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1. INTRODUCTION

1.1 Site description

The site at which the wave measurements were taken is shown on the map
in figure 1.l. The buoy is moored in water of depth approximately 40
metres, at position 50°10°N, 004°15°W. It is about % kilometre south of
the Eddystone Rocks on which the lighthouse is situated; the Rocks them-
selves are 15 kilometres south of Rame Head which is to the west of
Plymouth Sound. In order to assess whether data from this site are
representative of a wider area, a short term comparison was made with
measurements taken from a more exposed site. The results of this work
are reported in Appendix IV.

1.2 Description of measuring and recording systems

The wave measurements were made by a Waverider buoy which measures the
vertical acceleration of the water surface; this acceleration is inte-
grated twice on the buoy to give the elevation of the water surface
above the mean water level, which is then transmitted by a radio link to
the receiving equipment located at Wembury, near Plymouth. The buoy was
moored to the sea-bed using a mooring similar to that described in HUM-
PHERY(1975,1982(in press)), except that it was modified to suit local
conditions. The chain linking the anchor and sub-surface float was up-
rated to 9mm, and its length adjusted so that the float was approx-—
imately 12m below the surface. The total length of mooring components
above the float was 20m to allow the Waverider to follow the surface
waves. Waverider maintenance visits were normally possible at any time
of year; visits were normally made at 6-monthly intervals however.
Heavy zinc sacrificial anodes were used to protect metal parts where ap-
propriate. At Wembury the information about the water surface elevation
is sampled twice each second and recorded digitally on magnetic car-
tridge by a Microdata data 1logger. Each data record contains 2048
values of elevation (covering approximately 17 minutes), and the time
between starts of successive records is 3 hours. (In addition, data are
recorded in analogue form by a chart recorder and as an fm signal on
magnetic cassette, purely for back-up purposes. The fm records may be
used to replace missing or invalid Microdata records, but before an fm
record can be used in the Microdata validation and analysis system, it
must be subjected to a digitisation process; this produces a digital
record identical in format to that of the Microdata records.) Cartridge
translation is carried out at the Taunton laboratory using a replay unit
interfaced to a DEC PDP-11 computer.

1.3 Calibration and maintenance

Each buoy is calibrated both before and after its deployment; users of
the primary data may obtain details of these calibrations from IOS.
Over a number of years of operating systems of Waverider buoys and
receiving equipment, 10S has found that the sensitivity of the buoy is
stable to within about *2%, and to within about =*1Y% for the
receiving/demodulation system. Thus the overall sensitivity of the
system is stable to within about *3%. A brief account of the calibra-
tion methods may be found in Appendix I.

Routine servicing of the equipment (including changing charts, magnetic
tapes and cassettes) was carried out on site by a local agent. Ma jor
servicing was carried out by I0S personnel whenever a significant fault
was reported.
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1.4 Wave data coverage and return (figures 1l.4(a) - 1.4(j))

The period covered by the data is 1 September 1978 to 31 August 1981.
For this period 2401 of the 8768 possible Microdata records (i.e. 27.4%)
were either missing or classified invalid. However 869 of these
missing/invalid records have been replaced using data from the fm back-
up system, and so the number of records used in the preparation of this
report 1is 7236 (an overall data return of 82.5%). No attempt has been
made to correct any bias which may have resulted from missing/invalid
records, because of the uncertain reliability of available techniques.
(Simple gap—filling by linear interpolation, up to a maximum of 7 con-
secutive records, has been carried out for the purpose of persistence
calculations only: see section 3.6.) The approximate times when
missing/invalid records occurred may be derived from the plots in
figure 1.4 which show Hs as a time series. On these plots each vertical
line represents a valid record, and the height of the line is pro-
portional to the value of Hs for that record: therefore these plots
also indicate the variation of Hs with time.

2. WIND DATA - COMPARISON WITH THE LONG-TERM AVERAGE

The meteorological station nearest to the wave measurement site 1is
Plymouth (Mountbatten) (50°21°N, 004°07°W) where wind data have been
analysed for a l5-year period from September 1966 to August 1981. Winds
approaching from directions which have very limited fetches associated
with them have not been considered, so that only winds in the sector
from 075° to 255° have been considered in this report (including a
proportion of calms and variables). The data wused are hourly wind
speeds.

2.1 Monthly variation of wind speeds (figure 2.1)

For each month, the monthly means of wind speed are plotted for each
year. Three months (November, December and March) have monthly means
which are significantly greater than their fifteen-year monthly means;
and January 1981 has a monthly mean wind speed less than 50% of its
'long—-term' mean.

2.2 Yearly variation of wind speeds (figure 2.2)

The year-to-year variability of wind conditions is illustrated in this
figure. It shows, for each year, the maximum value of wind speed, and
also the means of the next N highest wind speeds, where N = 5, 10, 20,
50, 100 (thus the highest 186 wind speeds are represented). The figure
shows that the highest wind speeds in 1978/9 and 1979/80 were amongst
the top wind speeds recorded in the fifteen-year period. Whilst 1980/1
shows a deficiency of very high wind speeds when compared with the other
two years, 1its mean wind speed is the second highest for the whole
fifteen-year period.
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3. WAVE DATA — DESCRIPTION AND DISCUSSION OF THE PRESENTATIONS
Where figures show seasonal data, the seasons are defined as follows:
spring - March, April, May
summer - June, July, August
autumn - September, October, November
winter -~ December, January, February
The maximum value of Hs in these three years of data is 6.68 metres; the
associated value of Tz is 7.98 seconds, and of Hmax(3hr) is about 12.8
metres.

3.1 Statistics of variations of wave heights

3.1.1 Monthly variation of Hs (figure 3.1.1)
For each month, the mean of the significant wave height is calculated
and plotted separately for each year. The highest values of monthly
mean Hs are for March and December; January has rather 1low values of
monthly mean Hs.

3.1.2 Yearly variation of Hs (figure 3.1.2)

The year-to—-year variability of wave conditions is illustrated in this
figure. It shows, for each year, the maximum value of Hs, and also the
means of the next N highest values of Hs, where N = 5, 10, 20, 50, 100
(thus the highest 186 wvalues of Hs are represented). The plot shows
that the mean wave conditions were quite consistent over the three
years, although the very highest values of Hs for 1979/80 were about 25%
higher than for the other two years.

3.2 Statistics of wave heights

3.2.1 Occurrence of Hs (figures 3.2.1.1-3.2.1.5)
The percentage occurrence of Hs is shown on histograms. The most fre-
quently occurring values of Hs may be seen, from figure 3.2.1.5, to lie
between 0.5 and 1.0 metres, accounting for 36.1% of the total.

3.2.2 Exceedance of Hs and Hmax(3hr) (figures 3.2.2.1-3.2.2.5)
These graphs may be used to estimate the fraction of the time during
which Hs was greater than, or less than, a given height. For instance,
from figure 3.2.2.4 it may be seen that during winter the significant
wave height exceeded 3 metres for approximately 6 per cent of the time.

3.3 Design wave heights (figures 3.3.1(A),(B)=-3.3.4(A),(B))

The methods used to calculate the design wave height (the most probable
height of the highest wave with a return period of 50 years) are
described in Appendix III.

The top classes of Hs (those with high probabilities of non-exceedance)
are much more 1likely than the lower classes to come from the same
population as Hs(50 years); however, since the top 5 classes, for ex-
ample, contain only 4% of all the Hs observations, the statistical
reliability of these classes, and therefore of the distribution
estimated from them, is relatively low. As more of the lower classes
are included in the estimate of the distribution so this estimate
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becomes more reliable statistically, but the distribution is less likely
to contain Hs(50 years). There is little relevant theory to indicate
the number of upper classes which should be used to provide the best
estimate of the distribution containing Hs(50 years). A rather
arbitrary choice has been made to use the top 9 classes (containing 7%%
of the Hs values) in the estimation of the various distributions, and
the values of Hs(50 years) derived from these distributions are
tabulated below; for comparison, values of Hs(50 years) based on the
full data set are also tabulated. For this site, using the full and the
partial data sets leads to quite large differences in Hs(50 years),
larger than the differences found for other nearshore sites. The inclu-
sion of this table of design wave heights is intended more to illustrate
that the value of the design wave height depends on the fraction (ar-
bitrarily chosen) of the Eddystone data set used, than to provide
definitive values of design wave heights.

TOP 7%% OF DATA (538 OBSERVATIONS)

Design Wave
Distribution of Hs Parameter Hs(50) | Approx Tz Height
Weibull Lower limit,A=0.0m 9.75m 10.5sec 18.24m
Fisher-Tippett I 9.67m 10.5sec 18.09m
Fisher-Tippett 11I|Upper limit,A=10m 8.20m 10.0sec 15.40m

Individual Wave Model Steepness=1:18 1/Mean period=.218Hz 18.20m

ALL DATA (7236 OBSERVATIONS)

Design Wave
Distribution of Hs Parameter Hs(50) | Approx Tz Height
Weibull Lower limit,A=0.33m 9.43m 10.5sec 17 .64m
Fisher-Tippett 1 9.43m 10.5sec 17.64m
Fisher—Tippett III|Upper 1limit,A=6000m 9.49m 10.5sec 17.76m

Individual Wave Model Steepness=1:18 1/Mean period=.218Hz 19.40m

The values of design wave height derived from the individual wave model
are systematically higher than those based on the Fisher-Tippett III
distribution alone, for reasons stated in Appendix III.

3.4 Statistics of wave periods
The percentage occurrences of each of three wave period parameters (Tz,
Tbar or Te) are shown on a histogram.

3.4.1 Occurrence of Tz (figures 3.4.1.1-3.4.1.5)
The most frequently occurring values of Tz in the data set 1lie between
4.0 and 4.5 seconds (18.7% of the total), and all values of Tz lie
between 2.0 and 11.5 seconds (figure 3.4.1.5).
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3.4.2 Occurrence of Tbar (figures 3.4.2.1-3.4.2.5)
For Tbhar, the modal class is 4.0 to 5.0 seconds (31.1% of the total),
and the range is from 2.0 to 13.5 seconds (figure 3.4.2.5).

3.4.3 Occurrence of Te (figures 3.4.3.1-3.4.3.5)
For Te, the modal class is 5.5 to 6.5 seconds (26.7%), and the range 1is
from 2.5 to 15.0 seconds (figure 3.4.3.5).

3.5 Statistics of wave height and period combined

These figures (sometimes called "scatter" plots) show the numbers of
wave records having particular combinations of values of Hs and period
parameters (Tz, Tbar or Te). The numbers of wave records are presented
as parts per thousand (the total number of valid observations being
shown on each figure), except for those which would be 1less than one
part per thousand; these are shown instead as single occurrences and are
distinguished by being underlined.

3.5.1 Occurrences of Hs and Tz combined (figures 3.5.1.1-3.5.1.5)

On these figures points of equal occurrences are joined by contour lines
to give an indication of the bivariate probability distribution of Hs
and Tz, and to illustrate the correlation between them. A wave “steep-—
ness” (as defined in Appendix III) can be calculated for each (Hs,Tz)
pair. On figure 3.5.1.5 a steepness line of 1:12 is drawn; only two
(ds,Tz) pairs calculated for the Eddystone data have greater "steep-
nesses” (1:11.6 and 1:11.8). (Wave "“steepnesses” as shown in this
figure are significantly less than the maximum of 1:7 for an individual
wave, since Hs and Tz are parameters averaged over a number of waves
most of which have steepnesses less than this maximum.)

3.5.2 Occurrences of Hs and Tbar combined (figures 3.5.2.1-3.5.2.5)
These figures show data boundaries similar to those of wave “steepness”
in figures 3.5.1.1 to 3.5.1.5, although the physical significance of
these boundaries is not so obvious.

3.5.3 Occurrences of Hs and Te combined (figures 3.5.3.1-3.5.3.5)

On these figures lines of constant wave power per unit length of wave
crest are shown (in kW/m), using the formula applicable to deep water
(see Appendix II). (It should be noted that using the deep water for-
mula instead of the depth-dependent formula results in an underestimate
of the wave power; the magnitude of this underestimate depends on the
depth of the water and on the form of the spectrum, but it is typically
about 5% at this site.)

3.6 Statistics of persistence of wave conditions

These figures show the means and standard deviations of the durations of
storms and calms against each threshold value of Hs, and also the per-
centage of the total duration occupied by each event. Gaps in the data
series of 7 or less records are filled (for the purpose of persistence
calculations only ) by linear interpolation; larger gaps are not filled,
effectively reducing the series to a number of smaller sub-series, each
with a correspondingly smaller total duration. (For storms, the curves
showing percentage of time occupied by the events are, for all practical
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purposes, the same as those showing percentage exceedance of Hs as
described in section 3.2.2.)

3.6.1 Persistence of calms of Hs (figures 3.6.1.1-3.6.1.5)

Information about, for example, calms of Hs less than 0.9 metres at the
Eddystone site during winter can be derived from figure 3.6.1.4. The
mean duration of such calms was approximately 23 hours (with a standard
deviation of 23 hours); they occupied about 24% of the total duration of
4845 hours, i.e. about 1160 hours; and therefore there were 50 or 51
such calm events during this period.

3.6.2 Persistence of storms of Hs (figures 3.6.2.1-3.6.2.5)

Similar information can be derived for storms. For Hs of 1.9 metres
during summer, figure 3.6.2.2 shows that the mean duration of such
storms was approximately 10 hours (with a standard deviation of 8
hours); the total time occupied was 3% of 5607 hours, i.e. about 168
hours; and therefore the number of such storm events in this period was
16 or 17.

3.7 Distribution of wave energy with Hs and Te (figures 3.7.1-3.7.5)

For each wave record the wave energy per metre of wave crest 1is cal-
culated from Hs and Te, using the formula applicable to deep water (see
note in section 3.5.3). For each class of (Hs,Te) the energy from all
records with Hs and Te values falling within that class is summed. The
total energy within each class is then expressed in parts per thousand
of the overall total energy and presented in these figures (a zero in-
dicates less than one part per thousand, which on figure 3.7.5, for in-
stance, means less than 156 kWh/m for the three-year period). In figure
3.7.5 it can be seen that a large proportion of the wave energy measured
at the site during this three-year period is associated with values of
Hs and Te in the lower halves of their ranges.

3.8 Occurrence of Qp (figures 3.8.1-3.8.5)

For each record Qp is calculated (see Appendix II1) which is proportional
to the degree of peakedness of the spectrum associated with the record.
The most frequently occurring values of Qp in the data set 1lie between
1.5 and 2.0 (38.3% of the total), and all values of Qp lie between 0.5
and 9.0 (figure 3.8.5).
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APPENDIX 1

Method of system calibration

I.1 Method of calibration of Waverider buoys using the facilities of the
National Maritime Institute, Hythe

The Waverider is clamped between two rigid parallel bars, which are
supported at their mid-points on bearings mounted at the apexes of two
supporting A-frames. The Waverider is driven through a vertical circle,
3 metres in diameter, by a variable speed motor through belt-drives.
The buoy is maintained in the vertical position throughout by chain-
drives. Rig-speed 1is electronically controlled, and is monitored by a
tachometer giving angular velocity in revolutions per minute. However
all 1I0S calibrations are made using a stop-watch to time several revolu-
tions; an average rotation period is then calculated. Height-modulated
radio emissions are received from the buoy on a standard Warep receiver.
The receiver converts the signals into a pen-deflection on a chart
recorder, and into an analogue voltage output, which is recorded on a
precision chart recorder. The precision chart recorder is calibrated
with a laboratory standard D.C. source, and the Warep receiver is
calibrated with a precision frequency source. Hence the sensitivity of
the Warep wused for buoy calibration can be determined in Hz/v, and the
buoy/Warep combination in V/m. Hence the buoy sensitivity in Hz/m can
be derived. For a more detailed description of the Waverider calibra-
tion method, see HUMPHERY(in press).

I1.2 References

HUMPHERY J D (in press). The calibration of Waverider systems by
IOS Taunton. Institute of Oceanographic Sciences, Report No 133.




APPENDIX 11

tlethod of spectral analysis and derivations of wave parameters

The digital time—-series of water surface elevations (recorded for
approximately 17 minutes with a sampling interval of 0.5 seconds) allows
an estimate to be made of the spectrum of the sea for the three-hour
period over which the time-series is considered to be representative.
An outline of the method of spectral analysis used is given below.

I1.1 The Fast Fourier Transform
Using the Fourier theorem, the elevation of the sea surface above its
mean at time t is given by

®

h(t) = Z{aiCOSQ_"_Tit + b, sin 21%_'1}

where

T is the record length.

The Fast Fourier Transform, based on the above relationships, is used to
compute the pairs of coefficients, a, and b; , at the fundamental fre-
quency

and at integral multiples of this frequency up to the Nyquist frequency

S
YN |
where AT is the sampling interval.

The sample estimate of the spectrum at the ith frequency,®j, is then
computed as

1 2 2
qu==§ﬁg(a' +-b,).

I1.2 Tapering of the data

Variance of the wave record which is not located at one of the harmonic
frequencies appears in the spectral estimates not only of the harmonics
adjacent to the true frequency but in a band of harmonics. This
'leakage' leads to biassed estimates in that on balance a small propor-
tion of the variance which should appear in the neighbourhood of the
spectral peak 'leaks' towards higher and lower frequencies. The effect
can be reduced by tapering the ends of the time-series data smoothly to
zero before performing the Fast Fourier Transform; a 'cosine taper'
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applied to 123% of the record at each end has been used on the data
described 1in this report. (This leads to a small increase in the
sampling errors of the spectral estimate.)

I1.3 Smoothing the spectral estimates

The spectral estimates,®P;, have a standard error of 100%. This large
standard error may be reduced by taking the average of consecutive spec-
tral estimates, and assigning to it the mid-frequency of the band of
estimates wused. Some of the data used in this report are derived from
smoothed spectral estimates,Sj, which have been averaged in blocks of
ten.

10;
1
Sj=w 2 i
. 10, oi-9
and fl = (10j"4.5)f0.

I1.4 Application to the wave data

The wave data described in this report are derived from time-series con-
taining 2048 values of sea surface elevation taken at 0.5 second inter-
vals.

: fo= —'— Hz = .0009766 H
Therefore 0% 3048 z z
and fmax = 1 HZ.

Smoothing the spectral estimates in blocks of ten results in 102
smoothed estimates at the following frequencies

f; = .00537 Hz
fmax = 992 Hz
Af = .009766 Hz.

The normalised standard error of the smoothed spectral estimates is 32%,
although the tapering process increases this error by a small amount.

11.5 Definition of spectral moments
The nth moment of a continuous spectrum is

mn='£ " E(f) df

where E(f) is the spectral demsity at frequency f.

For the discrete spectra produced from the digital time-series, the
following equation has been used in the calculation of the spectral
moments.

mp =

==

iy
2 fi" o
I=!L

where i, = 42; (f4p = .0410Hz),
iU 651; (f651 = -6357HZ).
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11.6 Derivation of wave parameters
The wave parameters presented in this report are derived from the spec-
tral moments using the following identities.

HS= 4Vm0
Tz = /Mo

T (Toar) = Mo
mi

Te= M .
Mo

The spectral peakedness parameter Qp (GODA(1970)) is computed from

]
3 (5P
Qp = 2i=k iS5
TmZ
where j = 5; (fg = .0444Hz)
ju=65; (fgs = «6304Hz).
(It should be noted that the smoothed spectral estimates are used in the
calculation of the peakedness parameter.)

Wave power may be calculated from the spectra using the expression

P= f E(f) Vg(f,d) df

where Vb is the group velocity at frequency f and in water of depth d.
An approximation to this expression has been used in this report, based
on the assumption that the wave measurements were made in deep water: in
this case

Vg(f,d) = Vg(f) = 4_?r_f

which leads to
P = 0.49Hs2Te

where P’ is in kilowatts per metre of wave crest
Hs is in metres
Te is in seconds.

I11.7 Reference

GODA Y 1970. Numerical experiments on wave statistics with spectral

simulation. Report of the Port and Harbour Research Institute 9,
NO 3, 3_57-
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APPENDIX III

Details of methods used for calculating design wave heights

III.1 By finding the long-term distribution of Hs

III.1.1 Hs is used as a measure of the "sea-state"” (i.e. the intensity

of wave activity), and it is sampled every 3 hours. It is assumed that
a set of Hs data for one year, or an integral number of years, is
representative of the wave climate.
For each value of Hs, the probability that this value will not be
exceeded 1is calculated; this probability is then plotted against Hs.
The axes are scaled according to a long-term distribution, so that data
with a perfect fit would appear as a straight line on the diagram. This
procedure 1is carried out using long-term distributions defined in the
following ways

Weibull

1_ex — ﬂ._H
p B , for h>A
Prob (Hs<h) =

0 , for h<A

where B and C are positive, and A represents a lower bound on h.

Fisher-Tippett I (first asymptote)

Prob (Hs<h) = exp[— exp(—ah+b)].

Fisher-Tippett III (third asymptote)

exp [— (ﬁ—;‘)c]  for h<A
Prob (Hs<h) =

1 , for h>A

where B and C are positive, and A represents an upper bound on h. (See
FISHER AND TIPPETT(1928) and GUMBEL (1958) for the derivations of these
distributions.)

For each long-term distribution the best-fit straight line is drawn;
this 1line 1is then extrapolated to the desired probability (see section
III.1.2) and the corresponding value of Hs is read off as the "design
sea-state”.

I11.1.2 To calculate the “"sea-state” which will be exceeded only once
in N years, a storm duration of D hours needs to be assumed. The
probability that a randomly chosen time will be within this storm is
then

D

24x365.25xN




10S uses D = 3 hours (this choice is discussed in section III.l1.5) which
gives

Probability = Siﬁﬁ&m_‘f

6.845x10°® for N =50 years.

III.1.3 The value of Tz for the "design sea-state” is required before
the highest wave in the storm can be calculated. This is derived from
the bivariate distribution of Hs and Tz (figure 3.5.1.5). A line is
drawn across this at the "design sea-state” value of Hs and the most
likely value of Tz (the modal value) is then estimated using extra-
polations of the probability contours.

I1I.1.4 The most probable value of the highest =zero-up-cross wave in

the storm is then derived by assuming that the heights of such waves
follow a Rayleigh distribution whose probability density function is

prob(h) = _2h__ exp[_( h )2
(Hrms)? Hrms

where Hrms ~-_Hs_

Exact theory is not available for zero-up-cross wave heights, but this
distribution has been found to be an adequate fit to measured data. If
there are n waves in the recording interval (3hr), then the probability
that the highest wave, H, in three hours is less than h is

- )N
2
Prob (H<h) = 1—exp —( h )
rms/ |
with a corresponding probability density function

ol -l

The most probable value (the mode) of this probability demsity function
is usually used and is given by

Hmax (3hr) = Hrms VW

where W is a function of Tz which may be found using either figure 7 or
equation 6.1-2 in TANN(1976).

111.1.5 In choosing the value of storm duration D, it should be noted
that the effect of increasing D is to decrease the value of Hs for a
given return period N. However, it also increases the ratio of
Hmax(3hr) to Hs. It 1is found that in practice these effects roughly
cancel and typically the value of Hmax(3hr) changes by only 3 per cent

for a change of D from 3 to 15 hours. The choice of D is therefore not
critical.

Many details of the above procedures may be found in TANN(1976).
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I1I.2 By a wave-by-wave method

I11.2.1 BATTJES(1970) shows that the probability that a randomly chosen
wave will have a height H greater than h is
[e¢] e8] .
Prob(H>h) = _‘; '!.; Fl(h,Hs) Tz p(Tz,Hs) dHs dTz
.‘; j; Tz7 p(Tz,Hs) dHs dT:

where R(h,Hs) is the Rayleigh cumulative probability function
and p(Tz,Hs) is the joint probability density function of Hs and Tz.

I1IT1.2.2 TANN makes the following suggestion in an unpublished manu-
script. In order that values of Hs higher than those actually measured
may be represented in the calculation of this probability, the values of
Hs are assumed to have a long-term cumulative probability function
F(Hs), and a probability density function f(Hs)= F'(Hs).

For each value of Hs throughout the long-term distribution, an average
value of Tz7' is used (denoted byTz'(Hg). It is defined as

T (Hs) = Tz7' p(Tz,Hs) dTz
P(Hs)

0
where P (Hs) = f(Hs).
Therefore

_é 1 p(Tz,Hs) dTz = Tz(Hs)

which, when substituted into equation (1), allows the probability of ex-
ceedance to be written

Prob (H>h) = j:oR(h,Hs) Tz7(Hs) f(Hs) dHs
j;m Tz(Hs) f(Hs)dHs

The value of Tz'(Hs)used with each value of Hs is chosen to satisfy the
condition of constant wave "steepness”, where the relationship between
"steepness”(l:s), water depth(d), Hs and Tz is

_ oJ21sHs (2nd)
Tz J——-—-—g coth ~He

The value for the steepness used in this report is given in section
3.3'4.
The long-term distribution used in the computation for this report is

the Fisher-Tippett III1 extreme-value distribution, whose probability
density function is

__C  [A-HsC _ [A=Hs\®
f(Hs)_A_HS (——é—) exp[ <———B )]

The constants A,B,C are determined graphically as described in section

ITI.1.1, and their values as used in this report are given in section
3.3.3.
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I11.2.3 Thus the probability of a wave exceeding each particular wave
height may be found, and this probability may be converted into a return
period of N years using the formula

N = 1
365.25x 24x3600x Tave~ x Prob

-1 _ 1
vhere Tave™ = average period

The value of the average wave period is contained in section 3.3.4.
Since Tave™ is a non-analytic function of Prob, the simplest way of
solving the problem is to calculate Prob for various values of h, cal-
culate N for each of these values of Prob, and then interpolate to find
the height h corresponding to the required value of N (in this case 50
years).

Whereas the method described in section III.l assumes that the highest
wave in a 50-year period will come from the most stormy 3-hour period in
50 years, the individual wave method takes into account the probability
that storms other than the highest may provide the wave with a 50-year
return period. Consequently the height of a 50-year wave as estimated
by this method 1is 1likely to be greater than that estimated from the
method of using a long-term distribution of Hs.

III.3 References

BATTJES J A 1970. Long-term wave height distribution at seven stations
around the British 1Isles. National Institute of Oceanography,
Internal Report No A44,

FISHER R A AND TIPPETT L H C 1928. Limiting forms of frequency
distribution of the 1largest or smallest member of a sample.
Proceedings of the Cambridge Philosophical Society 24, 180-190.

GUMBEL E J 1958. Statistics of Extremes. New York: Columbia Univer-
sity Press. 371 pp.

TANN HM 1976. The estimation of wave parameters for the design of
of fshore structures. Institute of Oceanographic Sciences, Report
No 23.
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APPENDIX IV

A comparison between the Eddystone buoy and a short term
deployment in more exposed water

IV.1l Procedure

An additional waverider buoy recording simultaneously with the
long term buoy was deployed in deeper, more exposed water. By
comparing the data collected by the two buoys it was hoped to
discover whether the wave climate recorded at the inshore site
(referred to in the main text of this report) is of more general
application to the sea area to the south of the Eddystone or is
specific to only a localised area near the reef.

V.2 Site description.

The site at which the buoy operated was some 3 km south of the
inshore buoy (figure 1) at position 50°08°N 4°10.5°W. The mean
water depth of 73m was typical of the general area and contrasts
with the mean depth of 40m at the inner buoy position.

IV.3 Measuring and recording. Buoy calibration and maintenance.
Full details of the measuring and recording systems and their
calibration and maintenance can be found in the main text
paragraphs 1.2 and 1.3, and appendix I.

IV.4 Wave data coverage (figures 4.l.1 and 4.1.2),

The comparisons were carried out using data collected from the
buoys between December 1981 and February 1982. All the data were
. subjected to the initial analysis described in appendix 1II.
However the number of records which could be compared was
determined by the limited data return from the deep water site.
A buoy was deployed on 1 December 1981 and was subsequently lost,
presumed sunk,on the 16 December. A second buoy deployed at the
same site on 22 January 1982 suffered a similar fate on 12
February. This gave a total of 249 acceptable record pairs for
comparison, equivalent to 31 days.

IV.5 Wind data (figure 4.2).

Wind data were obtained from the meteorological station at
Plymouth (Mountbatten) ( 50°21°N 004°07°W ) for the period of the
experiment. Those data collected at times when wave records were
compared are presented in the form of a wind rose. The coastline
lies to the north of the buoys stretching from headlands
approximately 075° (Prawle Point) to 255° (the Lizard ) , with a
completely open water sector, leading to the Atlantic, between
200° (I.d'Ouessant) and 255°.
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IV.6 Comparison of Hs and Tz (figures 4.3.1 and 4.3.2).

The comparison of these data when separated into two sets
covering each of the two deep water buoy deployments showed no
significant differences, therefore all further analysis was
carried out on the combined sets.

Both Hs and Tz from the two sites were highly correlated.
Standard least squares regression techniques were used to fit a
linear model to the data. These predictive models were used so
that the best estimates of the deep water conditions could be
found given the results contained in the main body of this
report. From this work

Hsd = O.
Tzd 0

where the suffices d (deep water) and i(long term -inshore) are
used for the buoy positions. '

These results show that waveheights at the deepwater site were
from +27 ( Hsi = Im ) to -9% ( Hsi = 5m ) relative to the inshore
conditions. Wave periods at the deepwater site were from +6%
(Tz4 = 3s) to =-10% (Tzi = 12s) compared with the inshore site.
Further work was carried out in an attempt to identify the
mechanisms causing these differences ( section IV.8 Je

Attention should be drawn to the atypical wind conditions, as
compared to the long term, experienced during these deployments.
The major events ( Hs > 2m ) occured with NW or SE winds, indeed
the bulk, some 46 % , of the winds for the whole period were
offshore and only 16 %Z from the prevailing SW sector.

IV.7 Comparison of spectra (figure 4.4).

The two spectra shown are each derived by taking the average
energy content of each frequency band for all the valid records
used in the comparison.The marked energy decrease at the lower
end of the spectrum recorded for the outer site shows why the Hs
and Tz values are expected to be lower than the 1inner buoy
(evident from the models for Hs > Im; Tz > 4s). As all the buoys
were carefully calibrated prior to deployment and the inner buoy
was recalibrated after recovery with particular attention being
paid to the low frequency end of its response, 1t 1is ©believed
that the differences 1in the spectra cannot be attributed to
instrument malfunction. This belief is further reinforced by the
similarity found when the inshore buoy is compared to the two
outer buoy data sets seperately.

IV.8 Mechanisms for wave climate differences (figure 4.5).

Three potential sources of wave modification were considered for
the area around the Eddystone rocks, these were refraction,
reflection and tidal currents.

1) Wave refraction investigations were carried out using I0S
computer programs based on the theory developed by the Hydraulics
Research Station (1974). The deepwater parameters were used as
boundary conditions and the inshore buoy position as the target
zone.
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Hs values were found to be greater at the inshore site when waves
approaching from the open water sector were associated with
deepwater periods greater than 8 seconds. The increase reached a
maximum of 10% for Tzd = 10s and approach angle 210°. These
changes were associated with an increase of energy at the lower
frequency end of the spectrum so that individual smoothed
estimates could increase by up to 50%.

The wind sea was usually fetch-limited, and came from the open
water sector for only 16% of the time. However inspection of
individual spectra showed that there were always small and
sometimes significant amounts of energy in the swell band
(T 0.1Hz). This indicates that there was always a band of
frequencies which would have been subjected to refraction.

The individual spectra were examined in more detail to see if the
averaging performed to obtain figure 4.4 hid useful information.
The pairs of individual spectral estimates were compared for each
of the smoothed estimates. A linear model passing through the
origin was fitted to the data minimising the perpendicular sum of
squares. The slopes obtained gave a mean ratio for each estimate
and its associated confidence limits. Except for the first two
these are plotted as figure 4.5.The effects of refraction are
clearly visible at low frequencies.

2) Further inspection of figure 4.5 shows regular oscillations in
the plot extending throughout the frequency range. This type of
pattern is similar to that produced by standing wave effects.
However calculations of wave reflection were inconclusive due to
the difficulties in precisely identifying both the depth and
distance of a reflector near the inshore site. Therefore it was
not possible to confirm that the patterns were due to reflection.
3) Finally it was observed that the maximum ratios of Hs values
were mostly associated with spring tides. However there were
insufficient data available to confirm this as a contributory
factor to the modification of the wave regime at the Eddystone.

In summary, the differences between the two buoy sites can be
explained almost completely by refraction effects. There is
evidence to suggest that wave reflection and tidal current
effects may have a limited effect depending upon the prevailing
open water conditions.

References

ABERNETHY,C.L. and GILBERT,G.1974.Refraction of a wave spectrum.
Hydraulics Research Statiom HRS INT 117
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Fig 4.2 Wind rose for times of data comparison.



Deepwater Waverider (metres)

4— +
: +
C +
! ++

3 L
- 437
' +

2—

1—

0 _lllllllIlllllLlJlllllllllllllllllllllllllllll
0 1 2 3 4

Inshore Waverider (metres)

Fig 4.3.1 Comparison of Hs derived from the two
buoy positions (r = 0.976; p < 0.001)



Deepwater Waverider (seconds)
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Fig 4.3.2

Inshore Waverider (seconds)

Comparison of Tz derived from the two
buoy positions (r = 0.968; p < 0.001)
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