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1., INTRODUCTION

The finite difference representation of the hydrodynamic equations
of motion has been used extensively in oceanography to calculate
approximate solutions to these equations. This numerical method has
a number of serious disadvantages in that solutions are only
obtained at discrete pdints in space, and the sea bed topography is
represented as a number of point valﬁes. Spatial derivatives are
usually calculated in terms of simple differences of two grid point
values, and although higher order differencing methods have been
used [14] involving up to four or six grid point values, this
accuracy can only be applied to systems having periodic boundary
conditions, and in problems having boundary conditions where either
elevation or current must be specified, a one sided lower order
representation has to be applied at the boundary.

Generally the grid involved in finite difference work is uniform
over the region for which a solution is to be determined, and
methods which aim at improving resolution in a particular interior
region, by inserting a fine mesh within the coarser one have been
shown mathematically [15] to have a number of undesirable effects.
Namely, changes in the phase and amplitude of a wave progressing
from one -mesh to another; aliasing problems involving transfer
of energy from waves representable on the fine mesh (but not on
the coarse mesh) to longer wavelengths, Reflection of incident
waves, and generation of spurious waves at the boundary between
the two meshes and also numerical instability of the coupled
system, are particularly difficult problems.

In order to overcome some of these problems this paper presents
a method involving the solution of the hydrodynamic equations of
motion using an expansion in terms of B-splines. These functions

are piecewide polynomials, being non zero only over a small region



of the space domain. This method yields continuous solutions in
space for both sea surface elevation and current, and since the
solution is calculated in terms of an expansion,.accurate values
of the sea surface slope at any point can be readily obtained by
direct differentiation. The sea bed topography is also represen-
ted as a continuous spatial function.

The piecewise nature of these functions permits boundary
conditions to be readily incorporated without degrading the
accuracy of the solution near the boundary. In regions where the
sea bed topography is particularly complex, or greater accuracy
of the solution is required, more functions can be incorporated
to sharpen resolution, and since the method represents spatial
derivatives amalytically in terms of the complete expansion,
and not as differences of grid point values, the problem of
reflection or generation of spurious waves at the boundaries
of regions of different resolution is avoided.

The Galerkin Cl] method, in which the error between the true
solution, and the solution in terms of an expansion of basisg
functions (in this case B-splines) is minimized in a least
squares sense, is used to solve the hydrodynamic equations.

This technique has been used extensively in the form of the
finite element method, in solving the partial differential
equations arigsing in structural mechanics, but it is only
lately that it has been applied to solving time depqndent
problems arising in meteorology and oceanography.

Orszag [2,%] has used the spectral method, in which a solution
is obtained in terms of functions which are continuous over the
whole spatial domain (usually Chebyshev polynomials, Legendre
functions or a Fourier expansion) to solve a number of meteoro-

logical problems.



The finite element method, in which the basis consists of low
order piecewise polynomials, has been applied by Cullen [4] to
the integration of the shallow water equations on a sphere.

The advantages of the finite element method, in terms of computer

storage, time and accuracy have been demonstrated by Wang et al [5] .

In oceanography Rao [6] proposes a type of spectral method for
the calculation of storm surges in a lake, using the normal modes
of the lake as his basis functions. The finite element method has
been applied by Grotkop [7] to the calculation of the M2 tidal

constituent in the North Ses.

2. MODEL EQUATIONS AND THE GALERKIN APPROXIMATION
In one dimension the equations of motion and continuity for a
gingle homogeneous layer of fluid, neglecting friction and

advective terms, are given by :-

(=, k) 36(x k) = O (1)
Sl + g2 1

and 28 4+ HJulxk) =0 (2)
oF o

where f{ , a constant, is the mean depth of fluid, LJ is the
fluid speed in the & direction, ; the total depth of the
fluid, and 9. the acceleration of the Earth's gravity. 1In order
to obtain unique solutions for (1) and (2), initial conditions

U(x)O) and ;(x)c) at time t:o and boundary conditions
must be specified. The form of these is considered later, when
the method is applied to a number of problems.

Instead of approximating these equations directly, as in the
case of finite differences (where the derivatives are replaced

by differences, giving a system‘of algebraic equations), the



Galerkin approximation aims at minimizing the functional obtained
by multiplying these equations by test function \/(JC) belonging
to a space S of continuous differentiable functions, and
integrating over the region for which a solution is required.

Thus multiplying (1) and (2) by VY(2€) and integrating from @)
to b , where =0 to 2 = L. defines the region over

which solutions for U and E; are required, gives

~L
U 4+ g __€,_(x B\ vxydx =0 (3)
J, \3E
L
and €(xE) + Hu,r)) viwdx =0 (a)
J, \ot 3

In practice a subspace S, of S is used, U and g; , being

expanded in terms of a basis v' (,x)) Va(x)) v e s oo VP(-I)

and time dependent coefficients as :-

F>
Ulx, k) = é o« (E) V; (2

iz

P
;(x,l'-') = é B (E) V‘: () (6)
4
i=|
These solutions must gatisfy the initial and boundary conditions

imposed in solving (1) and (2).

Subgtituting (5) and (6) into (3) and (4), taking \/(3(> \/ LZQ,
J = L,‘L) R fD gives



(8)

where j = 1,2,...P

Solving this set of coupled differential equations for the ol’$S
and B’.S through time gives an approximate solution to
equations (1) and (2). 1In order to solve this set of equations,

initial values, c(‘-_(o) and B; (©) have to be calculated.

In the case of U(.I) O) and ; (x, 0) having functional
forms U(X) and 2 () , using (5) and (6) the latter can be

expanded in terms of the Pbasis functions and then employed to

give : P L L
gdL(O)j Vi \gdx = J\ Uy VJ da (9)
L=] ° °
P L L
‘ V., V. d =X v, dat
o g'BL(O)S; L & ) ZLD‘—) J (10)
L=

J =1, 2) e P
For simple functions U(-‘!) and 2 tx) , the integrals
occurring in (9) and (10) can be evaluated analytically, and the
system of equations solved for the d"_ (O) and p‘_ (O) . For
well behaved U(J.) and Z (1> the integrals can be evaluated

using Gauss quadrature. When U(x) and z (I) are only given



at M distinct points (m > P) , then the least squares
criterion can be adopted in fitting the expansions (5) and (6)

to the points, yielding the usual set of normal equations from

which the & (v)’S and ﬁi (0) S can be obtained.

3. FORM OF THE BASIS FUNCTIONS AND NUMERICAL PROCEDURE

In order to solve the set of differential equations given in
(7) and (8), it is necessary to evaluate all the required
integrals over the basis functions. The ease with which values
of these are obtained depends upon the nature of the basis set.
Spline functions can be readily integrated and differentiated,
and because of their piecewise nature, many of the integrals
that oécur, are zero.

The basis functions used here are the B-splines (fundamental
splines), which were first studied by Schoenberg CSJ and have
recently been used extensively in problems of interpolating and
smoothing by Powell [9] and Schumaker [10] .

The most common representation of a spline S(x)of order N ,
(degree n."’ ) based on an increasing set of knots A' P 22)

’A ,,,,,, ?‘N is that given by Ahlberg, Nilson and

Walsh (11] :
S(2) = Sd; +€e (= %))

iz=| anl

where (z_-— Aj) — O ) when (1-%) <O

(11)

(12)



This particular form of the spline, however, gives rise to
badly conditioned matrices when used in numerical work, and
an expansion in terms of B-splines is much more desirable.

In this case it is necessary to introduce 2 n.' additional

knots a’_n) }2_”’, ----- ' ﬁo and }

u..~--"'.."")
-

N+ ) 1/w-.a)""

, then for

N+
Aos < 2N+) ,  § () can be expressed as
N+n
St =5 ¢; M, (2) (13)
i=|

where Mnl. L.Z) is the B-spline of order n_ defined upon

knot . ) c e
nors 2‘__“ J 2L-l‘t+l)
support property

‘o 21. with the restricted

Mn}_(x> > 0 when AL_’L<1< j‘

(14)
= 0 ¥ 2
<A yx>4,
Thus Mﬂ.L () is only non zero over FL knot intervals.
For the region of interest O & X &£ L , it is
necessary to have 2”. knots outside the region to provide
support for the spline functions, positioned at,
A oo L =0
A4-n‘ 2-n ~ )° (15)
and - < e &L
L = ;\NM = A/v-o-.'a_ ~ J/\/-m.

where /V is the number of knots within the region.

These spline functions can readily be evaluated by a

numerically stable method given by Cox [12] , using the



recurrence relationship :-

|, 1=l

Mg ) = (2-2, ) M-n-("") + (7«;-1) M"’-l&?

(16)

for T=2'3’...-4n

starting with

Mil.(x) - 1/( )‘_ —}i-l) when 21_‘ Sd—( 2‘" (17)

O .
x < ;\i-l) 1‘. £

The detailed computational procedure given by Cox C12Jwa:s used
for this.

By using this formulation the knots of the spline may be
specified in arbitrary positions, and may coincide with one
another. If R knots coincide, then a spline S(X) has in
general only R - R -' continuous derivatives ( M being the
order), and for Q=] coincident knots only S(xX) is
continuous,

Thus the B-splines form a very convenient basis in which the
current U(z, t) and elevation ; (x) t) can be
expanded. In order to solve the system of equations given in

(7) and (8), it is necessary to evaluate integrals of the form

(18)

L L
M) Ma)da  ana 5 4_1‘1”‘(?1) Mn.cz) dat
ne n& da ¢
o) o]
Rather than calculate these integrals directly, it is
convenient to express the splines in terms of Chehyshev
polynomials. Over each knot interval 2 £Xx s ]

3 ¢l

the B-spline is a polynomial of degree )z-, or less, and



can be expressed as

n-l
My 2) = S ¥
) (X) (19)
i=0
where X = (23""1&"‘14+n>/( ﬂa'-fq—)J) , for
_‘ sxs. , and -T; (X) is a Chebyshev polynomial of the
first kind. The double prime indicates that the first and last
2"A5 are to be halved when the sum is evaluated. The
Xa_;_ is given by (Fox and Parker [133 )
'H//
= & é (XR (:CR) (i=0,4,...n-1) (20)

n-l

k=0
with XK = COS _g__’I and 1‘ :XR()JH"J})QJ--PQJ.,.,

n- 2

Due to the piecewise nature of the B-splines, many of the

integrals which occur in (18) will be zero. Expressing these
as sums of integrals evaluated between knots, gives rise to
further zero integrals. Using the transformation given in

(19), the integrals can be expressed in terms of integrals of

Chebyshev polynomials.

-+l +)

}I 'j-r(x) (x) d X andjﬂ(K){r&(X)J,X (21)

2 J, - dX

Making the substitution X:—‘ cos & and using :-



10.

T 00 T =05 (T, 00+ T, (X))
T«(X) = cos(+ cos"'X) | (23)

these integrals can be readily evaluated.

For high values of ¥ and § , which occur for large L ,
the Fast Fourier transform method, can be used to compute the
integrals in a similar manner to that used in spectral methods
[2,3].

The set of coupled differential equations (7) and (8), using
a basis of B-splines can be written in matrix form as

Cd&-&-gz@P:O

(24)

dk
CdP +H Rt
dt

where & and Q are FJx P matrices, with (L,é) elements

O

given by

L

n.=IML M dx (25)

L
C:~‘<= ﬂ4- ) and .
Ly L‘%dl “4 Yo dx ¢

where ML and MJ are B-splines of order [l , the subscript
N. having been dropped from the notation. The matrix d:. is
readily inverted using Gauss elimination, and any standard numerical
method can be used to integrate the differential equations. However
in order to keep the errors arising from solving these equations at

discrete time steps a minimum, a fourth order Runge Kutta technique

was used.



4.

(a)

Periodic boundary condition

11.

APPLICATION OF THE METHOD TO SPECIFIC PROBLEMS

g

The numerical example used by Wang et al EB] provides a good

test of the application of the meth
periodic boundary conditions.

The initial conditions are

od to a problem having

Ux,0)= U, sin T+ x/L

(26)
and ?LLZ,CO = +{

Boundary conditions are given by :-

U(x,8) = u(ac+L k) o)
27
€)= €24, )
where -IJ; is a constant amplitude, T is an integer determining
the wavelength, Fi » a constant, is the depth of fluid, taken as
9.184 km, and L = 10,500 km, 9 - 9.81 m/sec2,

Using cubic B-splines (M = 4) as a basis, it is necessary to
provide additional knots outside the region (@] = A 4 L to
support these splines, given by :-

q <q <1 <A =o<2 v ey QHOOL= < <

-3 % - ° ! )Nﬂ Am-.z 2pw-g < 3,\M-q.

where 2_‘=20—A2~” p) }”_'_2: )N-H-'.Aﬂl
=) -A7A -
ﬁ-z - v o) Mg ;\mz*Aﬂe (28)

:\_3 =:jkﬁe-1& ?»VH ‘,

Aveg = Ipgta 23



with Aﬂi_ —9\‘- il
The relationships given by (28) for the knot positions, take

account of the periodic nature of the boundary conditions, if

integrals of the form C:ij and f?€} given by equation (25)
are replaced by, :
L L ‘ .
MM. dx + M M dac  tor L,Jﬂ)a)a
L I+Nsl jHN¥)
o Yo (29)

L . 1]
i da tor L,A 2|, 2,3
od:c L) jivel

and ILd_M‘_de +
dx .

To test the accuracy of the method ; (.z,b) and U(.:r.,t)

were calculated at 200 equally spaced points in the region
O0<£X £ L. , at each time step, and the maximum differences
between these and the anmalytic solution given by Wang et al ESJ )
were obtained. The maximum value of the error in § (A g)
and U(A U) ~ (normalized by dividing by H and UO
respectively) which occurred during each integration period is
given in the tables.

Table I presents the results for T = 1.0, L)o:z 54.6 m/sec,
using a cubic B-spline (P = 4) in both single precision (s.p.,
7-figure accuracy) and double precision (d.p., 16-figure accuracy).
A time step of 600 seconds (approximatély one gixtieth of the
period) was used, except in the case of 18 basis functions where
a smaller time step (300 secs) was required to prevent numerical
errors in the time integration having a large effect. These
results illustrate the increase in aecuracy that can be obtained
aé the number of basis functions is increased. As the size of the
basis set grows, precision problems associated with inversion of
the matrix ¢ » and solution of the system of equations become

more important, as indicated by the deterioration in the single

12.



13.

precision results.

In Table II results for the same problem are presented using a
sixth order B-spline (L = 6). Comparing the double precision
results in Tables I and II it is evident that increasing the
spline's order improves the accuracy of the result,

Table III shows the normalized results obtained when ™ = 2.0,
'IIO = 27.3 m/sec, in this case there are two wavelengths present
in the region O.‘, x £ L , and the number of basis functions
must be increased in order to represent the wave correctly.
Increasing the order of the spline again improves the accuracy of
the results.

Although these calculations were performed for equally spaced

knots, the method for evaluating the B-splines allows for unequal

knot intervals.

(b) Specification of elevation and current at the same boundary.

Periodic boundary conditions as defined in the preceding
problem are rarely encountered in oceanography.

An example of more realistic character is concerned with a
progressive wave in a channel, where the elevation and current

on the boundary X =0 vary in a periodic manner, given by

€(ot)=Cecos wk = 'Z (L)
U(O,t) = AC cos wk = Ueo (E) (30)

The analytic solution of (1) and (2) subject to these houndary

conditions are given by

?(:x,t) = C co.s('\':z.-w[:)
Ul(x k) =AC cos(-r:z.-a)t)

(31)



14.

where H = (9/,.»'/2. , 'T™* determines the wavelength, and
w = ,1-(9 H) Ya the period. The solution represents a
progressive wave travelling along the channel from 2 =0 to
X = L
The implementation of boundary conditions can be accomplished
by two methods. If the knot at X =0 has a multiplicity of
n -l , then all the B-splines in expansions (5) and (6)
except the first will vanish at this point. Thus the expansions

for g and U which satisfy the boundary conditions become

P
Ux,£) = §,(t) M (x) + gdz M; ) (32)

E——

Hl L=2
p

wa  Gl2E) = ‘%@ Mo + S B M (33)
' =2

where H' - M, (O) , and P is the number of basis
functions.

The unknown coefficients d‘ and ﬁ‘ being determined as
previously, using Mz, M3) ...... MP as test functions giving
(P.,))((P-:> matrices ﬂ and ¢ .

In the second method, a single knot is placed at X =0. 1In
this case the first n—' B-splines will be non-zero at this
point, and in order to satisfy the imposed boundary conditions
the differential equations given by (7) and (8) must be solved
subject to the constraints imposed by the boundary conditions on

the first M=] o’& and n-| ﬁ’é namely :

o(,ﬂ, +al, H2+ SETRI P Hn-t = YU_(&) (34)
nd B, A, +ﬁzﬁ.2+‘ By Hn-: = Zo(£) (35)
where HL = ML (O)



In the previous problem, where periodic boundary conditions
were used, thegde conditions imposed the constraint that the
wave had the same amplitude and phase at 2620 and 2% %l .
In this problem that constraint is no longer required, and
values of ﬂ'l_ which are not integer multiples of 1T were
chosen to ensure different amplitudes and phases at 26 =0
and 2¢ =L , namely (i) TL = ,'6-". , (ii) 3‘211,
(iidi) 64 m . The value of 'TL is important since
from (31) it determines the number of wavelengths present and
hence the number of basis functions required to describe the
wave accurately.

Initial conditions corresponding to (31) with t:‘.o were
used, together with a time step of one sixtieth of the period.
After a few cycles, the error reached a value determined by
the periodic forcing of the boundary conditions, and the
rounding error in the calculations. Table IV gives the
normalized maximum error found at 200 points in the elevation
for case (ii) 7L =32 T. The current is related to the
elevation by the constant F? , and shows that the error is
fairly constant after the first few cycles.

Identical calculations were performed for the three waves,
cased (i), (ii) and (iii), with both fourth and sixth order
B-splines, the results after L5 cycles are summarized in
Table V, illustrating that as the number of wavelengths in
the region Oéx S L increases the number of basis
functions must also increase in order to represent the wave
accurately, although increasing the order of the spline can
have a similar effect,

Calculations for all cases were also repeated uging the
method of constraining the expansion coefficients to satisfy

the boundary conditions, and gave results which agreed with

Table V.

15.



(c) Elevation and current specified at opposite boundaries

Consider a gulf connected to a tidal ocean, with the closed end

of the gulf at X 2O and the open end at X =L . At ==L

there is a forced sinusoidal variation in the elevation. The

appropriate boundary conditions are

U(o)[_-) = O forall F
g(L)t:) = Bcos wk

Analytic solutions of (1) and (2) with these boundary conditions

give

U(-‘-‘!)t)':HC Sin TX Sn wk
Hecas «+ L

;(1)1:)=H cos ¥ cos wt
cos +L

where }? is the amplitude of the forcing sinusoid, €J the
frequency, c: (3 H)Vz , and = w/c determines the
wavelength. Only the value of T+L is important in determining
the number of basis function required, however since the problem
is one that occurs frequently in oceanography, typical values of
the other parameters were used, namely l_ = 300 km, }1 = 90.8m,
3, = 9.81m/secz, H = 1.0m,
Two calculations were performed using (i) 1PL.= 6.0 and

(ii) *L - 12.0. Initial conditions corresponding to (37) with

t = O were used, together with a time step one sixtieth of a
period. After a few cycles the error reached a nearly constant

value, and the maximum errors A ; and AU after 15 cycles

are given in Table VI.

16.
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The boundary conditions were satisfied by applying constraints
to the expansion coefficients as described previously. This
example is of interest not only because boundary conditions are
applied to ; and {J at opposite ends of the channel, but
unlike the case of the progressive wave, the elevation and
current are out of phase in both space and time. The results
show that as in previous examples, accurate solutions can be
obtained by increasing the number of basis functions and order

of the spline.

(d) Current specified on opposite boundaries

Analytic solutions of equations (1) and (2) for oscillations

of a body of water in a channel closed at both ends

( U(O,t): U(L)t) =0 for all £ ) are given by
Uk = C sin €T sin 277E
L

;(x E) = 'l;HC. cos TTx c.osé_j:-
L
where C  is the amplitude and T= 2]_/( H) is the

period. Numeriéal values used were L. = 300 km, }1 = 90.8m,

i} = 9.81m/sec2 and c:= 1.0m/sec the initial conditions are given
by (38) with t‘: 0, a time step one sixtieth of the period being
employed in t%e integration. Two calculations were performed with
(i)*= 1.0, ‘(ii) P = 2.0, and maximum errors after 15 cycles are
presented in Table VII. To check the stability of the results the
calculation was continued for over 100 cycles, and results
congsistent with Table VII were obtained. The boundary conditions
of zero flow were readily incorporated by using a knot of
multiplicity QR =| at the points X =0 and X =L

The examples given in this section illustrate the ease with

17.
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which various boundary conditions involving specification of

elevations, currents, and periodic conditions can be incorporated.

5. EXTENSION TO PROBLEMS INVOLVING FRICTION, SEA-BED TOPOGRAPHY,
AND NON-LINEARITIES.

Although the results presented previously deal with a physically
idealized situation, i.e. a channel of constant depth with no
friction, they are particularly important in demonstrating the
accuracy of the method, and its numerical stability. The technique
is here extended to the equations of motion incorporating bottom
friction and to a channel of varying depth. The one dimensional

hydrodynamic equations for this problem are :

b_t_}_(x,l‘:) - E(:JQ Y(x, k) +9 _é__g_(x,b) -0 (39)
Y: P Hux S

w36k 4+ 3 (HeouEt) =0 (40)
dF 3

where 9 5 3_ are as defined previously, U ig the depth mean

current given by :

(o
U= | | u=dz (41)

Hex)
“Hix)

,D the density of fluid assumed constant, }{(J:) the depth of
fluid, varying with position AL , and ﬁ(,.x) a friction factor -
defining bottom stress as ‘i L] , which for complete generality

also varies with position &

Defining K(.x) as

Kix) = EQQ_. (42)
pPH=



19.

equations (39) and (40) become

QUEE) ~Kl) Ul k) +9 36 (L) =0 (43)
ok o

and (x,E) + Ho) Qu(x k) +U k) gH® = O (44)
%% ’ dx Y™

The solution of equations (43) and (44) is analogous to that
described previously for equations (1) and (2). Expanding chlk)

and ;@/t) in terms of P spline functions gives :

P -
U k) = édi(t) M, () (45)
i=l

and ;(371:) - gﬁi (t)/V" () ' (46)
L=l

The functions H(..‘.t) and K(.x) may also be written in terms

of P splines :

P
Htx) = é q‘: M‘.(-‘Z.) . (47)
le)

p ,
K (= =€ b; M. (=) (48)
Lel
where q‘ , bl: are time independent coefficients.
When both H(x) and ﬁ(x) have known functional forms, the

QL and b‘: may be determined from



P L L
é a, M‘ M} dx ES) MJ d=x (19a)

L=l (o] 1>

L’ | L

o |
one 2 b | MM dx = L | koo Mj dx (49D)
) e 4 P, Hid

}:l, R,... P

The integrals involving only B-splines are determined analytically,
the other integrals in general requiring numerical integration.

When H(:c) is only available at a number of discrete points, e.g.
in the form of depths read from a chart, then the coefficients q;_
and b‘.. may be calculated in a least squares manner. The least
squares technique is also used if both the depth distribution and
the friction coefficient are only available in numerical form,
although if the depth distribution has a functional form, the C;i
can be calculated from (49a). |

Equations (49) can be solved in an analogous manner to equations
(9) and(10), by inversion of the matrix of integrals of spline
functions.

Substituting equations (45), (46), (47) and (48) into equations

(43) and (44) and applying the Galerkin method gives :

L
P P P P
de; Mix) - SbM .S« M) +qS B dM.(x)\ M (0dx = 0
2«:“: : Jé“ ?,,“ +35,B‘£‘ )&

(o) IRY
(50)



and

L p
(ggf Mcx>+ga Meo g-c 411m+5« Mo, 2:1 M, ) ) 0y dec =0
J:l LI (52)
&‘ ')2) a s P
Due to the spatial variation of the term K{(X) and depth H(x) ,
two new types of integral are involved which did not occur previously,
namely :
de R

L L
j M@ M) M) dx and M) dM-tx) M, (x> dx
i R 4 CISC

Expanding the B-splines in these integrals in terms of Chebyshev

polynomialsg, yields new integrals of the form

+i +!
A | TOOTXTxdX , | Tx)dT X Tg(X)dX
AF‘EQT ST e s _"' ax

Since the product of two Chebyshev polynomials can be represented
as the sum of two polynomialé using (22), the above integrals can
be written in terms of sums of integrals given in (21).

The solution of the set of coupled differential equations given
by (50) and (51) can be accomplished in the manner described
previously.

The Galerkin method with a basis of B-splines can also be applied

to the solution of the non-linear hydrodynamic equations

21.



22.

g_(x E) + Ulx tmzu £ -Reouep el +q 3 1) 0(s0)
Hix)+€ (x k)

and

_i_«xb) + [Hxy+Ecx, b)b__cx E) +uc=t)ALth)+§<x 8] =
>

(54)

where {J 1i¢ pnow given hy :

G )

Ut k) = | u)dz (55)
Hixey +§(x k)

-Hix)

The term ﬁ U'U' is particularly difficult to handle
analytically, and, like Cartwright [16] and Doodson El’?J , it 1is

convenient to approximate it in the following manner :

£ Uyl zﬁ.u-a-ﬁaua (56)

where ﬁ , ﬁ_' and EE. in general are functions of OC .

Since the frictional coefficient ﬁ' should vary with current
strength this approximation is probably as physically realistic
as retaining the U,U, form. The R. and ﬁz are chosen to
minimize in a least squares sendse the difference between the
two expressions for a finite range of values of U .

The term ﬁ(.x)/[H(:z)+ ?(x,l:)] is initially

approximated as follows :

[_.Ep_c)__  Rix (1)
Heot € (x,B)] ~ Hix



- reasonably accurate in deep water ( H(ac) » ;(x) ).

Incorporating these approximations in (53) gives :

Ba‘%(x’ E) +Ux,b) Bsg_éz, E) -K(x)u(x k)

~K U E) +q 38 (x L) =0 (58)
! g%
where K| () = ﬁ,(x‘) K (.I) & (-71)
H () H(.z)
P
Expanding : (JC) - tbi pqi(:n) (59)
XY

(60)

Kz_"‘) = c; M0

w/VM\vo

and then substituting (45), (46), (47), (59), (60) into (54) and

, using the Galerkin method, gives :

P P P
J { M-(;)+(§QLML(2> +§ﬁLM‘.m) . éoj. gﬁacx)
izl iz { x

d"
P P
+§'c( M@, (éq‘ %m +‘§l3 dnm, ‘-’0) MK""J‘{:Z =0 ()
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andL . ,
édg,;MLLz) -+ éd M(x) éd dM )
1= dF L} d:c
” 3
_2b M(x>.§«}Mm - 20 M, (). (E‘“ M. (x))
.,.32;3 olM I"](.x)dx =0 (52)
B=,2,...,p
The LJa terms give rise to integrals of the form :
L .
M M) M) M (x) Mbeddx
L J k /4 m
O

Expanding the B-splines in terms of Chebyshev polynomials, and
using (22), this integral can be expressed as a sum of integrals
involving products of two Chebyshev polynomials.

If ;(.x/ t) is retained in the denominator of the friction

term, then

K,(:x,k)-__&ﬂ_tl_ 5 Kebde Bote) (o)

Hexy+ € (x ) 27 Hepy+€xk)

In solving numerically (53) and (54) it is usual to represent
time derivatives, by a forward difference formula. Uging this
discretisation in time, the time dependent functions *(1Fnd F(

2
may be readily incorporated, the coefficients b and (C.
L
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being recalculated at each time step using values of g; at the
lower time level, prior to solving (62) to step iorward in time.

The calculation of the tyhand C& involving the solution of

P’
Sk MM dx = f B Mde (o
“o 4 ¢ , He)+ €= k) ¢

L=zl

L
J M} c(::c; (G4ab)
o Heo+&ib)

J2L2 P

Retaining the term L,lU, in cquation (53), and using the

P L
and g C‘:‘LM’: M& oz =

iz
at each time step.

Galerkin procedure, as previousgly, requires the evaluation of

the integral

L

P rgu)§d£M‘u>I§d£ MNL)I M (2 da

(63)
He 1 S B M, g
Lzl

which it is possible to compute numerically at each time step
using the d‘- and ﬁ‘ determined at the lower time level,

A number of partial differential equations containing both
non-linear and dispersive terms exist in the literature, having
analytical solutions with which numerical results can be compared,
Burgers equation serves as an excellent model for the non-linear
hydrodynamic equations, and comparing results obtained using an
expansion of B-splines with analytical results, Davies [i@] shows

that highly accurate solutions can he obtained, for non-linear



problems.

The method given here involving B-splines has also been used to
calculate the vertical profile of horizontal current in terms of
an expansion of B-splines [19,20] , good agreement being attained
with results obtained by Heaps Cél] , confirming the accuracy and

general applicability of the method.

6. CONCLUSIONS

The results presented here demonstrate how readily various
hydrodynamic problems in Oceanography, with boundary conditions
incorporated, can be solved, using a basis of B-gsplines. Using
the recurrence algorithm to generate these splines allows their
order to be readily changed; the multiplicity and positions of
the knots is completely flexible.

The method yields accurate results for all the boundary
conditions considered, the accuracy being improved by increasing
both the number of basis functions and the order of the spline.

The extension of the technique to problems involving non-linear
terms with ability to deal with sea bed topography and spatially
varying friction, and the accuracy of solution obtainable,

illustrate the power of the method.
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TABLE I

Errors using 4th order B-splines ("1 = 1.0), with a

periodic bound

ary condition

Time 6 basis functions 12 basis functions 18 basis functions

(Hrs) S.p. d.p. S.p. d.p. S.p. d.p.
(a) (b)

10 AY 3.97E-4 3.90D-4 3.31E-5 2.01D-5 4,68E-5 4.13D-6

AU 2.16E-3 1.96D-3 1.65E-4 1.85D-4 1.17E-4 9.38D-5

20 AT 4.65E-4 3.91D-4 4.69E-5 2.01D-5 8.86E~5 5.35D-6

AV 2.40E-3 1.98D-3 2.25E-4 2.05D-4 23E-~ 1.69D-4

30 AT 5.51E-4 3.92D-4 6.38E-5 2.00D-5 1.35E-4 T7T.70D-6

AU 2.66E-3 2.01D-3 2.88E-4 2.53D-4 3.55E-4 2.51D-4

40 A¥ 6.37E-4 3.95D-4 8.73E-5 2.01D-5 1.81E-4 1.01D-5

AU 2.91E-3 2.05D-3 3.48E-4 3.02D-4 4.60E-4 3.37D-4

50 A 7.21E-4 3.99D-4 1.03E-4 2.01D-5 2.29E-4 1.25D-5

AL 3.17E-3 2.11D-3 4.21E-4 3.50D-4 5.75E~4 4.27D-4

60 A% 8.40E-4 4.02D-4 1.20E-4 2.02D-5 2.75E-4 1.49D-5

AU 3.42E-3 2.16D-3 4.91E-4 3.99D-4 7.07E-4 5.18D-4

(a)
(b)

3.97E-4 = 3.97 x 10”4
3.90D-4 = 3.90 x 10~4

E indicating single precision

D indicating double precision
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TABLE II

Errors using 6th order B-splines (q= 1.0) with a

periodic boundary condition

Time 6 basis functions 12 basis functions
(Hrs) s.p. d.p. s.p. d.p.

10 AY 1.07E-4 1.35D-5 2,03E-5 3.45D-6

AU 1.57E-4 1.16D-4 1.74E-~-4 9.,29D-5

20 AY 1.82E-4 1.353D-5 3.537E-5 6.47D-6

AL 2.62E-4 1.60D-4 3.16E-4 1.91D-4

30 A; 2.61E-4 1.35D-5 5.03E-5 9.49D-6

AU 3.72E-4 2.05D-4 4,85E-4 2.95D-4

40 A% 3.40E-4 1.42D-5 6.71E-5 1.25D-5

AU 4,73E-4 2.53D-4 6.350E~-4 4,05D-4

50 A; 4,19E-4 1.56D-5 8.35E-5 1.56D-5

AL 5.59E-4 3.02D-4 8.19E-4 5.16D-4

60 A; 4,91E-4 1.67D-5 1.00E-4 1.86D-5

AL 6.48E~-4 3.52D-4 9,.96E-4 6,30D-4




TABLE II1

Errors using 4th and 6th order B-splines (= 2.0)

with a periodic boundary condition

Ti 4th order spline 6th order spline
ime Number of basis functions Number of basis functions
(Hrs) 6 10 12 6 10 12
10 AY 1.46D-2 4.55D-4 1.93D-4 1.63D~3 3.14D-5 2.10D-5
AV 6.57D-2 2.42D-3 1.04D-3 8.55D-3 2.45D-4 1.94D-4
20 AT 2.78D-2 4.83D-4 1.99D-4 2.28D-3 5.23D-5 4.04D-5
AD 1.38D-1 2.64D-3 1.17D-3 1.09D-2 3.97D-4 3.88D-4
30 A¥ 4.13D-2 5.31D-4 2.11D-4 2.95D-3 7.09D-5 6.03D-5
AU 2.11D-1 2.95D-3 1.31D-3 1.46D-2 5.64D-4 5.84D-4
40 A® 5.46D-2 5,98D-4 2.29D-4 3.72D-3 9.04D-5 8.08D-5
AD 2.80D-1 3.33D-3 1.49D-3 1.96D-2 7.45D-4 7T.95D-4
50 A% 6.77D-2 6.76D-4 2.50D-4 4.52D-3 1.10D-4 1.01D-4
AL 3.66D-1 3.75D-3 1.68D-3 2.42D-2 9.73D-4 1.03D-3
60 A 8.01D-2 7.59D-4 2.75D-4 5.35D-3 1.30D-4 1.21D-4
AD 4.36D-1 4.,29D-3 1.92D-3 2.91D-2 1.15D-3 1.23D-3

32.



33.

TABLE 1V

Variation of errors with time for problem (b)(ii)

using 4th order B-splines

Time Number of basis functions
Cycles 5 10 15
3 A¥® 4.92D-1 4.66D-3 5.85D-4
6 A 5.23D-1 4,63D-3 5.61D-4
9 AT 4,72D-1 4,27D-3 5.71D-4
12 AY | 4.92D-1 4.80D-3 5.66D-4
; 15 A% 5.21D-1 4.60D-3 5.62D-4
TABLE V

Errors after 15 cycles for problem (b), using a number

of wavelengths (cases (i), (ii) and (iii))

Case

A%
aY
A%

4th order spline 6th order spline
Number of basis functions Number of basis functions
S 10 15 5 10 15
3.91D-3 1.59D-4 2.75D-5 1.69D-4 1.01D-5 1.64D-5
5.21D-1 4.60D-3 5.62D-4 5.69D-2 2.30D-4 2.11D-5
1.27D O 2.56D-1 2.98D-2 | 1.06D O 3.62D-2 1.82D-3
|




TABLE VI

Errors after 15 cycles for problem (c), cases (i) and (ii)

4th order B-spline

6th order B-spline

Case Number of basis functions Number of basis functions
6 10 12 6 10 12
' !
(i) AR 7.09D-3 4.32D-4 1,76D-4 2.98D-4 { 2.66D-4 ? 1.57D-4
AU 3.47D-3 1.99D-4 7.64D-5 1.07D-4 ' 1.02D-4 . 5.70D-5
(ii) A% 1.10D O 7.74D-2 2.29D-2 3.01D-1 ! 9.,49D-4 4.79D-4
AL 2.96D-1 2.63D-2 8.03D-3 1.04D-2 | 3.94D-4 | 1.99D-4 |
l | |
TABLE VII
Errors after 15 cycles for problem (d), cases (i) and (ii)
4th order B-spline 6th order B-spline
Case Number of basis functions Number of basis functions
5 7 10 5 7 I 10
1
(i) A% 4.14D-3 7.09D-4 5.56D-5 5.26D-5 | 4.41D-5 = 4.26D-5
AU 2.51D-4 6.45D-5 1.95D=5 1.38D-5 1.32D-5 f 1.31D-5 f
|
| |
(ii) A% 2.63D-2 4.98D-3 3.30D-3 2.69D-3 1.97D-3 1.94D-3 {
AD 9.64D-3 2.16D-3 7.20D-4 7.17D-4 6.58D~-4 6.55D~-4
i
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