may
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lead to constructive, as well as destructive, interference effects. An alternative
explanation for the more generally occurring underestimates in the measured values
of [KR| on the up—wave side (Figs 19(d)-(i)) is that a non-negligible amount of
available wave energy may have been dissipated in the tank. As argued in §4.3,

the general tendency for values of |KR| to decrease towards the wave generator is
consistent with this explanation. It should be appreciated also that the linear
perturbation theory itself is probably somewhat over-simplified, in that it does

not take into account any higher order resonant interactions between the surface
waves and the ripples (Davies, 1980, 1982b).

Finally, Figures 19(c)-(i) show that, in general, the measured reflection
coefficient increases to a localized peak value in front of the ripple patch and
then, having fallen linearly over the patch, passes through a localized minimum
at the end of the patch. The reasons for this behaviour are not clear. It was
thought initially that the localized maximum and minimum were associated with the
trapped modes in the vicinity of the ends of the patch. However, attempts to
reproduce the effect on the basis of the theory have been unsuccessful, essentially
on account of the fact that the trapped waves are of insufficient horizontal
extent,

5.5 Sediment transport observations

Detailed comparisons of observed and predicted sediment motion have been
discussed in §4.4. These results support the general theoretical expectation
that wave reflection from seabed undulations may, potentially, provide a mechanism
for the growth of an existing ripple patch in the up-wave direction. This con-
clusion is based upon observations of areas of erosion and deposition on the up-
wave side of the ripple patch, which exhibited the same spacing as the original
ripples within the patch. However, the results are somewhat ambiguous, since
they do not represent a true equilibrium between the incident waves and the bed-
forms, such as would have existed if the bed had been fully erodible. For example,
both the observations (Figs 22(a)-(f)) and the theory (Fig 23) suggest that the
crests of the ripples may have been unstable, that is that the crests may have
been subject to erosion. However, as argued in §4.4, further tests on the
stability of fully erodible ripple patches are needed before any firm conclusions

can be reached.

6 CONCLUSIONS
Measurements of the wave reflection coefficient for a patch of sinusoidal

ripples have confirmed the principal conclusions of the earlier studies of Davies
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(1980, 1982a), namely

(a) that, for a given number of ripples in the patch, the wave reflection
coefficient is oscillatory in the quotient of the surface (k) and ripple
(1) wavenumbers;

(b) that a resonant interaction occurs at 2k/1 = 1, associated with which there
may be a significant amount of reflected wave energy;

{c) that, at resonance, the amount of wave reflection increases linearly with the

number of ripples in the patch.

Untortunately, the measurements were hampered to some extent by the presence of a
small amount of wave energv which was back-reflected from the beach at the down-
wave end of the tank. This unwanted effect in the results tended to mask the
aniticipated theoretical trends for low values of the wave reflection coefficient.

A further prediction of Davies (1980, 1982a) was that the partially stand-
ing wave formed in resonant cases on the up-wave side of the ripple patch might
provide a mechanism for the growth of the ripple patch in the up-wave direction.
An experiment carried out with medium quartz sand in the tank has shown that areas
of preferential erosion and deposition do indeed occur on the up-wave side of the
ripple patch, and that the distance between areas of erosion is equal to the
original ripple spacing. Potentially, at least, resonant interaction between
surface waves and bottom undulations provides a mechanism for the growth of a
ripple patch in the up-wave direction. The observations have confirmed that no
such mechanism exists down-wave of the ripple patch.

More recent theoretical results (see §2) than those presented by Davies
(1980, 1982a) have enabled detailed comparisons to be made between the predicted
and measured wave fields over the ripple patch itself. In general, the agreement
between the observations and the theory has been convincing; in particular,
predictions concerning the development of the wave field over the ripple patch have
been well supported by observations both of the surface elevation and of the wave

reflection coefficient.
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Figure 2 The positions of those poles in the A-plane which contribute to the
final result, for each region of the flow. The pole positions are
shown for the general case in which 1 # 2k, and for p = 0.
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Figure 9(a)

Perturbation solution in the region of both ends of the ripple patch
for the same near-resonant case as in Fig 5. All the trapped wave
modes have been removed, causing discontinuities in each of the in-
stantaneous elevation curves *E; and *E;, and in the wave envelope
curves * EZ + E2, at x = *¥L (L = 500 cm).
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Figure 9(b)

Perturbation solution, as in Figure 9(a), for the region of both ends
of the ripple patch. The addition of the trapped wave modes removes
the discontinuities in each of the instantaneous elevation curves

*E; and *E2, and in the wave envelope curves i‘dEﬁ + E}, at x = %L

(L = 500 cm).
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Figure 14

Results of measurements of the reflection coefficient of both the
ripple patch (|KRI) and the beach (Kg), as functions of 2k/1, for
m = 10, 4 and 2 ripples. Phase measurements are shown for the case
of m = 2 ripples only. The solid and broken curves represent the
predictions of the uncorrected and corrected theory, respectively.
Further details of these measurements may be found in Table 2.

Figure 14(a) Variation of IKRI and Kg with
2k/1, for m = 10 ripples and b/h = 0.16

Figure 14(b) Variation of |Kg| and Kg with
2k/1, for m = 4 ripples and b/h = 0.32

Figure 14(c) Variation of ]KRI, Kp and the

phase (ey + ep) with 2k/1, for m = 2 ripples
and b/h = 0.32
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Figure 15 The effects of wave reflection by the beach. The symbol a denotes

the wave amplitude of each constituent, and the arrow head indicates
the direction of wave propagation.
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Figure 16 Measurements of the reflection coefficient |K_| of the ripple patch, at
or near resonance, for different numbers of ripples (m) and for differ-
ent values of the quotient (b/h) of the ripple amplitude (b) and the
water depth (h). The vertical bars denote limits which correspond to
+10% of the total width of the main resonant peak.

Figure 16(a) The variation of |K_| with 2k/1 for m = 1

R/
Figure 16(b) The variation of ]KR! with 2k/1 for m = 2
Figure 16(c) The variation of |KR| with 2k/1 for m = 4

Figure 16(d) The variation of |K,| with 2k/1 for m = 10

R

Note : The origin of each plot is displaced vertically by an amount equal to
0.4 in ]KR,'
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Figure 17 Variation of the measured mean value of |K_ |, at or near resonance
(2k/1 = 1), as a function of the quotient (b/h) of the ripple amplitude
(b) and the water depth (h), and for different numbers of ripples m.
Error bars denote plus or minus one standard deviation from the mean.
Further details of these measurements may be found in Table 3.
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Figure 18 Variation of the amplitude of surface elevation throughout the wave
tank at or near resonance (2k/1 = 1), for different numbers of ripples
(m) and different values of the quotient (b/h) of the ripple amplitude
(b) and the water depth (h). Curves (a) and (b) represent the wave
envelopes given by the uncorrected and corrected theoretical results,
respectively (see §2.7.2 and §4.3). In Figures 18(h) and 18(i) trend
curves (cubic splines) have been fitted to the data since, in these
cases, the theory predicts over-reflection. T denotes the wave period
and S the stroke of the wave generator. Further details of these
measurements are given in Table 4.

?

Figure 18(a) m = 2, b/h

0.32, T = 1.73 s

Figure 18(b) m = 4, b/h

0.32, T 1.73 s

Figure 18(c) m = 10, b/h = 0.08, T 1.17 s
Figure 18(d) m = 10, b/h = 0.10, T = 1.20 s
Figure 18(e) m = 10, b/h = 0,12, T = 1.23 s
Figure 18(f) m = 10, b/h = 0.14, T = 1.28 s
Figure 18(g) m = 10, b/h = 0.16, T = 1.31 s

Figure 18(h) m = 10, b/h

L]
o
—
oo}

-

T=1.37 s

Figure 18(i) m = 10, b/h

0.20, T

1.42 s

Note : In these diagrams, the origin of the x-axis has been taken (largely for
experimental reasons) at the up-wave end of the ripple patch. Elsewhere
(eg §2) the origin is taken at the centre of the patch.
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Figure 19

Variation of the wave reflection coefficient, K, throughout the wave
tank at or near resomance (2k/1 = 1), for different numbers of ripples
(m) and different values of the quotient (b/h) of the ripple amplitude
(b) and the water depth (h). Solid and broken curves represent the
uncorrected and corrected theoretical results, respectively (see §2.7.2
and §4.3). T denotes the wave period. Further details of these
measurements are given in Table 4. On the up-wave side of the ripple
patch, K > |K_| the ripple reflection coefficient, while, on the down-
wave side, K > KB the beach reflection coefficient.

Figure 19(a) 2, b/h

3
I
1]

—

~

w

7

0.32, T

Figure 19(b) m

4, b/h = 0.32, T = 1.73 s

Figure 19(c) m = 10, b/h

0.08, T = 1.17 s

Figure 19(d) m = 10, b/h = 0.10, T = 1.20 s

1]
—
.
%]
w
w

Figure 19(e) m = 10, b/h = 0.12, T

Figure 19(f) m = 10, b/h = 0.14, T

]
—_
.
[N
[oe]
(2]

Figure 19(g) m = 10, b/h

0.16, T = 1.31 s

Figure 19(h) m = 10, b/h = 0.18, T

]
w
~

s (no theory shown)

1]
o~
N

Figure 19(i) m = 10, b/h = 0.20, T s (no theory shown)

Note : In these diagrams, the origin of the x-axis has been taken (largely for
experimental reasons) at the up-wave end of the ripple patch. Elsewhere
(eg §2) the origin is taken at the centre of the patch.
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Figure 20

Summary of measurements of the wave reflection coefficient (K) through-
out the tank, at or near resonance. Smooth trend curves (cubic
splines) have been fitted to the data. m denotes the number of ripples
and (b/h) the quotient of the ripple amplitude (b) and the water depth
(h). Further details of these measurements are given in Table 4. On
the up-wave side of the ripple patch, K -~ IKEI the ripple reflection co-
efficient while, on the down-wave side, K - the beach reflection co-
efficient. B

L]

Figure 20(a) m = 2 ripples
Figure 20(b) m = 4 ripples
Figure 20(c) m = 10 ripples

Note : In these diagrams, the origin of the x-axis has been taken (largely for
experimental reasons) at the up-wave end of the ripple patch. Else-
where (eg §2) the origin is taken at the centre of the patch.
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Figure 22

Sequence of photographs showing the formation of patches of ripples
of short wavelength in 235 um sand, beneath the partially standing
wave pattern up-wave of two (5 cm amplitude by 1 m wavelength)
sinusoidal ripples. The water depth was h = 15.6 cm and the wave
period was T = 1.73 s, such that the free surface wavelength was
A= 206.5 cm. The measured reflection coefficient of the ripple
pgtch was | = 0.34. The following sequence shows how the ripple
patches evolved with increasing time t.

Figure 22(a) t = 0. Sand lying in a thin
layer (< 0.05 cm) throughout the ripple patch,
and on either side of it.

Figure 22(b) t = 10 min. Small patches on the
crest of the first ripple, and at a distance of
1 m up-wave of this crest.

Figure 22(c) t = 30 min. Formation of three
ripple patches with 1 m spacing, beneath the
nodes of surface elevation.

Figure 22(d) t = 50 min. Ripple patches in-
creasing in extent.

Figure 22(e) t = 90 min. Ripple patches in-
creasing in extent.

Figure 22(f) t = 130 min. Ripple patches in-
creasing in extent.

Finally, in Figure 22(g), a photograph shows the continuous sheet of ripples of
short wavelength, at least 1 m in extent, formed on the down-wave side of the
ripple patch.
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Figure 24 Positions of horizontal bed velocity maxima (O) and minima (@)

throughout the ripple patch for the case in which m = 10, b = 5 cm,

AR = 100 cm and h = 41.7 em, and for 2k/1 = 0.95 to 1.05.
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Figure 25 Variation of the reflection coefficient lKR| of the ripple patch, at or
near resonance, as a function of the wave steepness. Note that the
wave steepness is given in terms both of H_ /X, and a_k (a_k = mH_/X ).
|K_| is shown for different values of b/h, and the number agains% elich
polnt refers to the stroke of the wave generator in cms. All measure-
ments were made with m = 10 ripples.

Note : (a) indicates unstable wave conditions in the tank.
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TABLE 1

Comparison of the nominal and measured wave period settings

for the wave generator, in the range 0.6-3.0s

Nominal Actual
T(s) T(s)
.6 .600
.8 .799
1.0 1.002
1.2 1.197
1.4 1.396
1.6 1.597
1.8 1.799
2.0 2.005
2.2 2.201
2.4 2.397
2.6 2.602
2.8 2.799
3.0 2.998

Wave periods were determined by timing the passage

of thirty waves past a fixed point in the tank.
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TABLE 2

Measurements of the ripple reflection coefficient |Kgr| and the beach
reflection coefficient Kg, as functions of the wave period, for m = 2,
4 and 10 ripples in the patch and for different water depths. Gauges 1
and 2 give the measurements relating to reflection by the ripples, and
gauges 3 and 4 the measurements relating to reflection by the beach.
Values of the incident and reflected wave amplitudes ay and ag, and of
the wave steepness Hy/Ay, are also included. (For convenience, the
wave steepness has been defined in these tables as Hy/)y. Elsewhere
the definition ajk = m Hy/), has been adopted.)

Table 2a m
Table 2b m =
Table 2c m

Note: In these tables, the origin

2, h
4, h
10, h
of the

15.6 cm
15.6 cm
31.3 em

x-axis has been taken (largely

for experimental reasons) at the up-wave end of the ripple patch.
Elsewhere (eg §2) the origin is taken at the centre of the patch.
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TABLE 2a

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratio No Filter slope temperature
(cm) (cm) (deg C)
25/8/81 h=15.6 m= 2 b=5 b/h=0.32 NF 1:10 22.5
Gauge positions(x) Wave Stroke Wave reflection results from Wave reflection results from
period Gauges 1 & 2 Gauges 3 & 4
1 2 3 4 T s ay ag Hp A Br/h, kgl ap ap Hp Ay  Hi/Ay Kg
(m) (s) (cm) (em) (cm) (em) (cm) (cm) (cm) (ecm) (cm)

=5.125 -4.875 6,875 7.125 0.78 1.0 0.66 0.041 1.33 79.9 0.01670 0.061 0.63 0.018 1.27 79.9 0.01592 0.029
-5.125 ~4.875 6.875 7.125 0.79 1.0 0.72 0.042 1.44 B8l.4 0.01769 0.059 0.63 0.041 1.25 8l.4 0.01536 0.065
-5.125 ~4.875 6.875 7.125 0.80 1.0 0.61 0,073 1.22 82.8 0.01471 0.119 0.59 0.033 1.19 82.8 0.01439 0.056
-5.125 -4.875 6.875 7.125 0.8l 1.0 0.73 0.033 1.47 84.2 0.01743 0.045 0.61 0.053 1.22 84.2 0.01449 0.087
-5.125 -4.875 6.875 7.125 0.82 1.0 0.73 0.051 1.47 85.7 0.01718 0.070 0.59 0.105 1.19 85.7 0.01389 0.176
~5.125 -4.875 6.875 7.125 0.83 1.0 0.63 0.095 1.26 87.1 0.01450 0.151 0.62 0.050 1.23 87.1 0.01412 0.082
-5.125 -4.875 6.875 7.125 0.84 1.0 0.66 0.064 1.31 88.5 0.01476 0.097 0©0.58 0.052 1.16 88.5 0.01315 0.090
~5.125 -4.875 6.875 7.125 0.85 1.0 0.58 0,048 1.15 89.9 0.01278 0.083 0.55 0.043 1.11 89.9 0.01239 0.078
~5.125 -4.875 6.875 7.125 0.86 1.0 0.63 0.086 1.27 91.3 0.01390 0.135 0.58 0.070 1.16 91.3 0.01267 0.121
~5.125 -4.875 6.875 7.125 0.87 1.0 0.65 0,030 1.29 92.7 0.01393 0,046 0.58 0.052 1,15 92.7 0.01246 0.091
-5.125 -4.875 6.875 7,125 0,88 1.0 0.63 0,081 1.27 94.1 0.01347 0.128 0.56 0.044 1.13 94.1 0.01196 0.077
-5.125 -4.875 6.875 7.125 0.89 1.0 0.63 0.022 1.27 95.5 0.01332 0.034 0.57 0.049 1.14 95.5 0.01199 0.086
-5.125 -4.875 6.875 7.125 0.90 1.0 0.59 0.040 1.17 96.9 0.01205 0.069 0.52 0.040 1.04 96.9 0.01075 0.076
-5.125 -4.875 6.875 7.125 0.91 1.0 0.56 0.046 1.12 98.3 0.01142 0.082 0.50 0.032 0.99 98.3 0.01012 0.078
-5.125 -4.875 6.875 7.125 0.92 1.0 0.59 0.024 1.18 99.7 0.01184 0.040 0.53 0.049 1.06 99.7 0.01061 0.093
-5.125 ~4.875 6.875 7.125 0.93 1.0 0.59 0.044 1.18 101.1 0.01171 0.075 0.53 0.044 1.06 101.1 0.01047 0.083
-5.125 -4.875 6.875 7.125 0.94 1.0 0.63 0.045 1.26 102.5 0.01233 0.071 0.56 0.041 1.12 102,5 0.01095 0.073
-5.125 —4.875 6.875 7.125 0.95 1.0 0.60 0,024 1.20 103.8 0.01157 0.040 0.53 0.036 1.06 103.8 0.01024 0.068
-5.125 ~4.875 6.875 7.125 0.96 1.0 0.55 0,043 1.11 105.2 0.01052 0.078 0.49 0.029 0.98 105.2 0.00927 0.059
-5.125 -4.875 6.875 7.125 0.97 1.0 0.58 0.020 1.15 106.6 0.01083 0.034 0.52 0.026 1.04 106.6 0.00975 0.050
-5.125 -4.,875 6.875 7.125 0.98 1.0 0.59 0.065 1.18 108.0 0.01089 0.110 0.52 0.025 1.04 108.0 0.00968 0.048
-5.125 ~4.875 6.875 7.125 0.99 1.0 0.55 0.037 1.10 109.3 0.01007 0.067 0.49 0.026 0.98 109.3 0.00895 0.054
-5.125 -4.875 6.875 7.125 1.00 1.0 0.58 0.031 1.16 110.7 0.01045 0.054 0.52 0.025 1.03 110.7 0.00933 0.048
-5.125 -4.875 6.875 7.125 1.01 1.0 0.56 0.064 1.13 112.1 0.01004 0.113 0.50 0.022 1.00 1i2.1 0.00888 0.044
-5.125 ~4.875 6.875 7.125 1.02 1.0 0.48 0.028 0.97 113.4 0.00857 0.057 0.44 0.024 0,88 113.4 0.00772 0.054
-5.125 -4.875 6.875 7.125 1.03 1.0 0.51 0.052 1.01 114.8 0.00878 0,102 0.45 0.033 0.90 114.8 0.00783 0.073
-5.125 -4.875 6.875 7.125 1.04 1.0 0.59 0.091 1.18 116.2 0.01013 0.155 0.52 0.045 1.04 116.2 0.00898 0.087
-5.125 -4.875 6.875 7.125 1.05 1.0 0.52 0.032 1.04 117.5 0.00882 0.061 0.46 0.034 0.93 117.5 0.00793 0.073
-5.125 -4.875 6.875 7.125 1.06 1.0 0.48 0.060 0.96 118.9 0.00805 0.124 0.43 0.027 0.85 118.9 0.00716 0.063
-5.125 -4.87% 6.875 7.125 1.07 1.0 0.61 0.090 1.22 120.2 0.01013 0.148 0.55 0,041 1.09 120.2 0.00905 0.075
-5.125 -4.875 6.875 7.125 1.08 1.0 0.53 0.024 1.07 121.6 0.00880 0.044 0.48 0.050 0.97 121.6 0.00798 0.104
-5.125 -4.875 6.875 7.125 1.09 1.0 0.55 0.055 1.10 122.9 0.00893 0.100 0.49 0.059 0.98 122.9 0.00799 0.120
-5.125 -4.875 6.875 7.125 1.11 1.0 0.57 0.052 1.14 125.6 0.00908 0.091 0.51 0,049 1.01 125.6 0.00807 0.098
-5.125 -4.875 6.875 7.125 1.12 1.0 0.55 0.032 1.09 126.9 0.00855 0.058 0.48 0.048 0.97 126.9 0.00761 0.100
-5.125 -4.875 6.875 7.125 1.13 1.0 0.55 0.062 1.10 128.3 0.00858 0.112 0.49 0.053 0.98 128.3 0.00766 0.109
-5.125 -4,875 6.875 7.125 1l.14 1.0 0.53 0.05! 1.07 129.6 0.00823 0.095 0.48 0.057 0.96 129.6 0.00740 0.119
=3.125 -4.875 6.875 7.125 1.16 1.0 0.50 0.050 1.00 132.3 0.00756 0.101 0.45 0.047 0.90 132.3 0.00681 0.104
-5.125 -4.875 6.875 7.125 1.17 1.0 0.53 0.030 1.07 133.6 0.00804 0.057 0.48 0.040 0.97 133.6 0.00726 0.083
-5.125 -4.875 6.875 7.125 1.18 1.0 0.51 0.034 1.02 135.0 0.00760 0.066 0.46 0.039 0.92 135.0 0.00683 0.084
~-5.125 -4.875 6.875 7.125 1.20 1.0 0.48 0.061 0.96 137.6 0.00701 0.127 0.43 0.051 0.86 137.6 0.00628 0.118
=5.125 -4.875 6.875 7.125 1.21 1.0 0.55 0.029 1.1i1 138.9 0.00796 0.053 0.50 0.059 1.00 138.9 0.00718 0.119
-5.125 -4.875 6.875 7.125 1.22 1.0 0.50 0.039 0.99 140.3 0.00707 0.079 0.45 0.055 0.89 140.3 0.00363 0.123
=5.125 -4.875 6.875 7.125 1.24 1.0 0.53 0.102 1.06 142,9 0.00739 0.193 0.47 0.059 0.94 142.9 0.00656 0.126
-5.125 -4.875 6.875 7.125 1.26 1.0 0.48 0.037 0.97 145.6 0.00664 0.076 0.44 0,057 0.88 145.6 0.00602 0.130
-5.125 -4.875 6.875 7.125 1.27 1.0 0.44 0,092 0.88 146.9 0.00601 0.208 0.39 0.058 0.78 146.9 0.00534 0.148
-5.125 -4.875 6.875 7.125 1.29 1.0 0.59 0.180 1.19 149.5 0.00799 0.303 0.52 0.083 1.03 149.5 0.00692 0.161
~5.250 =4.750 6.750 7.250 1.31 1.0 0.48 0.053 0.97 152.1 0.00636 0.110 0.43 0.051 0.85 152.1 0.00562 0,120
-5,250 -4.750 6.750 7.250 1.32 1.0 0.44 0.082 0.88 153.4 0.00574 0,187 0.39 0.037 0.77 153.4 0.00499 0.096
-5.250 =4.750 6.750 7.250 1.34 1.0 0.62 0.171 1.24 156.1 0.00796 0.276 0.52 0.042 1.03 156.1 0.00662 0.081
-5.250 -4.750 6.750 7.250 1.36 1.0 0.51 0.081 1.02 158.7 0.0064]1 0.159 0.45 0.048 0.89 158.7 0.00559 0.108
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TABLE 2a

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratio No Filter slope temperature
(cm) (cm) (deg C)
25/8/81 h=15.6 m= 2 b=5 b/h=0.32 NF 1:10 22.5
Gauge positions{x) Wave Stroke Wave reflection results from Wave reflection results from
period Gauges 1 & 2 Gauges 3 & 4
1 2 3 4 T s ag ag  Hp Ay Hp/A, iKgl ag aR Hp \Zw  HI/Ay  Kp
(m) (s) (em) (cm) (em) {(cm) (cm) (cm) (cm) (em)  (cm)

-5.250 -4.750 6,750 7.250 1.38 1.0 0.39 0.124 0.77 161.3 0.00475 0.321 0.32 0.045 0.64 161.3 0.00397 0.141
-5.250 -4.750 6.750 7.250 1.40 1.0 0.52 0.176 1.04 163.9 0.00634 0.339 0.43 0.066 0.87 163.9 0.00529 0.152
-5.250 -4.750 6,750 7.250 1.42 1.0 0.51 0.060 1.02 166.5 0.00615 0.117 0.45 0.053 0.91 166.5 0.00545 0.116
~5.250 -4.750 6.750 7.250 1l.44 L.0 0,41 0.144 0.82 169.1 0.00483 0.350 0.34 0.040 0.69 169.1 0.00406 0.116
-5.250 -4.750 6.750 7.250 1.47 1.0 0.39 0.159 0.77 173.0 0.00444 0.413 0.32 0.047 0.63 173.0 0.00363 0.150
-5.250 =4.750 6.750 7.250 1.49 1.0 0.52 0.156 1.05 175.6 0.00597 0.294 0.45 0.054 0.91 175.6 0.00521 0.119
-5.250 =4.750 6.750 7.250 1.51 1.0 0.48 0.195 0.96 178.2 (.00537 0.406 0.39 0,039 0.78 178.2 0.00439 0.100
-5.250 =4.750 6.750 7.250 1.54 1.0 0.30 0.121 0.61 182.1 0.00333 0.398 (.24 0.030 0.49 182.1 0.00272 0.123
=5.250 -4.750 6.750 7.250 1.56 1.0 0.36 0.099 0.71 184.7 0.00382 0.279 0.31 0.047 0.62 184.7 0.00334 0.152
-5.250 =4.750 6.750 7.250 1.59 1.0 0.55 0.257 1.10 188.5 0.00584 0.467 0.43 0.082 0.86 188.5 0.00456 0.191
-5.250 -4.,750 6.750 7.250 1.62 1.0 0.28 0.125 0.56 192.4 0.00289 0.447 0,22 0.046 0.44 192.4 0.00228 0.209
-5.250 -4,750 6.750 7.250 1.65 1.0 0.30 0.071 0.61 196.2 0.00313 0.232 0.27 0.053 0.54 196.2 0.00276 0.197
=5.250 ~4.750 6.750 7.250 1.68 1.0 0.39 0.163 0.78 200.1 0.00388 0.419 0.31 0.055 0.62 200.1 0.00311 0.176
-5.250 4,750 6.750 7.250 1.71 1.0 0.38 0.174 0.75 203.9 0.00370 0.463 (.29 0.040 0.58 203.9 0.00283 0.137
~5.250 -4,750 6,750 7.250 1.74 1.0 0.26 0.092 0.52 207.8 0.00248 0.355 0.21 0.019 0.42 207.8 0.00204 0.091
-5.250 ~4.750 6.750 7.250 1.78 1.0 0.28 0.108 0.56 212.9 0.00261 0.384 (.22 0.014 0.45 212.9 0.00214 0.060
-5.250 -4.750 6.750 7.250 1.82 1.0 0.39 0.132 0.78 2i8.0 0.00358 0.338 0.33 0.029 0.66 218.0 0.00305 0.087
-5.250 4,750 6.750 7.250 1.85 1.0 0.29 0.065 0.58 221.8 0.00259 0.224 0.25 0.034 0.51 221.8 0.00232 0.134
-5.250 ~4,750 6.750 7.250 1.89 1.0 0.22 0.083 0.45 226.9 0.00198 0.367 0.19 0.033 0.38 226.9 0.00168 0.173
-5.250 -4.750 6.750 7.250 1.93 1.0 0.33 0.138 0.66 232.0 0.00283 0.419 0.27 0.055 0.55 232.0 0.00236 0.201
-5.250 -4.750 6.750 7.250 1.98 1.0 0.27 0.049 0,53 238.4 0.00222 0.185 0.24 0.05! 0.48 238.4 0.00200 0.211
~5.250 -4.750 6.750 7.250 2.02 1.0 0.24 0.057 0.48 243.5 0.00197 0.236 0.21 0.039 0.43 243.5 0.00175 0.183
-5.250 -4.750 6.750 7.250 2.07 1.0 0.21 0.083 0.43 249.8 0.00174 0.386 0.18 0.026 0.36 249.8 0.00143 0.142
-5.250 ~-4.750 6.750 7.250 2.12 1.0 0.32 0.093 0.65 256.1 0.00253 0.285 0.28 0.025 0.56 256.1 0.00219 0.088
-5.250 -4.750 6.750 7.250 2.18 1.0 0.24 0.064 0.49 263.7 0.00185 0.263 0.21 0.013 0.42 263.7 0.00161 0.061
-5.250 -4.750 6.750 7.250 2.23 1.0 0.20 0.055 0.39 270.1 0.00145 0.283 0.17 0.014 0.34 270.1 0.00126 0.084
-5.250 -4.750 6.750 7.250 2.29 1.0 0.24 0.025 0.49 277.6 0.00176 0.102 0.22 0.037 0.45 277.6 0.00162 0.166
~5.,250 -4.750 6.750 7.250 2.36 1.0 ©.28 0.076 0.56 286.5 0.00196 0.271 0.24 0.044 0.49 286.5 0.00172 0.178
~5.250 -4.750 6.750 7.250 2.42 1.0 0.16 0.053 0.33 294.0 0.00111 0.319 0.14 0.031 0.29 294,0 0.00097 0.211
-5.500 -4.500 6,500 7.500 2.49 1.0 0.41 0.045 0.83 302.8 0.00274 0.109 0.38 0.066 0.75 302.8 0.00249 0.176
-5.500 -4.500 6.500 7.500 2.57 1.0 0.39 0.088 0.79 312.9 0.00253 0.224 0.36 0.060 0.72 312.9 0.00229 0.167
~-5.500 -4.500 6.500 7.500 2.65 1.0 0.39 0.092 0.79 322.9 0.00244 0.232 0.36 0.054 0.71 322.9 0.00220 0.152
-5.500 -4.500 6.500 7.500 2.73 1.0 0.38 0.023 0.76 333.0 0.00228 0.060 0.32 0.040 0.64 333.0 0.00193 0.124
-5.500 -4.500 6.500 7.500 2.83 1.0 0.35 0,047 0.70 345.5 0.00202 0.133 0.30 0.032 0.60 345.5 0.00174 0.107
-5.500 -4.500 6.500 7.500 2,92 1.0 0.39 0.043 0.78 356.8 0.00218 0.110 0.34 0.044 0.68 356.8 0.00192 0.130
-5.500 -4,500 6.500 7.500 3.03 1.0 0.39 0.053 0.79 370.6 0.00214 0.134 0,32 0.058 0.65 370.6 0.00176 0.178
-5.500 -4.500 6.500 7.500 3.1l4 1.0 0.31 0.046 0.62 384.3 0.00161 0.148 0.28 0.061 0.56 384.3 0.00145 0.219
-5.500 -4,500 6.500 7.500 3.27 1.0 0.38 0.066 0.76 400.6 0.00190 0.173 0.32 0.062 0.64 400.6 0.00161 0.194
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TABLE 2b

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

132

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratic No Filter slone temperature
(cm) (cm) (deg C)
12/8/81 h=15.6 m= 4 b=5 b/h=0.32 NF 1:10 23.0
Gauge positions(x) Wave Stroke Wave reflection results from Wave reflection results from
period Gauges 1 & 2 Gauges 3 & 4
1 2 3 4 T S ay ag Hp L Hi/Ay  Kgl ag ag  Hp ‘w Hi/Ay; Kg
(m) (s) tem) (cm) (cm) (cm) (cm) (em) (em) (cm)  (cm)

-5,125 -4.875 8.875 9.125 0.78 1.0 0.76 0.144 1,52 79.9 0.01901 0.190 0.64 0.072 1.28 79.9 0.01608 0.112
-5.125 -4.875 8.875 9.125 0.79 1.0 0.72 0.106 1.44 B8l.4 0.01767 0.147 0.63 0.149 1,25 8l1.4 0.01534 0.238
-5.125 -4.875 8.875 9.125 0.80 1.0 G473 0,085 .47 82.8 0.01772 0.116 0.66 0.043 1.33 82.8 0.01611 0.064
-5.125 -4.875 8.875 9.125 0.81 1.0 0.77 0.063 1.53 84.2 0.01819 0.082 0.69 0.142 1.37 84.2 0.01623 0.207
-5.125 -4.875 8.875 9.125 0.82 1.0 0.72 0.099 1.43 85.7 0.01675 0.138 0.59 0.092 1.18 85.7 0.01381 0.156
-5.125 -4.875 8.875 9.125 0.83 1.0 0.79 0.147 1.58 87.1 G.0I811 0.186 0.64 0.034 1.28 87.1 0.01473 0.053
-5.125 ~4.,875 8.875 9.125 0.84 1.0 0.76 0.106 1.52 88.5 0.01714 0.139 0.69 0.146 1.38 88.5 0.01560 0.211
~5.125 -4.875 8.875 9.125 0.85 1.0 0.73 0.163 1.47 89.9 0.01637 0.222 0.64 0.116 1.28 89.9 0.01425 0.181
-5.125 -4.875 8.875 9.125 0.86 1.0 0.73 0.115 1.45 91.3 0.01585 0.159 0.62 0.029 1.24 91.3 0.01354 0.047
-5.125 -4.875 8.875 9.125 0.87 1.0 0.76 0.089 1.51 92.7 0.01626 0.118 0.65 0.106 1.29 92.7 0.01396 0.164
-5.125 ~-4.875 8.875 9.125 0.88 1.0 0.70 0.055 1.40 94.1 0.01491 0.079 0.60 0.118 1.21 94.1 0.01286 0.195
=5.125 -4.875 8.875 9.125 0.89 1.0 0.76 0.160 1.52 95.5 06.01587 0.210 0.64 0.047 1.28 95.5 0.01339 0.073
-5.125 -4.875 8.875 9.125 0.90 1.0 0.68 0.156 1.36 96.9 0.01405 0.230 0.58 0.075 1.15 96.9 0.01188 0,131
-5.125 -4.875 8.875 9.125 0.9l 1.0 0.68 0.061 1.36 98.3 0.01385 0.090 0.58 0.116 1.16 98.3 0.01181 0.200
-5.125 -4.875 B8.875 9.125 0.92 1.0 0.69 0.101 1.37 99.7 0.01373 0.148 0.58 0.092 1.15 99.7 0.01152 0.160
-5.125 -4.875 8.875 9.125 0.93 1.0 0.70 0.124 1,39 101.1 0.01377 0.178 0.59 0.039 1.17 101.1 0.01155 0.067
-5.125 -4.,875 8.875 9.125 0.94 1.0 0.63 0.042 1.25 102.5 0.01217 0.068 0.53 0.058 1.06 102.5 0.01035 0.110
-5,125 -4.875 8.875 9.125 0.95 1.0 0.66 0.099 1.32 103.8 0.01272 0.150 0.55 0.095 1.11 103.8 0.01073 0,172
-5.125 -4.875 8.875 9.125 0.96 1.0 0.63 0.088 1.27 105.2 ¢.01212 0.139 0.54 0.096 1.08 105.2 0.01027 0.177
-5.,125 -4.875 8.875 9.125 0.97 1.0 0.66 0.144 1.31 106.6 0.01232 0.220 0.55 0.077 1.11 106.6 0.01046 0.139
-5.125 ~4.875 8.875 9.125 0.98 1.0 6.66 0,122 1.31 108.0 0.01212 0.187 0.55 0.052 1.11 108.0 0.01032 0.093
-5.125 -4.875 8.875 9.125 0.99 1.0 0.59 0.114 1.18 109.3 0.01081 0,194 0.51 0.055 1.01 109.3 0.00928 0.108
-5.125 ~4.875 8.875 9.125 1.00 1.0 0.66 0.041 1.33 110.7 0.01199 0.061 0.58 0.093 1.16 110.7 0.01046 0.160
-5.125 ~4.875 8.875 9.125 1.0l 1.0 0.64 0,055 1.28 112.1 0.01143 0.086 0.56 0.100 1.12 112.1 0.01001 0.178
~5.125 -4,875 8.875 9.125 1.02 1.0 0.59 0.094 1.17 113.4 0.01032 0.161 0.50 0.078 1.00 113.4 0.00881 0.157
-5.125 -4.875 8.875 9.125 1.03 1.0 0.64 0,120 1.28 114.8 0.01115 0.188 0.55 0.052 1.09 114.8 0.00952 0.096
-5.125 -4.875 B8.875 9.125 1.04 1.0 0.62 0.077 1.24 116.2 0.01664 0.125 0.53 0.039 1.06 116.2 0.00910 0.073
~5.125 -4.875 8.875 9.125 1.05 1.0 0.63 0.121 1.27 117.5 0.01079 ¢.191 0.55 0.075 1.09 117.5 0.00930 0,137
-5,125 -4.875 8.875 9.125 1.06 1.0 0.63 0.085 1.27 118.9 0.01072 0.134 0.55 0.107 1.11 118.9 0.00933 0.192
-9.125 -4.875 B8.875 9.125 1.07 1.0 0.59 0.151 1.18 120.2 0.00984 0.256 0.51 0.103 1.01 120.2 0.00838 0.204
~5.125 -4.875 8,875 9.125 1.08 1.0 0.66 0,121 1.31 121.6 0.01081 0.185 0.57 0.095 1l.14 121.6 0.00395 0.166
-5.125 ~4,875 8.875 9.125 1.09 1.0 0.66 0.131 1.32 122.9 0.01077 0.199 0.56 0.049 1.12 122.9 0.00910 0.087
-5.,125 -4.875 8.875 9.125 1.10 1.0 0.57 0.118 1.14 124.3 0.00921 0.207 0.49 0.022 0.98 124.3 0.00789 0.044
-5.125 ~4.875 8.875 9.125 1.11 1.0 0.58 0.010 1.15 125.6 0.00919 0,017 0.50 0.065 1.00 125.6 0.00795 0.131
-5.125 ~4,875 8.875 9,125 1.12 1.0 0.65 0.088 1.29 126.9 0.01019 0.137 0.56 0.117 1.12 126.9 0.00880 0.209
-5.125 -4.875 8.875 9.125 1.13 1.0 0.67 U.037 1.34 128.3 0.01049 0.055 0.59 0.143 1.19 128.3 0.00925 0.240
~5.125 -4.875 8.875 9.125 1.l4 1.0 0.60 0.106 1.21 129.6 0.00936 0.176 0.52 0.121 1.03 129.6 0.00794 0.235
-5.125 ~4.875 8.875 9.125 1.15 1.0 0.63 0,139 1.26 131.0 0.00960 0.220 0.53 0.099 1.06 131.0 0.00808 0.186
-5.125 -4.875 8.875 9.125 1.16 1.0 0.60 0.062 1.20 132.3 0.00909 0.103 0.52 0.058 1.04 132.3 0.00785 0.111
-5.125 -4.875 8.875 9.125 1.17 1.0 0.60 0.093 1.21 133.6 0.00908 0.154 0.52 0.027 1.03 133.6 0.00771 0.053
-5.125 -4.875 8.875 9.125 1.18 1.0 0.60 0,107 1.20 135.0 0,00888 0.179 0.51 0.058 1.02 135.0 0.00758 0.114
-5.125 -4,875 8.875 9.125 1.19 1.0 0.63 0,069 1.26 136.3 0.00928 0.109 0.55 0.101 1.09 136.3 0.00804 0.185
-5.,125 =4.875 8,875 9.125 1.20 1.0 0.62 0.148 1.23 137.6 06.00896 0.240 0.52 0.120 1.04 137.6 0.00758 0.231
-5.125 -4.875 8.875 9.125 1.21 1.0 0.55 0.154 1.11 138.9 0.00800 0.278 0.47 0.115 0.94 138.9 0.00674 0.244
-5.125 -4.875 8.875 9.125 1.22 1.0 0.62 0.107 1.23 140.3 0.00877 0.174 0.52 0.115 1.05 140.3 0.00745 0.219
~-5.,125 -4.875 8.875 9.125 1.23 1.0 0.62 0.122 1.24 141.6 0.00875 0.196 0.52 0.089 1.04 141.6 0.00738 0.171
-5.125 -4.875 8,875 9.125 1.24 1.0 0.66 0.162 1.32 142.9 0.00925 0.245 0.55 0,062 1.11 142.9 0.00774 0.111
-5.125 -4.875 8.875 9.125 1.25 1.0 0.52 0.096 1.03 144.2 0.00716 0.187 0.43 0.022 0.86 144.2 0.00598 0.051
-5.125 ~=4.875 8.875 9.125 1.26 1.0 0.48 0.044 0.97 145.6 0.00670 0.090 0.41 0.048 0.82 145.6 0.00561 0.118
~5.125 ~4.875 8.875 9.125 1.27 1.0 0.55 0.059 1.11 146.9 0.00754 0.107 0.47 0,096 0.94 146.9 0.00643 0.205



TABLE 2b

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratio No Filter slope temperature
(cm) (cm) (deg C)
12/8/81 h=15.6 m= 4 b=5 b/h=0.32 NF 1:10 23.0
Gauge positions(x) Wave Stroke Wave reflection results from Wave reflection results from
period Gauges 1 & 2 Gauges 3 & 4
1 2 3 4 T 5 ay  ag  Hp X, Rp/A, Kgl @ 4R Hp A HI/Ay  Kp

(m) (s) (cm) (cm) (em) (em) (cm) (cm) (em) (em) (cm)

0.58 0.041 1.16 148.2 0.00785 0.071 0.50 0.122 1.00 148.2 0.00675 0.245
0.71 0.139 1.42 149.5 0.00952 0.196 0.59 0.159 1.17 149.5 0.00784 0.271
0.58 0.191 1.15 150.8 0.00761 0.332 0.50 0.124 0.99 150.8 0.00656 0.251
0.49 0.178 0.98 152.1 0.00647 0.364 0.43 0.097 0.85 152.1 0.00560 0.228
0.52 0.150 1.04 153.4 0.00676 0.289 0.46 0.086 0.93 153.4 0.00608 0.184
0.55 0.119 1.10 154.8 0.00713 0.216 0.50 0.060 1.00 154.8 0.00647 0,120
0.59 0.143 1.17 156.1 0.00747 0.244 0.53 0,040 1.06 156.1 0.00678 0.076
0.58 0.139 1.16 157.4 0.00735 0.239 0.53 0.048 1.06 157.4 0.00677 0.090
0.50 0,077 1.00 158.7 0.00633 0.155 0.47 0.062 0.94 158.7 0.00591 0.131
0.50 0.025 0.99 160.0 0.00622 0,051 0.46 0.080 0.93 160.0 0.00584 0.171
0.54 0.092 1.08 161.3 0.00670 0.170 0.50 0.104 0.99 161.3 0.00613 0.210
0.50 0.108 06.99 162.6 0.00609 0.219 0.45 0.103 0.91 162.6 0.00558 0.227
0.47 0.084 0.94 163.9 0.00575 0.178 0.43 0.101 0.87 163.9 0.00533 0.232
0.50 0.049 0.99 165.2 0.00600 0.100 0.46 0,101 0.92 165.2 0.00556 0.219
0.48 0.075 0.97 166.5 0,00586 0.155 0.45 0.084 0.90 166.5 0.00538 0.186
0.50 0.115 0.99 167.8 0.00591 0.232 0.45 0.067 0.90 167.8 0.00534 0.150
0.58 0.161 1.16 169.1 0.00686 0,277 0.52 0.054 1,04 169.]1 0.00613 0.104
0.52 0.149 1.03 170.4 0.00608 0.290 ©0.45 0.020 0.90 170,.4 0.00528 0.045
G.36 0.116 0.73 173.0 0.00419 0.318 0.28 0.071 0.56 173.0 0.00324 0,254
0.37 0.107 0.74 174.3 0.00422 0.289 0.30 0.032 0.61 174.3 0.00353 0.106
0.41 0.129 0.83 175.6 0.00471 0.311 0.34 0.049 0.69 175.6 0.00393 0.141
0.49 0.193 0.98 176.9 0.00556 0.394 0.39 0.065 0.77 176.9 0.00438 0.169
0.68 0.342 1.36 178.2 0,00764 0,503 0.50 0.094 1.00 178.2 0.00559 0.187
0.50 0.307 0.99 180.8 0.00547 0.621 0.33 0.062 0.66 180.8 0.00366 0.187
0.35 0.218 0.70 182.1 0.00384 0.622 0.23 0.039 0.47 182.1 0.00258 0.165
0.32 0.203 0.65 183.4 0.00352 0.624 0.22 0.032 0.45 183.4 0.00246 0.144
0.32 0,197 0.63 184.7 0.00340 0.624 0.22 0.025 0,45 184.7 0.00243 0.111
0.36 0.246 0.72 187.2 0.00382 0.684 0.24 0.012 0.49 187.2 6.00355 0.05!
0.48 0,348 0.96 188.5 0.00508 0.724 0.31 0.014 0.62 188.5 0.00331 0.044
0.59 0.427 1.18 191.1 0.00618 0.724 0.38 0.043 0.76 191.1 0.00399 0.113
0.38 0.260 0.75 192.4 0.00391 0.692 0.24 0.036 0.49 192.4 0.00256 0.146
0.29 0.183 0.57 193.7 0.00294 0.642 0,20 0.035 0.39 193.7 0.00200 0.180
0.25 0.129 0.50 196.2 0.00256 0,516 0.19 0.041 0.37 196.2 0.00188 0.222
0.26 0.123 0.52 197.5 0.00264 0.474 0.19 0,045 0.38 197.5 0.00194 0.238
0.34 0.171 0.69 200.1 0.00343 0,497 0,22 0,058 0.45 200.1 0.00227 0.257
0.73 0.418 1.46 202.7 0,00720 0,572 0.40 0.110 0.80 202.7 0.00395 0.275
0.70 0.426 1.41 203.9 0.00690 0.604 0.36 0.097 0.72 203.9 0.00355 0.270
0.38 0.243 0.76 206,5 0.00368 0.640 0.20 0.042 0.40 206.5 0.00192 0.210
0.30 0.197 0.60 207.8 0.00290 0.655 0.16 0.030 0.32 207.8 0.00155 0.186
0.24 0.158 0.48 210.4 0,00228 0.658 O.14 0,018 0.28 210.4 0.00133 0.129
0.26 0.175 0.52 212.9 0.00243 0.673 0.15 0.015 0.31 212.9 0.00148 0.094
0.34 0.233 0.69 215.5 0.00318 0.676 0.21 0.021 0.43 215.5 0.00198 0.097
0.55 0.362 1.09 218.0 0.00500 0.664 0.38 0.052 0.75 218.0 0.00344 0.138
0.52 0.337 1.03 219.3 0.00468 0.655 0.36 0,058 0.72 219,3 0.00330 0.161
0.29 0.168 0.58 221.8 0.00260 0.580 0.21 0.043 0.43 221.8 0.00195 0.202
0.23 0.111 0.46 224.4 0,00205 0.482 0.19 0.043 0.37 224.4 0.00164 0.234
0.22 0.089 0,45 226.9 0.00198 0.395 0.19 0.049 0.37 226.9 0.00164 0.263
0.23 0.090 0.46 229.5 0.00202 0.390 0.19 0.051 0.37 229.5 0.00162 0.276
0.30 0.125 0.61 232.0 0.00261 0.411 0.22 0.062 0.45 232.0 0.00195 0.276
0.49 0.207 0.98 235.8 0.00415 0.423 0.34 0,085 0.67 235.8 0.00283 0.254

-5.125 -4.875 8.875 9.125 1.28
=5.125 ~4.875 8.875 9.125 1.29
-5.250 -4.750 8.750 9.250 1.30
-5.250 ~-4.750 8.750 9.250 1.31
~5.250 -4.750 8.750 9.250 1.32
~5.250 -4.750 8.750 9.250 1.33
=5.250 -4.750 8.750 9.250 1.34
=5.250 -4.750 8.750 9.250 1.35
-5.250 -4.750 8.750 9.250 1.36
-5.250 -4.750 8.750 9.250 1.37
=5.250 ~4.750 8.750 9.250 1.38
-5.250 -4,750 8.750 9.250 1.39
~5.250 -4.750 8.750 9.250 1.40
=5.250 -4.750 8.750 9.250 1l.41
=5.250 -4.750 8.750 9.250 1.42
-5.250 -4.750 8.750 9.250 1.43
=5.250 -4,750 8.750 9.250 1.44
-5.250 -4.750 8.750 9.250 1.45
-5.250 -4.,750 8.750 9.250 1.47
=5.250 -4.750 8.750 9.250 1.48
-5.250 -4.750 8.750 9.250 1.49
~5.250 -4.750 8.750 9.250 1.50
-5.250 ~4.,750 8.750 9.250 1.51
-5.250 -4.750 8.750 9.250 1.53
-5.250 -4,750 8.750 9.250 1.54
=5.250 =4,750 8.750 9,250 1.55
-5.250 ~4.750 8.750 9.250 1.56
-5.250 -4.750 8.750 9.250 1.58
=5.250 -4,750 8.750 9.250 1.59
-5.250 -4.750 8.750 9.250 1l.61
=5.250 -4.750 8.750 9.250 1.62
~5.250 -4.750 8.750 9.250 1.63
=5.250 -4.750 8.750 9.250 1.65
=5.250 -4.750 8.750 9.250 1.66
~-5.250 -4.750 8.750 9.250 1,68
~5.250 -4.750 8.750 9.250 1.70
-5.250 -4.,750 8.750 9.250 1.71
-5.250 -4.750 8.750 9.250 1.73
-5.250 -4.750 8.750 9.250 1,74
=5.250 -4.750 8.750 9.250 1.76
=-5.250 -4.750 8.750 9.250 1.78
-5.250 -4.750 8.750 9.250 1.80
=5.250 =4.750 8.750 9.250 1.82
~5.250 -4.750 8,750 9.250 1.83
~5.250 -4.750 8.750 9.250 1.85
=5.250 -4.750 8.750 9.250 1.87
=5.250 -4,750 8.750 9.250 1.89
=5.250 -4.750 8.750 9.250 1.91
=5.250 -4.750 8.750 9.250 1.93
=5.250 -4.750 8.750 9.250 1,96
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TABLE 2b

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratio No Filter slope temperature
(em) (cm) (deg C)
12/8/81 h=15.6 m= 4 b=5 b/h=0.32 NF 1:10 23.0
Gauge positions(x) Wave Stroke Wave reflection results from
period Gauges 1 & 2
. 2 3 4 T 5 ap ag  Hp ‘e HT/A fKRj ay
(m) (s) (cm) (em) (cm) (cm) (cm) (cm)

-5.250 ~4.750 8.750 9.250 1.98 1.0 0.30 0.138 0.61 238.4 0.00258 0.453 0.21
-5.250 ~4.,750 8.750 9.250 2.00 1.0 0.24 0.107 0.49 240.9 0,00205 0.436 0.18
-5.250 =4.750 8.750 9.250 2.02 1.0 0.23 0.086 0.46 243.5 0.00189 0.375 0.18
-5.250 -4.750 8.750 9.250 2.05 1.0 0.25 0.070 0.50 247.3 0.00202 0.279 0.21
-5.250 -4.,750 8.750 9.250 2.07 1.0 U.26 0.081 0.52 249,8 0.00210 0.311 0.21
-5.250 -4.750 8.750 9.250 2.10 1.0 0.32 0.127 0.65 253.6 0.00255 0.391 0.27
~5.250 -4.750 B8.750 9.250 2.12 1.0 0.35 0.133 0.70 256.1 0.00275 0.380 0.30
-5,250 -4.750 8.750 9,250 2.15 1.0 (0.27 0.074 0,54 259.,9 0.00206 0.275 0.23
~5.250 -4.750 8,750 9.250 2.18 1.0 0.24 0,035 0.48 263.7 0.00184 0.145 0,21
-5.250 -4.750 8.750 9.250 2.20 1.0 0.25 0.033 0.51 266.3 0.00190 0.130 0.22
~5.250 ~4,750 8.750 9,250 2.23 1.0 0.24 0.037 0.48 270.1 0.00179 0.154 0.21
-5.250 -4,750 8,750 9.250 2.26 1.0 U.29 0.026 0,50 273.8 U.00183 0,097 0.21
-5.250 -4,750 8.750 9.250 2.29 1.0 0.27 0.021 0.55 277.6 (.00199 0.076 0.23
-5.250 -4,750 8.750 9.250 2.32 1.0 0.23 0,049 0.46 261.4 0.00163 0.211 0.20
~5.250 -4.,750 8,750 9.250 2.36 1.0 0.23 0.072 U.47 286.5 U.00163 0.307 0.20
-5.250 =4.,750 8,750 9.250 2.39Y 1.0 0.29 0.079 0.58 290,2 0.00201 0.273 U.25
-5.250 =4.750 8.750 9,250 2.42 1.0 0.24 0,048 0.48 294.0 0.00165 0,201 0.21
-5.250 =4.,750 8.750 9.250 2.46 1.0 0.20 0.015 0.40 299,1 0.00133 0.074 0.18
-5.500 ~4.500 8.500 9.500 2.49 1.0 0.41 0,052 0.82 302.8 0.00272 0.128 0.41
-5.500 -4.500 8,500 9.500 2.53 1.0 0.37 0.045 0.74 307.9 0.00241 0.122 0.38
~5.500 =4.500 8.500 9.500 2.57 1.0 0,34 0.056 0.68 312.9 0.00217 0.164 0.33
-5,500 =4.500 8.500 9.500 2.6l 1,0 0.44 0.113 0.88 317,.9 0.00277 0.257 0.38
-5.500 -4.500 8.500 9.500 2.65 1.0 0.50 0.154 1,00 322.9 0.00308 0.308 0.44
-5.500 -4.500 8.500 9.500 2.69 1.0 0.41 0,114 0,82 328.0 0.00251 0.278 0.36
-5.500 ~4.500 8.500 9.500 2.73 1.0 0.38 0,070 0.76 333.0 0.00229 0.183 0.34
-5.500 -4.500 8.500 9.500 2.78 1.0 0.39 0.073 0.79 339.2 0.00232 0,186 0.34
-5.500 -~4.500 8.500 9.500 2.83 1.0 0.35 0.100 0.70 345.5 0,00201 0.285 0,30
-5,500 -4.500 8.500 9.500 2.87 1.0 0.36 0.110 0.72 350.5 0.00206 0.305 0.31
~5.500 -4.500 8.500 9.500 2.92 1.0 0.45 0.083 0.89 356.8 0.00249 0.186 0.37
-5.500 -4.500 8.500 9.500 2.98 1.0 0,37 0,023 0.74 364.3 0.00202 0.062 0.34
-5.500 -4.500 8.500 9.500 3.03 1.0 0.36 0.061 0.7 370.6 0.00193 0.171 0.29
-5.500 -4.500 8.500 9.500 3.09 1.0 0.43 0.101 0.86 378.1 0.00228 0,235 0.36
-5.500 -4.500 8.500 9.500 3.14 1.0 0.36 0.079 0.71 384.3 0.00184 0.223 0.31
-5.500 -4.500 8.500 9.500 3.20 1.0 0.30 0.026 0,61 391.8 0.00157 0.084 0.25
-5.500 -4.500 B8.500 9.500 3.27 1.0 0.41 0,062 0.83 400.6 0,00207 0.150 0.34
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Gauges 3 & 4

aRr

Hp

(cm) (cm)

0.047
0.033
0.028
0.021
0.016
0.031
0.036
0.037
0.038
0.041
0.039
0.034
0.027
0.016
0.017
0.031
0.038
0,041
0.110
0.106
0.094
0.103
0.098
0.067
0.045
0.008
0.014
0.041
0.070
0.084
0.079
0.105
0.089
0.071
0.075

0.41
0.35
0.36
0.42
0.43
0.54
0.59
0.47
0.43
0.45
0.42
.43
0.47
0.39
0.40
0.51
Ue43
0.35
0.83
0.75
U.66
0.76
0.88
0.71
0.68
0.68
0.60
0.62
0.74
0.67
0.57
0.71
0.62
0.50
0.67

h

(cm)

238.4
240.9
243.5
247.3
249.8
253.6
256.1
259.9
263.7
266.3
270.1
273.8
277.6
281.4
286.5
290.2
294.0
299.1
302.8
307.9
312.9
317.9
322.9
328.0
333.0
339.2
345.5
350.5
356.8
364.3
370.6
378.1
384.3
391.8
400.6

Hp /Ay

0.00173
0.00145
0.00146
0.00168
0.00173
0.00212
0.00230
0.00180
0.00163
0.00167
0.00156
0.00158
0.00170
0.00137
0.00139
0.00176
0.00145
0.00117
0.00275
0.00245
0.00212
0.00238
0.00273
0.00216
0.00204
0.00200
0.00174
0.00178
0.00206
0.00183
0.00153
0.00188
0.00161
0.00128
0.00167

Wave reflection results from

Kp

0.229
0.190
0.155
0.099
0.075
0.114
0.123
0.159
0.179
0.182
0.184
U.158
0.113
0.083
0.084
0.121
0.179
0.237
0.265
0.283
0.286
U.272
0.222
0.190
0.133
0.025
0.048
0.131
0.189
0.251
0.278
0.296
0.287
0.283
0.223



TABLE 2¢

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratio No Filter slope temperature
(cm) (cm) (deg C)
21/7/81-23/7/81 h=31.3 m=10 b=5 b/h=0.16 NF 1:10 23.2
Gauge positions(x) Wave Stroke Wave reflection results from
period Gauges 1 & 2
1 2 3 4 T s ay ag  Hy Ay  Hp/A, IKgl  ag
(m) (s) (em) (cm) (em) (cm) (cm) (cm)

~5.125 -4.875 14.875 15.125 0.72 1.0 1.57 0.060 3.14 79.8 0,03938 0.038 1.53
-5.125 -4.875 14.875 15.125 0.73 1.0 1.61 0.016 3.21 81.9 0.03921 0.010 1.53
-5.125 -4.875 14,875 15.125 0.74 1.0 1.64 0.051 3.28 83,5 0.03911 0.031 1,4}
~5.125 -4.875 14.875 15.125 0.75 1.0 1.66 0.066 3,31 86.0 0.03852 0,040 1l.44
-5.125 =4.875 14.875 15.125 0.76 1.0 1.46 0.044 2.92 88.1 0,03319 0.030 1.28
~5.,125 ~4.875 14.875 15.125 0.77 1.0 1.50 0.048 2.99 90.2 0.03313 0.032 1.33
-5.125 -4.875 14.875 15.125 0.78 1.0 1.65 0.030 3,30 92.3 0.03575 0.018 1.44
-5.125 -4.875 14.875 15.125 0.79 1.0 1.64 0.036 3.28 94.5 0.03475 0.022 .47
-5.125 -4.875 14.875 15.125 0.80 1.0 1.64 0.023 3.28 96.6 0.03402 0.014 1,47
~5.125 -4.875 14,875 15.125 0.8l 1.0 .61 0.027 3.21 98.7 0.03258 0.017 1.45
~5.125 -4.875 14.875 15,125 0.82 1.0 1.64 0,051 3.27 100.8 0.03242 0.031 1.47
-5.125 -4.875 14.875 15.125 (.83 1.0 1.53 0.069 3.06 102.9 0.02971 0.045 1.89
-5.125 -4.875 14.875 15.125 0.84 1.0 1.58 0.022 3.17 105.1 0.03018 0.014 1.43
-5.125 -4.875 14.875 15.125 0.85 1.0 1.58 0.024 3.15 107.2 0.02939 0.015 1.42
~5.125 ~4.875 14.875 15.125 0.86 1.0 1.61 0.060 3.22 109.3 0.02950 0.037 1.45
-5.125 -4.875 14.875 15.125 0.87 1.0 1.58 0.027 3.15 111.4 0.02825 0.017 1.42
-5.125 -4.875 14,875 15.125 0.88 1.0 1.60 0.032 3.20 113.6 0.02842 0.020 1.45
-5.125 -4.875 14.875 15.125 0.89 1.G 1.56 0,033 3.12 115.7 0.02702 0.021 1.41
~5.125 -4.875 14.875 15.125 0.90 1.0 1.58 0.058 3.15 117.8 0.02679 0.037 1.42
-5.125 -4.875 14.875 15.125 0.91 1.0 1.55 0.062 3.10 119.9 0.02590 0.040 1.41
-5.125 ~4.875 14.875 15.125 0.92 1.0 1.55 0.028 3.09 122.0 0,02533 0.018 }.40
-5.125 -4.875 14.875 15.125 0.93 1.0 1.61 0.074 3.21 124.1 0.02584 0.046 1.45
-5.125 -4.875 14.875 15.125 0.94 1.0 1.50 0,048 3.01 126.2 0.02382 0.032 1.36
-5.125 -4.875 14.875 15.125 0.95 1.0 1.42 0,084 2.84 128.3 0.02218 0.059 1,30
-5.125 -4.875 14.875 15.125 0.96 1.0 1.51 0.059 3.02 130.4 0.02314 0.039 1.37
-5.125 -4.875 14.875 15.125 0.97 1.0 1.50 0.018 3.00 132.5 0.02267 0.012 1.37
-5.125 -4.875 14.875 15.125 0.98 1.0 1.52 U.047 3,03 134.6 0,02249 0.031 1.39
-5.125 -4.875 14.875 15.125 0.99 1.0 1.54 0,059 3.08 136.7 0.02252 0.038 1.42
~5.125 -4.875 14.875 15.125 1.00 1.0 1.44 0,114 2.88 138.8 0.02076 0.079 1.33
-5.125 -4.875 14,875 15.125 1.01 1.0 1.47 0.074 2.95 140.9 0.02098 0.050 1.36
-5.125 —-4.875 14.875 15.125 1.02 1.0 1.53 0.057 3.07 142.9 0.02152 0.037 1.41
~5.125 -4.875 14,875 15.125 1.03 1.0 1.44 0.047 2.87 145.0 0.01978 0.033 1.30
-5.125 -4.875 14.875 15.125 1.04 1.0 1.43 0,033 2.86 147.1 0.01946 0.023 1,31
-5.125 -4.875 14.875 15,125 1.05 1.0 1.39 0.104 2.78 149.1 0.01868 0.075 1.28
-5.250 -4.750 14.750 15.250 1.06 1.0 2.03 0,179 4.06 151.2 0.02684 0.088 1.84
-5.250 -4.750 14.750 15,250 1.07 1.0 1.81 0.134 3.63 153.3 0.02369 0.074 1,65
~5.250 -4.750 14.750 15.250 1.08 1.0 1.86 0.067 3.71 155.3 0.02387 0.036 1.69
~5.250 -4.,750 14.750 15.250 1.09 1.0 1.84 0,074 3.69 157.3 0.02349 0.040 1.68
=5.250 -4.750 14,750 15.250 1.10 1.0 1.90 0.122 3.80 159.4 0.02388 0.064 1,73
-5.250 -4.750 14.750 15.250 1.11 1.0 1.97 0.213 3.95 161.4 0.02451 0.108 1.80
=5.250 -4.750 14.750 15.250 1.12 1.0 1.67 0.268 3.35 163.5 0.02053 0.160 1.52
-5.250 -4.750 14,750 15.250 1.13 1.0 1.82 0.257 3.64 165.5 0.02201 0.141 1,66
-5.250 -4.750 14.750 15.250 1.14 1.0 1.91 0.112 3.81 167.5 0.02274 0.059 1.74
=5.250 -4.750 14.750 15.250 1.15 1.0 1.79 0.200 3.58 169.5 0.02116 0.112 1.63
~5.250 =4.750 14.750 15.250 1.16 1.0 2.07 U.371 4.15 171.6 0.02420 0.179 1,86
~5.250 ~4.750 14.750 15.250 1.17 1.0 1.62 0.292 3,24 173.6 0.01870 0.180 1.45
-5.250 -4.750 14.750 15.250 1.18 1.0 1.59 0.193 3.19 175.6 0.01819 0.121 1,45
=5.250 =4.750 14.750 15.250 1.19 1.0 1.75 0.194 3.50 177.6 0.01970 0.111 1.58
-5.250 -4.750 14.750 15.250 1.20 1.0 1.98 0.313 3.96 179.6 0.02208 0.158 1.79
=5.250 =4.750 14.750 15.250 1.21 1.0 1.89 0,296 3.79 181.6 0.02089 0.156 1.71

135

Gauges 3 & 4

aR

Hy

(cm) (cm)

0.095
0.120
0.038
0.065
0.050
0.048
0.030
0.040
0.062
0.065
0.057
0.055
0.033
0.030
0.036
0.031
0.035
0.041
0.056
0.065
0.069
0.065
0.061
0.049
0.034
0.032
0.040
0.030
0.036
0.043
0.045
0.056
0.052
0.024
0.048
0.041
0.084
0.074
0.114
0.122
0.117
0.137
0.171
0.158
0.200
0.160
0.172
0.184
0.206
0.202

3.05
3.05
2.81
2.89
2.57
2.67
2.87
2.93
2.93
2.91
2.93
3.78
2.86
2.84
2.91
2.84
2.91
2.82
2.85
2.81
2.80
2.91
2.73
2.59
2.74
2.74
2.78
2.83
2.65
2.71
2.82
2.59
2.61
2,57
3.68
3.30
3.37
3.36
3.46
3.59
3.04
3.31
3.48
3.25
3.73
2.90
2.91
3.17
3.58
3.42

Ay HI / )‘U

(cm)

79.8 0.03825
81.9 0.03733
83.9 0.03348
86.0 0.03363
88.1 0.02922
90.2 0.02965
92.3 0.03110
94.5 0.03100
96.6 0.03037
98.7 0.02951
100.8 0.02905
102.9 0.02705
105.1 0.02720
107.2 0.02649
109.3 0.02661
111.4 0.02551
113.6 0.02561
115.7 0.02442
117.8 0.02425
119.9 0.02344
122.0 0.02297
124,1 0.02342
126.2 0.02165
128.3 0.02021
130.4 0.02105
132.5 0.02069
134.6 0.02066
136.7 0.02071
138.8 0.01911
140.9 0.01928
142.9 0.01976
145.0 0.01784
147.1 0.01773
149,1 0.01721
151.2 0.02436
153.3 0.02156
155.3 0.02172
157.3 0.02136
159.4 0.02174
161.4 0.02227
163.5 0.01861
165.5 0.02002
167:5 0.02076
169.5 0.01917
171.6 0.02173
173.6 0.01674
175.6 0.01661
177.6 0.01784
179.6 0.01994
181.6 0.01884

Wave reflection results from

Kp

0.062
0.079
0.027
0.045
0.039
0.036
0.021
0.027
0.042
0.045
0.039
0.029
0.023
0.021
0.025
0.022
0.024
0.029
0.039
0.046
0.049
0.045
0,045
0.038
0.025
0.023
0.029
0.021
0.027
0.032
0.032
0.043
0.040
0.019
0.026
0.025
0.050
0.044
0.066
0.068
0.077
0.083
0.098
0.097
0.107
0.110
0.118
0.116
0.115
0.118



Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s)

21/7/81-23/7/81 h=31.3

Depth No.of

(cm)

Ripple

TABLE 2c¢

Amplitude / filter / Beach

Water

ripples Amplitude Depth ratio No Filter slope temperature
(deg C)

Gauge positions(x)

=-5.250
-5.250
=5.250
~5.250
-5.250
=-5.250
=5.250
-5.250
=5.250
~5.250
=5.250
=-5.250
-5.250
=-5.250
~5.250
-5.250
=5.250
-5.250
-5.250
-5.250
-5.250
~-5.250
=5.250
=5.250
-5.250
~5.250
—5.250
=~5.250
-5.250
-5.250
=5.250
~5.250
~5.250
~-5.250
=5.250
-5.250
-5.250
=5.250
=-5.250
~5.250
=5.250
=5.250
-5.250
-5.250
-5.250
~5.250
~5.250
~5.250
-5.250
=5.250

2

(m)

~4.750
-4.750
~4.750
~4.750
-4,750
=-4.,750
~4.750
~4.750
-4.750
-4.,750
=-4.750
-4.750
-4.750
-4.750
-4.750
-4.750
=4.750
=4.750
=-4.750
~4.750
-4.750
-4.750
~4.750
-4.750
-4.750
-4.750
-4.750
-4.750
-4.750
~4.,750
-4.,750
-4.750
-4.750
-4.750
-4.750
-4.750
-4,750
~4.750
-4.750
-4.750
=4.750
=4.750
-4.750
~4.750
=4,750
-4.750
=4.750
-4.750
~4.750
-4.750

3

14.750
14.750
14.750
14.750
14.750
14.750
14.750
14,750
14.750
14.750
14.750
14,750
14.750
14.750
14.750
14,750
14,750
14,750
14.750
14.750
14.750
14,750
14.750
14.750
14.750
14.750
14.750
14,750
14.750
14.750
14.750
14.750
14.750
14,750
14,750
14.750
14.750
14,750
14.750
14.750
14.750
14.750
14.750
14.750
14.750
14.750
14.750
14.750
14.750
14,750

15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15.250
15,250
15.250
15.250
15.250
15.250

m=10

(cm)

b=5

Wave

period

T
(s)

1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
.45
l.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
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b/h=0.16

NF

: 10

23.2

Wave reflection results from
Gauges 1 & 2

ay

(cm)

1.66
1.88
1.37
1.28
1.97
2.78
1.70
1.18
1.06
1.28
2,51
2.76
1.48
1.05
1.06
1.28
1.75
2.06
1.66
1.28
1.22
1.35
1.47
1.39
1.26
1.25
1.46
1.72
1.56
1.27
1.17
1.19
1.22
1.23
1.22
1.20
1.21
1.24
1.26
1.25
1.26
1.31
1.33
L.25
1.11
1.03
1.03
1.11
1.19
1.22

ar
(cm)

0.116
0.265
0.453
0.593
1.020
1.437
0.870
0.631
0.623
0.776
1.662
1.745
1.045
0.603
0.559
0.605
0.744
0.764
0.528
0.334
0.231
0.161
0.108
0.152
0.204
0.256
0.334
0.394
0.353
0.257
0.191
0.140
0.083
0.038
0.039
0.066
0.080
0.087
0.064
0.056
0.092
0.145
0.194
0.211
0.208
0.200
0.191
0.173
0.148
0.100

Hy
(cm)

3.31
3.76
2.74
2,56
3.94
3.55
3.40
2.36
2.12
2.57
5.03
5.53
2.97
2.10
2.12
2.57
3.51
4.13
3.31
2,57
2.44
2.70
2.95
2.79
2.52
2.49
2.92
3.44
3.12
2.54
2,33
2.38
2.45
2.46
2.43
2.41
2.42
2.48
2.52
2.51
2.52
2.63
2.67
2.50
2.22
2.06
2.07
2.21
2.38
2.44

e

(cm)

183.6
185.6
187.6
189.5
191.5
193.5
195.5
197.4
199.4
201.4
203.3
205.3
207.3
209.2
211.2
213.1
215.1
217.0
218.9
220.9
222.8
224.7
226.7
228.6
230.5
232.5
234.4
236.3
238.2
240.1
242.0
244.0
245.9
247.8
249.7
251.6
253.5
255.4
257.3
259.2
261.1
263.0
264.8
266.7
268.6
270.5
272.4
274.3
276.2
278.0

136

Hy /Ay

0.01802
0.02030
0.01460
0.01352
0.02060
0.02871
0.01741
0.01198
0.01064
0.01275
0.02477
0.02693
0.01436
0.01003
0.01006
0.01207
0.01634
0.01904
0.01513
0.01166
0.01097
0.01202
0.01304
0.01221
0.01094
0.01074
0.01248
0.01456
0.01310
0.01059
0.00961
0.00975
0.00998
0.00993
0.00975
0.00957
0.00953
0.00970
0.00981
0.00967
0.00964
0.01000
0.01010
0.00938
0.00826
0.00762
0.00761
0.00805
0.00861
0.00878

iKgi

0.070
0.141
0.331
0.463
0.518
0.518
0.512
0.535
0.588
0.604
0.661
0.631
0.704
0.574
0.527
0.471
0.424
0.370
0.319
0.260
0.189
0.119
0.073
0.109
0.162
0.206
0.229
0.229
0.226
0.202
0.164
0.118
0.068
0.031
0.032
0.055
0.066
0.070
0.051
0.045
0.073
0.110
0.145
0.169
0.187
0.194
0.185
0.157
0.124
0.082

Wave reflection results from

ar

(cm)

1.51
1.69
1.16
1.02
1.53
2,07
1.28
0.85
0.72
0.80
1.63
1.72
1.08
0.71
0.76
0.97
1.42
1.68
1.39
1.10
1.06
1.19
1.31
1.23
1.11
1.08
1.27
1.48
1.36
1.11
1.03
1.06
1.09
1.09
1.08
1.06
1.06
1.09
1.11
1.10
1.11
1.14
1.16
1.08
0.95
0.88
0.88
0.95
1.03
1.06

Gauges
ag Hp
(cm) (cm)

0.168 3.02
0.189 3.38
0.128 2.32
0.109 2.04
0.155 3.06
0.203 4.15
0.122 2.56
0.085 1.71
0.066 1.44
0.068 1.61
0.145 3.26
0.131 3.45
0.085 2.15
0.055 1.42
0.055 1.52
0.072 1.94
0.108 2.83
0.119 3.36
0.100 2.78
0.084 2.20
0.075 2.13
0.088 2.39
0.100 2.62
0.086 2.46
0.078 2.21
0.085 2.15
0.092 2.53
0.105 2.97
0.101 2.73
0.088 2.22
0.087 2.06
0.089 2.11
0.090 2.18
0.094 2.19
0.094 2.16
0.088 2.13
0.087 2.13
0.096 2.18
0.095 2.22
0.089 2.20
0.091 2.21
0.092 2.29
0.092 2.32
0.085 2.15
0.082 1.91
0.078 1.76
0.080 1.77
0.077 1.90
0.076 2.05
0.088 2.12

3 & 4
A

(cm)

183.6
185.6
187.6
189.5
191.5
193.5
195.5
197.4
199.4
201.4
203.3
205.3
207.3
209.2
211.2
213.1
215.1
217.0
218.9
220.9
222.8
224.7
226.7
228.6
230.5
232.5
234.4
236.3
238.2
240.1
242.0
244.0
245.9
247.8
249.7
251.6
253.5
255.4
257.3
259.2
261.1
263.0
264.8
266.7
268.6
270.5
272.4
274.3
276.2
278.0

HI/)‘w

0.01645
0.01825
0.01235
0.01075
0.01597
0.02148
0.01311
0.00867
0.00723
0.00798
0.01603
0.01680
0.01036
0.00679
0.00720
0.00913
0.01316
0.01550
0.01271
0.00997
0.00957
0.01063
0.01157
0.01077
0.00959
0.00924
0.01080
0.01260
0.01147
0.00927
0.00851
0.00864
0.00886
0.00884
0.00867
0.00847
0.00839
0.00853
0.00862
0.00850
0.00846
0.00871
0.00877
0.00807
0.00710
0.00650
0.00650
0.00692
0.00744
0.00762

Kp

0.111
0.112
0.110
0.107
0.101
0.098
0.095
0.100
0.092
0.085
0.089
0.076
0.079
0.077
0.073
0.074
0.076
0.071
0.072
0.076
0.070
0.074
0.076
0.070
0.071
0.079
0.073
0.071
0.074
0.079
0.084
0.084
0.083
0.086
0.087
0.083
0.082
0.088
0.086
0.081
0.082
0.080
0.079
0.079
0.086
0.089
0.090
0.081
0.074
0.083



TABLE 2c¢

Monochromatic wave reflection results CERC 150x3x3 ft wave tank.

Date(s) Depth No.of Ripple Amplitude / filter / Beach Water
ripples Amplitude Depth ratio No Filter slope temperature
(cm) (cm) (deg C)
21/7/81-23/7/81 h=31.3 mw=10 b=5 b/h=0.16 NF 1:10 23.2
Gauge positions(x) Wave Stroke Wave reflection results from Wave reflection results from
period Gauges 1 & 2 L Gauges 3 & 4
1 2 3 4 T s ay ag  Hp Aw  Hp/Ay, IKgl o oag agp Hp he  Hp/dy  Kp

(m) (s) (cm) (ecm) (cm) (cm) (cm) (em) (cm) (cm)  (em)

0.084 2.07 279.9 0.00738 0.081
0.072 1.96 281.8 0.00697 0.073
0.068 1.88 283.7 0.00664 0.072
0.072 1.88 285.5 0.00658 0.077
0.090 1.97 287.4 0.00687 0.091
0.091 2.12 289.3 0.00733 0.086
0.074 2.17 291.2 0.00747 0.068
0.069 2.09 293.0 0.00714 0.066
0.075 1.92 2%94.9 0.00650 0.078
0.064 1,78 296.8 0.00600 0.072
0.070 1.74 298.6 0.00584 0.080
0.037 1.26 300.5 0.00419 0.059
0.040 1.28 302.3 0.00424 0.063
0.048 1.27 304.2 0.00417 0,076
0.048 1.25 306.1 0.00407 0.076
0.040 1.22 307.9 0.00397 0.066
0.034 1.21 309.8 0.00392 0.056

~5.250 -4.750 14,750 15.250 1.72 03
98
94
94
98
06
08
05
96
89
87
63
64
63
63
61
60
60 0,036 1.21 311.6 0.00389 0.059
60
56
58
59
59
59
59
57
57
61
62
60
55
53
53
55
56
56

~5.250 =4.750 14,750 15.250 1.73
=5.250 -4.750 14.750 15.250 1.74
-5.250 -4.750 14,750 15.250 1.75
~5.250 -4.750 14,750 15.250 1.76
=5.250 ~4.750 14,750 15.250 1.77
-5.250 -4,750 14.750 15.250 1.78
-5.250 =4.750 14.750 15.250 1.79
~5.250 -4.750 14.750 15.250 1.80
~5.250 -4.750 14.750 15.250 1.81
-5.250 -4.750 14.750 15.250 1.82
=-5.500 -4.500 14.500 15.500 1.83
-5.500 -4.500 14.500 15.500 1.84
"=5.500 -4.500 14.500 15.500 1.85
-5.500 -4.500 14.500 15.500 1.86
-5.500 -4.500 14.500 15.500 1.87
-5.500 -4.500 14.500 15.500 1.88
-5.500 -4,500 14.500 15.500 1.89
-5.500 -4.500 14.500 15.500 1.90
-5.500 -4.500 14.500 15.500 1.91
~5.500 -4.500 14,500 15.500 1.92
-5,500 -4.500 14,500 15,500 1.93
~5.500 ~4.500 14,500 15.500 1.94
-5.500 -4.500 14.500 15,500 1.95
-5.500 -4.500 14,500 15.500 1.96
~5.500 -4.500 14.500 15.500 1.97
-5.500 -4.,500 14.500 15.500 1.98
-5.500 -4.500 14.500 15,500 1.99
-5.500 —-4.500 14.500 15.500 2.00
-5.500 -4.500 14,500 15.500 2.02
-5.500 ~4.500 14.500 15.500 2.04
=5.500 -4.500 14,500 15.500 2.06
-5.500 -4.500 14.500 15.500 2.08
-5.500 ~4,500 14.500 15.500 2.10
-5.500 ~4,500 14,500 15.500 2.12
-5.500 ~4.500 14.500 15.500 2.14
-5.500 -4.500 14.500 15.500 2.16
~5.500 -4.500 14,500 15.500 2.18
-5.500 -4.500 14.500 15.500 2.20
-5.500 -4.500 14.500 15.500 2.22
~5.500 -4.500 14.500 15.500 2.24
-5.500 -4.500 14.500 15.500 2.26
-5.500 -4,500 14.500 15.500 2.28
-5,500 -4.500 14,500 15.500 2.30

1.19 0.051 2.37 279.9 0.00848 0.043 1
1.13 0.046 2.26 281.8 0.00803 0.041 O
1.08 0.078 2.16 283.7 0.00763 0.072 O
1.08 0.119 2,16 285.5 0.00759 0.110 O
1.14 0,157 2.28 287.4 0.00794 0.138 O
1.22 0.180 2.45 289.3 0.00848 0.147 1
1.26 0.176 2,52 291.2 0.00867 0.140 1
1.21 O.161 2.42 293.0 0.00826 0.133 1
L.11 0,147 2.23 294.9 0.00756 0.132 0
1.03 0.111 2,07 296.8 0.00698 0,107 O
1.01 0.086 2.02 298.6 0.00676 0.085 O
0.73 0.034 1.45 300.5 0.00481 0.047 0
0.73 0,021 1.47 302.3 0.00487 0.029 O
0.73 U.031 l.46 304.2 0.00482 0.043 O
0.72 0,035 1.44 306.1 0.00470 0.048 O
0.70 0.025 1.41 307.9 0,00459 0.036 O
0.70 0.030 1.41 309.8 0.00454 0.042 O
0.70 0.035 1.41 311.6 0.00451 0.049 O
0.70 0.048 1.40 313.5 0.,00446 0.068 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Y]
0
0

0,041 1.20 313.5 0.00384 0.069
0.045 1.13 315.4 0.00357 0.079
0.037 1.15 317.2 0.00363 0.065
0.037 1.17 319.1 0.00368 0.063
0.035 1.18 320.9 0.00369 0.059
0.037 1.19 322.8 0.00370 0.063
0.043 1.17 324.6 0.00360 0.073
0.039 1.14 326.5 0,00350 0.069
0.043 1.14 328.3 0.00348 0.075
0.040 1.22 330.1 0.00369 0.066
0.037 1.24 332.0 0.00375 0.060
0.039 1.20 335.7 0.00356 0.065
0.034 1.10 339.4 0.00325 0.061
0.032 1.06 343.0 0.00308 0.060
0.035 1.06 346.7 0.00305 0.066
0.041 1.09 350.4 0.00310 0.076

0.66 0.050 1.31 315.4 0.00416 0.076
0.67 0,038 1.34 317.2 0.00423 0.057
0.68 0.032 1.36 319.1 0.00427 0.047
0.69 0.027 1.38 320.9 0.00430 0.039
0.70 0.022 1.39 322.8 0.00431 0,032
0.67 0.020 1.35 324.6 0.00417 0.030
0.66 0,030 1.32 326.5 0.00406 0.045
0.66 0.022 1.32 328.3 0.00402 0.033
0.70 0.023 1.40 330.1 0.00425 0,033
0.72 0.025 1.43 332.0 0.00423 0.035
0.72 0.044 1.43 335.7 0.00425 0.062
0.66 0.046 1.31 339.4 0.00386 0.070
0.63 0.050 1.25 343.0 0.00365 0.080
0.62 0.046 1,24 346.7 0,00359 0,075
0.64 0,042 1.28 350.4 0.00364 0.066
0.66 0.037 1.33 354,1 0.00375 0.055 0.037 1.13 354.1 0.00320 0.065
0.66 0.010 1,31 357.7 0.00366 0.016 0.037 1.12 357.7 0.00314 0.066
0.62 0.024 1.23 361.4 0.00340 0.039 0.53 0.038 1.06 361.4 0.00293 0.071
0.60 0.044 1,20 365.1 0.00329 0.074 0.52 0.041 1.04 365.1 0.00284 0.078
0.63 0.054 1.26 368.7 0.00343 0.086 0,55 0.039 1.09 368.7 0.00296 0.071
0.67 0.063 1.34 372.4 0.00361 0.094 0.58 0.039 1.16 372.4 0.00312 0.068
0.66 0.068 1.33 376.0 0.00354 0.102 0.58 0.043 1.15 376.0 0.00307 0.074
0.63 0.068 1.26 379.7 0.00332 0.108 0,55 0.045 1.10 379.7 0.00290 0.082
0.59 0.059 1.19 383.3 0.00312 0.099 0.52 0,035 1.05 383.3 0.00273 0.066
0.58 0.046 1.16 387.0 0.00300 0.080 0.51 0.032 1.02 387.0 0.00264 0.063
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TABLE 3

Means and standard deviations (s.d) of the measured ripple reflection
coefficient |KRJ, at or near resonance, for different numbers (m) of
ripples in the patch. b/h denotes the quotient of the ripple amplitude
(b) and the water depth (h), and N is the number of measurements

entering into each mean. The details of the measurements are illustrated
in Figures 16 and 17.

Number of ripples m = 1

b/h ]KRl 2k/1 N
mean s.d mean s.d
.12 .0703 .0312 .9744 .0244 7
.16 .1212 L0491 .9792 .0176 6
.20 .2078 L0671 .9773 0154 6
.24 .2586 .0537 L9734 .0115 5
.28 .3044 .0388 .9764 .0106 5
.32 .3197 .0429 .9840 .0077 4
.36 .3588 .0276 .9742 .0092 5
.40 .4068 .0240 .9788 .0087 5

Number of ripples m = 2

b/h [KRI 2k /1 N
mean s.d mean s.d
.12 . 1562 .0609 .9647 .0429 13
.16 .2022 .0716 .9865 .0538 19
.20 .2535 .0974 1.0171 L0446 17
.24 .3630 .0386 .9734 .0115 5
.28 .4062 .0363 .9667 .0120 6
.32 .4260 .0365 .9678 .0139 6
.36 .4818 .0318 .9705 L0122 6
.40 .5388 .0104 .9734 .0084 5
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Number of ripples m = 4
b/h IKR| 2k/1 N
mean s.d mean s.d
.10 .1299 . .0240 .9966 .0323 8
.12 .2021 .0423 .9980 .0325 9
.16 .3218 .0569 .9989 .0297 10
.20 .4586 .0711 .9734 .0174 7
.24 .5584 .0493 .9734 .0156 7
.28 .6223 .0645 .9833 L0147 7
.32 . 6869 .0201 .9689 .0130 7
.36 .7205 .0286 9714 .0139 8
.40 . 7407 .0448 .9892 .0291 13
Number of ripples m = 10
b/h IKRi 2k/1 N
mean s.d mean s.d
.08 .1350 .0085 .9995 .0106 2
.12 4123 .0249 .9970 .0120 3
.14 .5220 .0236 .9990 .0110 3
.16 .6070 .0159 .9983 .0125 4
.18 .6597 .0060 .9910 .0090 3
.20 .7227 .0139 .9897 .0085 3
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TABLE 4

Measurements of the maximum and minimum surface elevation, and of the
wave reflection coefficient K, at different positions in the wave tank,
for m = 2, 4 and 10 ripples and for different water depths. Gauges 1,
2, 3 and 4, were moved as a set (see §3.3 and Figure 12) from the wave
generator towards the beach; with the gauges on the up-wave side of the
ripple patch K >~ |Kg|, and with the gauges on the down-wave side K - Kg.
Values of the incident and reflected wave amplitudes aj and ap, and of
the wave steepness Hy/),, are also included. (For convenience, the wave
steepness has been defined in these tables as HI/AW. Elsewhere the
definition a7k = WHI/AW has been adopted.)

Table 4a m= 2, h = 15.6 cm, T = 1.73s
Table 4b m= 4, h = 15.6 cm, T =1.73s
Table 4c m = 10, h = 62.5 cm, T =1.17s
Table 4d m= 10, h = 50.0 cm, T = 1.20s
Table 4e m = 10, h = 41.7 cm, T = 1.23s
Table 4f m=10, h=2357cm, T=1.28s
Table 4g m = 10, h =31.3 cm, T = 1.31s
Table 4h m = 10, h = 27.8 cm, T = 1.37s
Table 4i m= 10, h = 25.0 cm, T = 1.42s

Note: 1In these tables, the origin of the x-axis has been taken (largely
for experimental reasons) at the up-wave end of the ripple patch.
Elsewhere (eg §2) the origin is taken at the centre of the patch.
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TABLE 5

Estimates of the differences in phase between the observed and predicted
envelopes of wave elevation on the up-wave side of the ripple patch, for
m = 10, 4 and 2 ripples. The estimates were obtained from the data
shown in Figs 18(a) - 18(g). It should be noted that the observed

and predicted wave envelopes are in phase over the ripple patch. The
phase differences tabulated below are estimated cumulative lags of the
observed wave envelopes on the predicted wave envelopes in the negative
x-direction (ie towards the wave generator).

m h Phase difference
(cm) (° per wave)
10 62.5 3.25
50.0 3.30
41.7 0.98
35.7 2.64
31.3 ~ (gave constant phase
shift of about 12°)
4 15.6 4.69
2 15.6 6.94
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TABLE 6

Variation of the reflection coefficient |K_| of the ripple patch with
the stroke of the wave generator S, for m = 10 ripples and for different
values of (b/h). (Note that the wave steepness has been defined as
HI/AW. Elsewhere the definition aIk = WHI/AW bas been adopted.)
m= 10, h = 62.5 (cm), b/h = 0.08 m =10, h = 50.0 (ecm), b/h = 0.10
(im) IKR[ I HI/AW (im) IKRI I HI/AW
(cm) (cm)
1.0 .161 1.95 .00954 1.0 .303 2.05 .00999
2.0 .169  3.86 .01888 2.0 .308 4,12 .02010
3.0 .168 5,63 .02754 3.0 .297 5.68 .02773
4.0 165 7.21 .03527 4.0 .307 7.03 .03434
5.0 .162  8.58 .04142 5.0 .309 8.07 .03944
6.0 L1700 9.77 .04777 6.0 .317 9.04 .04416
7.0 -— -— 7.0 .321 9.92 .04846
8.0 -—- - = 8.0 .304 10.92 .05336
m = 10, h = 41.7 (em), b/h = 0.12 m = 10, h = 35.7 (em), b/h = 0.14
(im) | KRI H B /A (im) | Kl H Hp /2
(cm) (cm)
1.0 .428 t1.62 .00797 1.0 .532 2,40 01175
2.0  .435 3.19 .01574 2.0 .537 4,80 .02349
3.0 .427  4.55 .02245 3.0 .541 7.09 .03471
4.0 .433 5,86 .02888 4.0 .541 9.09 .04446
5.0 432 6.97 .03438 5.0 .534 10.56 .05169
6.0 421 8.00 .03943 6.0 .520 11.49 .05624
7.0 .41 9.00 .04438 7.0 .536 12.07 .05906
8.0 .396  9.92 .04891 8.0 .482 12.43 .06083
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m =10, h = 31.3 (cm), b/h = 0.16 m =10, h = 27.8 (cm), b/h = 0.18

E R N
(cm) (cm)
1.0 .625 1.08 .00535 1.0 .666 2.38 .01168
2.0 .617 2.14 .01066 2.0 .663 4,69 .02305
3.0 .611 3.22 .01600 3.0 .663 6.29 .03091
4.0 .610 4.24 .02109 4.0 .659 7.73 .03799
5.0 .606 5.24 .02602 5.0 .657 8.84 .04342
6.0 .601 6.32 .03138 6.0 .648 9.95 .04887
7.0 .584 7.61 .03783 7.0 .642 9.02 .04430
8.0 .538 9.14 .04542 .8.0 - —-—— m———

m = 10, h = 25.0 (cm), b/h = 0.20

(om) U R
(cm)
1.0 .729  2.44 .01197
2.0 .739  4.26 .02090
3.0 .750 5.24 .02575
4.0 .754 5.99 .02942
5.0 .781  6.61 .03243
6.0 .649 6.78 .03326
7.0 .600 7.55 .03704
8.0 ==m === e
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APPENDIX A

The method of Goda and Suzuki for the determination of the wave reflection

coefficient

In this Appendix, the method of Goda and Suzuki (1977) for the determination of
the wave reflection coefficient, K, is described. 1In addition, some comments are
made about the phase angles of the incident and reflected waves, and a simple
result which is used in the main body of the report (§4.1) is discussed.

Finally, some detailed discussion is included about the method adopted for

analysing the wave gauge data from the laboratory experiments.

The method of Goda and Suzuki

Consider a system of incident and reflected sinusoidal waves of small
amplitude travelling in water of constant depth h, with frequency ¢ and wave-
number k related by the dispersion equation (16). If the incident (I) and
reflected (R) waves travel in the +x and -x directions, their surface elevations

may be expressed by

N
7 = Q_ cos(kx—c'td-&z)
z
and | p (A.1)
Z: Ao ws(kx-o-crt-of_n_)
/

respectively, where t is the time, and where the amplitude and phase angle of the

incident wave are a; and €y and of the reflected wave are ap and e_. It follows
’

that, if measurements of surface elevation are made at positions x = x; and

X = Xy = X1 + Ax, for example with a gauge pair, the observed wave forms may be

expressed by

7=4{7+7% = A cs@) + Benlet) )

and b (A.2)

ZA; cos(a't> - st?m(c'ﬂ
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where, from (A.1) and (A.2),

and

in which

and

A; = Qa, cos(gr> + Qg COS(SR>

B = a, sin(8) - Qq sn(8) >
(A.3)

Az = Qg C°5(<§:+RA1)+ a, cas(ég-o—kAx),

B = a, s~ (8, +kdx) - a sn(d+kAx),

§ =kz,+ &

L} (A.4)

/

5& Rx, + &,

0

From Equation (A.3), the amplitudes of the incident and reflected waves are then

given by

ar = M‘ /{(Ax- A' cos (kAz}- _B‘ s[n(kAz>)+(E>z- B' ws/ﬁAx)+A, sm (kAx§> %

and

a, =

z[m(kAz)t

(A.5)

/ (A-A cos (kD + Bsin (kA + (B, - B, coslklbd-A s (k8D

respectively, and the reflection coefficient K may be defined simply by
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k = ‘;e : (A.6)

I

(Note here that the reflection coefficient is defined positive, as distinct from
Ky in Eqs (65) and (66).)

In general, when reflection coefficients K are obtained on the basis of
observations of surface elevation made above a flat bed, it is assumed that there
is a fixed partitioning of the total wave energy into kinetic and potential
energies. For waves of small amplitude, these two component parts are equal, and
results obtained for K are therefore expected to be independent of horizontal
position (x), at least if the wave measurements are made sufficiently far from
the region of bed disturbance, or from the structure, being considered. If,
however, measurements of elevation are made above a region of undulating bed,
and values of K are obtained by the method of Goda and Suzuki, such values need to
be interpreted carefully. The reason for this is that, in general, the partition-
ing of the total wave energy will depend upon horizontal position, from which it
follows that K will depend upon position also. Since this dependence may be
rather complicated, a proper interpretation of K in such situations calls for a
reliable theory for surface elevation as a function of position. In the present
laboratory study, in which wave measurements were made over a ripple patch (see
§4.3), the calculated values of K have been interpreted on the basis of the theory
described in §2.

Goda and Suzuki's (1977) method requires certain optimum gauge spacings (Ax).
In particular, they have shown that, for adequate resolution of the amplitudes

a; and aps

the gauge spacing should be such that
Ax

005 <
A

W

For the work described in this report a more stringent condition was applied,

namely

o5 < 8% . o0.35 .

A

w

In particular, in the determination of the variation of K with the quotient of the
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free surface and ripple wavelengths (Fig 14), the gauge spacing was varied as

follows:

Water wavelength (kw) Gauge spacing (Ax)
(m) (m)
0.75 -1.5 0.25
1.5 =3.0 0.5
3.0 -6.0 1.0

Close to resonance (Aw ~ 2m), the gauge spacing of Ax = 0.5 m gave values of

x/)\w * 0.25, at the centre of the above range. Goda and Suzuki have argued
further that, under normal operating conditions, gauges should be positioned well
away from the reflecting structure, and have suggested that this distance should
be at least one surface wavelength. However, they have shown that, under certain
circumstances, it is acceptable to place the nearest gauge pair as close as 0.1)\W
from the structure. In this study, wave gauges were positioned throughout the
wave tank, as mentioned earlier; 1in particular, gauges were placed both over,

and on either side of, the patch of undulating bed, with results which are dis-

cussed in §4.3.

The phases of the incident and reflected waves

The phase angles of the incident and reflected waves, €, and Eps May be
determined from Eq (A.4) in which x; and k are known for any experimental run, and

in which 61 and 6R may be determined from

__ A-A skt - B s (RAxD )
tan (5,) - B, - B, cos (kA=) + A, sin (hAx)

and b (A7)

tan(éﬁ - A,. - A, cos (kAx) + B, S (kA,a ]
) B, -8, cos(kAx) ~ A, s (RO /

It will be recalled from §2.7.1 that the elevation of the reflected wave obtained

from Eq (64) undergoes sign changes as (2k/1) is varied. In particular, sign
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changes occur in both the elevation, and in KR given by Eq (65), when
sin 2kL/{(2k/1)?2 - 1} changes sign. Such sign changes will be apparent in the

phase angles €y and €r- This may be demonstrated most clearly by introducing a

new timescale t” defined by

O't,= O’t - &

z

such that, from Eq (A.1),

21 = Q_ cos(fk:c-—cftl>
and

7&, = az co.s(kx +0’t’+ C::* E&> .

Evidently, sign changes in n, are associated with wm—phase shifts in the sum
(EI

complicated by the fact that the method described earlier involves the calculation

+ eR). In practice, however, the determination of such phase shifts is

of, firstly, &§_ and SR from Eq (A.7) and, secondly, e, and £r from Eq (A.4) in

I I
which, for a given ripple wavelength, k varies as (2k/1) varies. Despite this
difficulty, in §4.1 the behaviour of (eI + eR) is displayed in one special case in

which a w-phase shift of the kind described above is clearly apparent.

The analysis of the wave gauge data

For a given bed geometry, and for waves of single frequency o, there will be
a single reflection coefficient K. However, in general cases in which there is a
spectrum of incident waves, there will be a reflection coefficient associated with
each constituent present. For the experiments described in §4, the intention in
any run was td generate waves of a single frequency and, thereby, to obtain just
one value of K. In practice, however, spectral analysis of measured surface
elevations generally revealed both a spreading of wave energy into frequencies
adjacent to the fundamental, and also the presence of a small amount of energy in
the first, and higher, harmonics (see §5.2). The former effect is, to a large
extent, the result of the spectral analysis method; in particular, it is due to
the presence of a non-integral number of waves in the records analysed. The latter
effect is probably the result of the non-linear transfer of a small amount of the

total wave energy from the fundamental frequency into higher harmonics, over the
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undulating bed. (It could also be due, in principle, to the wave steepness being
rather too large in certain runs, or to slight imperfections in the ability of the
wave generator to produce a pure fundamental.)

In order to obtain a single overall value for the reflection coefficient, it
is necessary to adopt an approach which makes a proper allowance for the
distribution of wave energy in the various constituent frequencies. The approach
adopted in the CERC programme "REFLECT" was to obtain simultaneous records from a
pair of wave gauges at a known separation (Ax), to digitize these records at a
frequency of 16 Hz for a period of 64 secs (1024 points per record), and to
Fourier analyze each record using a Fast Fourier Transform (FFT) routine. Due to
the limited data storage capacity of the Data Acquisition System (DAS) it was not
possible to retain all of the 1024 Fourier coefficients for each record. Instead,
only the eight pairs of coefficients adjacent to the fundamental frequency 1/T,
where T is the wave period, and to each of the harmonics 2/T, 3/T and 4/T, were
retained. Previous work at CERC (Seelig, personal communication) had shown that
for supposedly monochromatic waves, very little energy exists at other frequencies.

Thus the only spectral coefficients retained for each gauge pair were

A,

q 3 B’J ) Azj and an 9 J"' to 32— L4

(cf Eq (A.2)), corresponding to four groups of eight coefficients centred on the
fundamental and the first three harmonics. For each of the thirty two frequencies,
the surface wavenumber kj was obtained from Eq (16). The incident and reflected
wave amplitudes corresponding to the jth spectral estimate were obtained by

setting A1 = A1j, Azj= Azj, Bi1 = B1j, B> = Byj and k = kj in Eq (A.5), for j =1

to 32. The reflection coefficient Ki, for each value of j, was then obtained from
Eq (A.6). Finally the overall reflection coefficient was obtained from the
quotient of the total reflected (Ek) and incident (E&) wave amplitudes; that is,

K was defined by

kr = ';EE;L“ °

aI

where
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32
— 2
ag = a'gJ‘
J'=l
and
22 2
—— 2
sz = Cl:j ’
J:!

In a typical experimental run (see §3.3), a reflection coefficient was obtained on
this basis both from a pair of wave gauges on the up-wave side of the ripple patch,
and also from a pair on the down-wave side, the latter calculation being made to
give an indication of the reflection coefficient of the wave-absorbing beach. 1In
certain extended runs, pairs of wave gauges were traversed across the entire ripple
patch to examine the variation of the reflection coefficient with horizontal
position (x). As pointed out earlier, particular care is needed in interpreting
such results.

In order to estimate the phase angles e€_ and ¢ and hence (e. + eR), for

I R, I

the purpose of detecting changes of sign in the reflected wave elevation n., a

>
different approach was adopted involving a re-analysis of the gauge data (gy a
computer programme written at I0S Taunton). Initially, the gauge records were
truncated in such a way that each record contained, as nearly as possible, an
integral number of waves. The purpose of this was to obtain unambiguous estimates
of 51 and 6R from Eq (A.7), by concentrating as much of the available wave energy
as possible into a single (fundamental) frequency. The procedure followed in the
programme was to calculate cos SI, sin 61, cos 6R and sin GR for the fundamental
frequency (which, typically, contained more than 957 of the total energy).
Slightly more detailed information about the phase angles than suggested by

Eq (A.7) was obtained therefore, and this enabled GI and 5R to be assigned their

correct values in the range (-w, 7). Each of these calculated values was arbitrary

to 2w, 4w ...... , and, therefore, each of the values of €I and €R> subsequently
calculated from Eq (A.4), was also arbitrary to 27w, 4w oL....... . Hence, the
calculated values of (eI + eR) were also arbitrary to #2w, *4w, ........ . Since

such phase shifts of 27 were irrelevant in the context of the present experiment,
but shifts of m were significant, the procedure followed was to identify any

sudden shifts of *27 in the sum (eI + ER) as (2k/1) was varied, and to correct
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for such shifts by the addition of ¥27 to all the results following a shift. This
became a cumulative process if more than ome shift of #2m occurred over the range
of values of (2k/1) considered. What remained following this process of correction
was a new set of values of (eI + eR), within which phase shifts of #m took on the
significance mentioned earlier, but in which no shifts of +27m occurred. No
allowance for the (very small amount of) energy in the first, and higher, harmonics
was made at any stage in the argument. An example of the results obtained is
discussed in §4.1 (see Figure téc).

Other quantities calculated by both the CERC and IOS computer programmes

included the incident wave height H_ = ZaI and the wave steepness HI/XW, where

I
Kw = 21/k is the surface wavelength calculated from Eq (16). (Note that, elsewhere
in this report, the definition aIk = nHI/AW has been adopted for the wave

steepness.)
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APPENDIX B

Wave filter design and characteristics

As a separate aspect of this study, tests were carried out to determine the
wave transmission and reflection characteristics of some simple rubberised fibre,
or 'hogshair', wave filters. 1In many cases in which it is required to determine
the wave reflection coefficient of a structure (eg a breakwater), by a method other
than that of Goda and Suzuki (1977), it is necessary to eliminate or minimise the
possibility of re-reflection of wave energy from the wave generator. This is
usually done by inserting a wave filter between the wave generator and the test
structure. While incident waves have to pass through the filter only once,
re-reflected waves have to pass through the filter twice and they are, therefore,
more strongly attenuated than the incident wave.

To investigate the wave transmission characteristics of such units a series
of wave filters was designed and built and placed in the tank mid-way between the
ripples and the generator. The filters were constructed of 5 cm thick sheets of
rubberised fibre (hogshair) mounted vertically on edge, in wire cages, transverse
to the direction of wave propagation. Each cage was 91 cm in width (equal to the
width of the wave tank), 91 cm in height and 30 cm in length. Three such units
were constructed from 2.5 cm wire mesh to give a total filter length of 90 cm.

The filter units and their supports are shown schematically in Figure B.t.

Filter tests were carried out with the arrangements shown schematically in
Figure B.2, with the filter units mid-way between the wave generator and the patch
of bottom ripples. The wave reflection and transmission characteristics of the
filters were determined using standard wave gauge techniques; in particular, wave
reflection coefficients were determined using the method of Goda and Suzuki (1977)
(Appendix A). A pair of wave gauges was situated 2 m from the filter unit(s) on
their up-wave side, while another pair of gauges was situated 2 m on their down-
wave side (Figure B.2). All tests were carried out with a water depth of 50 cm,
and for different combinations of surface water wavelength, wave steepness and
filter length. The wave gauge spacing was determined in accordance with the
criteria given in Appendix A. The results of these tests are tabulated in Tables
B.1a-B.1f, and are plotted in Figures B.3 and B.4.

Figure B.3 shows the variation of wave attenuation, expressed by (1 - HT/HI),
as a function of the quotient of the filter 1ength'Lfand the water wavelength Aw’

for various wave steepnesses HI/Aw (=1/7 . aIk). Here HT is the transmitted
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wave height measured down-wave of the filters, and H_ is the incident wave height.

Figure B.3 shows the experimental trends of (1 - HT/;I) for the.steepest waves
(HI/Aw > .05), and also for the lowest waves (0 < HI/)\w < 0.01). Intermediate
trend curves are shown for the remaining wave steepness groups. The results show
that waves may be attenuated by up to 507 in amplitude in only 0.125-0.20 of their
own length, dependent upon the wave steepness, and also that, for constant Lf/xw,
steep waves generally experience more attenuation than low waves. This is
consistent with the effects of viscous dissipation within the filters and, as
shown in Figure B.4, is not due to the wave reflection characteristics of the
filters. 1In Figure B.4, the variation of the reflection coefficient of the filters
is shown as a function of the wave steepness (HI/AW). It may be seen that the
filters had a comparatively low, and fairly constant, reflection coefficient of
the order of 0.2 or less (a minimum of about 0.12 at HI/Aw z 0.045). The

experimental procedure adopted was that the filter length L_ was held constant

f
while the wave period, and hence the surface wavelength, was varied over a range

of values of Lf/Aw. Although the tests were not specifically designed to determine
wave transmission characteristics at constant wave steepness, the measurements

were subsequently grouped into the wave steepness ranges given in Tables B.1 a-f.
The variation of the wave steepness within each range is expressed by the standard
deviation of HI/AW, which is both quoted in the tables, and indicated by the error
bars in Figure B.4.

The method of Goda and Suzuki (1977) permits wave reflection coefficients to
be determined in situations in which re-reflection of wave energy may take place
(see §4.1). Thus the introduction of filters between the wave generator and the
ripple test section would not be expected to influence, for example, measurements
of the reflection coefficient fKRIof the ripple patch . Furthermore, any non-
linearities in the generated wave, which are transmitted by the filters, would not
be expected to influence the reflection coefficient, on account of the way in which
the energy contributions at various frequencies are summed in the calculation of
K (see Appendix A). In order to confirm this, measurements of K were made both
with and without filters. 1t may be seen in Figures B.5 and B.6 that there was
little systematic difference in the results for the various cases examined.

Although it was not necessary to use wave filters in the present study, the
tests have shown that rubberized filter units of simple construction may be used
to absorb wave energy and, in particular, to absorb secondary reflections where

these are likely to have an adverse effect on the results.
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Figure B 2 Schematic diagram of the filter units in the wave tank.
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Figure B 3 Measurements of the wave attenuation factor (1 - HT/HJ) as a function
of the quotient Lf/kw, where HT and Hy are the transmitted and incident
wave heights respectively, where Lf is the filter length and where Ay is
the surface water wavelength. The observations have been grouped into
wave steepness ranges as follows:

®  0.000 < Hy/Ay £ 0.010
+ 0.010 < Hy/), £ 0.020
A 0.020 < Hy/x, < 0.030
v 0.030 < Hy/x, £ 0.040
X 0.040 < Hy/x, s 0.050
8 0.050 < Hy/a,

Trend curves have been drawn for the steepest and lowest groups of
waves; intermediate values have been interpolated between these limits.
Further details of these measurements are given in Table B 1. (Note
that, for convenience, the wave steepness has been defined as Hy/iy.
Elsewhere the definition ak = 7Hy/Ay has been adopted.)
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Figure B4 Measurements of the reflection coefficient K of the rubberised fibre
wave filters, for all the wave steepness groups, as a function of the
steepness H_/A .. Mean values and standard deviations of K and H_/XA
in each wave steepness group are given in Table Bf. (Note that, for
convenience, the wave steepness has been defined as H /Aw. Elsewhere
the definition ak = WHI/AW has been adopted.)
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Figure B5 Results of measurements of the reflection coefficient of the ripple

patch |KR| as a function of 2k/1, with and without the filters:
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Figure B6

Variation of the wave reflection coefficient K throughout the tank with
(@) and without (®) filters. The filter length was approximately

90 cm. Results are shown for m = 10 ripples only, and the solid and
broken curves represent uncorrected and corrected theoretical pre-
dictions, respectively. No theoretical curves are shown in Fig 22b
since, in this case, the uncorrected theory predicts over-reflection.

Figure B6a m = 10, b/h

Figure B6b m = 10, b/h
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TABLE B.1

Wave filter transmission and reflection characteristics.
have been grouped into wave steepness ranges as follows:

Table B.1la
Table B.1b
Table B.lc
Table B.1d
Table B.1le
Table B.1£f

Wave
Wave
Wave
Wave
Wave

Wave

steepness:
steepness:
steepness:
steepness:
steepness:

steepness:

.000
.010
.020
.030
.040
.050

IA - BA A A BA

liA

I
I
I
I
I
I

H /A
H. /A
/A
H_/X
/A
H /2

g € £ £

£

The observations

< .010
< .020
< ,030
< .040
< .050

Wave attenuation is denoted by the factor 1 - H_/H_, and K is the reflection
coefficient of the filters. w
and surface wavelength, and the figures at the bottom of each table are the

means and standard deviations (SD) of H_/A
group. These results are also summarized in Figure B 3.

L./ _ denotes the quotient
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mean

SD

TABLE B.1la

.000 = HI/A < .010
w

171

HI/Aw Lf/Aw 1 - HT/HI HI/HT K
.00219 .048 .18 1.22 .164
.00502 .075 .24 1.32 .123
.00510 .085 .26 1.35 .080
.00794 .099 .30 1.43 .085
.00457 .048 .23 1.29 .189
.00992 .085 .31 1.44 .120
.00716 .048 .26 1.35 .223
.00236 .095 .30 1.42 .218
.00499 .15 .39 1.64 .164
.00486 .17 .40 1.66 141
.00801 .20 .47 1.88 .138
.00502 .095 .37 1.58 .271
.00980 .15 .45 1.82 .200
.00964 .17 W47 1.88 .169
.00792 .095 41 1.70 .305
.00518 .14 .48 1.91 .299
.00958 .23 .57 2.35 .206
.00982 .26 .60 2.47 .177
.00819 .14 .53 2.13 .336
. 0066984 . 1898947
.0025206 .0725694



mean

SD

TABLE B.1b

.010 € H. /X < .020
T w

172

HI/Aw Lf/xw 1 - HT/HI HI/HT K
.01081 12 .35 1.54 .092
.01137 .13 .37 1.57 .137
.01780 .15 L4b 1.78 .152
.01009 .075 .29 1.41 .154
.01627 .099 .36 1.57 .129
.01539 .075 .33 1.50 .185
.01462 .085 .34 1.52 .153
.01145 .24 .54 2.16 .136
.01124 .26 .55 2.20 .139
.01693 .30 .62 2.63 .086
.01625 .20 .54 2.17 .178
.01475 .15 .50 1.98 .238
.01426 17 .51 2.04 .204
.01613 .30 .67 2.99 .186
.01445 .23 .62 2.63 .237
.01448 .26 .64 2.75 .205
.01119 L4 .57 2.32 .362
.01923 .23 .65 2.87 .261
.01892 .26 .67 3.00 .226
.0145068 .1821053
.002811 .065163



TABLE B.1c

.020 £ H_ /XA < .030
I w

HI /Aw Lf/xw 1= HT/HI HI/HT K
.02018 17 .46 1.86 .064
.02309 .20 .51 2.05 .100
.02242 .12 42 1.71 124
.02253 .13 .43 1.76 .140
.02509 . .099 .42 1.71 .164
.02035 .34 .66 2.92 .C93
.02237 .40 .69 3.19 119
.02394 .24 .62 2.61 .167
.02243 .26 .63 2.73 .138
.02487 .20 .59 2.44 .203
.02478 .36 .74 3.86 .158
.02299 .40 .75 3.99 .098
02472 .30 .71 3.47 214
mean .0230585 .1370769
SD .0016097 .043792
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TABLE B.1d

.030 < HI/AW < .040
Hl/xw Lf/xw 1 - HT/HI HI/HT K
.03549 .31 .64 2.80 .062
.03469 .15 .52 2.07 .127
.03544 .12 .48 1.91 .153
.03347 .13 .48 1.90 164
.03590 .61 .79 4.76 .013
.03796 1.09 .80 5.07 —
.03316 .30 .70 3.31 .085
.03734 .24 .67 3.03 .198
.03336 .26 .68 3.10 .166
.03192 .45 .79 4.87 .076
.03945 .51 .83 6.05 .151
.03872 .36 .78 4.63 .187
.03401 .40 .79 4.73 .120
.03321 .30 .75 3.93 .233
mean .0352943 .1334615
S D .002322 .0613129
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TABLE B.1le

.040 = HI/Kw < .050

HI/AW Lf/xw 1 - HT/HI HI/HT K
.04575 .54 .67 3.06 .116
.04007 .17 .54 2.17 .104
.04329 .20 .58 2.37 .120
.04941 .15 .56 2.27 .129
.04028 .34 .73 3.70 .140
.04240 .40 .76 4.11 147
.04790 .30 .74 3.83 .086
.04207 .60 .83 6.84 .108
.04703 .45 .83 5.87 .077
.04433 .40 .81 5.31 .151
mean .0443569 .1178
S D .0031839 .0248185
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mean

SD

TABLE B.1f
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.050 < HI/AW

HI/AW Lf/Aw 1 - HT/HI HI/HT K
.07461 .31 .73 3.66 .081
.05764 .17 .59 2.41 .138
.06123 .20 .62 2.66 .128
.07670 .61 .87 7.71 —_—
.05866 .34 A7 4,30 .182
.06092 .40 .80 4.87 .151
.07500 .92 .92 12.86 14
.05579 .51 .86 7.20 .162
.06066 .60 .88 8.57 .115
.05998 .45 .85 6.67 .086
.07015 .51 .88 8.06 .232
.08284 .60 .90 10.26 .074
.06618 .1352727
.0091033 .0469363



APPENDIX C

Wave energy dissipation in the tank

1. A progressive wave system
Consider, for simplicity, the situation in which waves travel down a flat-
bottomed tank and are absorbed by a beach. Energy conservation requires that

Rate of doing work _  Rate of energy absorbtion Rate of energy

dissipation at the
bed and the side walls.

+
by the wavemaker by the beach

The rate of doing work (per second) by the wavemaker may be expressed by

o2 2k£+sln4(zk£)§ _
l«\/:ZC’ff‘“”{zns:n&(zka) We v

where p is the fluid density, g is gravity, a is the wave amplitude, o is the wave
frequency, k is the wavenumber, h is the depth and WT is the width of the tank.

To calculate the wave energy dissipated at the bed and the side walls, we may
use Jonsson's (1967) expression for the mean specific energy loss (per second) for
laminar boundary layer flow. (The assumption of laminar flow is justified, since
the wave Reynolds number in the present experiments was always very small;
typically, Reynolds number = RE = UZ/O\)w = 103, where U and v, are as defined

below.) Jonsson's expression is as follows:

Rate of dissipation = L}L F 2% , per unit area (C.2)
z € 2 )

Here v is the kinematic viscosity, and U is the local velocity amplitude in the
potential flow region outside the thin wave boundary layer.

If we assume that the waves are sufficiently long that the water particle
motions close to all points on both the walls and the bed are simply rectilinear
oscillations, we may use Jonsson's result in the following way. On the two side

walls, where from Eq 15 (§2) we have

U= gak ' cosh 1§ k(gq-{.)i
o cosh (RA)
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the energy dissipation rate is expressed by

o
E%
f oV, U d{’ rer unit distance alono the tank,
2
-k
where y is the vertical coordinate (y = 0 is the free surface, y = -h is the bed).

1f the distance along the tank is L_, the energy dissipation rate at the side walls

T’

-'-C/-/"”"- gak )’jgzuﬂ'm/;(zk/;)%_ .9
< ¥ ya cco.sﬁ(kﬁ) Zh

By an equivalent argument, the energy dissipation rate at the bed is expressed by

is equal to

Lopl gak ) oW |
z ¢ "'NT (o— cosh(kh) 2 0.4

The total energy dissipation rate D is given by the sum of (C.3) and (C.4), as

follows

D=t oy gak \ . snh(2kh) .
D—z(Lv\/ Zv UCDS‘\ZQ‘,)) 5£ 3 zk Wr} . (C.S)

Since the velocity amplitude U has been assumed to be unattenuated along the tank,
the value given by this equation is an overestimate (though probably only a slight
overestimate in most cases) of the energy dissipation rate.

We may express D as a proportion of the energy generated by the wavemaker

by dividing (C.5) by (C.1), such that

D ar* L. 2k W. E
= =/ L3, e A (RE + e Ne . .
_W zoruw : “1- ( ) 5‘ 2RL + Smﬂ(ZkL) (.6

This quantity is tabulated in Table C.1 for representative ranges of values of h
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and k, and for the fixed values LT = 4 % 103 cm, WT =91 cm, g = 981 cm/sec? and
vy = 10_2cm2/sec. (Note that ¢ is related to h and k by the dispersion relation

(16).) The proportion of the total wave energy which is dissipated is greatest
for waves of short wavelength in shallow water, and is least for waves of long
wavelength in deep water. In the table, the extreme values of the proportion are
0.64 for h = 12.5 cm and Ay, = 80 cm, and 0.08 for h = 62.5 cm and X, = 400 cm,
respectively. Although the former value of 0.64 is substantial, it should be
emphasized that it represents energy dissipation over the entire length of the
tank. (In terms of wave amplitude it represents a decrease of 40%.) Moreover,

it is probably an overestimate, for the reason stated earlier.

2. An incident, reflected and transmitted, wave system

The situation is rather more complicated if, as in the experiments discussed
in this report, there is an incident, reflected and transmitted, wave system. In
arriving at Eq (C.6), we assumed that the velocity field was independent of position
in the tank. If there is a patch of ripples in the middle of the tank, which
causes some proportion of the incident wave energy to be back-reflected, this will
not be the case. For simplicity, let us assume that the wave field consists of
two parts. Between the wavemaker and the mid-point of the ripple patch, over a
horizontal distance LT/Z say, suppose that there is a partially standing wave

structure in which the velocity field may be expressed by

Us"m(kx-—crt) -~ U’kJ s (kz-o-crt-o- 8,) > (C.7)

where iKRI is the reflection coefficient and §; is an arbitrary phase angle.
Between the mid-point of the ripple patch and the beach, also over a horizontal
distance of LT/Z, suppose that there is a purely progressive wave which, from

energy conservation, is expressed by

J I—IKJZ - S (kz—c't-o-é_,) > (c.8)

where 8, 1s an arbitrary phase angle. For the wave field expressed by (C.7),

the energy dissipation rate is greater than that given by (C.5). In particular,
it is simply shown that the (spatially averaged) energy dissipation rate in this
half of the tank is equal to 3(1 + |KR’2)5l Conversely, for the wave field ex-
pressed by (C.8), the energy dissipation rate is equal to }(1 - [KRlz)ﬁl Although
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the sum of these two parts is equal to D, which indicates that the overall dissi-
pation rate in the tank is the same as for a purely progressive wave system, the
energy dissipation rate is rather larger up-wave of the ripple patch, than on its
down-wave side. The effect of dissipation will be to reduce gradually the in-
cident wave height between the wave maker and the ripple patch, and to reduce also
the reflected wave height between the ripple patch and the wavemaker. This will
lead to underestimates of the reflection coefficient IKR\ for wave gauges positioned
mid-way between the wavemaker and the ripple patch (Figs 14, 16 and 17), and to
general decreases in the reflection coefficient with distance from the ripple patch

on the up-wave side (Figs 19 and 20).
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