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ABSTRACT

When surface water waves propagate over undulating seabed topography, the
resulting interaction may modify both the seabed, if the orbital velocities near
the bed are sufficient to cause sediment motion, and also the waves, possibly
causing a proportion of the energy of an incident wave to be reflected., Linear
perturbation theory is used here to examine this interaction for the case of two
dimensional oscillatory uniplanar nonseparating flow, in which the surface wave
crests are parallel to the crests of the bottom undulations. Initially, a method
is developed for calculating the velocity field over the undulations, and examples
are given for the cases of ripples and sandwaves. Then the reflection of
incident surface waves is considered in detail.

The report is written in two parts. 1In Part I, a steady state perturbation
solution is developed for the interaction of first order incident progressive
surface waves with small sinusoidal bottom undulations of infinite horizontal
extent. This interaction produces two new waves, whose wavenumbers are the sum
and difference of those of the surface waves and the undulations. The sum wave is
always onwards transmitted while, for sufficiently small surface wavenumbers, the
difference wave is reflected. 1In fact, there is a s;ngularity,in the solution for
the difference wave, which indicates strong reflection when the bed wavenumber is
twice the surface wavenumber. The consequences of this for possible dune growth
on an erodible bed are discussed.

In Part II, the problem of the reflection of incident surface waves by bottom
undulations is studied in more detail. The undulations‘are now assumed to be of
limited horizontal extent, enabling results for the reflected and transmitted waves
to be obtained in the perturbation solution by Fourier transform methods. The same
general results are produced by steady state and initial value problem
formulations, and these are applied to the case of a patch of sinusoidal
undulations on the seabed. The principal conclusions are that the reflection
coefficient is both highly oscillatory in the ratio of the length of the patch to
the surface wavelength, and also critically dependent on the ratio of the surface
to bed wavenumbers., In addition, the transmitted wave may experience a small
phase shift, even in cases of zero reflection. Examples are presented which
indicate that relatively few bottom undulations, with wavenumber equal to
approximately twice the surface wavenumber, may give rise to a very substantial
reflected wave. A possible consequence of this is a coupling between dune growth

and wave reflection, which may be important in problems of coastal protection.
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GENERAL INTRODUCTION

g1. SUMMARY

There have been many studies of surface wave propagation in water of wariable
depth, ranging from the scattering of planetary waves Dby topographic variations,
to the reflection of short incident gravity waves by obstacles, such as engineering
works, on the bed. Since the implications of these results for workers in the
field of sediment transport do not seem to be widely known, it is the purpose of
this report to consider the problem in this context. In particular, a linearized
analysis of surface wave propagation over an undulating bed of ripples and dunes is
presented with a view to predicting details of both the flow field over the bed-
forms and the amount of incident wave energy reflection which occurs as a result of
the presence of the bedforms. Certain quantitative conclusions can be drawn from
the results relating to sediment motion on an instantaneous (wave by wave) basis
on an undulating bed. Also, qualitative conclusions can be drawn concerning the
possible formation of dunés on an erodible bed by a process of resonant
interaction between the free water surface and the seabed.

The report is written in two parts, though the underlying theoretical basis
is the same in eache In Part I, the well established two-dimensional linearized
theory for the propagation of water waves above a flat horizontal bed is extended
to study the case in which the bed comprises small undulations, with crests
parallel to the surface wave crests. The findings presented complement the results
of Davies (1979), which were to do with the "deep™ flow of a perfect fluid over
ripples of finite amplitude. The aim here is to use linearized equations to
predict the flow pattern above a prescribed bed structure, knowing the surface
wave parameters and the water depth. What is of interest in connection with
sediment transport is the near-—bed velocity field, and, in particular, the
enhancement of flow velocity above ripple crests and the reduction above troughs,
compared with the unperturbed flat bed velocity.

The method adopted in Part I is to take the familiar velocity potential for a
flat bed as the lowest order term in a small parameter expansion scheme, and to
deduce higher order solutions containing perturbations due to the bed features.
Initially, the analysis is confined to a bed of purely sinusoidal ripples. It
is then extended, by the addition of harmonics of the fundamental sinusoid, to
account for the shapes of symmetrical wave—generated sand ripples, and also for the
shapes of asymmetrical sandwaves. The role of the free surface in the problem is
established by comparison of the present resulis with equivalent deep flow results.

This enables a distinction to be drawn between the cases of"ripples" in deep flow



and "dunes" in shallow flow. The linearized analysis is valid only if certain
conditions on the wave and bedform dimensions are satisfied. Furthermore, the
flow is assumed to be nonseparating above the lee slopes of the bedforms, which
restricts the range of application of the results. However, despite these
limitations, the results obtained are found to be valid over physically interesting
ranges of surface wave and bedform parameters.

It is assumed in Part I that the bed is composed of an infinite number of
undulations in the direction of wave travel, and no conditions are imposed at
infinity except that the solutions are bounded there. It is suggested that
results obtained on this basis may be used with confidence to predict the flow
field over a particular ripple or dune of interest, provided its profile is
representative of the profiles of the neighbouring ripples or dunes on the bed,
and provided also that its wavelength is much smaller than the surface wavelength,
In other words, it is suggested that the method of Part I may be used in many
practical cases, despite the fact that an infinitely long region of bedforms is
physically unrealistic. However, care must be taken in using the results in cases
in which the bed wavelength is comparable to the surface wavelength, since the
-solution is not uniformly valid in the ratio of these wavelengths., 1In particular,
for a purely sinusoidal bed perturbation and an assumed sinusoidal surface wave in
the first—order solution, an infinite resonance arises in the ( second=order)
perturbation solution if the surface wavelength is twice the bed wavelength, Close
to this critical condition, the solution is invalid.

An examination of the perturbation solution in the neighbourhood of the
critical ratio of wavelengths reveals the prediction of a strong reflection of
incident wave energy. In fact, the solution in Part I predicts a reflected wave of
infinite amplitude, which is physically unrealistic and is due to the assumption
of an infinite number of undulations on the bed. It is the purpose of Part II of
this report to extend the analysis of Part I to the case in which there is a
finite number of bedforms upon an otherwise flat bed. In other words, surface
waves are now assumed to be incident upon a region of bedforms of limited
horizontal extent, and the question which arises is how much of the incident wave
energy 1is reflected and how much is transmitted. This is a physically well
posed problem, and one in which the radiation condition can be properly applied to
ensure that the only waves in the perturbation solution are outgoing waves from the
region of disturbance on the bed. We do not evaluate the solution obtained in the
immediate vicinity of the bedforms, assuming that the solution in Part I will

suffice in this respect for most practical purposes. Instead, we are concerned

'



only with the asymptotic solutions well away from the bedforms, and with the
prediction of an approximate reflection coefficient.

Tt is found that, for the case of sinusoidal surface waves incident upon a
patch of purely sinusoidal bedforms, the reflection coefficient may be characterized
by two properties. In the first place, it is oscillatory in the ratio of the
surfece wavelength to the overall length of the region of bedforms. Secondly, 1t
nas a pronounced, but finite, resonance when the surface wavelength is
approximately twice the bed wavelength. 1In this critical situation, the amplitude
of the reflected wave is proportional to the number of bedforms in the patch. It
follows that, as in Part I, an infinite number of bedforms leads to the prediction
of a reflected wave of infinite amplitude. In the more realistic situation in
Part II, the amplitude of the reflected wave depends not only upon the two ratios
mentioned above, but also upon the ratios of both ripple amplitude and mean water
depth to the surface wavelength.

The ability of an undulating bed to reflect incident wave energy is important
in respect both of coastal protection, and of possible dune growth if the bed is
erodible. This latter possibility arises where the combination of incident
progressive waves and reflected waves leads to a partially standing wave structure,
with all that this implies for preferred regions of deposition and erosion on the
bed. In fact, there is good reason to postulate a direct coupling between the

srocesses of dune generation and wave reflection.

§22. LITERATURE REVIEW

The principal qualitative conclusions of the present report, such as for
example the oscillatory nature of the reflection coefficient, have been referred
to in the existingliterature in other applications. In addition, the present
analysis methods are well known. However, as far as the author is aware, there
has been no previous treatment of the undulating bed problem along the lines
described here in Parts I and II.

The existing literature can be discussed under various headings, some more
closely related to the present work than others. Firstly, there have been both
rigorous and approximate studies of wave propagation over topography, based on
the classical linear equations of surface waves in two dimensions. Secondly,
under the usual approximations, the problem has been studied for long waves, and
also for small bottom slopes. Thirdly, there have been studies of the effects of
topographic variations on long barotropic coastal waves, the types of waves

. . . . . - .
considered including Kelvin and Poincare waves, continental shelf waves and edge



waves. Fourthly, there have been various treatments of the scattering of internal
tidal waves and planetary waves by topography. All the above mentioned topics
incorporate a description of the depth variations, or of the coastline. However,
further comments having a relevance to the present report can be made on the basis
of studies of the interaction of surface waves with internal waves. It has been
thought worth reviewing the existing literature under each of the above headings
in order, firstly, to place the present work in its proper general context and,
secondly, to show how the various specific conclusions which arise here tie in
with the qualitative conclusions of previous studies. Strictly, however, it is
only work under the first two of the above headings which has any immediate
quantitative relevance to the present study.

Under the first two of the above headings, problems involving the
propagation of water waves in fluid of variable depth can be divided into three
categoriess 'beach' problems, where the depth tends to zeros t'obstacle! problems,
where the depth i1s constant except for variations extending over a finite interval
in spaces and 'changing depth' problems, where the depth changes from one
limiting (non=zero) value to a second limiting (non—zero) value. We shall be
concerned here principally with 'obstacle' problems, to a lesser extent with

'changing depth' problems, and hardly at all with 'beach' problems,

2.1 Solutions of the classical wave equations

Solutions of the classical equations for wave propagation in water of
variable depth have been obtained in several ways. Uswally, these have
restricted the solutions to the particular simple topographies examined, for
instance by the need for a knowledge of the conformal mapping of the fluid domain
into some simpler domain, usually a strip, for which the potential problem can be
solved. Such mappings are not available for general torographic variations,
though approximate mappings may sometimes be found. When approximate solutions
of the boundary value problem have been sought on a different basis, these
solutions have been generally quite complicated and again restricted to simple
topographic variations, such as step changes in the depth.

Kreisel (1949) set out to determine the reflected and transmitted wave system
for surface waves of general wavelength incident upon low (cylindrical) obstacles
lying in a finite part of the bed. His method requires a knowledge of the
conformal mapping which tekes the fluid domain to a uniform strip, and he has thus
reduced the mixed boundary value problem to an integral equation which can be

solved iteratively. Kreisel's solution shows that, at a few depths from the



obstacle, the potential is very nearly a superposition of simple wave trains,

the error falling off exponentially with distance. Another important result is a
symmetry relation between the reflection coefficients of waves incident on the
obstacle from either direction. In particular, it is shown that the reflection
coefficient is the same for waves incident from either the deep or shallow end,
provided that the approach to uniform depth at both ends is exponential. Strictly,
Kreisel's asymptotic results enable bounds to be placed on the reflection
coefficient only if the mapping of the fluid domain into a strip is known.
However, if the exact mapping is not known, but an approximate mapping can be
obtained, it is still possible to place bounds on the reflection coefficient by
use of certain theorems which are proved. It should be noted also that, since
Kreisel's approach is aimed primarily at reflection by obstacles of scale comparable
to the wavelength, it does not result in close bounds for reflection by long
topographic features. In addition, estimates obtained for the reflection
coefficient grow more precise in the limit as the wavelength grows large with
respect to the depth (ie in shallow water). Kreisel has considered in detail
only the case of a thin barrier on the seabed, of height less than the water
depth. He quotes also, though without giving any derivation, a result for
reflection by a horizontal "reef" on an otherwise flat bed. Interestingly, the
reflection coefficient in this case has an oscillatory nature in respect of the
ratio of the width bf the reef to the surface wavelength. Although Kreisel has
presented an analysis which is in some respects very general, it is not one which
can be adapted readily to cases of interest in the present report, due to the fact
that suitable mapping functions are not known. The method of Kreisel has been
extended by Ogilvie (1960) who has used a mapping method to study the propagation
of long surface waves over an obstacle., He too has considered the case of
reflection by a thin vertical barrier on the seabed.

Roseau (1952) has found an exact solution for a depth profile which varies
continuously between two different asymptotic limits, by mapping the flow domain
into a uniform strip and solving the transformed boundary value problem. Compared
with results for an equivalent abrupt change in depth, the reduction of the
reflection coefficient for a continuous profile is considerable (though
Roseau's theory itself does not yield the reflection coefficient for the case of
the abrupt change).

More recently, a mapping method has been developed by Fitz=Gerald (1977) to
study the reflection of an incident surface gravity wave that travels over a

region of varying depth. Here the existence of a unique velocity potential is




proved for general bottom profiles in the limiting cases when the surface
wavelength is either small compared with the depth, or large compared with a
suitably defined ™transition width" (between the limiting deep and shallow ends).
A general numerical procsdure is described for wavelengths of the order of the
depth. Essentially, Fitz—Gerald's rigorous approach involves reformulating the
basic equations as a boundary value problem in a parallel strip. Then Fourier
transform techniques are applied, and two integro—differential equations are
obtained for the wave amplitude. The key to obtaining the results in the paper
lies in choosing particular linear combinations of the two integro—differential
equations for which convergent iteration schemes can be developed. The mappings
used by Fitz—Gerald are adaptations of an appropriate Schwarz—Christoffel mapping,
and contain a parameter related to the horizontal length scale of the depth
variations. The particular topographies examined are mounds superimposed on
steps and plateaus; as limiting cases of these, steps, symmetrical mounds and
"reefs™ are considered. In the case of plateaus it is found that the reflection
coefficient is oscillatory, whether the plateaus are defined with smooth bottom
profiles or as reefs (with discontinuous changes in depth). For wave propagation
over a step, the value of the reflection coefficient corresponds, in the long
wave limit, to the formula of Lamb (1932), about which more is wri%tten later.

While Fitz=Gerald's work has extended the class of bottom profiles for which
numerical results can be achieved, it calls again for a knowledge of an
appropriate mapping of the fluid domain. There have been severgl studies carried
out on a different basis however. Biesel and Le Méhauté'(1955) have considered
wave propagation over a pair of short, individually symmetrical obstacles. These
authors have not concerned themselves with local perturbations in the vicinity of
the obstacles but, having restated Kreisel's (1949) symmetry principle, have
identified resonance conditions which depend upon the obstacle spacing. Obstacles
with a long elevated horizontal surface, such as submerged rectangular
parallelepipeds, have been treated experimentally and theoretically by Jolas (1960)
and Takano (1960). Jolas has proposed a linear treatment, and concentrated some
attention on the wave field above the obstacle itself. 1In particular, he has
noted that, when the depth of water above the obstacle is relatively small, very
short transmitted waves may be generated by nonlinear effects.

A more complete treatment of the above problem has been given by
Newman (1965 a, b). Firstly, he has considered (Newman, 1965a) waves normally
incident on a step, the depth on one side of the step being infinite, and has

given numerical results for the reilection and transmission coefficients over the
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complete range of wavelengths of practical interest. Newman's approach has beento
reduce the linear two dimensional boundary value problem for the velocity potential to
an integral equation and, following the transformation of this equation into an
infinite set of linear algebraic equations, has developed a numerical solution
for the reflection and transmission coefficients. The complete solution comprises
solutions for the individual domains in the problem (ie above the step and in deep
water), and these involve summations providing the local effects at the step, which
decay exponentially with distance from the stdp. In the long wave limit, the
results obtained are consistent with those of Lamb (1932) (see later). However,
it is found that, for practical purposes, the long wave limit gives a poor
approximation for the reflection and transmission coefficients even for quite
small values of the depth and that, even for relatively long waves entering quite
shallow water, frequency effects are important. Secondly, Newman (1965b) has
extended the above results for the infinite step to the problem of the propagation
of waves past very long symmetrical obstacles, by considering separately the
effects of reflection and transmission at each end. It is envisaged that the
incident wave is partially reflected at the first obstacle (ie depth
discontinuity) and partially transmitted to the second, where a smaller part is
transmitted on and another part is reflected back to the first, and so on.
Kreisel's (1949) symmetry relations are used in an extended form, and it is
established that, for suitably chosen values of obstacle length, there is complete
transmission due to interference between the two ends. In other words, the
reflection coefficient is a highly oscillatory function of the obstacle length
for waves of given frequenoyf

Newman's (1965a) numerical results were based on the solution of as many as
eighty simultaneous equations. A more economical, but still powerful, method of
solution has been proposed by Miles (1967) for the case of a step discontinuity
between two finite depths. A "scattering matrix" is defined and the problem
reduced to the solution of integral equations. The elements of the scattering
matrix are determined by means of variational integrals, and the results obtained
are found to be in good agreement with those of Newman (1965a) in the appropriate
1imit for the infinite step. The variational formulation of Miles has been used
by Mei and Black (1969) to study the scattering of waves by a rectangular obstacle
in a channel of finite depth. Radiation conditions are imposed, and the
potentials for the different regions are expressed as infinite eigenfunction
expansions. For explicitness, the propagating modes are separated from the non-—
propagating modes which describe the flow in the immediate vicinity of the

obstacle, and the solution depends ultimately on the numerical evaluation of
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various determinants. The theory predicts a reflection coefficient having an
oscillatory nature, and is in good agreement with Newman's (1965b) results, at
least for long and very short wavelengths., Also it is in good agreement with
Ogilvie's (1960) long wave theory approximation, and with Jolas' (1960) experiment.
Finally, under the present heading, we note the recent work of Shinbrot (1980)
who has studied three dimen-ional irrotational free—surface flow over a periodic
bottom. Surface tension effects are included in this analysis, specifically to
ensure a well posed problem. With surface tension, flows having the same
periodicity as the bottom are calculated. The main results in the paper are for
doubly-periodic flows in three dimensions. Again, a mapping of the fluid domain

into some fixed domain is called for, but this is achieved non-conformally.

2.2 Solutions for long waves and small bottom slopes

We turn next to studies of the propagation of long surface waves over
obstacles. The best known and most often quoted result of this type is due to
Lamb (Art 176, 1932), who has treated the case of long waves passing over a finite
step, from one constant depth to another. Continuity of mass and surface elevation
lead to expressions for the reflection and transmission coefficients, though no
information is sought or obtained about the detailed nature of the flow in the
vicinity of the step. Lamb's results have been generalized in the previously
mentioned studies of Newman (1965a), Miles (1967) and Fitz—Gerald (1977). 1In
addition, Bartholomeusz (1958) has given a complete analysis of the boundary value
problem for the potential. He has formulated the integral equation that governs
the motion, and has solved this equation, a Fredholm integral equation of the second
kind, in the limiting case of long waves to obtain reflection and transmission
coefficients that are identical with those of Lamb,

The result of Lamb has been extended by Jeffreys (1944) to the case of two
sudden changes in depth. This leads to a transmission coefficient which is
periodic in the ratio of the surface wavelength to the obstacle width. TFor certain
values of this ratio the reflected wave is zero, while for intermediate values
reflection is maximized. Jeffreys has pointed out that the minima for transrizs or
thus predicted are equal to the result for transmission across a single jump of +h
same height (on Lamb's argument) and, therefore, that the second discontinuity heln-
the transmission of energy, where it affects it at all. Jeffrey's result is ot
perhaps slightly inappropriately, in the United Sta'zs Army's (1973) Shore
Protection Manual as being applicable to wave transmission over an offshor~ bar.

It is not pointed out there that his result is probably best regarced as provicin:-

—
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an upper bound for the reflection of long waves by a bar.

A study having considerable relevance, at least as far as technique 1is
concerned, to the initial value formulation in 1§ 3, Part II, of this report is
that of Harband (1975). In his study, asymntotic expressions are developed for the
refraction, reflection and modulation of long waves progressing in water of
variable depth, when the rate of depth variation is small compared with the surface
wavelength. The approach adopted by Harband has been to start with an initial
value problem for the potential in which the bottom boundary condition is
linearized, to solve the resulting approximate linear problem and only finally, in
the steady state solution, to make the shallow water approximation. As we shall
argue later in Part II, this procedure does away with the need to prescribe
radiation conditions on an a~priori unknown steady state solution. The nature of
the initial value problem is as follows. The bed is taken initially to be flat,
but quickly assumes its final varying shape such that, for large time, the
transient effect due to the "creation" of the variable bottom decays and the steady
state solution is obtained. This technique has been discussed fully by
Lighthill (1965). In Harband®s study, after the shallow water limit has been taken
in the steady state solution, an expression for the surface elevation is obtained
which is independent of depth, but dependent on the rate of variation of the bottom
elevation. Wave reflection is investigated when derivatives of the bottom
elevation are piecewise continuous, and it is suggested (misleadingly according
to Meyer (1979) — see later) that the reflection tends to zero with increasing
bottom smoothness.

A further study having relevance to the present report, as far as technique
of solution is concerned, is that of Carrier (1960). This work comprises an
initial value formulation which is used to generate transient wave motions, in
particular tsunamis. In contrast to the work of Harband, the transient wave motions
are themselves the prime objectis of study. Carrier has used linear theory to
describe the propagation of these waves in the deep ocean, and nonlinear shallow
water theory as the waves approach the shore. In the former considerations,
Carrier has both Laplace and Fourier transformed the governing equation and
boundary conditions, and has thus obtained the solution for the potential in the
form of an integral. This has then been evaluated by residues in such a way that
the radiation condition is satisfied. Carrier neglects the non-—propagating modes
in the solution which describe the flow in the immediate wvicinity of the initial bed
disturbance. In several of the above respects, the approach in Part II of the
present report is similar to that of Carrier, though no Laplace transform is applied

in the present work and the bottom disturbance isbprescribed in g different region
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of the bed. Ultimately Carrier's analysis is applied to the specific case of wave
propagation over seabed topography which is slowly varying. As has been pointed
out by Fitz~Gerald (1977) and Meyer (1979), this analysis is deficient in providing
no description of the effects of reflections, though what amounts to an ad hoc
correction procedure is proposed to allow for reflection by topographic features
like underwater ridges. 1In Carrier's approach, the local value of the wavelength
is determined from the local walue of the depth. 1In practice, however, the
wavelength is determined by global features of the bottom profile (eg Harband
(1975), see above),

Long wave reflection by seabed topography has been considered also by
Kajiura (1963) and Hamilton (1977). Kajiura has discussed the manner in which
reflections can be calculated for bottom profiles which do not possess abrupt
changes in depth. He notes, in particular, that the reflection coefficient
associated with a given depth transition is very small except in that part of the
spectrum for which the wavelength is very large compared with the "transition
width"™ of the depth changes and even in that part of the spectrum, for which the
reflection coefficient is similar to that for a discontinuous change of depth
(Lamb (1932)), the reflection is small unless the depth ratio associated with the
transition differs greatly from unity. The reflection coefficient is found to
oscillate as the ratio of transition width to surface wavelength varies. However,
for cases in which the depth varies continuously (ie the transition width is
infinite), there is no periodic fluctuation in the reflection coefficient. This
latter case is studied in relation to symmetric ridges or valleyg on the bed, the
bed level taking different values on opposite sides of the ridge or valley. For
the case of a finite transition, it is argued that the fluctuation of the
reflection coefficient with respect to the wavelength is a result of the
interference of reflected waves (see Newman (1965b) above) and, for the case of a
continuous infinite transition, that the interference of reflected waves extends
over the whole region so that the resultant reflection coefficient at infinity
shows no periodic fluctuation, though the value of the coefficient itself may be
greatly reduced. Hamilton (1977) has also studied the reflection of long waves
by topography. The equations which he has used are based on an initial conformal
mapping of the fluid domain onto a uniform strip, his aim being to study the
effects of bottom topography without recourse to the rather more difficult short
wave theory. The 'reformulated equations' are found to be accurate for abrupt
bottom topographies, and reflection coefficients have been calculated for long
period waves incident upon a step change in depth and a half—depth barrier.

Lamb's (1932) result for the reflection coefficient at a step is recovered.
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The difficulty experienced by Carrier (1966) in arriving at an estimate of
long wave reflection by "slowly varying" topography has been considered by
Meyer (1979). He has discussed the problem on the basis of both linear long wave
theory and "refraction™ theory, and has pointed out that, while estimates of
reflection are readily obtained when the seabed topography is not smooth
(eg Harband (1979) — see above), these indicate misleadingly that wave reflection
tends to zero rith increasing smoothness. In fact, Mahony (1967) and Fitz=Gerald
(1977) have conjectured, and Meyer (1979) has established, that the reflection
coefficient becomes transcendental in some measure of the ratio of the surface
wavelength to the transition width. However, Meyer's approach gives no more than
an estimate of the small reflection effect, and even this is obtained on the basis
of an approximate theory.

In discussing "refraction" theory, Meyer refers to the simplifications which
arise from the assumptions of small wave amplitude and slowness of variation in
water depth: in other words, with the assumptions of the linearization of the
surface condition, and of the vertical structure of the motion being dependent
on the localdepth, but not on its gradient. The equations obtained on these
assumptions have been used by Berkhoff (1973) and Jonsson et al (1976) to estimate
the slow cumulative effects on waves caused by gradual changes in the water depth,
without restriction to shallow water. Berkhoff has studied the propagation of
short waves (short with respect to the size of the disturbance of the bottom)
over a shoal with a parabolic bottom profile. Jonsson et al have compared results
obtained on the basis of simple refraction theory with those emerging from the
complete solution of the reduced wave equation (ie diffraction theory, or
nrefraction” theory in Meyer's terminology). The problem is studied with
reference to an idealized island of circular cylindrical shape situated on a
paraboloidal shoal, and the solution is evaluated for tsunami periods.

Finally, under this heading, we note the work of McGoldrick (1968) who has
used linearized shallow water theory to study the propagation of long waves over
bottoms having sinusoidal undulations. Unlike most of the studies cited above,
the region of bedforms is here assumed to be of infinite horizontal extent and not
to be confined to some limited part of the bed. Periodic solutions of the long
wave equation are sought and, for the prescribed sinusoidal bedforms, the
governing equation is cast into the form of Mathieu's equation. Regions of
stability and instability are thus identifiable in the solution. Generally, it is
found that the bottom undulations impede the propagation speed of the surface wave.
However, there is a range of ratios of surface wavelength to bed wavelength,

namely ( /3,2), for which the waves are not retarded but, in fact, travel
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faster than the phase speed based on the average depth. This result is related
to a subharmonic resonance between the surface waves and the bed. Furthermore,
because of the instability of the solution it is found that progressive wave type
solutions cannot be formed for the following wavelength ratioss 2, 2/3, 2/5,

2/7 esese and so on. The subharmonic resonance is interpreted by McGoldrick as
implying that the amplitude of the surface wave will grow exponentially as the
wave progresses, until either the shallow water approximation or the linearized
equation are no longer reasonable approximations. Rhines (1970% in a footnote,
has pointed out that this conclusion of unstable growth of a wave as it proceeds
away from its source is in error. McGoldrick does not appear to consider the
possibility of wave reflection, which is curious since this would seem to be a
physically more sensible conclusion. In fact, in more recent (but as yet
unpublished) work on this subject, Dr W G Pritchard* has argued that the solution
of Mathieu's equation suggests a reflection of wave energy, particularly when the
ratio of the surface to the bed wavelength is two., In the bresent report, this
ratio of wavelengths is shown %o be associated with a risonance in the
(perturbation) solution, the resonance becoming infinite as the number o’

sinusoidal ripples becomes infinite.

2.3 Solutions for long barotropic coastal waves

The papers cited above are those which are most directly relevant to the
present study. In what follows, we concentrate attention on more distantly
related topics, and we are highly selective in referring only to studies in which
the interaction between surface waves and seabed topography leads to a conclusion
which bears some qualitative similarity to the conclusions in the present report.
Further discussion on the majority of these papers has been given by LeBlond and
Mysak (1978). We start with studies of the effects of longshore variations, in
either the depth or the coastline, on the propagation of long barotropic coastal
waves in a rotating ocean. These may be Kelvin and Poinoare’waves (eg Pinsent
(1972), Howe and Mysak (1973), Mysak and Tang (1974)), continental shel® waves
(eg Allen (1976), Hsueh (1980), Brink (1980)) or edge waves (Fuller and My sak
(1977)).

Pinsent (1972) has studied the problem of Poincard waves incident upon a
coastline which is nearly straight, in an ocean of nearly uniform depth. His
results are based on a second order expansion in powers of a small parameter
describing the relative magnitude of the coastal irregularities. In particular,
solutions of the long gravity wave (shallow water wave) equation are obtained to
first and second order by Fourier transform methods, and the radiation condition 4a
*Fluid Mechanics Research Institute, University of Essex

16



satisfied at infinity. Initially, Pinsent considers a system of waves incident on
the coastline and finds, in addition to reflected waves, a Kelvin wave which travels
along the coast. First order linearized theory is used to obtain the details of
the Kelvin wave for arbitrary perturbations in the coastline and depth.
Interestingly, certain combinations of coastline and depth variations are found
which produce no Kelvin wave. A condition for this to happen, at a particular
wave period, is expressed in terms of the transforms of the coastline and depth
changes. Conversely, resonance effects are produced at other periods. Next, the
deduced Kelvin wave is treated as the incident wave, the theory is extended to
second order in the perturbations and the amount of energy scattered away from the
coastline as Poincare’ waves is determined., It is found that this energy is
maximized for a coastline perturbation of length comparable to the incident
wavelength. Conversely, some other combinations of coastal and depth
perturbations cause no Poincare waves to be set Upe

Pinsent's approach gives a uniformly valid solution only for irregularities
that ocour in a finite segment of the coast (ie that have "compact support"), or
which tend to zero sufficiently rapidly away from the centre of the irregular
region. To deal with extensive irregular coastlines, other techniques have been
suggested. One such approach involves treating an infinitely long coast as
straight, except for small deviations which are represented by a stationary,
random zero=mean function. The two problems considered by Pinsent (Kelvin wave
generation and attenuation) have been treated in this manner by Howe and Mysak
(1973) and Mysak and Tang (1974) respectively. Howe and Mysak have found that
Poincare waves are always generated by coastal irregularitiés, but that a Kelvin
wave is only generated when a certain 'resonant interaction condition' is
satisfied by the incident wave and the Fourier components of the coastal
irregularities. It is found that on a relatively smooth coast, Kelvin waves are
preferentially generated by incident waves propagating in the same direction as
the Kelvin modes ('forward soattering'). However, more irregular coastlines
result in Kelvin waves propagating in the opposite direction ('back—soatter'),
and in such cases the waves are more sharply tuned in the sense that only waves
incident in progressively narrower bands of direction of propagation actually
contribute to the power flux in the Kelvin waves. It is found that Kelvin waves
are scattered in preference to Poincaré/waves when the fregquency of the incident
wave is rather small, the reverse being the case at higher frequencies. Mysak and
Tang (1974) have found both that the propagation speed of a Kelvin wave is
decreased, and that the wave is damped, by coastal irregularities. The size of

the decrease in phase velocity, and in wave amplitude, is determined by an
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integral involving the power spectrum of the coastline,

The scattering of barotropic continental shelf waves has been studied by
Allen (1976), Brink (1980) and Hsueh (1980). Allen has considered the effects of
small amplitude alongshore deviations from a "classical®™ shelf topography
(ie topography varying only in a coordinate perpendicular to the coast and
varying exponentially). The problem solved is one of forced motion in which the
perturbation flow is governed by a first order wave equation, in which terms from
the interaction of the basic (lowest order) flow with the bottom and coastline
topography act as the forcing function, The perturbation flow adjusts to the
alongshore variations in topography through the propagation of disturbances as
free continental shelf waves. A result of Allen's that is of particular interest
is that, for certain forms of shelf deviation, scattering does not occur. This
suggests the existence of a class of shelf topography that is variable in the
alongshore direction (and not necessarily with anamplitude which is small), yet is
regular in the sense that it does not give rise to the scattering of long shelf
waves. It is expected, however, that the incident wave will be modified by the
bottom variations. In Allen®s study, the relevant alongshore topographic scales
are assumed to be greater than the shelf slope width, and the resulting motion is
treated in the long wave non-dispersive limit. Phase velocity changes and the
damping of free continental shelf waves caused by random bottom topography have
been studied by Brink (1980). He has found that damping peaks occur at
frequencies where scattering takes place into modes which have a Zero group
velocity and, therefore, do not transport energy. The existence of damping
maxima is proposed as a valid result though, in practice, the peaks may not
accumulate because of the presence of a mean flow. Hsueh (1980) has found +that
the scattering of long shelf wave energy does not occur for 'shelf=similar?' depth
changes, for which distances of isobaths to the shore remain a fixed fraction of
the local shelf width. Forward scattering occurs only when a wave is incident
upon topographic irregularities that are not shelf-similar. Hsueh has studied
this phenomenon by carrying out a perturbation analysis to investigate the effects
of small deviations from a shelf-similar depth changes in particular, given an
incident long shelf wave, he has constructed long wave solutions at points far
downstream from topographic irregularities. One conclusion of the study is that,
at a fixed alongshore position, forward scattering gives rise to a difference in
phase between the occurrence of flow events at different points across the
continental shelf,

A study of shorter period edge waves in the presence of small alongshore

coastal variations has been carried out by Fuller and Mysak (1977). They have



modelled the continental shelf as a flat shelf that gives way abruptly to a deep
ocean of uniform depth, and have studied two problems. TFirstly, they have
considered incident waves originating in the deep ocean, and have calculated the
reflection coefficient and the fraction of the energy scattered into various
nrapped”" and "leaky" edge wave modes. Secondly, they have looked at the effects
of coastal irregularities on the propagation of a coherent trapped edge wave. The
results obtained are valid for wave periods much shorter than the period
associated with the Coriolis parameter, and for wavelengths much greater than the

average size of the coastal irregularities.

2.4 Solutions for internal tidal waves and planetary waves

The papers discussed above, under the heading coastal waves, indicate the
variety of interactions which may arise between ocean waves and both seabed
topography and the coastline. Of particular interest in the present context are
the various resonant interactions which have been discovered, and conversely the
conditions of zero interaction, which, taken together, are qualitatively similar
to the oscillatory reflection coefficients described earlier. The remaining class
of studies discussed here is that which involves the scattering of planetary waves
and internal tides by the deep sea topography, well away from the continental
margins.

The problem of the propagation of barotropic planetary waves over a
sinusoidally varying bottom has been studed by Rhines and Bretherton (1973).
Using a linearized depth=averaged equation which describes the changes in
relative vorticity due to fluid motion northwards or up a (very slight) slope,
they have derived a solution for free waves of low frequency in a homogeneous

/3 -plane ocean. The special case of long waves over small sinusoidal

undulations is described by an equation which is nearly Mathieu's equation, and
the resulting solution is dominated by waves with the scale of the topography.
Very slight three=dimensional topographic features are shown to provide weak,
resonant interactions between Rossby waves of the same frequency, such that the
waves trade energy back and forth via a "catalytic Fourier component of the depth".
Tn general, the results of Rhines and Bretherton indicate that severe topographic
roughness reduces both the scale of the waves and their associated energy
propagation. Thomson (1975) has considered further the energy loss from
barotropic planetary waves due to scattering from rough random topography. His
study is concerned particularly with changes, caused by topographic variations,
in the phase speed of planetary waves in an ocean having an exponentially

varying mean depth. The propagation of planetary waves over short scale
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topographic variations has been considered, in the baroclinic case, by

McWilliams (1974) in a study which has concentrated on forced transient flow.
Various forms for both the forcing and the topography have been employed, the

main emphasis of the work being on low frequency motions containing horizontal
scales large compared with those of the sinusoidal topography. Free modes are
considered and are found to be significantly influenced by the topography only for
frequencies small compared with the inertial frequency. The forced response is
studied with reference to the free modes, and the possibility of resonant forcing
is examined. Although the theory predicts a resonant response which is infinite,
in practice the response will be finite since the forcing must be confined to only
a part of theocean.

The coupling of barotropic surface tides and baroclinic internal tides in the
ocean has been studied in various ways, and it is an important effect since the
transferred energy is lost to the surface tide and effectively represents its
dissipation. Cox and Sandstrom (1962) have used a normal mode approach to
determine the internal tidal wave field generated in the open ocean by tidal flow
. over small arbitrary topographic variations. In particular, for water of
arbitrary stratification, they have developed perturbation equations to study the
coupling of infinitesimal internal waves of all modes, both to one another and to
surface waves, with a view to determining the energy flow between modes. They have
found that, at particular wavelengths of the depth variations, a resonant transfer
of energy occurs to the higher order solutions from the zero order solution
(which governs the motion of both surface and internal waves in water of constant
depth). For the case of a limited patch of roughness on the sea floor, incident
waves are partially converted into a sum of internal wave modes which propagate
radially away from the rough patch. The transfer of energy depends upon the
existence of orbital currents at the seabed = clearly, there can be no coupling
unless orbital currents of both modes reach the bed - and also of bottom
undulations with a wavenumber equal to the difference between the wavenumbers of
the two coupled modes. In this respect, the results of Cox and Sandstrom have a
qualitative similarity to the perturbation solution in Part I of the present
report.

Sandstrom (1976) has suggested that the above approach underestimates the
contribution to the energy transfer from high modes, and has studied the problem
further using ray theory. In particular, he has exploited the hyperbolic nature
of the two~dimensional wave equation to develop solutions in the presence of
localized topographic variations, and has achieved an overall energy balance such

that the total baroclinic energy flux radiating away from a source area is
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equal to the total rate of work done by the barotropic motion as it interacts with
the bottoms Interestingly, he has identified cases of total transmission, one
such being associated with a hump on the bed. Results are obtained also Ffor a
cogine—ridge topography and a vertical partial barrier, and it is found that the
main factor in energy conversion is the roughness amplitude. Furthermore, a
comparison of various solutions suggests that it is the blocking action of an
obstacle, be it a slope, a shelf or a knife—edge barrier, that determines the
gross features (low modes) of the solution, while the high modes are semsitive to
the obstacle's shape.

A different approach to the surface—~internal tide problem is that of
Baines (1971, 1973 and 1974) who has exploited characteristic theory to cast the
problem in the form of integral equations. These are solved numerically.

Baines (1971) has assumed that the bed is "smooth" and, further, that it is of
nflat=bump” types; that is the incident internal wave "lights" or "sees" the

entire bed surface, so that wave characteristics all reflect off in the same
direction. The equation which governs the wave field and which satisfies the
radiation condition is a Fredholm equation of the second kind, with a non-

singular kernel which depends upon the bottom topography. Bumps and troughs are
considered, as well as a smooth change in depth from one horizontal plane to
another. When a plane wave is incident upon a small amplitude sinusoidal bottom

it is found that, in addition to the basic reflected wave, two new waves are
produced whose wavenumbers are the sum and difference of those of the incident

wave and the bottom topography. The sum wave is always in the onwards transmitted
direction, whereas the difference wave is back reflected if the incident

wavelength is sufficiently long. Baines (1973) has studied the case of a cosine rid-
ge andhas found that the energy flux and energy density of the internal wave motion
generally increase rapidly as the height of the topography is increased. However,
if a characteristic, continued by reflections from the boundaries, spans the
topography exactly, the energy fluxes and densities may be rather smalle In fact,
in the case of a cosine ridge, they may vanish. Baines (1974) has extended the
theory to (almost) arbitrary topography and density stratifications.

Finally, it is appropriate to note here the work of Larsen (1969). Although
his study does not fall strictly under the present heading, it is concerned with
the effect of a knife—edge barrier on the propagation of an internal wave. The
wave is confined in a channel and, in the absence of the barrier, propagates as a
single mode. A solution is found, satisfying the radiation criteria, for all the

modes passing over, and reflected by, the barrier.
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2.5 Interactions between surface waves and internal waves

In the above review, we have concentrated exclusively on the interaction
between free surface waves and undulating seabed topography. We close with a
brief comment on the interaction between surface waves and internal waves, in the
absence of any topographic variations. Lewis et al (1974) have studied the
perturbation to a pre~existing surface gravity wave, caused by an internal wave
propagating in the same direction. The internal wave enters their analysis by way
of the perturbations to the surface currents which it causes, and the problem is
to determine the consequent changes in the surface wave characteristics, as
functions of both position and time. Characteristic theory is used in the
solution, and a perturbation solution of the governing equations is obtained in
closed form, on the assumption that the magnitude of the surface current is small
compared with the group velocity of the surface waves. Solutions are derived on
this basis for first order changes in the surface wavenumber and the surface wave
amplitude. Interestingly, a resonance, though not an infinite resonance, occurs
in the solution when the phase speed of the internal wave and the group velocity
of the surface wave are matched., Furthermore, for the resonant case, the
linearized solution predicts a monotonic increase of certainMeffects" with
interaction distance, these effects being internal wave~induced modulations of
surface wave amplitude and slope. Also, as the interaction distance increases,
the variations become increasingly 'narrow band', with maximum effects
concentrated within a progressively narrower range of relative wave speeds
centred on the 'resonant condition®. Experimental results are here in good
agreement with the theoretical predictions. Although the problem considered by
Lewis et al is rather distantly related to that which is considered in the
present report, it again leads to conclusions of a qualitatively similar kind to
those arrived at later, in particular with the structure of the response curves

of § 4, Part II.

2.6 Conclusions

Several of the qualitative conclusions, which have been identified
separately in the above literature review, are drawn together in the study
discussed in Parts I and II. This is not to say that the detailed results
obtained in the present report may be found elsewhere, but rather that the
principal conclusions reached have parallels in a variety of previous studies,
For example, in Part I, it issiown that the interaction of incident surface waves

with an infinite number of sinusoidal undulations on the bed produces two new
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waves, whose wave numbers are the sum and difference of those of the incident waves
and the bede A very similar conclusion to this has been reached by Baines (1971),
but in a rather different context. Again, in Part II, the reflection of surface
waves by a limited patch of undulations on the bed is found to depend upon the ratio
of the surface wavelength to both the bottom wavelength, and also the length of the
patch. The importance of the first of these ratios has been identified by, for
example, McGoldrick (1968), and the second by Jeffreys (1944), Wewman (1965b) and
Mei and Black (1969), but in none of these studies have the combined effects of
patch length and bottom wavelength been explored. In the context of the
implications of the results for sediment transport studies, such combined effects
have a clear physical relevance, and it is one of the aims of this report to
indicate their possible importance in relation to the growth or destruction of

undulations on the bed.
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PART T  THE WAVE-INDUCED FLOW OVER SEABED TOPOGRAPHY

§1. INTRODUCTION

The aim of Part I is to use linear theory to calculate the wave—induced flow
over prescribed seabed topography. The general approach adopted has been
described earlier. Briefly, we assume that the water is of constant mean depth,
but that the bed is rippled indefinitely in the direction of surface wave travel.
The surface wave crests are assumed to be parallel to the ripple crests, enabling
a two—dimensional problem to be solved for the velocity potential, and the steady
state resulis obtained are based on a perturbation expansion in powers of a small
parameter which is identified with ratios of the various length scales in the
problem. 1In this approach, bottom topography variations are regarded as small
perturbations on a plane surface, and the boundary condition is linearized in the
usual way. Hence, from the condition that the component of fluid velocity normal
to the bed must vanish on the boundary, the interaction between the (first order)
flow, which would be present without the boundary perturbations, and the
perturbations themselves, is treated as a new source of (second order) fluid
motion situated on the plane surface. Although the problem tackled in Part I is
physically unrealistic in the sense that the number of ripples on the bed is
infinite, and improperly posed mathematically from the point of view of
satisfying the radiation condition, it is suggested that the solution obtained
provides a simple way of calculating the flow field over a variety of ripples and
dunes, given the water depth, and surface wave period and amplitude, and provided
that the bed wavelength is rather less than half the surface wavelength, If this
restriction is not complied with, the solution in Part I is not uniformly valid
in the ratio of the two wavelengths. However in Part II, where the problem is
well posed mathematically, this restriction is relaxed.

The solution given is important in considering sediment transport on
erodible beds (Davies and Wilkinson (1979)), and may be important also in
providing an understanding of the mechanism of formation of certain features of
relatively long wavelength on the bed., It is suggested that such features may.
arise from a resonant interaction between the undulating bed and the water
surface. However this report is not concerned with the detailed sediment transport
processes involved in the formation of such bed features.

In § 2. the use of linear theory is justified by reference to previously
published results concerning the flow over ripples of finite amplitude. 1In g 3.

the formulation is described, and first and second order solutions are presented
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for a sinusoidally rippled bed. Tk: limitations on these solutions are

discussed, and examples are given which display the velocity field in the interior
of the fluid and at the bed surface. These results are then compared both with
equivalent "deep flow" results in order to assess the influence of the presence of
the ‘ree water surface, and with results based on the local water depth (assuming
an otherwise flat bed) in order to evaluate the importance of ripple steepness

and shape, in association with depth, in determining seabed velocity amplitudes.
‘u §‘4. wave energy fluxes are examined for the first two terms of the small
parameter expansion, and the resonant interaction between the water surface and
the seabed is considered. 1In S 5. the third order term of the solution is
presented, mainly with a view to determining the limitations on the second order
solution. In §'6. the second order solutions are applied in two limiting
practical cases, namely sand ripples on the seabed in "deep flow" and sandwaves

in "shallow flow". In each case the bed surface is represented in Fourier series
form, and surface velocity amplitudes are calculated over the simulated profiles.
Finally, in §7¢1 the implications of the resonant interaction between the water

surface and the bed are discussed in the event of the bed surface being erodible.

§ 5, JUSTIFICATION FOR THE USE OF THE LINEARIZED EQUATIONS

The model which has been proposed by Davies (1979) enables the exact
prediction of the ndeep flow" above prescribed bottom undulations of finite
amplitude. In this approach, a uniform flow is perturbed by the introduction
of a repeated pattern of discrete singularities, having strengths chosen such that
one of the stream lines of the resulting motion takes the shape of the prescribed
profile. The solution then enables the prediction of the velocity field close to
the bed, in relation to the unperturbed free stream flow. It was thought
important to establish, at the outset of the present study, whether similar results
are obtained from an analysis in which the bed is assumed to be of small
amplitude. Milne=Thomson (1968, Section 15,40) has given a solution for deep
steady flow, bounded by a sinuscidal surface along the % = axis, having velocity

potential

_dy

G = -Ux -bUe ™ sin(4e) Q)

where the coordinate axes are as defined in Fig 2, t) is the unperturbed free
stream velocity, 6 is the ripple amplitude and ( = AT {ripple wa.velength} N
The velocity components are taken as (-¢i y - gg ), and so the unperturbed
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flow is in the positive direction of & . To the order of approximation

adopted, the bed surface Yy = ‘jb is given by

y, = b cos (L) (2)

The solution is based on a linearized kinematical boundary condition which is
applied at the mean bed level Y = O , and the approximation involved in
obtaining (1) on this basis can be illustrated by noting that the horizontal
surface velocities at the ripple crest (U—") and trough (u'tr positions, where

the horizontal velocity takes its extreme values in the flow, are

ug;"U(l:L’D (3)

In Fig 1, u'cyu and U"to/U from (3) are plotted against the ripple steepness
( bf ), together with exact results from Davies (1979) for a sinusoidal bed of
finite amplitude. It can be seen that, at both crest and trough positions, good
agreement exists between the solutions at small (6'( ) Differences arise at
larger values of ( A{ )y the linearized solution slightly overestimating
departures from the unperturbed stream speed at both crest and trough positions.
However the agreement is quite good enough to justify proceeding with a
linearized analysis in the present free surface problem, since the upper bound

of natural ripple steepness is about 0.2 -1 .

Although the flow given by (1) is steady, it is permissible to regard U as the
velocity amplitude in the context of a deep oscillatory flow, since time may be
introduced as a parameter in the deep flow solution. Thereby, a basis is secured
for comparisons with the theory to follow and, in fact, Eq (3) is used later as a
means of determining the influence of water depth on velocity close to the

seabed,

§3. STATEMENT OF THE PROBLEM

The seabed is assumed to be composed of periodic two~dimensional ripples
extending indefinitely in the positive and negative 2% —directions, as shown in the
definition sketch in Fig 2. It is assumed that the mean water depth is { and
that the flow is irrotationalso that Laplace's equation is satisfied in @ by
the velocity potential ¢ s

vz¢ = 0 in @ (4)
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Model results for a sinusoidal
ripple of finite amplitude

Ripple Steepness(bl)

Fig 1 Surface velocities at the crest and trough of a purely sinusoidal ripplc
in deep flow plotted against ripple steepness (6() Results from smali
amplitude theory (Eg (3)) are compared with results from the finite ripple
amplitude model of Davies (1979).
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The departure of the water surface from its mean position is taken as 7(x,t)
ard that of the bed surface from its mean level as ‘g(-x) .
The method of solution adopted is a small parameter expansion, which enables

a basic hierarchy to be established in each of ¢ ’ ? and \S , as followss

g‘:acqf P R K IR (5)

=« » *"27,,*"‘373*""' (6)
€ = x %, +oc1§,,+x3‘$’,+----- (7)

The use of the same small parameter & in each of the above equations is not
too restrictive, nor, as will be seen later, is it unreasonable to take the
highest term in each expansion ! to be O(O() . The small parameter & is
identified with the physical parameters in the problem later.

The boundary conditions are
#7 7 o) on G' (kinematical condition) (8)

37 ¢+— (¢ ): on G' (pressure condition) (9)
and - é ‘gx - é = 0O on @2. (kinematical condition) (10)

Tn practice these conditions are satisfied at the mean water surface and bed
levels, Y = { and Y4 =0 respectively, by way of the introduction of the

following Taylor expansions

¢l + 7 Eé + _Z az{ 4 e oo .

5=i-z fc 9lg 2L B¢ty

¢ l == ¢ +* 'S aﬁ + _ix ié_ = o 000
9= ° a‘j o 2! asz’o

se of (5)=(7) permits their further expansion in powers of & , for example

el ) -l )

lg‘z ly\,+7

1 . .
For a discussion of the small parameter expansion method in surface wave problems
see Stoker (1957), Chapter 2,
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By substituting this and the similar expansion for ¢ , together with
(5), (6) and (7), into Egs (4), (8), (9) and (10), the orig“i‘rilal problem can be
broken down into a series of problems, the first to order & , the second to
order & , and so on.

Since this study is concerned with the interaction of progressing surface

waves with a rippled seabed, it is assumed that
7 = @& smn (kx—c-t> (11)
'

corresponding to waves of amplitude @ , frequency ¢ and wavenumber k

travelling in the positive direction of 2« , and that

X, = b cws(¥e+$) (12)

where { is the wavenumber Of sinusoidal bedforms, A is their amplitude and 8

is an arbitrary phase angle. This completes the statement of the problem.

3.1 Solution of the first order problem
If Eq (5) is substituted into (4), then to order X

V"é = O in o<‘1<{ (13)

Similarly the boundary conditions O(x) at the free surface ( 'J = f) are

9¢$

9t = O from (8)

37 aé = 0 from (9)

and so 3 até = O onn:f (12)

At the bed, from (10),

3¢,
ﬁ = O on Y= o (15)

It will be noted that no terms of (7) appear in the problem O(N) and that

the solution corresponding to (11) is

$ = wiim ety s (beot) (16)
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where & 1s related to % and R by the dispersion relation
2 .

The limitations on (16) are discussed later.

2.2 The second order problem
z

The soverning equation to order & is

2
V¢L = Q0 in O<‘3<£ (18)

and from (8)-(10) the boundary conditions are

94 9
% _Z 73_;_{ 87‘=0 on 3=i (19)

7. - ¢ 7&&6*5*' ) ( } O w  4=% ()

_94 3%, 34, , ¢ 4
Ix Ix 4 dy*

= O on 4y=0 (21)

If the bed is flat the solution of the problem 67689 (Stokes? theory at
tiie second order of approximation) is well known (see, for example, Peregrine
(1972)). It is convenient, therefore, to subdivide the present problem into this
well known one, which will be denoted by a superscript (1), and a complementary
problem, which is of main interest in the present report and which will be denoted

by a superscript (2). So writing

AR

and Z' ol

(%)
ANRA

Problem 1 is taken as

vlé(l) -0 . O<\3<£ (18a)

97" 54 27, 29, .. I _

- ___..__O on 5

ot ox x dy f anx. i (19a)
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3?,, d“'Z 320.3 * 'z{(i—fy"'(i—f')z} =0 o j=f (20a)

(O]
Qé, =0 moY = O (21a)
94

This problem is to do with the steepening of waves at the free surface, above

a bed which is flat. It is important to note that the dispersion relation (17) is
s$ill valid here, but that in the equivalent "surface problem" O (0(‘) this is
no longer the case.

Problem 2 is then as followss

@
vbé -0 in O<n<£. (18b)
(2)
9n°, 9P _ . on  q=X (1)
ot )

(=)
9 7 J | on 4= f (20b)

_ 24 2%, a_df_h CX
ox Idx Y ' 33"'

This second problem has the same boundary conditions at the free surface as
the problem O(M) y while in (21b) the effect of the rippled bed comes through
for the first time; that is, Egs (18b)=~ (21b) for the perturbation potential ¢(&)
contain the interaction of the first order solution ¢' y &iven by (16), with
the prescribed bedforms O(M) given by ‘5, .

on 3 = O (21b)

33 Solution of Problem 1

This well known solution can be quoted without derivation as

Q) 2
- __é_a_'i.:.___ s k ;n, éx—d’t
é 8 sih* hh coth (2 U) ’ 2( ' > (22)

The vertical attenuation of éf) is more pronounced than that of # s but the

phase speed of the wave is the same as that of ) « The surface elevation

corresponding to (22), and given by (20a), is

O GR cosh (RA) (6“4 (264)+ 2)
Z. -~ & TN cosZ(/ez—o—t) (23)
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which, in combination with (11), can be seen to lead to a steepening of the wave

crests and a flattening of the troughs.

3.4 Solution of Problem 2
From the substitution of Egs (11) and (16) in (21b), it can be seen that the

solution for gé?)must contain periodic terms
~ ws(((-rh)x-—o't + é) and ~ cos (({-k)x + ot + 5)

The governing equation (18b) is then satisfied if each of these terms is
multiplied by an appropriate attenuation expression. The remaining arbitrary
constants can be determined from the surface boundary conditions (19b) and (20Db).

The resulting solution is

(2) ECta- -
é = 2 ,.'..L _(TU\) g ‘A ((*k.,o'; 'j)m(((+k)x-ct+§)+A({;k_, o',s) w0S (((—k)x+qt:5)}
24

in which the attenuation térm is .
Arre ) o SFcosk Golso2) o ssink (r (32D
A s cosh (+%) - 3+s.'.‘L(,~-4)

Like (22), the velocity potential (24) is associated with a deformation of

the free surface, which is given from (20b) by

(L)__ba.oa | ek o L) sm((frR)x -0t +8)+ AL sml(-B)x + 9
Z_ - ZSS;Hk(kh){A({k’ "‘) (({ k‘) ot 8) A(‘(k,d‘,f) (({k) O‘t )} (25)

Since the velocity potential (24) is attenuated upwards from the bed, Zifn
will generally make a very small contribution to the surface elevation.
For t3>k» the attenuation terms in (24) can be seen to reduce to

~ cosh \.’(j- {)/sfn‘. ((L),which may be contrasted directly with the downward
attenuation terms in gﬂ and ¢af{

In general, the solution (24) can be seen %o comprise two new waves with
wavenumbers which are the sum and difference of those of the incident wave and the
bottom undulations. The sum wave is always in the onwards transmitted direction,
whereas the difference wave may travel in either direction and is back reflected
if the incident wavelength is sufficiently long (see § 4e)e. At the changeover
point ( f?= k, ), the difference wave has infinite wavelength and the energy flux
associated with it vanishes (ie the second terms on the right hand sides of both
(24) and (25) are zero). The difference wave tends to be long, and is always

longer than the wavelength of the sinusoidal bed. 1In all these respects, the
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present result is qualitatively similar to that of Baines (1971). It may be
noted also that both (24) and (25) are singular when

O’z cosk(‘(tk) i = 9 ('{ 2‘%) s;nk (Jth.)'{

that is when ‘! = = Zk. The physically admissible case is ‘( = 2k y in
the neighbourhood of which the solution éﬂ) must break down. This is

discussed later.

3.5 Limitations on the first order solution

It is well known that, if the bed is flat, the solution O(ﬂ) y ie Egq (16),
is valid if ok << | and o'/{‘ << | (see Peregrine (1972)). These

restrictions arise on account of the terms which are dropped in linearizing

the boundary conditions. However, if kl\_ << | s there is a further
restriction on the solution O (k) « This follows from the clear
requirement of the present method that l¢:’/¢ << l and, using
t
(16) and (22), can be expressed
Qa
- 8
WE << =Y (26)

The term on the left hand side of (26) is called the Ursell parameter,
after its importance was first noted by Ursell (1953).

Similar conditions arise in the present problem as a result of the
undulations on the bottom boundary. In the first approximation O(x)
certain terms were dropped in writing condition (15). In particular, it was

assumed that

¢, 4
! » a—é' AT and | 91 s
0y ox Ix ' oy
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which imply that

A‘( << I and bk << | (27)

The first of these is a condition on the ripple steepness, into which we
can gain further insight by recalling Figure 1. Here it was shown that, for
deep flow, the effect on the results of linearizing the boundary condition is
small if L{ X Ol 1 . The second condition is perhaps less expected in
that it concerns the ratio of ripple amplitude to surface wavelength. In fact,
a more stringent condition on arises as a result of a further Ursell~

("/¢t << | .« From Egs (16) and (24) this

type condition, namely

condition is that

%A({rk,%a)‘ << | in o<y<¥ (28)

in which the plus and minus signs relate to the first and second terms on
the right hand side of (24) respectively. It should be noted that, whereas

the condition leading to (26) is valid at all phase angles of the wave cycle,

¢/¢ <<| . wen g=0 a
(kx—a’t) = "'“/2_ : 3/8 3 seeesey it can be seen from (24) that ¢(2—)

takes a non—zero value unless ({x...é) O,rw , * 2« g sesseey

this is not strictly true of the condition

implying a position in the flow above either a ripple crest or a trough. In
this ‘respect, condition (28) is not as all-embracing as (26). At phase angles
other than those corresponding to ¢, ~ O s it is possible to ensure that
condition (28) is satisfied, however. In the limiting case ‘(>> k

condition (28) reduces to

ézi << tank (L) (29)
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while, in the case & »» y the denominators of the terms A(‘(ik, o',':))
are small (and, ultimately, zero as (/h,——) o ) It follows that the analysis
is not valid if R wp» €.

Condition (28) and, more obviously, condition (29) can be viewed as providing
a restriction on the ratio of ripple amplitude to water depth (in other words, a
condition comparable with a’/{, << | above). Tor small ¢4 y (29) gives
% << 2%_ which is a weak restriction in view of the fact that \-€>>k,
in this limiting case. The full condition (28) must be used to cover this aspect,
therefore, and intuition suggests that b/i must be small in practice.

For large Vﬁ » the waves behave nonlinearly (see § 6.2, Part I1I, and also
Jolas (1960) and Longuet-Higgins (1977)).

In conclusion, it has been shown here that in addition to three conditions
relating @ , kR anda ¥ y there are two further conditions given by (27) and
(28) which arise upon the introduction of a sinusoidally rippled bed defined by
the parameters 6 and '[ .

3.6 Results to second order for the Velocity Field
The velocity components (W ,w ) are given by ( - ¢x s -#j )y and the
horizontal velocity components corresponding to (16), (22) and (24) are as

follows

w,o =, ceshly) o (p_of)

" cosh (kh) (30)

uw = -3ak \ cosh (k) ., kx-ot 31)
2 U""" (zs;..x.,'(/uf) Sinks (zk:) y sz( °> (

uy’ =U., Gt a - (A (Bhonsin (ebre-ot 4 5)
+ (‘(—k)A((—k.,o',td)sfn ((f—k)x +o't+5)} (32)

where Um” = ga% is the amplitude of the horizontal velocity at the water
surface in the solution O(K) » The vertical attenuation of u/u is

fixed if ( k.k ) is known, but to compare the vertical profiles of }Tg;izon‘tal
velocity given by (30)-(32), it is necessary to further specify f ’ G.k ’ b¢
and ‘fA « The vertical profiles in Fig 3 show the amplitudes of U-./Um )
LL(;')/UM“ and u-gyUM., , for the case % = 10 m, ak - Ouly ki = 1.0,

L€ = nﬂo and YA = Am . These bedforms have the height and wavelength
of typical megaripples on the seabed (Langhorne (1978))e The downward

attenuation of u’/Um is accompanied by an even more pPronounced downward
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Fig 3 Vertical profilff of horizontal velocity amplitude corresponding to the
1)

solutions w,, &Y and Wy for the case X¥= 1om, R% = 1.0, @k = 0.1,
b¢ = 0.1 and ¢4 = 2w . FEach solution has been normalised by J max.

T1°° Crest-crest
Trough- trough ———— X
Trough- crest
Crest-trough
[ A i L 1 1 015 il A A i I} 1 I OI5 N 1TO A n 1 1 Ii
"o Umax

Fig 4 Linear combinations of the profiles shown in Fig 3 for four extreme cases
designated (i) 'crest - crest' at the instant when a surface wave crest is
above the ripple crest; (ii) 'crest — trough' when a surface crest is
above a ripple trough; (iiil) 'trough - crest' when a surface trough is
above a ripple crest; and (iv) 'trough — trough' when a surface trough is
above a ripple trough.
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attenuation of the small term U'i')/Um . The term o) Uwmae is
attenuated upwards, and its effect can be seen to extend almost to the free
surface. The linear combinations of these curves corresponding to the flows
beneath the crests and troughs of the surface waves, and above both crest and
trough positions on the bed, are of particular interest. The three curves shown
in Fig 3 lead to the four extreme velocity profiles shown in Fig 4. Clearly, the
presence of the ripples has a major influence on the flow velocities near the bed.
In Fig 5, the velocity at the bed surface itself is shown as a function of phase
angle in the wave cycle, firstly at a ripple crest position (Fig 5(i)), secondly
at a mean level position (F&ngii», and thirdly at a ripple trough position
(Fig 5(iii)). Although the bed velocity is dominated by the solution O (&) , the
solution of problem 2, CJ(u?), provides an important perturbing influence in the
final result in cases (i) and (iii). The difference between the horizontal surface
velocity, shown in Fig 5(i—iiiL and the tangential surface velocity is generally
small, In Fig 5(iv) curves are shown of the horizontal, vertical and tangential
velocity for a point on the bed surface at its mean level (coefe Fig 5(ii)). Here
the vertical velocity is at its greatest, but its influence on the total

velocity is very small.

3.7 The Influence of the Free Surface

From results of the type shown in Figs 3-5 it is possible to assess the
effect of flow depth on the horizontal velocity at the bed surface., In
particular, it is possible to assess the accuracy of the use of deep flow results
of the type shown in Fig 1, when there is a free water surface at 4 = i .

The problem of determining the height of influence of undulations above the
bed surface has been examined by Davies (1979) for bedforms of finite amplitude.
This height of influence g y defined as the height above the bed at which the
perturbation to the free stream velocity drops to 1% of the perturbation at the
bed surface, has been found to be about 0.6 L above a crest and 0.8 L above a
trough, where L is the wavelength of the bedforms. In other words, the effects
of the bedforms are confined to a layer which is of thickness less than one
wavelength above the bed surface. This result was found to be essentially the
same for sinusoidal bedforms and for profiles of real sand ripples having strongly
peaked crests, and longer and flatter troughs, than a sine wave. In terms of the
linearized analys1s for deep flow based on the velocity potential (1), the
thickness g can be shown on the above definition to be given by c'eﬂ = 04,01
or 4 =0.733C .

As a general rule it might be expected that deep flow results are accurate if
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Normalized bed velocities during a complete surface wave cycle for the case
A= 10m, Rh = 1.0, @k = 0.1, bl = 0.1 and €A = 27 . Fig 5 (i) shows
the horizontal velocity, together with its constituent parts, at a ripple
crest (fx+d = 0); Fig 5 (ii) shows corresponding results at a mean level
position (¥x+d =T/ ); and Fig 5 (iii) shows corresponding results at a
trough position (¥x+8 =T). Fig 5 (iv) shows both the horizontal and
vertical components, and the total tangential velocity at a point on the bed
surface where ¥x+d =T/2 .
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Fig 5 (iii)
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a < i , and this can be shown to be so as follows. For deep flow, the
ratio W = u.C,AJ (= (1 + b{ ) from (3)) has been compared with the

corresponding ratio 3 for the free surface problem at the same bedform

steepness, namely

litude ( ) )
Amplitude W, + W, surface crest

F o

2 Amplitude ( W, )

surface crest

(It is not relevant to include a contribution from LL;? in the numerator of 1"',’
gsince the interaction of the solution O(M) with the bed is contained entirely
within problem 2, O (M‘) » Nor is it necessary to consider the troughs rather
than the crests in calculating ¥+, and ¥, , since the same results are
obtained. )

The procedure adopted has been to examine the quotient R = 'r% g Over
full ranges of the parameters in the problem, significant departures of R from
unity indicating the inapplicability of the deep flow result. Generally, the
departures which arise are such that R.?l s showing that the deep flow result
underestimates the velocity at the bed. For :/{'< 2, | « Rel-0l, unless
{z 2k y and so the bed velocities on the two oalcula,tEns are in agreement
to within 1%, thus confirming g< {; « However, for Lv/ﬁ » 2 quite large
differences start to arise., This is illustrated in Fig 6 in which contours of

R are plotted for the special case of % = 4 m and 6(: "‘/20 s On a graph
having axes (% ,?/ﬂ) y Where ), ='2‘17k, + these axes are used rather than
(\(‘, kﬂ) in order to emphasise the present point of discussion. Although
the assumptions underpinning the theory start to break down in various ways where
the contours are dashed, it can be seen that without extrapolating too
unreasonably into the dashed region, the deep flow results can underestimate the
actual bed velocity by 10% if /‘/ﬂ is of the order 7 . This substantial
discrepancy lends emphasis to the importance of checking -Z/ﬁ before using a
deep flow result. The condition of resonance ‘( = Ak causes R to be
singular on the straight line shown in Fig 63 +this aspect of the solution is

discussed in detail later.

3.8 The Accuracy of a quasi=uniform flow assumption

In considering the propagation of surface waves above sa,ndlv_aves, that is
bedforms having wavelength much greater than the water depth (L/(_ > ') y 1t is
tempting to make calculations of the velocity field based upon the local water

depth. It is useful to know, therefore, whether adopting the local depth, from

iy
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Fig 6 Contours of the ratio R for the case { = bm and A{ = 0.057 .,
Where the contours are dashed either “,kAI)o-z or b/‘ >0.2 .
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the mean water level to the bed surface, in the solution O(K) gives

approximately the same result as the full analysis O(M‘) e« For deep flow

(Z/{ < | ) there will be large differences between the two cases, the
quasi-uniform solution predicting a minimal variation in the bed velocity over a
ripple wavelength, and the full analysis predicting substantial variations of the
type shown in Figs 3-5. However, for shallow flow with Z/i »» | , the picture

is rather different in that calculations based on a quasi-uniform assumption will
be in muchcloser agreement with the solution O(M‘) +» This can be illustrated by
defining a ratio S of the differences between the horizontal velocities at

crest and trough positions on the bed surface given by the iwo arguments, namely

S _ [Amplitude( W, ) =~- Amplitude ( W, )]o(u_‘)

[Amplitude ( W, ) ~ Amplitude ( U”kr )] quasi~uniform

If ‘(% Zk, , this ratio is generally greater than unity for sinusoidal
ripples, as can be seen in Fig 7(i) where contours of s are plotted for the
particular case of i: 16 m and A(: '""/20 .« For small Z/i s the values of S
are quite large,as anticipated, indicating that the quasi-uniform assumption is
not at all adequate. AS% increases the value of S steadily falls at any
given value of }V{ , apart from in the neighbourhood of the singularity Y= 2k .
For large L/{ N S tends to unity indicating that the quasi-uniform assumption
provides a reasonable first approximation for the velocities at the seabed.

(The contours in Fig 7 are once again dashed where the assumptions upon which the
theory is based start to become questionable.) In view of the rather complicated
nature of the curves shown in Fig 7(i), it is not possible to state a single
value of ‘(/f above which the quasi=uniform assumption is valid. TFEach case must
be treated on its merits.

This point is reinforced by the curves of S shown in Fig 7(ii) for three
particular values of '),/ﬂ corresponding to waves of period 6, 10 and 14 sec. 1In
the first case (T=6 sec), S tends to its terminal value unity, interrupted only
in the neighbourhood of the point of resonance at ly/i = 1.675. The remaining
curves show similar tendencies, although the effects of the resonance are
relatively more widespread int/ﬁ on either side of the respective critical

values r/t = 3.493 (T=10 sec) and Z/‘ = 5.180 (T=14 sec).
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(ii) Values of, S plotted againstz'/‘ for three fixed values of 7\;/{
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§ 4. ENERGY FLUXES

Fach of the velocity potential terms é , é(') and é(z) is
associated with a deformation of the free surface and with particle motions in
the interior of the fluid. Hence the potential (.\/; ) and the kinetic (‘T;)
energies can be calculated for each terms The energy flux can also be calculated
and hence the propagation velocity of the energy can be deduced., The average
potential (\/E) and kinetic (T) energy densities per unit area of the water

surface are given by

—\Z = jéq j sz(area) and T = féc‘w(ul-r'vt) o (volume)

where cw is the water density. These integrals have been evaluated per unit

width of the wave front, the overbar denoting spatial averaging in the

direction of wave propagation. The total energy density per unit area is given

byﬁ V.a--r.'.

The energy flux, or rate of doing work by the wavetrain, per unit width of
wave front, is expressed

| b ay

where ,‘ is the subsurface water pressure and where the integration is made from

the bed to the water surface. Hence the speed of energy propagation is given by

o d—w amp——
S dt A

Preserving the earlier suffix notation, the results are as followss

for ¢
f 2

E=+1¢19% (33)
an, _ - '
51 =z G 3% Sinh (2kh) 8 (2"’* £) (34)

for % ©
2 P

5:, =;’-f g ( a"f,k“)z{4@:&(&)*4««:&(&) +19 mA,z(u.) - ?} (35)

AW _ g Y B (kk, £) n
prranlintal 76 2 sink®* (Rb) { 2 sink(kR) siah 2R & } (36)

where ( S) {ka(*“) }
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and for é(&)

§=i€” 3[{D(l+h)f+ {D({.h_)ﬂd— 3L, [{p((m}‘ﬁ(&m{m((.k)fr((-k)] (37)

;_”“L &, {DULB} G(¢ek) - £, {D(L-RF G(L-R) (38)

where - bak g+ )
D 2 cosh (RR) \ % cosh (*h) - g+sink (+4)

F(®)= (%%) sinh (2+%) + 29 (1= cosh (2+‘0>
G(H=- { @2;)1 B(2+2) - g6 sk *(+4) + _%" 3(24»,-{)}

2o+

In the calculation of 6;? » Egs (22) and (23) have been used, and the
(1) %
subsurface pressure ﬁa. in the expression for dN: has been given by

» " . 5 9
ek (CIRE)

Similarly, in the calculation of £f‘s s Egs (24) and (25) have been used, with
the subsurface pressure /6:") in the expression for szw given by

Iblu Qéi") adt
e, ot

It might be noted that, from Eqs (33)and (34), the familiar expression for
the group velocity of waves in water of intermediate depth can be obtained.

The wave energy fluxes have been contrasted by comparing (34), (36) and
(38), and a typical example of the results is shown in Fig 8. Here a logarithmic
scale has been used for energy flux on account of the large differences in

’

Iul !
magnitude between the terms plotted. It can be seen that d'a._:" » d.N&
and this is generally so for all acceptably small values of steepness ( Qka ).

Both of these fluxes are in the direction of wave travel and both are independent

of ripple wave number { y which—s—plotted—on—the—abseissms The feature of
interest is clearly the energy flux d_& which, while being small and in the
opposite direction to that of the othé.;ttems for {) k y has a singular
behaviour at ‘(=2h. « This singularity was discussed earlier in relation to
Eg (25) and its physical interpretation is discussed in the next section.

Clearly, in the neighbourhoood of the singularity, the analysis must break down,

with the waves steepening and possibly breaking. However, where dw;) o dN.
dt ot
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much of the incident wave energy might be expected to be reflected by the
bedforms, and although the present analysis is unrealistic 1in that the bed is
assumed to be of infinite horizontal extent, there are possible implications in

this for coastal protection.

4.1 The resonant interaction at ‘/= 2R
It was pointed out earlier that 72{0 y &lven by Eq (25), is singular when
‘( =2 Zk/ + In particular, the first term of this solution achieves a

resonance when ‘( =-2k s at which
sin ((€ek)x —0t 4+ 8) — 5 gt (chu— ot §)
and the second term is resonant when ’(= +2R y at which

S;A.(((-k,)x + ot +3) ——> Sin (k.x-o-o't + 5)

Although it is only the latter case which is physically admissible, it
can be seen that both conditions of resonance correspond to waves progressing in
the negative o¢ - direction, as expected from the conclusion of the previous

. - dw(zs
section concerning the energy flux —Na,

—E o Close to the point of resonance
- 2k,,< € , & small), the superimposition of ?:") and the primary

(ie
oscillation 7: = Q S;m(kx-dt) produces a partially progressing and partially
standing wave structure in the surface elevation. In fact, for a suitable choice
of wave and ripple parameters, a predominantly standing wave structure can result
at the free surface, It might be expected on the basis of the earlier arguments
that, in the interior of the fluid, the particle motions would not be those of g
standing wave in the usual sense, on account of the downward and upward.
attenuations of the respective solutions ¢, and df') « However, the
attenuation expression in the numerator of the second term of Eg (24) reduces
for (=+Zk¢ to ~ cosh (k'ﬁ) upon using the dispersion relation. Thus the
attenuation of #a,) 1s the same as that of ¢. y namely a downward
attenuation from the free surface, rather than the upward attenuation found
generally for df') « Close to the resonance point this behaviour is still
evident.

Depending upon whether {-S 2k or >,-2k, y distinct differences arise in the
velocity field throughout the flow. Although the theory is liable to inaccuracy

in the examples now taken to illustrate this, since ,él > |¢;l y 1t is

instructive to examine cases in Whiohld%[ﬁldwa%, » For example,
if = 10 m, é‘( = 1,0, ak = 0.1, A{z 0.2 and €& 2 2.0 the above condition is

satisfied approximately by '(/k = 1.984 and 2,016 and, to illuminate some of the
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later discussion, results are now presented of the horizontal velocities at the
bed surface (cf Pigs 5(i) and (iii)). Firstly, in Figs 9(i) and 9(ii), the
horizontal surface velocities are shown as functions of time through a wave
cycle for '{/k_ = 1.984 at (i) the crest and (ii) the trough positions on the bed
surface. At the crest, the total horizontal velocity can be seen to be small at
all phase angles due to the cancellation of W, and LL(:_') « At the trough, these
two componén-ts reinforce one another to produce a much enhanced total bed
velocity. For % = 2,016 the picture is rather different as a result of the
T - phase shift in éfz) + Now, in Figs 9(iii) and 9(iv), it can be seen that
the superimposition of &, and u.‘,f’) produces a much enhanced velocity at the
crest position, and a much reduced velocity at the trough position. So, close
to the point of resonance, the general picture to emerge is of a weak
horizontal velocity fluctuation above the ripple crest if ‘(5 2k and a strong
fluctuation if {}Zk, o Conversely, at the trough, there is a strong
horizontal fluctuation if ‘/5 2k and a weak fluctuation if € >2k . The
possible sedimentological consequences of this, for cases in which the bed is
erodible, are discussed later,

The type of resonant interaction described above is found quite commonly in
related fields. For example, Rhines and Bretherton (1973) have found such a
resonance in their study of planetary waves over a sinusoidally undulating ocean
floor. In particular, they have shown how two Rossby waves of the same frequency
trade energy back and forth "via a catalytic Fourier component of the depth™,
Rhines and Bretherton also describe briefly an analogy in solid state physics,
concerning the vibration of regular atomic lattices. In this case the scattering
of projected high energy particles is strongest when resonance between the
incident wave function and the lattice periodicity is satisfied. A special case

of this is Bragg reflection of X=rays from a crystal plahne.

§5. THE THIRD ORDER PROBLEM

The formulation of the problem and the solution O(OC;) are discussed now
mainly with a view to establishing further conditions of Ursell-type, based on the
terms of ¢z and é « The only part of the solution which is stated here is
to do with the interaction O(OC’) between the lower order solutions for
velocity potential, %’ and é ¢ and the bed surface given by ‘§f and fz .

In other words, this is the extension to third order of Problem 2, O(O(") « The
remaining part of the solution, which provides the next approximation at the free

surface and which is the extension of Problem 1, O(DC‘) . is not discussed here
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since the dispersion relation (17) is valid in the present surface wave analysis
only to O(M‘).

Although two main points of interest about the solution O(K‘)a,re highlighted
here, the practical usefulness of the velocity potential ¢(2) is in some doubt,
as can be illustrated by considering the solution CD(“}) for steady deep flow over
sinusoidal bedforms. By a simple extension of the earlier argument, the peak

surface velocities in the horizontal direction are given (cf Eq (3)) by

U =U(l=be +(e)) (39)

If By (39) is compared with the finite amplitude model results of Davies (1979)
shown in Fig 1, there is rather poor agreement at both crest and trough positions.
In fact, the agreement between Eq (3), which is plotted in Fig 1, and the model
results is much better than the agreement between Eq (39) and the model results
at all but very small values of (6'6) » This suggests that, while the solution
O(M‘) can be used to clarify the limitations on the earlier analysis, an
improvement in accuracy is not likely to be achieved by the inclusion of the small
terms given in Egs (43)=(46).

Using the superscript (2) in the sense in which it was used in Eqs (18b)=(210),
the problem O("-‘) can be stated as follows:

\val Séw= o in 0<y-= £ (40)
(] 2 /(2)
3 a_¢3_ + a_¢?_ =0 on 3 - f (41)
Iy ot
= aé a\sa"" a¢ - azd‘ 3—s_' a¢(”)* 9"¢l - ﬁ-ﬁ—'- r &. = O
a_; -3_;— {5;-& ‘g' Bx_ay}ax +{3_1- r‘s—{ \S:L aﬂz zx. adg} (42)
3 4 3
on =0

While the same boundary condition is satisfied at the free surface as in Eg (14),
the interaction of both é and é’ with the rippled bed represented by g

. ) £
and ‘§z can be seen in Kq (M). The solution for é comprises the sum of

the following terms

(z)_ 3 a,‘“!.c' { A - .
9‘;. T Sty A (€28, 20,9) sinf(628)x -2 + 8}
A (EBZrg)sn f(E20e-20t 48| ()

: "
which expresses the interaction of é with g| ¢ and
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“ = ___bza' - o cos(bx - o
921 = 22 (Lo« HILBF Ak 0,) cos (hn - o) (44)

‘”-_ﬁ_..[ LA 24k cos (26 b)x - ot «
q{s = a HOLRY A (2¢0k, 0, 9) cos {(26ek0x - ot + 25}

~H{L-R)A(2¢-k, 0, ) o {(21-'!)* +°**25§] (45)

which express the interaction of ¢(1) with '{, s Where
2
H(#) = +18+ cosh (+8) - o® sk (+A)}
ctrcosh (+£) - q+ sinh (+¥£)
The remaining interaction is between ¢ and ”53. o If ‘Qz = b.cos (2.(,‘... 8,} .
which for 3* = 23 corresponds to a ripple profile (‘g,*-‘,) with a more

peaked crest and a longer flatter trough than ‘§' alone, the solution is
completed by the addition of
(2
¢ = - _—b‘ .ac' [A (2-{4-'1,0‘,@ cos {(2{+h.)x -ots+ 3. i
W 2 sinh (Rh)

-A(Z(—k;o,g) Cos{(z{’_h)x,.,-t .,,s*gl (46)

(2

The terms ¢3 s t =1, 4, provide small contributions compared with the
(3

terms in the solution O(oc") « Despite this, it is worth identifying where the

terms are singular and denoting these as points of weak resonance. Equation (43)

is singular if

(¢ 2 20) task (€ 2 2= 4k tak (kN (47)

For ki fanf(kf)z. 0.7 , a reasonable approximate solution of this equation is
¢ = £ 2k thhtash (ki) and so, for example, if X -10mand R =0.1m solutions
of Eg (47) are given by 9‘!, =+ 1.06 and + 5.06. The term ¢;:) has a weak
resonance if ‘( = + 2k » but, by virtue of the dispersion relation Eq (17), is
also resonant for all A on account of the term (3k swh (k&) - G"Cosk(kh))
in its denominator. This term can be viewed, therefore, as providing a feedback
of energy into the main motion given by é' ~ eOS(&z—e*) e The term da(:')
is resonant if “( =+ A or + 2/(_ y the former case corresponding to a
direct match between the surface wavelength and the ripple wavelengthe.

The only term of the d’?') which is used in the practical examples later in
this report is ¢:‘f:) , which can be seen also to be resonant if € = + Ao
From a comparison of Egqs (24) and (46), it is apparent that the terms z(z’ and
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L1 4
down solutions for the interaction of the main motion é with any harmonic

are of a similar type, and this similarity is utilized later in writing
constituent of the bed surface,

5.1 Limitdtions on the second order solution

Further conditions of Ursell-type can be obtained based on the fundamental

¢3/¢&| << | and, hence, more can be

understood about the nature of the small parameter o used at the outset to

requirement of the analysis that

establish the hierarchy of terms in the solution.
2 "
Firstly the term éf' ) must be small compared with ¢a. from which it is

derived and this leads to the condition, which is stated here for the limiting

case ‘(>>k °
bk << tat (€£) (¢ »k) (48)

This is slightly more restrictive than condition (29). Although it is not
strictly necessary to establish a similar condition in relation to é_m s 1t

is worth noting that such a condition is

T?t_’« =3 (RL  smat) (49)

This differs from (26) by a factor of two on the right hand side of the inequality.
2,

The terms é(:) and ¢3;") express the interaction of é_” and ‘{, y and they

must therefore be small in comparison with éﬂ) o This leads to the

requirement

62—{ Cosk('(f) << | (¢> R) (50)

)
22 by omitting the singular term on the right hand

(which has been derived for
side of Eq (44)).

The term ¢;:) expresses the interaction of % and ‘sz « A3 such, it
could have been obtained in the solution QO (OL‘) quite as readily as in the present
order of approximation, and this fact lies at the heart of the discussion in the
next section. For the present purpose, it 1s noted that it is not entirely
logical to require thatl ¢3f:')| <<| ¢£”| and, instead, we state as our bagsic
requirement only that | ¢3€:’/¢' |<< | .+ By the same reasoning as led to Eg (28),
this produces a fairly complicated condition but, in the limiting case 24 >>k

a simpler form (cf (29)) is obtained, namely
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b;" << tand (2¢£) (51)

It is now possible to see that the small parameter & , which was
introduced in Egs (5)—(7) to set up a basic hierarchy of terms in the solution,
is connected with the smallness of (%L”) ’ b¢ ’ bk (and b,.h-) . This
was evident earlier in considering the solution O(M‘) and is confirmed by the
results of the present section. It may be concluded, therefore, that the basic
hierarchy in the solution is established, at least for ‘(>7k y 1T conditions
(48)=(51) are satisfied. (These are generally rather stronger conditions than
those determined earlier in comparing 9‘; with Qé .) For Z’: C?(k) , full
conditions of the type (28) are needed. It is not necessary or possible to
identify © with any one of the above parameters, and it is not a requirement of

the method of analysis that this be done.

§6. APPLICATION OF THE METHOD TO NATURALLY OCCURRING SEABED TOPOGRAPHY

Sinusoidal variations for the bed profile of the type "§, = bc_gs((,‘,,,S)
provide a rather inadequate description of natural sand ripples on the seabed.
The addition of fz = 6’@5(2(,“.3*) s containing a contribution from the second
harmonic, improves matters in the way described earlier. In general, however, it
is necessary to provide a more accurate description of the ripple profile than is
possible with these two terms and, in this section, a simple extension of the
earlier results is described which is based on a Fourier series representation for
the ripple profile. ¥Tven though the coefficients in the series (ie constituent
ripple amplitudes) at the higher harmonics may be small, their effect on the flow
near the bed may be large since, as seen earlier, the effect of ripples depends not
on their amplitudes, but upon their steepnesses,

The earlier results can be generalised by taking at the outset

N
= Z b.. cos (m e + g,,,) (52)

mel
Following the comments in the previous section it is assumed here that the
only interactions of importance are those between_?,_ and d; « Therefore,
by extension of Egs (24) and (46), the solution é@ corresponding to —‘s—;
is taken as

¢m > isf&kk) A(m[...k,o',j)cos}(m[vok)x-et+S,,.§+A(m(-k,a',3)cos{(m(-k.)x+c(¢;;)&n}
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The choice of ﬁJ in Egq (52) mitst be governed by the steepnesses of the
harmonic constituents, such that the steepnesses of the /Vth and all higher
harmonics are small compared with the steepnesses of the lower harmonics. All the
harmonic constituents of importance are then retained in i%i . The solution (53)
is used in two practical applications, namely sand ripples in deep flow and

sandwaves in shallow flowe

6.1 Results for sand ripples in deep flow

The flow velocities above nine natural sand ripples are discussed here.

These were first examined by Davies (1979) in the context of a model of deep
nonseparating potential flow over ripples of finite amplitude. The profiles in
question were obtained in water of depth which was an order of magnitude greater
than the ripple wavelength (E/( g 0-2) and were evidently wave-generated,
being almost symmetrical about their crests. The ripple profiles were drawn out on
thin rigid sheets inserted into the seabed by divers, and were subsequently
digitized in the laboratory. For the finite amplitude model, each profile was
reduced to sixteen points ( N = 8 in By (52)) per ripple wavelength, and the
model then assumed the profiles to be repeated indefinitely in the positive and
negative directions of X . 1In this section, comparisons with these earlier
independent results are made using the velocity potential in Eq (53). The

choice N =8 is thought to give a good compromise between the preservation of
the important features of the ripple profiles, and the avoidance of concentrating
on fine details of little general interest. Such details have been partly
eliminated in the following examples by a smoothing procedure.

In the first place, each of the ripple profiles in Fig 10 has been
represented by thirty two equally spaced points per ripple wavelength, and any
slight asymmetry about each crest has been removed by a simple averaging
(ie Sn =0, m =1, N in Eg (52)). Next, each profile has been Fourier analyzed
using a Fast Fourier Transform routine, resulting in sixteen coefficients (ﬁV = 16)
for each ripple. The smoothing procedure has then merely involved truncating
each series at the eighth harmonic, resulting in the coefficients £L‘( m =1, 8)
in Table 1. In Fig 10, these coefficients can be seen to correspond to simulated
profiles which represent each ripple quite adequately. ZFYor each ripple, the
fundamental ( m = 1) makes the major contribution, as expected. The contribution
from the second harmonic ( m = 2) is also substantial in most cases, and particularly
where a 'secondary ripple crest' occurs in the 'primary trough' (Ripples 1, 3, 4

and 6). The contributions from éy‘ y M =3 to 8, appear less important, until
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the steepnesses of all the constituents (m.bm-( sy M= I, N ) are compared
(see Table 1). Although, in general, the values of steepness diminish as m.
increases, the steepenesses for m = 7 and 8 are by no means always negligible
compared with values for m = 1 and 2, The significance of this is that, by
extension of the argument leading to Eq (3) for a deep flow,

N
w, = U([ +ZM'L“‘{) (54)
Mmal
In other words, if S»\. =0 (m = 1, N ) the sum of the steepnesses of the
constituent harmonics enables the departure of the surface velocity at the
crest ( X = 0) to be calculated in relation to the unperturbed velocity U
which would exist at j= O in the absence of the bedforms. In Table 2, the values
of W, calculated from Eq (54) are compared with the equivalent values obtained
by the method of Davies (1979) for the flow over finite amplitude ripples. The
small discrepancies between the results are due, most likely, to variations of
the simulated ripple profiles in the immediate vicinity of the ripple crests by
the two methods. In most cases, the present method gives a slightly lower value
for Yer U » indicating a rather less peaked simulated crest than in the
earlier method. This emphasizes the importance of the peakedness of ripple crests
in the determination of surface velocities. It should be recalled also that the
linearization involved in the present method is expected to lead to variations
in U‘VU of the type shown in Fig 1. But it is not possible to make any
simple assessment of the likely overall error in the result due to linearization,
since discrepancies such as are shown in Fig 1 are not additive harmonic by
harmonic,
In Fig 10, the peak horizontal velocity occurring during a wave cycle at
each point on the bed surface is plotted for Ripples F 1=9. The normalized

values of velocity amplitude shown have been obtained by forming the quotient

U - Amplitude ( u.f’ - (—L.)
N

amplitude ( ta,)

for each point on the bed surface. The small term U-:) has not been included

in the calculation in order to enable direct comparisons to be made with equivalent
deep flow results, and the horizontal velocity has been considered rather than the
tangential on the grounds that the two results are very similar for all =% ’

and are identical at the crest and trough positions where the extreme values of

surface velocity are attained. The horizontal velocity amplitudes take the
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part of each diagram together with the simulated ripple shape, assumed
symmetrical and obtained taking N = 8. The profile is drawn without
vertical exaggeration.
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maximum value quoted in Table 2 at the crest, and fall quite rapidly, and
generally quite regularly, with distance from the crest positions. This is
important in the context of sediment movement by waves since it helps to explain
why, in certain circumstances, sediment may be observed moving as bedload in

the region of the ripple crests, but not in the ripple troughs (see Davies and
Wilkinson (1979)). Contributions to ll‘ from the higher harmonics are
superimposed on the overall trends. However, these have little or no general
significance, and, following the earlier discussion, it may be noted that
corresponding variations are barely perceptible in the simulated ripple profiles
in Fig 10, The minimum value of t); occurs in the trough, except in cases in
which a 'secondary crest' is present. For example, in the case -of Ripple 4# 1,
IJ~ achieves a value of 1.15 on the secondary crest, indicating a velocity which
is greater locally than the unperturbed (flat bed) value.

In Fig 11, two typical examples of results for asymmetrical ripples are
shown. The particular cases are for Ripples 4? 1 and 8, with ﬁl = 16 in
Eg (52), and the same smoothing procedure carried out as above. The simulated
profiles exhibit small variations which were not present in the equivalent
smoothed (symmetrical) curves in Fig 10 and, as a consequence, the velocity
amplitude results contain quite marked local variations. Once again, however,
these have no general significance and, in fact, the overall trends in the
results are much the same as for the equivalent smoothed profiles in Fig 10. For
Ripple # 1, a comparison of the peak normalized velocity amplitudes at the
crest position gives values for (l‘of'1.62 for both the asymmetrical and
symmetrical cases. For Ripple ## 8 the equivalent respective values are 1.86
and 1.81. Evidently, the fine detail of the ripple profile does not influence
the peak velocity results too greatly, and this supports the earlier suggestion
that; in modelling the deep flow over nearly symmetrical (wave-generated) sand
ripples, it is adequate to work with smoothed symmetrical profiles, defined by
about eight Pourier harmonics. For strongly asymmetrical cases, it is clearly
necessary to retain the full details of the profiles, as discussed in the next
section for the case of sandwaves in shallow water.

In the earlier section on the influence of the free surface on the results,
the height g above the bed to which the effects of ripples are important was
discussed. TFor a deep flow above a sinusoidal bed of wavelength.z: s this height
was quoted as g = 0.7332: and, in the present examples, the same result must
hold with 2:==25/Qf taken as the wavelength of the fundamental constituent
(m

m = 2, N , are all smaller than this (viz. gm = 0.733;;/;» ) and, in general,

A
1)e The heights of influence of the higher harmonic constituents, 3"_,
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need not be considered.

Finally, it should be noted that in Eq (53) conditions of resonance occur for
each harmonic. These resonances arise where m{ =* 2k (M. =1, N) .
The condition ‘(= AR was examined earlier and is further commented on in the
Discussion section. Clearly, for ripples in deep water, it is generally expected
that f’)b'k. , so that no conditions of resonance are satisfied on the above rule.
Bearing in mind also that the predicted resonances are given by an znalysis which
assumes the rippled bed to be of infinite horizontal extent, it is unlikely that
the full effects of resonance described earlier would occur in real cases in which

the rippled bed is of limited horizontal extent.

6.2 Results for sandwaves in shallow water

Tn contrast to the above examples relating to sand ripples, for which
comparisons with deep flow results are appropriate, the flow velocities above
two natural sandwaves in relatively shallow water are now discussed. In
particular, the orbital velocity amplitudes at the bed surface are considered
for waves progressing over a sandwave field assumed to be of indefinite extent
in the positive and negative directions of 2% . Variations in orbital velocity
over the surface of a sandwave have quite important implications since, although
the basic sandwave forms may be tidally generated, there is evidence that surface
waves can cause modifications to these basic profiles.

Sandwaves in shallow water have been discussed by Langhorne (1978) and, in
the present exercise, sandwave profiles observed by Langhorne in Start Bay,

South Devon, have been used to provide the necessary input to the present model.
In addition, the examples have been based upon recorded water depths, and
typical wave periods for Start Bay. Although the velocity amplitude results
presented in this section are in a normalized form which is independent of
surface wave amplitude 'a', it can be shown that the present theory is valid

in respect of criteria (27) and (28) in all cases presented. (The criteria
involving 'a' can be satisfied by restricting the wave amplitude to a small
value. )

In Fig 12 the selected sandwave profiles are shown, together with their
principal dimensions. Fach profile has been digitized in a way which preserves
its overcall shape, bed surface undulations of very short wavelength having been
smoothed out, These small undulations could be accounted for by the inclusion of
many more digitized points in each sandwave length but, alternatively, can be
handled by an independent subsequent analysis of the type given above for natural

ripples in deep flow. The sandwave profiles are clearly asymmetrical and so, in
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writing down the Fourier series for each profile, it is necessary to quote values
for both b,,‘ and 3,,, (m,= 1, N ) in Eg (52). Each profile is represented by
32 digitized points ( N = 16) per wavelength (see Table 3). The first harmonic
( m = 1) is dominant, as expected, and contributions are present elsewhere to
represent the overall asymmetry of the sandwaves.

Normalized peak horizontal velocity amplitudes at the surface of each
sandwave are shown in Figs 13 and 14. These results are of the same type as
those presented for the ripples in Figs 10 and 11, the Fourier series representing
the sandwave profiles having been truncated at the eighth harmonic. TFor a given
sandwave profile and a given mean water depth, the results can be seen to vary
with the wave period. The extreme values of velocity amplitude on the bed surface
are always found at the crest and trough pesitions, while elsewhere on the
p}ofiles the velocities are strongly influenced by both the overall asymmetry
and local undulations of the beds It is interesting to note that the peak
values plotted do not necessarily occur when the surface wave crest is directly
overhead (Rx-ot = % ). However, the phase differences involved here have
not been found to exceed a few degrees.

In Figs 13 and 14, typical results obtained using the present method are
compared both with deep flow results for the same sandwaves, and with tquasi-—
uniform! results in which the normalized velocity is assumed to depend only upon
the local water depth and the wave period. Comparisons of both these types were
made earlier for purely sinusoidal profiles. Since 2;//15 = 18.6 for Sandwave#%‘l;
it is not surprising that variations exist between the predictions of the present
method and the deep flow results which, as expected, tend to minimize departures
from the unperturbed (flat bed) value. These variations, which are most
noticeable for short wave periods (T % 6 sec), are progressively reduced as
wave period increases. In general, the deep flow results provide easily
calculated, but conservative, bounds for the overall perturbation in velocity
amplitude. For Sandwave #* 2, for which eyﬂt = 4.6, the deep flow results are
in quite good agreement with the predictions of the present method over the
entire profile due to the relatively larger water depth. A comparison of the
general trend in the present results, with results based on the quasi-uniform
assumption, indicates reasonable overall agreement for both sandwaves, at least
away from the region of the crests where depth variations occur rapidly with
horizontal distance, and where the effects of higher harmonics in the profiles
complement one another. Here results based on the quasi=-uniform assumption
should be treated with caution, since, in general, they greatly underestimate

the perturbations predicted by the present method.
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Fig 13 A comparison of peak normalized horizontal velocities at the bed surface
for Sandwavedf 1. Normalization is with respect to the velocity
amplitude on an equivalent flat bed. Results from the present method
(Eq (53)) are labelled 'free surface solution’ , results for an
assumed deep flow are labelled 'deep flow', and results based upon the
local water depth are labelled 'quasi uniform flow'. Fig 13 (1) is
for wave period T = 8 sec, and 13 (ii) for T = 12 sec.
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Fig 14 (i) is for wave period T = 8 sec and Fig 14 (ii)
for T 12 sec.

Fig 14 Results equivalent to those in Fig 13 for Sandwavedf?2
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Although sandwaves are 'non—equilibrium® profiles, in the sense of not
being wave formed, possibilities of resonant interactions between the water
surface and the bed arise if m,-(: + 2k , for any integral value of m £ N.
We noted earlier that the solution is not uniformly valid in the ratio of gto h,
at least for large bed wavelengths, and as a consequence any important harmonic
constituent of the overall sandwave shape may interact with the surface waves to
reflect incident wave energy. In making predictions of the amount of wave
reflection, some doubt may arise in practice as to the reliability of the
Fourier representation of the sandwave profile, particularly if an insufficient
number of points has been adopted to define the location of the bed. Also, the
gqualifications made in the previous section concerning the assumed infinite
horizontal extent of the bedforms apply here. However, if a matching of the
surface wavelength and any constituent of the sandwave length occurs according to
the above rule, it might be expected that a significant proportion of the incident
wave energy in a narrow frequency band corresponding to the resonant surface
wravenumber would be reflected. For Sandwave *1, the resonances in the range of
wave period (6,15) seconds occur at 1147, 9Ty 8edy T3, 6.8 and 6.3 sec
corresponding to m = 4 to 9 respectively (k{.s 1.6 in all cases). For
Sandwave 4 2, they occur at 9.6, 7.4 and 6.4 sec, corresponding to m = 2 to 4
respectively (kL £ 2.7)s 1In Fig 13 (ii) the effect of the nearby resonance with
the fourth harmonic of the bed profile is clearly apparent. Evidently,
therefore, the results in any particular run need to be interpreted carefully,
since they may be unrealistic on account of the assumption of an infinite number
of bottom undulations. Furthermore, in shallow water, the possibility of the
surface waves breaking above the sandwave crests should not be ignored nor, in a
real situation in which the bedforms are actually three dimensional, should the
effects of refraction be discounted. In short, the mechanism of selective wave
reflection described above may be just one of several mechanisms leading to a
reduction in the amount of wave energy transmitted across a region of seabed

topographye.

§ 7. DISCUSSION

The most striking features of the solutions presented earlier are the
conditions of resonance between the rippled bed and the surface wavess. The
strongest of the resonances occurs when {'—"'Zk. , and some comments have been made
about the behaviour of the solution close to such points. That discussion is

now extended to cases in which the bed is erodible. In particular, the question
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posed is whether an initially small periodic disturbance of the bed is likely to
grow or be destroyed as a result of resonant interaction.

Close to the resonance point '!2 2k , it was shown earlier that the
solution qé?i corresponds to waves progressing in the negative 2¢ - direction

. L ™
and, therefore, the superimposition of and qi produces a partially

'
progressing and partially standing wave structure. If the combined wave pattern

is sufficient to move sediment at the bed surface, there are two possible reasons
why the standing wave component might be associated with the formation of bed
features.

Firstly, on general intuitive grounds, it can be argued that beneath the
antinodes of a standing wave, where the lowest velocities are found close to the
bed surface, sedimentation rather than erosion might be expected. Conversely,
beneath the nodes, where there is greatest horizontal activity near the bed,
erosion rather than sedimentation might be expected. These statements hang
entirely on the general tendency for accumulation of material to occur in
relatively undisturbed parts of the bed, and for erosion to occur in
relatively disturbed parts, where sediment threshold velocities will, if anywhere,
be exceeded. In the context of the earlier analysis, a difficulty arises in
applying this common sense argument since, if f7Eé 2k , the weakest horizontal
velocities occur above the ripple crests, suggesting the likely growth of existing
bed features, but if '(ng, the strongest bed velocities occur at the crests,
suggesting their possible erosion. Evidently, the conditions for growth and
destruction of initially small bed features are rather finely balanced near the
resonance point and it follows that a small change in surface wave length, in
relation to the rather less readily changed bed wavelength, might have dramatic
consequences in terms of the bed features if that change involves a jump across the
singularity ( ‘(‘ 2k o {>2k4 , OT Vvice versa)e

Secondly, it can be argued that the effect of bottom friction under a standing
wave is to produce a pattern of residual velocities which, when superimposed on
the first order motion, might tend overall to drag sand grains towards preferred
points on the bed surface, and away from other points. TFor both laminar and
turbulent boundary layers, this residual motion occurs in cells of length (15/1ih )y
the positioning of which 1is tied to the nodes and antinodes of the standing wave.
The residual flow varies in magnitude depending upon position within each cell
and, furthermore, for both laminar and turbulent cases and assuming a smooth flat
bed, the direction of the residual velocity changes at a certain height above the

bed. This height is the upper bound of an 'inner layer' adjacent to the bed, and
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for a laminar boundary layer has the value OJI3S¢-(Longuet—Higgins (1953)), where
S* is the Stokes layer thickness ( =/2§%$/1; and ), is the kinematic viscosity).
In the turbulent case, the inner layer thickness is considerably larger than this
(Johns (1970)). The water particle residual motion in the inner layer is towards
the positions of greatest horizontal first order motion, and away from the
positions/pf/where the motion is purely vertical. In the touter layer' above
this, the residual motion is in the opposite direction. For the laminar case,
Johns has suggested that any material in motion near the bed will probably be
present in the outer layer (by virtue of the very small inner layer thickness)
and that the drift velocity in this layer will probably give an indication of the
direction and magnitude of sediment transport. This direction is towards the
positions of lowest first order motion and, in the present analysis, this implies
movement of material towards the crests, and therefore bedform growth, for‘( ?Zk o
However, in the physically more interesting case of a turbulent boundary layer,
the greater thickness of the inner layer suggests that sediment motion may be
confined to this layer within which the residual motion of water particles, and
hence sediment, is towards the positions of greatest horizontal first-order
activity. In the present analysis, this is towards the ripple crests, implying
bedform growth, for ‘( "";Zk..

The laboratory experiments of Nielsen (1979, § 6) provide a convincing
picture of dune growth beneath standing waves. Sediment accumulation is shown
to occur at antinodes of surface elevation, and Nielsen's interpretation of his
observations rests on the residual transport pattern described above for a
laminar boundary layer. In the context of the present analysis, Nielsen's
observations tie in with bedform growth of the type characterized above by
‘{é 2k, s both on the basis of the earlier intuitive argument and on the basis
of the mass transport argument. For the very fine sand used by Nielsen (grain
diameter 0,08 mm) an upwardly convected cloud of grains was observed above the
evolving dune crests. This is consistent with the residwal convection cell which
is expected to occupy the entire flow depth above the 'outer! boundary layer.
Dune formation in a turbulent boundary layer is less readily explained than in a
laminar boundary layer, since the intuitive and mass—=transport mechanisms are now
in opposition. It is possible, therefore, that dunes having ‘( "; 2R are less
inclined to form than those having ’(2 2k, .

In conclusion, the overall picture presented by the two lines of argument
above contains contradictions which may not be fully resolved without carefully

controlled laboratory experiments to test the general ideas presented here for
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discussion. The possibility of finding dunes having ‘é < Qh on the seabed is a
little remote, at least in locations with a fairly high tidal range, since
wavenumber k,changes considerably during a tidal cycle for waves of fixed
frequency, and the bedforms would have insufficient time to adjust their
wavelength accordingly. In this connection, it should be realized also that
resonances of the type "(=2k- are a consequence of the bed features being
assumed of indefinite horizontal extent. Although conditions of the type '{=2k
still take on a physical importance if the ripples occupy only a finite region

of the bed, the singularities found in the present solution qa?» do not arise.
Consequently, while the various resonances mentioned earlier might look somewhat
damaging to the usefulness of the solution, this is probably not too worrying in.
practice.

No attempt has been made in the present reportio give an explanation for the
possible development of any bed features other than dunes formed by the resonant
interaction mechanisme. Sand ripples are commonly formed in deep flow by a process
of scour and deposition, associated with vortex formation above the lee slopes
of ripples in each wave half cycle. The present theory, which does not account
for flow separation, unfortunately provides little information about this case
of obvious practical importance. Flow separation appears to occur in cases in
which the near bed orbital diameter exceeds the egquilibrium ripple wavelength
(Sleath (1975)). (No cases in which flow separation is likely to have occurred on
this criterion have been presented as examples earlier.) So the results given in
this report should be viewed as being applicable only to rigid wavy beds, to
relict (or fossil) rippled beds of sand or to equilibrium 'rolling grain! rippled

beds (Sleath (1976)), above which the flow is nonseparating.

§ 8. CONCLUSIONS

The theory presented enables the velocity field to be calculated beneath
surface waves progressing over a rippled bed structure. The flow has been assumed
nonseparating at the seabed, and a variety of other limitations on the application
of the small amplitude theory have been stated. These limitations do not prevent
use of the theory over wide and practically important ranges of both surface wave
and seabed parameters however.

The theory predicts a substantial enhancement of the orbital velocity
amplitude above each crest on the bed surface, and a consequent reduction above
each trough, compared with the velocity amplitude on an equivalent flat bed. To

the order of approximation adopted, the theory also predicts a steepening of the
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surface wave crests, and a lengthening and flattening of the troughs.

If Z/.L % 2 s where Z is the ripple wavelength and i is the mean water
depth, the influence of the free surface is negligible and %deep flow' results
can be used to assess variations in orbital velocity due to the topography.
Equation (3) can be used to calculate the surface velocity at the ripple crest for
a purely sinusoidal bed, and Eg (54) can be used for a rather more general ripple
profile. These equations indicate how the steepnesses of the various harmonic
constituents present in a given ripple profile strongly influence the final result.
If 674( » 2 the free water surface introduces variations from the 'deep flow!
velocity at the bed, which may be substantial if €7/3C > 77 It follows that
the use of deep flow results in this regime will generally lead to underestimates
of velocity amplitude above the dune crests, and the full theory presented in this
ceport should be ased in such cases., Contrasting practical examples of results for
deep and shallow flows, in particular results for the flows above natural ripple
shapes and above natural sandwaves on the seabed, have been presented. The
variations in the surface velocities from crest to trough in both cases have
important implications for sediment transport. Since they deal with two rather
extreme situations, these examples serve as a convincing illustration of the
usefulness of the theory.

In general terms, it is found that the interaction of progressing incident
surface waves and sinusoidal undulations on the bed, gives rise to two new waves
whose wavenumbers are the sum and difference of those of the incident wave ( k.)
and the bed ( { o If the incident wavenumber is the smaller of the two ( k<{)
the difference wave is back reflected. Furthermore, if the bed wavenumber is
twice the incident wavenumber ( "(= 2k ) the theory predicts an infinite, resonant
interaction between the bed and the free surface. In principle, such an
interaction may occur between surface waves and any harmonic constituent of a
given ripple profile, but the dominant interaction is likely to be with the
fundamental constituent. Although the theory breaks down where the solution is
singular (at '{ =2k ), a strong reflection of incident wave energy by the
bedforms is predicted in the neighbourhood of this signularity. The amount of
reflected wave energy is negligible for all other ratios t’:k- « The general
physical significance of this result is that reflection of incident wave energy
may tend to gradually reduce the wave height of an incoming swell wave, and thereby
reduce its potential for erosion at the seabed. Although the present theory is
unsuitable for comparing incident and transmitted wave energies, since the bedforms

are assumed to be of infinite horizontal extent, it does cast some light on the way
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1 which wave reflection occurs. The theory is of interest and possible
importance also in suggesting mechanisms for the formation of bar structures on an

The positioning of such bars is likely to be linked to the

erodible seabed,
positions of the antinodes in surface elevation of the standing wave component

arising from the wave reflection mechanism.
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PART IT THE REFLECTION OF INCIDENT WAVE ENERGY BY SEABED TOPOGRAPHY

§1. INTRODUCTION

If surfaceg water waves travel into a region of undulating seabed topography,
it is of considerable interest to know how much of the incident wave energy is
reflected by the topography and how mucﬁ is transmitted across it. This
scattering of wave energy is a matter of practical importance both in respect of
coastal protectionand also of possible dune growth if the bed is erodible. The

problem tackled here is depicted in Fig 1. The bed surface is prescribed about

its mean level Y=- % as
fo) -00 < % < L,

—— g{x) = YB (x) in L, < X < Lz (1)
(o] Ly < % < o0

and the departure of the free water surface from its mean level is given by

27(x,t) o The theoretical basis is that which was developed in Part I: in
particular, the interaction of a prescribed first order velocity potential with
the bedforms is given by Eqs (18b)=(21b) of Part I, In the examples considered
later, we shall be concerned particularly with wave reflection by a patch of
ripples and by an isolated bar on the seabed. However, the theory is presented
in g 2, and 3. in a general way, such that the basic results can be used with
any prescribed bottom topography.

The general aim of Part II is to develop a method to calculate the size of
the relected wave in cases in which the fluid domain is rather complicated, as in
Fig 1. BSuch methods already exist for cases in which it is known how to map the
fluid domain into some simpler domain -~ for example, if the fluid domain can be
mapped into a strip, the method of Kreisel (1949) may be used to place bounds on
the size of the relected wave. 1In practice, however, the mapping is generally
not known (even though it almost certainly exists according to the Riemann mapping
theorem)., This is so in the cases of interest here involving seabed topography
and it is useful, therefore, to have available an alternative method, albeit an
approximate one, to calculate the sizes of the reflected and transmitted waves.

We assumed in Part I that the bedforms were of infinite horizontal extent
and we did not pay attention to any conditions to be imposed at infinity to ensure
the uniqueness of the steady state perturbation solution obtained. We merely
satisfied boundedness conditions at infinity which ensured that the solution had

realistic physical characteristics. Since in Part II we consider a region of topography
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which is of finite extent, we must now satisfy the radiation, or Sommerfeld,
conditiony in other words, we must ensure that the wave at infinity in the
perturbation solution behaves like an outgoing wave. Stoker (1953) has
argued that, if one adopts an initial value formulation in problems of this
type, it should be sufficient to impose only boundedness conditions at
infinity o ensure uniqueness of solution. If, on the other hand, one
tackles the steady state problem directly, it may be unclear what conditions
should be imposed at infinity - in fact, in § 2. we use the artifice of
linear friction both to make the solution of the steady state problem

determinate and to ensure that the radiation condition is satisfied.

In § 2. we discuss the steady state approach and adopt a modified
form of Eq (20b) including linear friction to ensure that the solution
obtained is determinate. 1In ? 3. we describe the initial value
formulation in which we follow closely the procedure of Stoker (1953).
Both approaches involve a Fourier transformation of the governing equation
and boundary conditions in respect of the horizontal space variable,
enabling solutions to be obtained for the transform of the perturbation
potential. The integrals resulting from the inversion of the respective
solutions are handled by contour integration procedures. Although the
two approaches yield the same final result, they in no way overlap one
another, and both are included here since one is no more easy than the
other. In g 4. first estimates for the amplitude of the reflected and
transmitted waves are obtained in the special cases of progressive waves
incident upon a patch of dunes and upon an isolated hump, and in g Se
these estimates are improved upon by an approximate iterative method.

As in Part I, we are concerned only with two dimensional irrotational
free—surface flow above an impermeable bed, and thus we {ake no account
in this study of the effects of wave refraction, bottom friction or

percolation.

83




§ 2. THE STEADY STATE FORMULATION AND SOLUTION

The governing equation and boundary conditions, correct to second order, are
given by Eqs (18b)=~(21b) of Part I which, with slight changes of notation,we write

here as follows :1

Ve -0 i -X<F<o© (2)
Zq. ﬁ =0 oh Y = 0 (kinematic condition) (3)
97 - q, =0 on Y = 0 (pressure condition) (4)

-ig’ + g)r +‘§ " =0 on Y = - { (kinematic condition) (5)

in which the subscripts indicate differentiation and the origin of the vertical
axis has been taken in the free water surface. The prescribed first order velocity
potential is denoted by é ( x,Y, t) , the perturbation potential by C? (X.Y, t) ’
the bed surface by ‘5(:) and the perturbed surface elevation by 7(2,1‘.) .

From Egs (1) and (5), the interaction of the first order motion § with the bed 's
can be seen to involve a velocity perturbation at Y=- '{ only in 4, < x < Lo -
The effects of this disturbance on the fluid as a whole are described by

Egs (2)—(4). We shall be concerned here with the asymptotic behaviour of & as

l x |__) oo @ Dby virtue of the radiation condition, we require a solution which
corresponds to an outgoing wave in this limit.

If we prescribe § as a periodic function of time and seek a steady state
solution of Eqs (2)=(5), we find, for reasons which will become apparent later,
that the solution is indeterminate. We therefore employ the familiar device,
described by Lamb (1932, Art 242) and attributed to Lord Rayleigh, of introducing
into the problem a small amount of friction proportional to the relative velocity.
Although the coefficient of friction is set ultimately to zero, the device
ensures the convergence of the integrals arising in the analysis and the uniqueness of
the solution of the problem. Friction is introduced in Eq (4) in such a way that it

does not interfere with the irrotational nature of the motion, but it should be noted

1 The equation numbers, and figure numbers, in Part II both start at ore. This
should cause no confusion however, since no further cross-—referencing is made
between Parts I and II. Note also that, for convenience, the origin on the
vertical axis in Part IT has been redefined (Y = Y- 4 ), and that the second
order perturbation potential is written ¢ in order to distinguish it from
in Part T.
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that the "law of friction" is essentially a mathematical device which does not
accurately represent the way in which dissipation occurs in the flow in reality.
Lamb has used the approach in the problem of a surface disturbance to a steady
stream, and an early application in wave theory is Havelock's (1917) study of
surface waves caused by a submerged obstacle.

A slightly different approach to the steady state problem, but one which has
the same mathematical consequences, is described by Lighthill (1978, Section 3.9)
and Whitham (1974, Section 13.9), with particular reference to disturbances on the
surface of a steady stream. If used in the present context, this alternative
approach would involve the bed features ™growing up slowly" to their present
height from an initially flat surfaces no attenuation of wave energy occurs in
the approach by the introduction of dissipation into the system. We note,
finally, that Adams and Buchwald (1969) have solved a steady state problem for
continental shelf waves on essentially the same basis, though they merely add a
small imaginary part to the real wave frequency, and show that this has the desired
mathematical effect.

If we combine (3) and (4) and then introduce the linear friction term, the

surface boundary condition becomes

3?Y*-?u sk A = 0 on Y= 0 (6)

in which _m ( > CD) is the coefficient of friction. For convenience, we shall
rewrite By (5) in a form compatible with Eg (1), so that the bottom boundary
condition becomes

o -0 < x < L,
= V(’ht} | L, < x <L, on Y_—_-t

o by < x < 00

?

Y

(7)

in which 1/(x,t) is the vertical velocity at the bed surface given by

Vet) ==¢ (<-£.6).5, + § (x-28). S

Nt et et e N N e e N o

We now Fourier transform the governing equation (1) and the boundary
conditions (6) and (7) in respect of the horizontal space variable e ,

according to the definition

A 1 - HE ™
?(géyat)‘_‘/—z—':'l?("»nt) e dx
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which has the inverse o0

\
@ (x,Y,t) _‘/I—ﬂ_ J

Thus Eq (2) becomes

-t fx

$(ert) et ag

¢ -§9 =0 in -Z<Y<O (8)
Eq (6)becomes
+(§u+‘/&<&=o on Yy =0 (9)
and Eq (7) becomes
D - __'__r (,-% t)eigxdz
?r - 2w "9,( Xamho

- ‘/——'—J V("»t) hgx
= ;; _/\_(E,t)

The solution of By (8) is

s SaY. (10)

¢ (5,7.6) = AL cosh (81) + B6LD s (80 (1)

and this satisfies the boundary conditions if

8B « A, (5.) e A (8.8 =0 (1)
and

-§A R smh(€4) + 2! ,t)c-osk( {')—.:;
§A(£0smh (8K« £B(8 D= = (L0

We now make the solution specific to the case of waves having frequency O by

taking L

A(62) = A (8 eos(ot) + A (Dsin (o)

These forms are consistent with the specification of V(X- ,t) as a real
function of space and time, with the potential ¥ real alsoc. The same final
result for the steady state problem is achieved, however, if the complex forme
AL =A%) ¢! it  otc, are adopted, though the details of the procedure are
different in this case.
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é (g,t) = B.(E) cos(a-t) + B& (g) si.\_(gt)

(14)

and A6 = A (D) eos(ot) + A () siulo®

brd ~r
Substituting the expressions for A(f,t) and B(g,{) into Eq (11), and
taking the inverse Fourier transform, the final solution for the velocity

potential can be written in the form

?(an, ) =J/7'_R-F{A. cosh. (§) + B, s'mk(gr)}as(rt) + jA zcosk(gY) +st'mk(§Y>§ sin.&t:[c. ngdﬁ (15)

-

= J: f(i) 4§ 53y o
in which, from (12) and (13),
p. &A DA,
' /E; (a*+ B*)
_ ad -BA
* VIe (8 BY)

B- LA - meh,
' 3§

- d‘A, +_,«.a'A.
B, T

where &(§)= gixcosk(§£> - g s-«k(i{.)

A

and 5(%)- /‘;—’ cosh (§4)

2.1 The evaluation of ?(Z; Y, t) by contour integration

We obtain our final result from (15) by contour integration using the
residue theorem. Firstly, we replace the range of integration - o0 <« §< e in
(15) by integration around a closed contour consisting of the portion (--l". ,-l",)

of the g- axis and a semi=circle centred at the origin and having radius .
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In the limit ¥+ —> o0 , the required range of integration is recovered, since
the semi=circle makes a zero contribution., The semi=circle is chosen in the
upper half plane or lower half plane such that the radiation condition is
satisfieds In particular, we find that the linear friction term has the effect of
placing the singularities of the integrand of (15) in the upper or lower half
plane, and the correct choice of contour ensures outgoing waves from the
undulating part of the bed. ForJA » © the waves are damped as |x.|
increases, but as_p —> O an oscillatory solution is obtained as |x|——) o0 .
In fact, we shall be concerned here only with the solutions in the two
asymptotic limits 2 -—» 2e0

It is necessary initially to identify the positions of the singularities in
(15) which arise as a result of the term ( a*+ 'Ez) in the denominators
of A. ’ A,, . B, and B, . These positions must be established in terms of a
complex dummy variable of integration, and so we take &  to be the real part
of a new variable A= §+ L X .

The singularities (')\ )p) corresponding to (G- + b) O must lie
near the positions (7\ 2 ) which satisfy a* =0 s Since b“:/% an‘d/u-

is small. These positions are given by

W tak (WL = -g- (16)

and, if we introduce at this stage the dispersion relation for the surface waves

prescribed in the first order solution § , namely

b tod (kL) = _%’: (17)

where k is the wavenumber, we note that (16) is satisfied by A, = §, =2

on the real axis of A « In addition, we note an infinite number of poles on

the imaginary axis of A which are given by ?\, = L‘X., s Where X. satisfies

-X, tan (2,%) = o (18)

If we now relate 'AP to )o by
A = Ao+ %

we can determine 6 by equating terms Oﬂ/ﬁ) in the equation

(0% £ ipmo) wsh(Ah) = g e sinh (Ah) = O

1+

i

+

«-
o

It follows that .
0«2 - + ¢ 9 fA
o(c*h -9 -9 / )
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and so the positions of the poles of the integrand in (15) are

), = ).,{ [ + Lg/“'%(o"‘f -q- 3‘): ﬁ/ﬁ‘)}

This implies that each of the original poles ), is replaced by two poles
upon the introduction of the linear friction term. In particular, each of the
poles on the real axis of A s replaced by two poles, one of which is displaced
slightly into the upper half plane, the other into the lower half plane. So the
new poles do not lie on the path of integration (—- o °°) y which is the
desired effect on the friction terme. Similarly, each of the poles ), on the
imaginary axis is replaced by two poles associated with small positive and
negative real displacements,

To evaluate (15) by contour integration, we must choose a contour in the

)-pla.ne such that the solution has the correct physical behaviour in the
asymptotic limits > —»*e . In the first place, we require that any
transients in 2 decay in these limits and our choice of contour is therefore
governed by .'lshe term e""';" in (15)s In the complex ) - plane this term
becomes C--.)x and so, if )P = §,+ i Xp y the transient behaviour is given

by e*® . For a pole in the upper half plane (1’,, >0) , this implies

an increasing behaviour as XK —>» + 00 and a decaying behaviour as 2s¢—>» =00,
Conversely, for a pole in the lower half plane (x, < o) ’ ex,x implies a
decaying behaviour as 2 —» +00 and an increasing behaviour as x —p - oo .

It follows that, for the calculation of the asymptotic value of the integral as
%X — +0D s the selected contour must contain only those poles which lie in
the lower half plane if the solution is to converge} and, for 22— -00, the
contour must contain only those poles in the upper half plane., Although
initially all the poles in the problem give rise to transients in the solution
on account of the linear friction in the system, the two poles close to §.=!k
are the only ones to make non-zero oscillatory contributions in the limits
x——>»¥00 as M —>» O , and it will be shown that these contributions
correspond to outgoing waves as required.

We shall consider the contours C. and C, shown in Fig 2. The asymptotic
limit % —» ~-02 is handled by taking C, y and the limit € ——> 4+ 00 by C;.
Ultimately, the radius of the semi-circular portion of each contour is assumed
to tend to infinity, so that the range of integration in (15), consisting of the

real axis, forms a part of each contour. The residue theorem states that

é )1()) d) = 2« xisum of the residues of f(')) in §
(#

89



XeoX

+ ro

Fig 2 Sketch of contours C, and Czin the )-plane
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and in order to calculate the residues at the simple poles in the present

problem we note first that

j. EN(A-) _ _ _ cosh (Aph)
)‘—“:z, G+ () 23,k + sink (22,1)

=-'R y SaAYe
*

2p

If we write

A o.A.. B O-B A_ a.Az. and B= '6.8
BE ' T @D e T T D

then the residue of the integrand of (15) at N, may be expressed

o=z, [ 008 5 (1 o, o -, s-.mv)}‘,;n e

, Dy e (19)

é.‘l.‘l .'Solution in the asymptotic limit s¢ —» = 00

We are concerned here with contour C, in Fig 2 including poles 1 and 2
and also, as 4 —P» 0@ , all the poles closely adjacent to the positive
imaginary axis of A . If we consider pole 1 at )p. = h*_'yl-k-, (‘!..>O) N
say, the residue is given by Eg (19) with ) }" « It may be noted that
midpx _ ik e"“h’.x y this contribution to the final result contains
a decaying transient for X < O sincef O . The same is true of pole 2 at
)n= —k +* .V"k" . Clea.rly, in the limit./u. — 0 ’ C"')r" ~ C""k"‘
in both cases, giving a purely oscillatory behaviour as required.

For pole 1, the residue is given by

RI 2% lZ)mzf‘::fzﬂ;ﬂ H('A' N b A 1“‘“()"” NPy 2, (( oM v_).A. °'— j"a./t#mh() Y) Cos(ot)

+{(-A-& %AW cesk(>nr)+— (( -a'i) A (a- /.uri) A Xls”‘“- 7‘ Y) Sn (ct)] - X‘z

and since ai“"' (K/a) = s this reduces in the limit M > (o] to
S >0
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R =} C—i‘“k( el :,,uunm(m(ﬂ,gm ol
B +§(Ag L] cosh () + taw () (A7 L) sk (W0} s'..,(,t)]
. k
- g e A0 }ef‘(k’“’t) A+l (20)
= | 2R+ sink (2RR) N
For pole 2, ;é;; (1/3)):-:‘, and the residue reduces in the limitm —» O o
| s e Taa] e

A0
As far as the poles closely adjacent to the imaginary axis are concerned,

typically at ), -T—/*'xq + xo where X, is given by (18) and X. is small

and real, the behaviour of the residues is again governed by e:"a"x = (:y‘x"‘e/x‘x

-.‘,)Px ~ exo¢

As po —> O 4 . For finite values of 2 , all such terms
will make contributions to the final result. However, in the asymptotic limit
« —p —00 , these poles make a zero contribution, and for this reason we

shall not consider them further. It follows that

bIva - 2~ (R, R

G J‘.=o

We need to establish finally that the integral around the semi~circular portion of

(% — - )

8
C, is zero as +,—> o0 . If we write A=t in (15), this part of

the integral becomes

- oo
J _é { A, cosh (%, ¢ af)+ B, sinh (+; ¢ DY)E cos(od)+ {A o5k & CwY)e- B, sk (ﬁewr?}s';"(ﬂ’t)] ¢ w ’.‘it,e‘f df

(22)
For simplicity, consider a typical term in the brace in the above integrand, viz,

. > s 8
A,“-'J‘- (ﬂe_ Y) = O:A-. hd EA‘ cosh (*;C r)
a*+ b
Setting Y == { to0 maximize the magnitude of this term in respect of Y and
0
dividing throughout by cosh’ ('?cf;" i) , this becomes

A cosh (¢ %) = f-t, 2 tah (1, %) « BN « jMql A,
' ’ 6’3 €.‘0)th‘\} (-f', e"i)-2+. Piad %"w ( + 0&0{) . { (%)x* ( ﬂ%)x-g

~ ‘A‘a% as  ¥,—>00
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Each of the remaining terms in the brace in (22) has a similar behaviour, which

means that the integrand as a whole behaves as

~ ./\-na. uP{_;_'—oewz}.L#;Cw ~ /L-,z up{—f.*,&aexg

o
The transient contribution in the integrand is then exp {*;x s;-v@’} . For
o<fO<T ' smn@ >0 and so, for 2 < O R f;xs:»@‘O . In
other words, in the limit ¥ —> o0 y ep {«\;x s:ne}—>o and so, assuming

that the terms _A_,,,b do not display an exponentially increasing dependence on <,

(as is the case in the later examples), we arrive at the final result, as ax—»-00,

g(x,v.t)=j 1(8)as = 2vi (R,+R,)
- 00 J&=O
_ cosh R(Y+¥£ t(Rx+ot) . —i(Rx+e® )
— zuk* s;..k,(a?.hu) € {A-“Az}_; 2 A duh (23)

This solution corresponds to an outgoing wave in water of finite depth, as

requirede

2,1.2 Solution in the asymptotic limit 9¢—>+00

We are concerned here with contour Cz in the lower half plane in Fig 2.
This contains poles 3 and 4 and also, as P, —>»® , all the poles closely
ad jacent to the negative imaginary axis of A « By the same argument as used

in § 2.1«1 we find that in the limiw\b/» —>» O the residue at pole 3 is

R3 T 2¢  2kh+sinh (2RK

30 .
and the residue at pole 4 is

v x—et)
. coskk(Y-rﬂ) (k ./l.,"""./‘.z (24)
-k

. _cosh k(rs o) ~illex-ot) )
R" T 2= Zk'ﬂ.-o-sink(th)c A, ‘Jl (25)

w—:o h
where we have used the results

~ A
. ‘. ! and . ~ - .
Lo (34) = Z. (vg), - -
ey Apsy TR Aoy

As far as the poles closely adjacent to the imaginary axis are concerned,

these now make a zero contribution to the final result in the asymptotic limit
%X —>+9 and we are left with

b I VDA = 2x: (R,+R,)

(= —>+oo)

lmuzo
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Since, by an argument closely similar to that given in § 2¢7.1, the
contribution to the integral on the semi=circular part of Cz can be shown to be

zero as A, —» 00 , we have in this case, 85 X—P+00 ,

0
q(x,m):J 2D af = -2 (R,+R.)
-ad tho

_ o cash R(re£) | ilex-eRg _ il
B ;:L+s§ak(2hk)c i'A' J\'z‘g_k ¢ g./L ./1.,&“' (26)

Again this solution corresponds to an outgoing wave as required. To proceed any
further it is necessary to prescribe V(x,f) in Bq (7) and hence determine A,
and ./\.3_ . Some examples of the use of Eqs (23) and (26) are discussed in § 4.
We have been concerned here only with the properties of the solution (15)
in the asymptotic limits x —> ¥ o0 « It is, of course, possible to evaluate
the solution in the immediate vicinity of the region of bed disturbance. The
solution then involves not only the propagating modes associated with the poles
at ), =z , but also the infinite number .of non-propagating modes associated
with the poles on the imaginary axis, given by Eq (18). These non=propagating
modes satisfy the free surface and bottom conditions, and each decays
exponentially in 2¢ away from the region of topography. In practice, at a
distance of a few depths from this region, the non-propagating modes are
negligibly small, and the solution effectively comprises only the outgoing
propagating modes.

2,2 Limitations on the solution for ?("aYat)

In Part I of this report ( § 3.5) we discussed in some detail the physical
limitations on the solutions of the linearized equations (2)=(5) (Eqs (17b)=(21b)
in Part I)e It was shown that these limitations arise on account of terms dropped
in the process of linearizing the boundary conditions, and also on account of

]

possible to state the limitations as a series of simple conditions between the

<< « For the solution in Part I, it was

general requirements of the type |?

various length scales in the problem. For the rather more complicated solution
(Bq 15)) arrived at in Part II, the limitations are less readily obtained and, in
fact, we defer the discussion of this matter to §I 4. However, since the
principal example to be taken concerns a bed of the type considered in Part I
(except that the undulations on the bed surface are of finite horizontal extent),

we expect the conditions of Part I to carry over in almost unchanged form to

9k
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Part II, In addition, in g 5, we shall require the solution to satisfy a
certain condition in relation to wave energy flux, using the general results (23)
and (26) for the limits = —> *o0 . Essentially, we shall ensure that the
incident component of wave energy flux on the undulating part of the bed is

balanced approximately by the sum of the reflected and transmitted components.

2,3 Discussion of the steady state problem

The central difficulty in the steady state formulation is the requirement
that the velocity potential be Fourier transformable. If the problem is set up
without the linear friction term (or some equivalent device), the solution is
found to be given by the inverse Fourier transform of a function which is
singular on the path of integrations in other words, the velocity potential in
the problem posed does not possess a Fourier transform. The introduction of
linear friction is a device which produces transient time variations in the
problem, having the mathematical effect of moving the poles of the integrand
off the contour of integration and thus ensuring that the modified velocity
potential is Fourier transformable. Ultimately the steady state solution is
obtained by setting the friction coefficient to zero.

The difficulty just described does not arise if a time dependent solution
is considered, and in particular it does not arise if an equivalent initial
value problem is solved. We illustrate this in § 3. where we follow quite
closely the procedure of Stoker (1953)., Essentially Stoker argues that, if a
full time dependent problem is considered, the cause of the singular behaviour
of the function for which the inverse Pourier transform is required is readily
apparent, and it is clear how the difficulty which it presents can be overcome.
Thus the introduction of time dependence in the problem leads to the consideration
of a function which does have a proper Fourier transform, and in the limit of
large time the solution is found to be the same as that obtained from the above
steady state formulation. As far as the boundary conditions at infinity are
concerned, the physical requirements in the steady state problem are met if the
velocity potential is bounded at infinity, and also if the radiation condition is
satisfied. However, in the initial value problem, it is sufficient to impose

boundedness conditions at infinity only.

§ 3. THE INITIAL VALUE PROBLEM AND ITS SOLUTION

The procedure of Stoker (1953) for the solution of the steady state problem

in the asymptotic limits‘xl —3 o0 is as followss firstly, an initial value
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problem is posed and solved: secondly, a passage of the solution to the limit

time approaching infinity is made; and thirdly, the space variable 2 is

allowed to approach infinity. The order in which the second and third steps are

carried out is not reversible due to the finite propagation speed of water waves.

Clearly, if the order was reversed, no wave would be found in the perturbation

solution at infinity. This general approach has been adopted also by Harband

(1977) in a study of the propagation of long waves over slowly varying topography.
We start with Egs (2)=(5), but now assume the perturbation @ (x,Y,t) +o

the velocity potential § (x, Y,t) to be zero for ¢ <0 +« So the governing

equation is
2
V&@=0 -L<r<o , t>o (2a)

the boundary condition at the free surface is

3?Y+?cc=o on Y=0 4 tso (62)
and at the bed is
(@) -—0<x < L,
g ={-V(xt) 4<x<ky onY=-L,t>0(7a)
o L, < % <00

where V(z,t) y the vertical velocity at the bed surface, is given again by

Vit) = - ¢ (%85, « ¢ (x,-4)-%

Following Stoker, we require only boundedness of the solution at infinity,
and in particular that q and its first and second derivatives tend to zero as
le-_) 00 at time T in such a way that Fourier transforms exist in 2 .
We make no formal statement about the behaviour of ? as t—>o y but impose

the initial conditions

g?(x,o,o) =0

@ (x,0,0) =0 (t -o) 7
t 3 ) -2

which imply that the free surface is initially at rest in its horizontal
equilibrium position,

Upon taking the Fourier transforms of (2a), (6a) and (7a), we have
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&Yr‘gzé =0 -¥<¥<o ,t»o0 (8a)
19 + @ =0 Y=0 stro (%)
A k2 fx

=——'— ,t 6 o(x
¢ /'FL. V(=t)

- \/2_%/1(;,;0) + >0 (10a)

The solution of (8a) is

A Lo d ~ .

¢ (6%,8) = A(L.L) cosh (£7) + B(E:t) swn (1) (11a)
and (9a) and (10a.) lead as before to equations forx and é as followss

4 B(s.)+ A, (L,8)-0 (122)
~A(8)- § sk (34)+ B(8,cosh (££) =/—2"f A (13a) |

Now however, rather than making the solution specific to the case of waves
of frequency © as in (14), we solve (12a) and (13a), firstly by eliminating
é( §,t) and secondly by using the method of variation of parameters to solve
for K( E,t) « The differential equation for Z (;,t) is

A, + (36tat (SN X = -

9
V2w cosh (§£) _/\_{E,t)

(28)
= W (§:t> , say ,
and the general solution of (28) is
t t
A(E.t)={7\.+1 “’(e?;”(f"r>dr}=5~(et)+{KL—I sa(erzu(i,v)d,} ws(e) (29
where K‘ and Ka. are constants and
¢ - qftak (L)

o7



From the initial conditions,

A(§,0)=0
A (50)=0
which imply that R = ‘Aa. = O and so (29) becomes

v (E,7)dr

~ Y . .
Al )= J { cos (€7) s-n(et)f— sm(eMcs( )}

rt

- sin @(t-7) > ( §,7) A7
10 6
(¢ s (€7) v(f,t-’T)d,r_
J, e

It follows from (12a) or (13a) that

Blew)= >t ot [l 2 (ht) 4,

e
and so ?(E’Y’t) is given from (11a) by

(18) - feonk (31) » E-smb B (* s (E7)5(8.4-7) (£.£) s (£7)
$are)={eon (1) _ﬂ—ﬁ—lﬁo ¢ dr - 2L

cosh (1o 8) [ @D » (£,8-7) . _ »(60 suh(8)
Cosk(fﬁ) o e 3§

Upon taking the inverse transform we arrive at the solution

t

91,0 - L}; { cosh §(r+4) J sn(e) »(§;t-7) dr_v(g,t)s;nk<§Y)}c-i§zd§ -

cosh. (Eﬁ) fog 3&

(-4

Equation (30) can be viewed as being at one stage removed from the time-—dependent
gsolution discussed in § 2. and, clearly, we expect to recover this latter
solution in the limit t-—> 0 , The important point to note at this stage
is that, for non-singular choices of >>(§,t> , the integrand in (30) has
no singularities on the path of integration. This is central to the argument
which follows in which we declare é to be the real part of a complex variable,
and then deform the path of integration in the complex plane. This operation is
legitimate by Cauchy's theorem since, in the process of deformation fran the old to
the new paths, no singularities of the integrand which lie off the real axis
in the complex plane are crossed.

To proceed further it is necessary to specify 1>(§,t) y and in (30)we shall

assume that
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V(xst) = Vit coset) + V, (<) sinrt) in (7a)
SARD = AdDeoset) « AL ) tron (10a) (31)
oo (gt) = D (Despt)r 2, (1) sint) rron (38)

as a result of a prescribed first order motion of frequency ¢ satisfying
(17). It follows that

sineT)(§,£-1) = 2 sinfeNcos o (£-7) + 2, sieMhin o (£-7)

which, when written in exponential form and integrated w.r.t, s Can be

expressed as the sum of the following four terms

t
v et .:(e-e’)t
; Mdr = g ¢ LB @ U Term A
-an(c?)v(i,t ) = %€ { T }{ D, + ;),_} erm
v et ~cleeodt
+5 € {C € —'}{”'-Cv‘i Term B
- (e+ed |
"‘t’ﬁ_;‘t{ci(?‘c’t o zf-v'-; », Term C
(e+o)
+ L e,wt{e'°(e")t_l%{:>,+ v'.v,_g Term D
4 - (e-o)

where it will be noted that each term is regular. In handling (30) we are

at liberty to carry each of these terms separately through the limiting
processes tew ) x—» to0 in such a way that the solution has the
desired physical behaviour. In particular, before we resubstitute Terms A to

D in (30), we follow Stoker (1953) in anticipating certain singularities which
are found to lie on the path of integration - 0O < § < b0 55 tw 0 . These
singularities originate in the integration with respect to ™ in (30), and

inspection of Terms A to D indicates their locatione to be associated with
(e-a)—' ’ (€+cr)" ’ (C-ra’)" and (e"c')-' respectively. Adopting

the convention that the positive root ofJ q Et“t\(gk) = is taken on the

positive axis of & , these singularities arise at §=+kh , -k , -~k am

+k  for Terms A to D respectively. As mentioned above, it is convenient to
evaluate (30) by taking & to be the real part of a complex variable A= §+lZ
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and to by-pass the singularities by choosing a set of new paths of integration
in the ) ~plane, namely LA , LB ’ L‘ and La for Terms A to D
respectively. It will be noted that, since e =F€ (A) in the complex
plane, additional singularities of the integrand occur on the imagin.ry axis
of X as in section®. However, in the arguments which follow, these
singularities are not to be found within the areas bounded by the old and the
new paths of integration and, thereflore need not be considered further, The
particular choices for the new paths (/[,, etc) are made such thst the
solution corresponding to each of Terms A, B, C and D is bounded as T—>00.
It then remains only to verify, term by term, that the radiation condition is

satisfied in the asymptotic limits Ix{—» + 00 .

Consider Term A

In anticipation of a singularity at ) =+k. y we replace the path of
integration = OO<§<M in (30) by the contour /—A which is indented into the
upper half plane at >\ =+k . The choice of the upper half plane is

governed bty the need for a solution containing only decaying transients in time.

L, Q

——

x):)

Following the change of contour we have

] cosh )(hf) ﬁ,‘:’t, O+t [6________
cg(x,nt)= Ze  cosh AR A {-3 i) e-&

Lp

cle-odt

| ]-L)z
i

It may be noted that, in the form written above, the terms in the square
brackets are separately singular at ):i—h. (€=40'>. The first of these terms
is the result of the initial conditions and is expected, therefore, to provide
a decaying transient contribution as t =0 « This we can see as followse=
On the semi~circle in the upper half plane the imaginary part of ) is
positive, so the imaginary part of f is positive. It follows that the real
part of (6’-0') is negative, ©~ being real, and so the exponential in the
square bracket has a negative real part. Therefore, as t>0 y This part
of the path makes a contribution that tend- fo zero. As in Stoker's example,

we argue that the remaining portions of LA , which lie on the real axis, make
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contributions which die out like '/t o This is discussed by Harband (1977), and
can be shown by integration by parts. ZFor large t y We are left with the
following asymptotic representation for ?A .

wt .

0 esdAMh) e 5 el b= 'J:aﬂ (¢ o (32

?A(*»“t3-§a; cosh (M) ¢ foe il e--|° SR
£a,

In the integrand of (32), we note the anticipated singularity at A=+k (f -O‘).

There is also a pole at A= O (f = O). However, it can be shown that this
latter pole does not make a significant contribution to the final answer since,
when its effect is added to the equivalent effects of the poles at A= O

from Terms 8, C and D , the combined result is zero. (The poles at A= O
from Terms 8 , € and D are also left on the respective paths of integration
as seen later.) We shall not discuss the poles at A= O further, therefore,
but merely note that their appearance in (32) and the companion equations for
Terms 8 ’ C ang P s is an artefact of the approach adopted here,

We now examine the behaviour of (32) in the asymptotic limits 2 —> *o00 y
and we consider initially the limit 2 —3»-00 . On the semi=circular portion of
LA s the imaginary part of ) is positive, so the real part of (- i.')) is
positive. Clearly, therefore, by virtue of the exponential term C"“‘" ’
the contribution to ?A from the semi=~circle must tend to zero in the limit

X —>» =00 ., On the remaining portions of £a lying on the real axis, a
behaviour ~ yz can be seen to be exhibited by A (by, for instance,
integrating by parts). So the total contribution arising from Term A is zero

in the limit 2 —> = oo -
¢ (xre)=o0 (x—>-) (33)

To evaluate (32) in the limit 2 —3 +% , it is convenient to consider a

new contour MA which is indented into the lower half plane at 2= +R . TWe

ey

note initially that

Residue k
[10-f 12 -2 —
My ) A=ek Tomh MA ~
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where the square brackets imply the integrand of (32). On the semi-circular
part of MA the exponential term is such as to produce a zero contribution to
the integral in the limit X —» + %@ , (This isnot so on the semi-circular part
of LA in this limit.) Elsewhere on MA , the contributions to the integral

are also zero for the reasons given above. It follows that

g (=¥ t) = L[] d

9 { Residue § )
= - 'rti_ Oat &x "» + 00
A=k Term A

Since

z A-k _ 2o cosh (Rh)
S 6 93 kh + sink (1) cosh. (RN §
it follows that the residue at A =& is given by

R ! "‘U'"“"t). cosh k( Y+ '{')

= %-))' + D, }cosk(kk)
kA 2w 9§ 2k + simh (ZRWDY "

+k

Upon using (28) this leads to the final result for Term A as X —>+ o ,

_.‘,(k.x.-vt) Y
(P (x,Y,t) —Le . ‘cosk R(Y' £)
A § 2R + siuh (2k0)§

gﬂ.l -\, % , (x —>eo0) (39)
w

k.

Consider Term 8 e

The argument adopted here differs from that for Term A only in its minor
details. In anticipation of a singularity at ):—k in the limit t —» > we
start by replacing the path of integration in (30) by the path Lg . Thus we
arrive at the asymptotic representation for & (cr (32))

. ®

\_J 7

ot -
[ Rt e SR LI P
C_Pa(x,Y,t) —j/.'/‘?'“. :::sk,O&) Y 'gﬁ'-u"'}l_ew € a4 (t—> ) (35)
8

In the limit 2 —> +9o this gives

?B (anet} =0 (z —>+oo) (36)

102



To evaluatc (35) in the limit % —> — o0 y Wwe consider a new path Ms
which i1s indented into the upper half plane at A= “k- e We see that

J 1o - [0 = -2k,

Mg )
where the square brackets now indicate the integrand of (35) and where Q—R.G

igs the residue at ) = -'k « Since

A+kR 2o ce:ﬁz(/u\-)

S 3 RL + sinh (ki) cosh (kiD}

we find that

__ L(k.zq-e't). cosh k (Y+¥£) 4V = D mk(hk)
Q_m To< € 9 2k + sinke (2003 { 'I_.,, &_.}

and so, the contribution of the integral on Ma being zero as X —» - 00 .

we arrive at the result for Term B that

g lerd=| 1

= 21[(: R_k,e (z — - “)
L(kxrot)
= . _cosh R{Y+t) . -t _
v E {2k + sk (209} 5-/l-' _/\.,_ 2 (¢ > oo)(3
- -~ 7)

Consider Term C .

We againanticipate a singularity at A==k y but now indent our initial contour,

4.; y into the upper half plane at this point. Thus, ast——-)(b,we have

9 (3,7 t) = ]_‘__ . cosh Are k) . é-wt .;p RN E : C-n'd:l (‘t »>w) (38)
c JZ?: cosh (AL)  4¢ ' " e+
In the 1imict 22—~ - 00
gi(x,)’,t>= O (z—’-“> (39)

and, in the limit X —>»+o00 , we work with a new contour M; y indented

into the lower half plane at A = =R s to arrive at the final result
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. _cosh R(rE) .
c ka.k + s'..\k(zu)} {J'Ll-h J\.z_

-

} (z—»wo) (49)
k.

Consider Term D 1

We now anticipate a singularity at A=+R and, accordingly, indent our

initial contour L) into the lower half plane at this point. As €t — 00 we

have
L coshd(re®) e g im 1]
%("’“Q‘sz? cosh (VL " g i [e-"]e H o (tre
Ly
In the limit 2 ->» +00
?) (X;Y,t) =0 (x > +oo) (4())

and, in the limit x —» -0 , we work with a contour M:p yindented into the

upper half plane at A =+RkR , to arrive at

.l Lz } (—>-00) (43)

r

. -t (k-x#&t) cos 4
?)(’C:Yat):—te . kk(Y ) '{J‘-I

{zu._ + sinh ( 2RANE

3

The remaining part of (30) is the integral expression

- — - b H(5t) sink ( £Y)
Vo L ¢ ¢ +

This has no singularities on the path of integration for non=singular choices

of v( §,t> and so, in the asymptotic limits % —» %o , it makes no
contribution to the final result. This can be demonstrated, for instance, by
integrating by parts.

We obtain our final result in the limit * —»-00 , Dy superimposing

(33), (37), (39) and (43):

oy : )
. _: cosh k(y,{) . a.(kxtvtb ' - _ e—b(&ﬂ.#ct o <44>
?( A [ Zkn o (‘Ahh)‘g € {_,L. -/}-z.gb 3-/’-- - l-z.gk

(‘t —> @, x —» ~10)
This solution corresponds to an outgoing wave in water of finite depth and it

confirms the earlier result (23) obtained by the linear friction method. In

the limit  x —> +o00 , we superimpose (34), (36), (40) and (42) to obtain
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. _.,( .-t) (h.s—vt)
‘?("'”)-Lﬁ%}' = {A‘LA’S {./lwl (45)

(‘t —>00 , X—»+00)
Again this solution corresponds to an outgoing wave and it confirms the earlier
result (26). We have shown, therefore, that by imposing boundedness conditions
on the solution (30) of the initial value problem (through our choice of the
paths Aa , etc) the radiation condition is satisfied in the limits |x|—» o0,
§ 4. we apply results (44) and (45) to certain special cases.

g 4. APPLICATIONS OF THE THEORY

4.1 A simple piston a.ctién at the bottom boundary

By way of simple illustration of the use of Eqs (44) and (45), we>oonsider
first a vertical piston action at the bottom boundary. The piston is of length
2L with its centre displaced a distance L, from 2 = O , and it makes
a vertical oscillation about its mean height Y=-'{_wi‘bh velocity amplitude “/;(75),

such that 1
V(")t) = -\]o COS(G't) in “L+vh, < x < L+h, (46)
From (10) Kok
itfx (3 798 .

/[(;,t)hj Veestoe e = -V e - 25208 (o0

“L+L, §
and so from (14)

- . /] L =

§

1Here we do not deduce V("at) from the expression given in_(7), but we
simply prescribe it. If there is no first order motion ( = Consta,nt),
and if the bottom is oscillating such that § = S(t) ~ s (ot) , then
strictly we require the addition of the term ¥, ‘to the left hand side of the
bottom boundary condition (5) in order to permrl: (46).
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Substituting these expressions in (44) and (45) gives the final results

(?(:c,)”t) — 4V° cosh h(Y-ﬁ' 'L) . S;'\- (k—‘) Sc.v\ (kx-o-c't —kL,.) (x—-)..oo)

{ 2ih + sk (2003 R
and
(? (x,Y,t) = _,/‘,V; i:::: ':.L,Y;::zzkm}. 5;"':'““) sim (kx -ct —IIQ.L..) (¢ —> e0)

We see here, firstly, that the velocity potential is real, as requircd;
secondly, that the waves are outgoing and are slightly displaced in phase to
account for the offset L, specified in (46)s +thirdly, that the waves are
properly attenuated with depth: and, finally, that the amplitude of thes waves
is proportional to S'M—(‘U-B . This latter point has the effect that for
intesral values of the ratio ZL,/(surfa.oe wavelength) the outgoing wave height
becomes zeroce. On the other hand, if the ratio takes the valucs ‘4, 3/2_ g sessascsy
the outgoing wave height is maximised. This property is found also in the next
application discussed. In general, however, the piston action at the bed in
(-L+L° s L-o-l.,) produces outgoing waves at the water surface as 2 —» % 00.

The piston problem is quite similar in some respects to that discussed by
Carrier (1?‘66) in a study of the generation of tsunamis. Carrier's approach was
% t e:a.,t

in t>0 , where @, and gz are positive constants, and to study the

to give the seabed in % < o a displacement proportional to €

resulting transient motion in % »© wusing linear theory. Further comments

about his study are given in the earlier literature survey.

4.2 A patch of ripples on an otherwise flat bed

We consider now a case of particular interest, namely the interaction of
progressing surface waves with a patch of ripples on the bed1. In the assumed
absence of any undulations on the bed, we prescribe a first—order motion
é(",Y,t> and then deduce the perturbation ?(x,Y,t) to this motion
resulting from the presence of the ripples. In following this procedure we
use Eq (5) to determine V(x,t) inEg (7).

For the first order motion we prescribe the velocity potential for waves
of amplitude @& and periodzro' y Progressing in the + 2 direction in water of

depth { s namely

1 The term 'ripple is used here in a very general way, and does not imply
_any restricticns on the bed wavelength.

106



92 | cosh h(Ye4)
%pa o 'c?osk. (ki) cos (k"_‘rt) (47)

which for illustration, and in order to build up a complete understanding of the

solution, we shall treat as the sum of two standing waves

i ' ~ Cos (k.z) cos (o-t) (Wave 1)

§P= %ﬂ-‘- £z where (48)

§sz A~ Sm (ka s..n.(o't) (Wave 2)

We prescribe the bed surface in Bq (1) as
Y6 = bsin(£x+8 Li<x<l, (49)

where S is a constant phase angle, For continuity of bed elevation we take

L, = (-n.'lt‘- 3)/\_/ and Ly = (m'!r - 5)/.(

where A and m are integers, so that there are (n-c—vn)/z ripples of

wavenumber ‘( in the patch,

Y
| (awed)y ’ (vm-8)7
> !

Yerl ey .. AT My $5.

|

2V{

From (7), (10), (48) and (49), we have for Wave 1

V(x,t) =- ?"l = C* f(s:n. (ko) cos (boc+3) + k. cos () 31 ("x-o-é)g cos (o)
-£
where

C - gq.bh.

o cosh.(h£)
It follows that L
> (e
_A_' - C. j ;-(:-k(k::) cos (e+3) R cos (k) s.'»(‘&-o-S)fC olx
&y

A0
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Hence, from (44) and (45), as x —» - %0

. Fa C "
?(Z,Y, t) - = C& cht\k(){“i) . % .2(_ |> Sin ("(;A-Qt _4‘;[_‘) - (- l) S (k’( + ot -2“.)}
2 {2 + sink (2R0)5 (%))

- (50)

()TN sin ke |

and as ¥ —» +00

R . .
Cl- Cﬁkk(ni) J /{ _'3(_') s;n.(hx_at -Zk.L.l) —(-() 5.;‘(k‘_at_2)u_‘>}

Y,t) = :
Peee) z{zm*s.‘nk(zu))xi_ (”‘/{Y’-I

4(2%) ((_ |)M -(- ()"') Sia ( kxj(at):‘l (51)
Similarly for Wave 2

V(x,t) =-@! = C* i - s (kz) cos (‘&-05)4- R !;n-(kx) sm (*/,‘... 3)} s.'—»(‘at)
YI.{,

Hence

M=o

//\»; = C* I 3 ‘{cos( &x) (.c.s(‘(z-o-S)—k Sn'n(hn)s"n (= +5)$’€‘§‘dx

and, from (44) and (45), as X —» oo

-
Z)Y,t = Q_Cc&k k(n—g- o - 2‘———.—Vt . (M’s-';\. x+ol - (- ~3;1 .
gexre Zf2kn v sk (20| (RBAYE JE) sin (st - 2kL3) () oin (o o ot — 2k

(52)

+(2%)((-l)m-(- J) s-.n(kxi-c-t)]
and as xX —yy +od

Cu cosh k(¥ak) (324 ~ o, . .~
¢ ’Y, = S ors 2 faoe) 1 *4(=1) s * - -4k 2) - (=) s (Rx-~ - \
e~ t 2 %U&A&%k_(gkﬂi{ (2,%4)‘_‘ 3( ) (‘t ot -2 L\ (-1 (k at ).hL)}

NG D §) s (Roe _,t)] (53)

Tt will be noted that each of the results (50)=(53) represents an outgoing
wave. In other words, the interaction of each of the standing waves of (48)

with the rippled bed gives rise to progressive waves travelling away from the
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region of disturbance (L, < x < L,,) + If we now superimpose the above
results, we obtain the solutions appropriate to the case of a progressive wave
train incident on the patch of ripples. 1In particular, the interaction of the

velocity potential (47) with the bed surface (49) gives, as x—p = oo

@lx,v,8) = }z(r;: w::- t((::)ﬁ. ($§ - ,[(. D”;Jm( kx+ot -QkLD-(- &s;m(kz«wt-zhl..)] (54)

and as  —» <+ 00

- Cq- cosh, k(Y-Pf«) \ y
?(" e {Zkk + smh( 2R} ' (z%)'((.lr- ¢ ) s (kx— at) (55)

It can be seen that these results have a rather different character. For

convenience, however, we shall discuss the solutions in two simpler special

CasSeESe

Special Case 1

Firstly, consider the case in which there is an integral number of ripple
wavelengths in the patch L, <2 < Ly , such that m = w and & =0O in (49).
If we write ""Tc/(_‘—' L , we find from (54) and (55) that, as 2 >~

x - cosk k(n’{) ZV - | cos
PleXt) = 2C, Fakiesion (Y] @yt 0 sin (2R cos (k4 ort) (56)

and as X —»+00
Plere)=0 (57)

Here, therefore, there is no disturbance in the perturbation solution on the
down=wave side of the ripple patch, but there is a (reflected) disturbance on
the up-wave side. The size of the reflected wave in relation to the incident

wave can be assessed from the ratio of the amplitudes of the velocity potentials

Amplitude { g)(%,\’,t)fx_’ 2bk ( V) sin (* Ve - "m) (58)

Amplitude  § §} {2kh+mk(2kk)} (:ua/ Y-
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We can view this ratio as being composed of two parts. Consider firstly the

part in the square brackets which we shall denote H‘ (25/() y V1iZ,

(0-c5(00 gl

We note initially that the amplitude of the reflected wave is highly oscillatory
in the ratio of the overall length of the ripple patch (2"‘“/{> to the

surface wavelength (see § 4e1)e This result has been obtained for submerged
rectangular parallelepipeds by, for example, Jeffreys (1944), Kreisel (1949),
Newman (1965b) and Mei and Black (1969). We note next that H, (2R/¢)  is not
singular at 2% = |} since

. = m
VNG ORRSZ:
o 4ad
In fact, what the limit shows is that H, ( l) increases linearly with the number

of ripples (M) in the patch. This can be seen in Fig 3 where H' is plotted
s a function of (AR/¢) for m =1, 2, 3 and 4. The implication of the
result is that as m increases, the amplitude of C?(-w, Y,t.) at 2b/(= I
increases, and this leads ultimately, as m —» o0 , to the condition of resonant
interaction described in Part I ( g 4.1) of this report. It should be noted
that H. (ZVe’) does not achieve its peak value at 2&/{ = 1 but at a value
2#/! 7 | , Since the slope of H, at ZV{ =1 is ™MW . This is
most evident in the curve form= 1 which has its maximum value at 25/\! = 1.126;
the corresponding values for wm = 2, 3 and 4 are 2“/{ = 1.036, 1.0165 and
1,009 respectively. This may have some significance in connection with § Te of
Part I, where it was suggested that ripple growth on an erodible bed of infinite
horizontal extent is more likely for {é 2k than for ( ;2k.. The present result
suggests that in practical cases, where the number of ripples (m) is finite,
the strongest reflection of wave energy occurs for {,§ 2k s implying conditions
which favour ripple growth rather than destruction. It was suggested in Part I
that this growth is associated with the partially standing wave structure
resulting from the superimposition of the incident (i) and refleoted(?(-”a“t))
waves. Clearly, in the present case, standing waves will occur only on the
up~wave side of the ripple patch, and so ripple growth is expected in -0 < % </,
but not in Ly <% <0,

More generally, given a constant ripple wavenumber { , the response curves
in Fig 3 can be viewed as having the nature of wave attenuation functions of the

surface wavenumber k . In particular, where H, ( 9( =0 s the amplituce of

110




—Nm <
[T I}
- EEEE

w
X !
|

Fig 3 The response curve H' (zk/e)

111



the reflected wave ?('”:Y»t) is zero, implying that the incident waves are
unaffected by the ripples on the bed. On the other hand, where H‘ (2y() has
its turning values, local maxima occur in the amount of wave energy reflected.
It follows that, if a spectrum of surface waves is incident on a patch of ripples,
significant reflections of wave energy may be expected to occur, but mainly in the
neighbourhood of preferred values of k . In practice, this may cause a
selective attenuation of the spectrum on the down—wave side of the ripples,
compared with the incident wave spectrum. Conversely, any type of bed surface in
L ex<l, may be described as a sum of Fourier harmonics and, since the
theory is linear, it is possible to construct a general response curve for the
predicted amplitude of the reflected wave as a function of k (see § 4e4).
The remaining part of the ratio in (58), namely Zbk./{zkh... 32.1\,(250} ’
indicates that the size of the reflected wave is dependent upon the ripple
amplitude and the water depth. Tor long waves ( kk << 0) the term reduces to
(b/zt.,) , and hence for long waves of wavenumber such that 2'?./{=| ,

Amplitude { q?(x, Y't)};.(—)-oo N _i. mw (ZL_ bl << ‘)
Amplitude { @} T 2 2 7

So in the typical physically interesting case of long wavelength dunes with, say,

%‘ x'/,5 the theory predicts that total reflection of wave energy will occur for

m 3 (0. Although the theory is not expected to yield accurate results 1f|?‘%‘§\

the general implication of this example is that it may take only a relatively

small number of ripples to give rise in practice to total wave reflection, if the

surface and ripple wavenumbers are such that QV{ = 1.

Results for the peak reflected wave amplitude ag in the general case of
intermediate water depth are shown in Fig 4, in which ag/a. is plotted against
b/f for the range m = 1, 10, and for ripple steepness bf=T/20 (Fig 4(i)) and
be¢= T%o (Fig 4(ii)). (Allen (1968) quotes the range of steepness of natural
"large-scale ripples", having wavelength greater than 60 cm, as Voo<bf< T%O .)
The range of b/{, has been taken as (0, 0.4) which is likely to encompass any
naturally occurring featuress strictly, b/‘. must be small for the theory to be
valid (see g 3.5, Part I). The results plotted are the peak values of reflected
wave amplitude which can arise as k varies. As suggested by Fig 3, this peak
value is found where Zk/{ is close to unity and, in fact, it never exceeds the
value at Zk/{ = 1 itself by more than 0.01 for the curves plotted. EFach curve
has zero slope at the origin, an increasing slope for small b/ﬂ and,

thereafter, a point of inflection and the tendency towards a linear behaviour in
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(b/ﬂ) for large values of this quotient (in particular, for values such that
b/ 2% 26¢ ). 1t might be noted that, for 2% = 1, the slopes of the linear
portions of the curves are given by (”‘%> , regardless of steepness («5!) ’
but that the points of inflection occur at larger values of (b/f.> as (6‘{)
increases at a given value of m . The curves show that relatively few ripples
having 2% 2 | are needed to produce a large reflected wave amplitude and that,
for given (b/.") and m , the smaller the ripple steepness the greater is the
size of the reflected wave.

Following the remaining examples in this section, we extend the results for
this special case of the patch of ripples, in order to overcome certain
deficiencies in (54) and (58). In particular, we attempt to produce a proper
energy balance in the solution such that the transmitted wave energy flux
(as 2¢ —»+% ) is equal to the difference between the incident and reflected
fluxes. In (47), (56) and (57) this balance is not established and, in fact,

Eq (56) should be viewed as providing an upper bound on the size of the reflected

wave. This is true also of the example which follows, and of the examples in

§ 4¢3 and 44 .

Special Case 2

Now consider the case in which there is a non—integral number of ripple
wavelengths in the patch. In particular, consider the case in which m = n«l

and § = 0 in (49). From (54) and (55), as x—»-c0

x _ cosh k (¥+£) 2% ya ¥ : "3
9lerie)=2C, § 2k + sk (R0} (2R/0)- | €0 cosf(zns Depfsin (rot - ®54)  (59)

and, as X —»+ a0

nl

x,Y,t) = coslv.k(Y-v{) ) 2‘?-. " sin ( bx—o
@ (x¥it) ZC"{wu:.\u(w)?; ; ) (kx—ot) (60)

So in this case the transmitted wave (60) is non-zero and, when combined with é ’
produces small changes in the amplitude and phase of the waves on the

dovwn=wave side of the ripple patch. This is so even in cases of zero reflection.
While the size of the transmitted wave C?(‘”a Y,t) increases linearly in ( k-/f )y
there is no suggestion of a resonance in (60) as n—» @ , Such a resonance occurs

only in the reflected wave (59) as n —» o . In Fig 5 the function

2 == M". 2k cos ((2~+l)k'ﬂ.'/'f)

114



AN\.&NVQI saand asuodsea syl ¢ I14

115

3
£

vt A AR e <t e

(£




is plotted for OS< 1%5 ¥ and for w =0, 1, 2 and 3. As in the case of
Eq (56), we note that Fig 5 implies that (59) is non-singular at AR/¢ - 1 for
finite w ¢ in fact, Ha,< ')=(2"1':‘)1f . Also, as was the case for H.(W‘()
in Fig 3, the function Hz(zk-/{) does not achieve its peak value at 2’?-/[ =1,
but at a value Zh/{ 7,,,, | . This is most evident in the curve for »n =0 (m

1)
which has its maximum at 2% = 1.367; the corresponding values for »n =1, 2 and
3, (m = 2,3 and 4), are ”2/{ = 1,061, 1.023 and 1.012 respectively.

In general, we see from the two special cases that the transmitted wave in the

perturbation solution is either zero or non=—zero depending upon whether there is an
integral or non-integral number of wavelengths in the ripple patch. The magnitude
of the transmitted wave is proportional to k/{ « The reflected wave in the
perturbation solution is rather more complicated in that its magnitude is periodic
in the ratio k/{ . The strongest reflection of incident wave energy occurs for
2% ?g, | , the amplitude of the reflected wave increasing with the number of
ripples in the patch.

4.3 A single sand bar or sandbank

Consider now another case having some relevance to coastal protection,
namely the propagation of waves over a submerged sand bar or sandbank. Again we
shall assume that the progressive waves in the first order solution have the
velocity potential § given by (47).

One approach is the extension of the results of g 4.2 for the special case

in which 8 =0, m =1and w = 0. This implies a single sinusoidal profile

in Y,
O<xc< /e AY (L.=o: Lz.:L':%)

y=-¥

and gives the results, asx —» ~00

x,Y.t)= cash k (Y+£) . 2k/€ i sin (Roc ot -
?( +) Zc*izkus:..k(zkk)} (h/g)- cosChi) sin (et L) (61)

and, as X —p+ @
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__ shoR(re®) 2k oo (f_ot) 6
QLere)=-2C, Lkt . 2 ( (62)
H, (20)

with n =0 (see Fig 5), implying the strongest reflection of wave energy at
wavenumber h. such that Zly{ = 1.367. The presence of a non=zero, but

The magnitude of the reflected wave in (61) is proportional to

generally small, transmitted wave in (62) is the consequence of the bar comprising
a non=integral number of wavelengths of the basic sinusoidal profile. It suggests
a phase shift in the transmitted wave, even in cases of zero reflection.

An alternative way to proceed, and a way which ensures continuity of bed

slope at the end points of the bar, is to define the bed by, say

Yb(x)= b(l + cos (‘(x)) in -lL<x< L (63)

o (L - 11_/()

-L +A

In contrast to the approach leading to (61) and (62), this introduces additional
terms in the calculation of gr (from "S’@;Y in (5))s these terms arise as a
result of the x=independent part of the right hand side of (63). The final

results are, as X —> - o0

x - cosh h(Y-c-i) ) n <2kL) .
?( Jt) =2C §Zkho sk (Zh:)} (SZh/()"_l .S (k-x-o—ct) (64)

and, as % —» + 00

We see in this case that the magnitude of the reflected wave is proportional
. 2
to Sw (sz)/xzh/() -|§ which has its most important turning value at
Zk./( = 0.837. The transmitted wave is zero as a result of there now being an

integral number of wavelengths of the basic sinusoidal profile in -4 < 2 < L .
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li.ly The general result

For completeness we take finally a case which is more general than those
described above, involving Fourier series representations for both the bed
features and the first-order surface waves. We suppose for simplicity that

the region of topography is of extent 2L in the x-direction with the origin

of the x-axis at the midpoint of this range.

Ye-Af

[, P

.
AR A AR AR EL rx

+L

R

The bed is given by

V6o = Z!: sin (9l + §) in -l <x <Ll (65)

where L =“'/( and in whlch b° and So are chosen to ensure continuity of elevation
at x=+L . The incident waves are given to first order by a series written

in terms of surface wavenumber as follows:

Fare) =Y B (are) )

where §*(x'y,e) a,,.j cos/\- /!.e()’-o-)() “‘(er_o;t-ﬁA_‘.)

ke, %) (66)

C,

and k = *k, with O"- = 3k'r tﬁul\ (k,‘()

+ +
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The perturbing velocity at the bed is given as before by (7) in which “§ and %
are now the infinite series given by (65) and (66) respectively and, as ac-—w 0,
the general results may be built up by superimposing solutions of the type

(L) and (L5), viz.

Plevt) = 3 5 ? (=1, (67)
+ (‘ v

where ?1,, is the typical term arising from the ?'M term of (65) and the +th
term of (66). (We assume in writing (67) that the orders of integration and
summation may be reversed in calculating /L, and ../L)_in (L4) and (L45); in
practice, truncated Fourier series will be taken for both % and 5 and so
problems of convergence are not considered here. ) Thus we arrive at the

final results, as x - — 0

{Pr(x,Y,&) = 20', cosh k,,(r-v'af) . s [ g cos x+
' k £2k"{+s;nk(2k,‘£)} ¢ ) (Qk £ rf-[g (k t A S>

(sws(éau-ut A §>] (68)
1

and, as 2 - + o0,

. (= 1) =0

where

: _ Q.+ 4 b k«- ) _
C, - Or cosh‘i(k,.)‘?) ana {; = Z(

On substituting (68) into (67) we obtain a solution which, given the

(69)

discrete spectral representations for the bed in (65) and the incident waves
in (66), may be used to determine the spectrum of reflected waves. It is to
be expected that this reflection will be selective in the mainer shown in

Figs 3 and §; in effect, as each new harmonic constituent of either the bed or
the incident waves is introduced, we build up the perturbation solution by
establishing a set of response curves of the type shown in these figures and,
ultimately, we superimpose the results obtained. In general, this will lead
to the conclusion that energy reflection from the incident spectrum occurs at

preferred wavenumbers or in preferred groups of wavenumbers. We note finally
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that the transmitted wave in the perturbation solution is zero. This is as a
result of the fact that each constituent of the spectrum of bed features

comprises an integral number of wavelengths in (-4, & ).

4.5 Discussion

Tt was suggested earlier that results (56), (59), (61), (64) and (68)
should be treated as providing upper bounds for the magnitudes of the reflected
waves in the various applications discussed. The reason for this is that a
proper energy balance is not established in the solution as a wholes in
particular, there is an imbalance between the incident wave energy flux and the
sum of the reflected and transmitted energy fluxes. This comes about on account
of the fact that the linearized analysis does not permit any attenuation of the
incident waves (%) as they travel over the region of topography in (-4, 4~ ),
causing the predicted reflected wave in the perturbation solution %o be
overestimated and the transmitted wave to be generally zero. In practice, if
the reflected wave is non=zero, there must be a progressive attenuation of the
incident wave in { =k, A ) and, in § 5. we discuss an ad hoc method of
recovering an energy balance in the solution, and of thereby establishing more
accurate predictions for the magnitudes of the reflected and transmitted waves.
The true result may, in fact, hang on either a single reflection of the incident
wave, or be a compounded effect of several reflections (see Newman (1965b)).
Fortunately, the final result for the overall reflection coefficient appears to

be rather insensitive to such details.

g 5. CORRECTION PROCEDURE TO ESTABLISH A PROPER ENERGY BALANCE IN THE SOLUTION

We now seek to establish a balance of energy fluxes in the final results by
an ad hoc iterative procedure. Suppose that waves ( I ) are incident on the

bedtorms from the left hand side

——> Incident Wave (I)
AN TN TN N\ Transmitted Wave (T)
. .

€—— Reflected Wave (R)
&y L

then, in general, we require for waves of given frequency that

EI- - ER. M E-r (70)
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where £ stands for energy density and where the subscripts are defined in the
figure. Egq (70) must be satisfied since the water is of the same constant mean
depth at + 0o and, therefore, the group velocities of the three wave trains are
the same. In terms of the amplitudes of the respective waves, it follows that

az= a; = a: + 0.: (71)

Suppose that, subject to (71), we identify the incident wave (I) and the
transmitted wave (T) with the first order solution, and suppose further that wave
reflection occurs uniformly1 from % = L, to L,_ « There is some support for
such an assumption in §‘ 4.2 where we noted at 2&/{ = 1y that is near the
condition for maximum wave reflection, that the amplitude of the reflected wave
was proportional to the number (»\,) of ripples in the patch. It may not be
unreasonable, therefore, to assume a linear attenuation of incident wave amplitude
from a prescribed starting value at 2 = L, to some new lower value to be
determined at = = £, . On this basis, the general results (44) and (45) may
be used in an iterative scheme to recalculate ?(z,l’,t) as =« —» *e , and
to achieve a final résul‘t which satisfies (71) approximately,

For a modified incident wave amplitude which varies linearly from a value
G.::. Q at %=L, to G, at 2=4L, 41t is appropriate in calculating
A (§,t) to replace  V(s,t) given by (7)y by \7(x,t) where

VD=V {2 e &zt wo (o)

l'l-LO Q L&‘Ll

Here the term in the brace provides the assumed linear behaviour and, for G.,< Q 5
it has the desired effect of producing a weaker interaction on the down-wave side
of the region of bedforms than is obtained by taking V(z,t) itself (ie Q4 =@ ),

If, for convenience, we write

, , , hx
(8= F 8 sl B (09 (o8) - LV (x)e

L
a

1Strict1y we relax here the requirement that the redefined first order waves
(T—T) =atisfy the potential equation in (&, L) . Although this is

not stated explicitly, it is the consequence of introducing a linear attenuation
term into the perturbing velocity V(x,t> at the bed, By (72).
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where a dash indicates differentiation with respect to 2 , it follows that the

new expression for .A-( E,t) may be written

F (0= K (8) coset) = A, (6) sin (o)

ko
Ly-x -4 !
=— a.*2=% ,a . - LE (x, ,t>olx
J 2{ Lo-L, | L,‘-L.}"( §

kot

A0=0FW.0-a,Fl,,0)- {t‘f}j F (e.6) de
A 0=aFked-a Flf)-faer “’M A

These results may be used in (L44) and (45) to give new perturbation solutions

A
@ (2,Y,t) in the limits x—>%w.

and hence

To satisfy (71) the following iterative scheme may be employed. Firstly,
as in gh, the reflected and transmitted waves may be calculated in the

perturbation solution, assuming no attenuation of wave amplitude in the first

. . . (C) I
order solution; in other words, if Q. 15 set equal to Q (where the

. . . () (O
superscript denotes the stages 1n the calculation), then Q,‘,_ and Q.+ may be

calculated in the perturbation solution. Since, in general, @ , 0.(: and a.‘,'.’
will not satisfy (71), a new value 5.‘;’ =/a*- (O.(:)x' may be calculated.
If it is then found (as is most likely in the applications of interest here) that
|5.‘,'.'| », a‘,"l , then AO'-S., may be taken as the new wave amplitude at

= 4, . Thus new values of reflected and transmitted wave amplitudes, a‘:)
and a“’ , may be obtained from the linear attenuation argument above, and so the
iterative scheme proceeds until a._ has converged to a value a,,f""‘""" . This
may be taken as a terminal and more accurate estimate of reflected wave amplitude
provided the associated transmitted wave in the perturbation solution is negligibly

L]
small, that is prov1ded|a(=~m') << /a_’-_(a‘:""“"’)" . In the next section, this

scheme is used in the case of the patch of ripples in (4, .Lz), that is in the
case discussed in § L.2. The iterative method is found to converge quite

. . . . FINAL
rapidly, and it suggests quite a substantial difference between Q‘: and Q(R_ )

5.1 Application in the case of a patch of ripples on an otherwise flat bed

The first order potential is given by (47) and the bed elez'ation in £, <7¢<£z
y (L9). With V(X,t) calculated from (7) and modified to V(z,t) according
to (72), the following results are obtained for § , in the limits % —3» =00
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&{2ich+ 3ink (2RR)} ()" |

+* g Qv l . 2 . l ( " ' (4

and 2 —»+00

~ Cx coshh(Kek) ,m_. -.w : —ot)-2(a-av) { O N ol
9’("’“)3{2&“s'..a.(zhu)}{(%)(a*(') @ (5 sinlle=ot) PZ?L,,-L‘Z.?—{H-( )} (b ct)] (75)

§ (xe) = ZCx cosh k(14) { v .5@(.‘)"‘,:» (kesct -200) = .- ) sin (lenc ot -20L) }

Upon setting @ =@ , Egs (54) and (55) are recovered from (74) and (75)
respectively. In the case of an integral number of bed wavelengths in the patch

( §' 4.2, Special Case 1), such that m=n and % = 0, we have as % —>-00

Plev,t) = Cxcosh ‘W**).[ k) )@= a,) cos(2h) sin (ko) 4 (@1 @) cos (R vot)

@ {2kh + sinh(2RY | (22N | ~ J (76)
-$.m. (ziu.)i _zg(a-a,) - (- ') . St‘n(Qh.L) S:-\(kx+ct)
i (u ‘A._' 2,
and as X —» 4+ é /€) .S
§(x.v,t) = Co cosh R(YVeh) 20 @v-a 3 sm (hemot) ()

§2kk + sinh (2R} ¢ a

Now setting @ = @ ,Bqs (56) and (57) are recovered respectively., It may be
noted that the transmitted waves in the modified perturbation solutions (75)
and (77) are no longer zero, the potentials taking values ~ (o - a.,) « This is
due to the fact that the vertical motion '{'f(x,t) at the bed is not now purely
sinusoidal in time and space, and the result is a small phase shift in the
transmitted wave.

Application of the iterative scheme described above enables a terminal value

@ &(FINAL)

of reflected wave amplitude to be obtained from the initial value

a,:" » The final value of @, has been taken as the value C(.,g_‘ﬂ) for

. (o0 @ (ie))
which I(a't - Qe )/a'v. "
and (77), this has required about 5 steps for Q,/a = 0.5 and about
(&
18 steps for @/ /G = 1-©Q T4 hag been found that the ratio

- (FINAL 9 . 0

(a£) _ ué TNA ))/a‘(z’ is a function of au/o. only, as shown in Fig 6.
In the case of zero reflection, the initial result (0.,(: = O) clearly requires
)
R

< O.00I1 ; in the present example, with Egs (76)

no correction. If the first estimate iz = 0.5a the final result
. FINAL

satisfying (71) is aé A )% O#47a ., 1In the extreme case of total

reflection in the first estimate (0_‘2 = 0.) y the terminal value is

12
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Fig 6 Correction curve for the reflected wave amplitude.
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(FINAL)
R
of reflected energy flux of 36%. Despite the need for substantial corrections

= 0.8 @ . In terms of energy flux this indicates an overestimate

of this type for conditions of large wave reflection, the principal value of the
present method is in providing the estimate Cl:’ by way of (44) and (45) in
the first place,.

The final result is rather insensitive to the particular attenuation
assumption which is made. In fact, the correction curve in Fig 6 may be obtained
in this particular example by making a simpler modification to 'Vr(x,t> than
(72), namely \7(z,t)={(a*a~%a_}‘v<x,t). Equations (56) and (57) may then be
re=used successively to iterate to the final result. The transmitted wave in the
perturbation solution is zero on this assumption however, and it is preferable,
in general, to adopt (72) or some similar, rather more realistic, attenuation
rule,

In Part I of this report, for the case of a sinusoidal bed of infinite
horizontal extent, limitations on the perturbation solution were stated as a set
of restrictions on the sizes of various non-dimensionalized length scales in the
problem, together with the further restriction that near 2%4?:: 1 the solution
is invalid due to the infinite resonance in the potential. In Part II the
limitations are the same, except that now the perturbation solution is merely
resonant, and not infinitely resonant, near 29/?==1, and so the first estimate
for the perturbation potential will be valid near 29/{ = 1 provided CZ:’<< Q.
In fact, the correction procedure described in this section, despite its
shortcomings, enables even this restriction to be relaxed, so that we do not
formally require ng(FTNAlJ'<< Q@  in the final result. It follows that,
having applied the correction procedure, we need only satisfy the restrictions
on the various combinations of length scales in the problem. As argued earlier,
these restrictions do not prevent the use of the solution in physically interesting

cases.
§76. DISCUSSION

6.1 Consequences for sediment transport

It was shown in g 442 that for surface waves incident upon sinusoidal
bedforms of finite horizontal extent, maximum reflection occurs at surface
wavenumbers for which 2@71{ * 1. BSince in Part I, for a ued of infinite extent
it was suggested that there may be a coupling between wave reflection and dune

growth if 2@74! ~ 1, this result has certain consequences for sediment
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transport, at least if the bed on the up-wave side of the ripple patch is
erodible. The existence of a partially standing wave structure in = o0 < 2 </,
caused by wave reflection, may deform this part of the bed into dunes having the
preferred bed wavenumber '(z 2k . The general picture may then be as followse
if a spectrum of waves is incident on a region of bedforms of wavenumber 1(,
only those waves having k Az '(/2 will be strongly reflected by the
topography. These reflected waves may cause the formation of new bed features
in =o0 < 2¢ <&, and, as these grow, so the nature of the wave reflection will
change and become concentrated near the point in the spectrum where Zky/{ = 1.
Evidently, no mechanism exists for the formation of new bed features in the
region &g < 2«00 by surface/seabed interaction.

It is worth contrasting this situation with that which would arise in steady
flow over bedforms of initially finite horizontal extent. 1In this case, the
equivalent perturbation solution leads to the prediction of a standing wave on the
downstream side of the bedforms1. Therefore any new bedform growth is to be
expected only on the downstream side ( L,_< % < 00 ) of the initial disturbance
on the bed, In respect of implications for sediment transport, this is the

fundamental difference between the cases involving waves and currents.

6.2 Momentum flux considerations

In g 5. we established an approximate balance between the incident,
reflected and transmitied wave energy fluxes. Bince, in general, the bedforms
are found to reflect wave energy, they must also reflect horizontal momentum,
and hence be subject to a mean horizontal force. This may be calculated if the
incident, reflected and transmitted wave amplitudes are known. By the
conservation of mean momentum, we expect the bedforms to be subject to a mean
horizontal force in the direction of incident wave travel which, for non-

breaking waves of small amplitude, is equal to

Leg(atvai-ad)(1+ Pt () (78)

per unit width of wavefront, where fw is the water density and 3 is
gravity (Longuet-Higgins (1977)). For totally submerged bodies, it has been
found experimentally that the mean force can be less than the expected value

given by (78), due partly to the presence of a second harmonic in the transmitted

Trnis is by analogy with, for example, Lamb (1932, Art 243)
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wave (see also Jolas (1960)). This arises under circumstances in which the wave
amplitude above the submerged body becomes a significant fraction of the local
depth, though the waves are not necessarily breaking. This situation is clearly
not accounted for by the present theory but, in g 3.5 of Part I, it was argued
that we require C}ﬂ( ,571{ << | for the theory to be valid. Longuet=Higgins
(1977) has studied the forces on a submerged model bar, mounted on wheels and free
to move horizontally on a smooth flat bed in either direction. The observed
direction of motion of this bar was governed by forces due to wave set=up and
set~down: in particular, long low incident waves tended to move the bar in the
direction of wave propagation, but short steep breaking waves tended to move it
in the opposite direction.

The forces on the bed in the present linear theory are given by (78) and so
depend upon the square of the amplitude of the reflected wave, since
a”-..a.:_ a..f' = 2 0.: by (71). Hence an upper bound may be placed on the mean
force if the reflected wave amplitude is calculated from (44), or a more
realistic result obtained if the correction procedure of g 5 is used. If the
incident wave is totally reflected then Clu== Q , and the force per unit width
of wavefront becomes %f‘v?az(l‘ﬁ 2’!-‘\/52»-[;(2&4‘)) « In terms of sediment
transport, the mean force on the bedforms is likely to be of importance on
geological timescales only, and quite possibly to be overshadowed by effects of
the type discussed in §l 6e1. It has been argued by Davies and Wilkinson (1978)
that if surface waves are non=breaking, then, at the threshold of sediment motion,
the force on a single sand grain due to pressure gradients in the flow is likely
to be of secondary importance at most compared with the velocityeinduced force,
This is the relevant consideration in assessing the response of a sand bed to low
waves. It is unlikely that the pressure gradients due to set~-up and set=down will
cause the bed to fail in its interior, and for shear to take place at some low
level, resulting in the movement of bedforms as solid bodies. The most realistic
way in which bedform migration can be envisaged as a result of the mean force (78)
is by the gradual residual migration of individual mobile grains in one preferred

direction = this direction being that of the propagation of the incident waves.

g T« CONCLUSIONS

In Part II of the report, a perturbation analysis has been developed to study
the interaction of a given first order motion with a region of prescribed seabed

topography. The analysis has been restricted to two dimensional irrotational flow,



and the first order motion has been taken as comprising surface waves of small
amplitude in water of finite depth. The interaction of this motion with the
bedforms has been assumed to be such that no flow separation occurs at the bed.

Although the perturbation solution enables the flow to be studied in the
immediate vicinity of the bedforms, the general results produced in ? 2. and f e
are for the perturbation potentials well away from the bedforms, on both the
up-wave and down=wave sides. These general results have been arrived at by two
approaches, the first a steady-state analysis, the second the solution of an initial
value problem. In each case a perturbing vertical velocity at the seabed,
resulting from the interaction of the first order motion with the bedforms, gives
rise to outgoing waves at the surface satisfying the radiation conditione
Essentially, the general results relate the sizes of these outgoing waves to the
Fourier transform of the perturbing vertical velocity.

The advantage of the present method over that proposed by, for example,
Kreisel (1949) is that at no stage in the argument is a mapping of the complicated
fluid domain required. Though, in theory, a conformal mapping exists for each
of the cases discussed in g 4ey in practice the mapping is not known, and so
an alternative approach is desirable. The principal disadvantage of the apiroach
described here is that it does not provide, at least at the outset, a proper
balance between the incident, reflected and transmitted wave energy fluxes; in
fact, the basic result merely provides an upper bound on the size of the
reflected wave. However, an "ad hoc" correction procedure has been suggested in

§ 5. to establish a proper balance and achieve a more realistic result,

The principal apnlications of the method discussed here have concerned the
cases of a patch of sinusoidal dunes and an isolated submerged hill, the latter
being a special case of the former. In general terms, the results for the
reflected wave have shown that the reflection coefficient is both a highly
oscillatory function of the ratio of the overall length of the patch of dunes to
the surface wavelength, and is also strongly dependent on the ratio of the surface
to bed wavelengths. Examples have shown that, for realistic values of dune
steepness and fairly small values of the ratio of dune amplitude to water depth,
only a few dunes may be needed to produce quite a large reflection of incident
energy, at least 1if 25/? % | , where k and g’are the surface and bed
wavenumbers respectively. The greater the number of dunes, the narrower is the
range of incident wavenumbers which are strongly reflected by the topography. An
implication of the results is that if a spectrum of waves is incident on a patch of

dunes of wavenumber 1( , there will be a selective reflection of wave energy
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depending upon incident wavenumber, the preferred part of the spectrum for wave
energy reflection being in the vicinity of k=='9£,. It has been found also that
there may be a small phase shift in the transmitted wave, even in cases of zero
reflection. This has been noted also by Newman (1965b).

The wave reflection mechanism discussed in this report may be important in
terms of the possible coupling which may exist between dune growth on an
erodible bed and the reflection of incident wave energy. It is well known that
partial wave reflection may occur from a beach face, with the consequent
formation of a series of offshore bars which, in turn, shelter the beach from
wave attack. It may be concluded from the present analysis that, under certain
preferred conditions, a totally submerged series of bedforms may act as an
effective reflector of incident wave energy, thereby reducing the wave height
on the down-wave side of the bedforms, and possibly causing the growth of new
bedforms on the up~wave side. The further reduction of the transmitted wave
height by this process may be quite significant and have far—reaching

implications, for example in the siting of wave power devices,
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