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ABSTRACT

This report contains a description of the method of wave data
analysis used by IOS. This covers: (i) the manual method
for calculating height and period parameters from an analogue
record of the variation of surface elevation at a point and

(ii) the techniques used to extrapolate results to rare events
in order to estimate design heights for offshore structures.
The scientific theory on which the method is based is given,
including a summary of the assumptions made and some error

estimates. The procedure is illustrated by a worked example.



INTRODUCTION

The Institute of Oceanographic Sciences and its forerunner. the National Institute
of Oceanography, have been measuring waves for both research and practical
purposes for nearly thirty years. During that time standard methods for the inter-
pretation of wave recordings have been developed. These methods have been
widely used not only by 10S but by other organisations and individuals working in
many areas of marine science and engineering both in the United Kingdom and

overseas.

Their success has been due largely to their simplicity of application and to the fact
that well defined statistical parameters of general applicability result. Both of
these advantages were made possible by incorporating the major contributions to

the statistical theory of sea waves which were made at NIO in the 1950's.

This theory is available in works by Cartwright (1958) and Longuet-Higgins (1952)
and the application of the method in practical situations has been described in papers
by Tucker (1961) and Draper (1963). However it has been apparent for some time
that there existed a lack of appreciation of how the practical and theoretical aspects

of wave study are combined at IOS to give a consistent interpretation method.

The present report aims to answer this need; it takes the form of a critical review
and can thus provide the basis for future refinements and improvements of the

methods it describes.

E. G. Pitt.

Head of Engineering Oceanography Group.
108
Taunton.



THE DEFINITION OF SOME WAVE PARAMETERS

3.1 A wave may be defined by considering every maximum on a record as a
separate wave, its amplitude & being measured from the 'mean line' (i. e. the line
that would be produced on the record if the sea were perfectly calm). Note that
negative values of & are possible. It is this definition which is most accessible

to a theoretical approach to sea waves.
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3.2 The 'crest to trough' definition probably agrees best with one's intuitive idea of

5s

a wave, Each crest is a wave whose height H is the vertical distance between the

crest and the preceding trough.

y Fig. 2

3.3 In practice a useful definition is the 'zero up-cross' wave. A zero up-crossing
is considered to occur when the surface passes through the mean line in an upward
direction. A zero up-cross wave is the portion of the record between adjacent zero

up-crossings. Its height H is equal to the vertical distance between the highest and

lowest points of the wave.

H1 Fig.3




1
3.4 The root mean square surface elevation, EZ2, (sometimes referred to as the

r. m. s. value of the ordinate) is defined by
T,
lim _1 2
E-= T-o ﬁ f (t) dt
T
where f(t) is the vertical distance from the mean line to the surface at time t.

3.5 Forngiven zero up-cross waves Hy, Hy ... Hn’ the root mean-square

zero up-cross wave height, Hy. o, is given by

2

_ 1 2,142 2
Hrms = Hi*Hyro o+ Hy

3.6 A much-used indicator of the sea-state is the 'significant wave height', Hg,

defined as the mean height of the highest third of the waves. Given 3N zero up-cross

waves the significant height is

-]
HS",\T Honwito oo o+ Hgy

where the heights Hy , ....... Hs\ are arranged in increasing order. Note that
carlier workers sometimes used crest-to-trough heights in this definition
3.7 The period of a zero up-cross wave is defined as the time interval between the
two zero up-crossings which bound it. Given a record of duration t minutes, the
mean zero up-crossing period is then

tx 60

T, = sec.
10. of zero up-cross waves on the record

3.8 Similarly we may define the mean crest period

T = tx 60
c
no. of crest-to-trough waves on the record

scc.

-3-



INTERMITTENT RECORDING

Wave data at IOS has almost invariably been collected in the convenient chart-roll
form. It is a reliable method and has the advantage that one can see at a glance
whether one has recorded realistic wave profiles. To leave the recorder running
continuously would result in unmanageably large volumes of paper. A practical
alternative is to record for short periods of time at regular intervals and assume
'short-term stationarity’, i. e. that the record is typical of the sea-state for periods
either side when the recorder was inactive. The record must, however, be
sufficiently long that it is an adequate statistical sample of the wave pattern. I0S
analyses a twelve-minute length of record every three hours, and in practice this
gives a reasonable balance between sampling errors and changes in the underlying

wave characteristics. Both errors are random and they tend to average out in the

long run.

The purpose of the IOS analysis is to enable well-defined. statistically meaningful
data to be abstracted from the analogue records as simply as possible. To this end.

estimates of the following three parameters are made from each twelve-minute

record:
1. T, - the mean zero up-crossing period
2. Hg - the significant wave height

3. Hmax(Shr) - the most probable height of the largest zero up-cross wave in three
hours.

A statistical analysis of waves may be considered in two parts: the analysis of
short-term statistics (i. e. statistics which characterize an individual record) and
that of long-term statistics. The short-term analysis as implemented by 10S

computes estimates of Hg, Tz and H (3hr) for a given three-hour period, while

max
problems concerning the distribution of these parameters over longer periods of time

are dealt with in the long-term analysis,



THE ANALYSIS OF SHORT-TERM STATISTICS

5.1 Summary of the method of analysis of a twelve-minute record

The zero up-crossing period T, is found by dividing 12 x 60 sec by the number of
zero up-cross waves on the record. Height parameters are calculated from
measurements of the two highest crests and two lowest troughs in the record as
follows. It is assumed that wave heights defined as maxima of surface elevation
relative to mean level have the probability distribution derived by Cartwright and
Longuet-Higgins (equation (5. 4-2) below). In order to specify this distribution one
needs the values of a bandwidth parameter, € , and the root-mean-square surface
elevation, E% The expected height of the largest wave in the twelve-minute record
(i. e. the mean of its probability distribution) could then be found. Reversing the
argument we see that E% may be calculated from a knowledge of € and the expected
height of the highest maximum. measured from the mean, in the record. This
expected height is approximated as the average size of the lowest trough and the
highest crest on the twelve-minute record, and € may be evaluated as a function of

the number of crests and zero-crossings on the record.

1
Similarly. E? is also estimated using the sizes of the second largest trough and crest.

1
and the two values of E2? are averaged.

Hg is estimated by assuming that the heights of zero up-cross waves follow a Rayleigh
probability distribution. No exact theory is available for the finite bandwidth case.
but assuming that the relationships are the same as for the narrow bandwidth case. then

1
Hg = 4E2.

Finally the probability dist ribution function, F(x) say, of the largest of the
(3 x 60 x 60)/TZ zero up-cross waves in the three-hour period centred on the twelve
-minute record is derived from the Rayleigh distribution of individual wave heights and

Hmax(Shr), defined as the mode of this distribution. is evaluated as the solution of
F"(x) =0

The remainder of this section restates the short-term analysis in greater detail,



S. 2 The measurements made from each record.

Each twelve-minute record is manually analysed as follows:
The mean line is drawn in by eye (see below) and the values A, B, C D, Ne. NZ are

noted, where

A = height of largest crest. measured from the mean line

B = height of second largest crest

C = depth of largest trough ; By convention, these are taken as positive values
D = depth of second largest trough

N, = number of crests (i. e. maxima)

N, = number of zero up-crossings

5.3 Estimating T, from the measurements

The mean zero up-crossing period for the twelve-minute record is immediately

obtained as
12 x 60
Nz

secC,

On the basis of the stationarity assumption this value is taken as T,. the mean zero

up-crossing period for the complete three-hour interval,

5.4 Estimating E from the Measurements

The theory of Cartwright and Longuet-Higgins (1956) and Cartwright (1958) is used to

estimate E,

The wave trace is considered as part of a random function, f, given by the sum of

an infinite number of sinusoids.

f(t)=)_ CnCOS(W,t +8,)
(5. 4-1)

where the frequencies w, are densely distributed in the interval (o, ) and the
phases 8, are random and uniformly distributed in [O , 211), and the amplitudes

Cn are such that in any small interval of frequency dw



w+dw

> ';12— c2 = Swdw

Wp=Ww

where S(w)is a continuous function known as the energy spectrum of f(t).

The nth moment of the energy spectrum is defined by
co
my= [ un S@duw
o)

and the mean square surface elevation is
E=m,

The functions f(t). f' (t). f"(t) may be considered as random variables. Each consists
of an infinite sum of components with zero mean and random phase so by the central
limit thereom they have a joint normal distribution which is determined by their matrix

of correlations.

At a maximum of f. f has some value § , f' is zero andf" is negative. We may
integrate the joint probability distribution over regions of negative f” and zero f'

to get the probability function of § .

3

Writing n for g% we get the probability density function
Ny/1-€2
2 2 5. 4-2)
1 1 (7 %[ _-5x2 (
S B -2 2 7X
p(fl)=\/2_ ge ? E) +\1-es e € dx
i - Q0

where ¢ (known as the bandwidth parameter) is a measure of the range of frequencies

present. given by ’
mym,

8:

Graphs of this density function for different values of € are shown in Fig. 4. Note that

equation (5. 4-2) reduces to the Rayleigh distribution as € tends to zero.

1
The probability that a given maximum shall exceed xE? is then

ak = [ p@)dz
X

The largest of N. crests is less than x if and only if each of the N; crests is less than x.
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Therefore, provided the crests may be considered independent, the cumulative

distribution function of the height, &, . of the largest of N, crests is

NC
ch (X) = (1 -q(x))

Cartwright (1958) found that the errors incurred in assuming the waves to be

independent were small.

The mean of the distribution of §1 may be shown to be

s ] 1 ] 1
§1=E§\f26 (1 +§A181'§A29'2+1€A39 - L. ) (5. 4-3)
where 0 = |n(Nc‘f1-52)
A, =05772
A,=1-9781 (5. 4-4)
A,=54449

Similarly. if §2 is the height of the second highest of N¢ crests, we may derive

its distribution function and obtain its mean value as

£ -E2V20 (1 -3 (1-A,) 6"+ 5 2A1—A2)9'2-1-16(3A2-A3)9-3+,)<s. 4-5)

1
Equations (5. 4-3) and (5. 4-5) give two methods of estimating E2. provided & .

§1 and 32 are known.

To find 21 and EQ we first note that since the trace is assumed to be statistically
symmetrical about its mean line. we may consider the upper and lower halves as two
realisatiorsof the same stochastic process. Therefore A and C are both sample
values of the random variable §1 . and so the sample mean 1(A + C) is the best
estimator of E1 . Similarly (B + D) is the best estimator of E2 . Note that these
sums are not dependent on the position of the zero-line drawn in by the operator. so

long as it is parallel to the true mean line.

To find &€ we turn again to the theory of Cartwright and Longuet-Higgins (1956).

Here it is shown that

e2=1-(1-2r)°

where r is the proportion of negative maxima in the record. Any difference between
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Nc and N, must be due to either positive maxima or negative minima. so

N¢ - N, = no. of positive minima + no, of negative maxima

= 2 (no. of negative maxima)

since the surface is assumed statistically symmetrical.

1}

N:
. proportion of negative maxima = 3 (1 - —N-Z )
c

. 2 - _ Nz .2
- e E ]- ( 'N:)
and from the equation (5. 4-4)
B=InN,
Hence, truncating the series in equations (5. 4-3) and (5. 4-5) we get two values of E.
namely
1 ————'—A+C 1 1 -
E,2=2v20 (1+3A,87'-5A,07 e
and B+D
1 == 1 a1 -2)"
E,?=2v20 (1-3(1-A,)0'+5(2A,-A,)8
(5.4-7)

Typical values of the first neglected term in the series are . 003 and . 0003

respectively.

The equations may conveniently be used in graphical form (see Fig. 5).

1
a

1
Our final estimate of E? is taken as the average of E1 - and Ez% .
The above process is the heart of the analysis method proposed by Tucker (1961).

5.5 Estimating Hg from E

Zero up-cross waves are assumed to follow a Rayleigh distribution (Fig. 6). There
is good empirical evidence in support of this assumption (see, for example. Goda

1970). though theorists have failed to explain the goodness of fit.

-11-



P(H|Hrms)

T T | 1

Fig. 6
The Rayleigh distribution for zero up-cross waves.

The probability that the height, H. of a given zero up-cross wave is less than x is

thus

Q(X)=1‘eXD('(Hr)r(ns)2) (5.5-1)

For large numbers of waves. the highest one-third will be those of height greater

than h. where o
Q(h)=3
The mean height of these will be 1 >
Hs =1-Q(h) hftQ( t)dt
= 1-416 Hrms (5.5-2)
= {2 Hrms

(see Longuet-Higgins, 1952)

It is now necessary to relate Hypg to E. Here we need to assume a narrow bandwidth.

XS

Letting € —>O in (5. 4-2), we have that the probability density function of E% , the

normalised height of maxima of surface elevation, is

-12-



2 ® I
Therefore §rmS = E / sze 2 X dX
o]
=2E
When the frequency spectrum is narrow the trace appears as a carrier wave whose

amplitude is controlled by a slowly changing envelope. So the height H of a zero

up-cross wave is approximately twice the height § of the crest measured from the

mean line.
H=2¢&
Therefore Hrms =2 § rms

(5. 5-3)

SO HrmS=2V 2E

Finally. from (5. 5-2)

He = 4E?

(5. 5-4)



6.

THE ESTIMATION OF DESIGN HEIGHTS

This process may be considered in two parts. Firstly. for each twelve-minute record the
short-term analysis is extended to estimate Hygx(3hr), the most probable height of the
highest wave in the three-hour recording interval. Secondly, the statistics of a long

series of values of HmaX(Bhr) are examined and extrapolated to estimate design heights.

6.1 Estimating H , (3hr) from E and T,

We consider a three hour period centred on the twelve-minute record in question, and
examine the probability density function of the highest wave to occur in three hours.

HmaX(Shr) is the mode (peak) of this distribution. Typically the mean of the distribution

is 3% higher, and the probability of H (3hr) being exceeded is about 0. 6.

max

The number of zero up-cross waves in the three hour recording interval is
3x60x60
Tz

The largest wave to occur in three hours, H' , is less than x if and only if each of the

N=

N waves is less than x. Assuming the heights of successive waves to be independent

2

random variables distributed according to the Rayleigh distribution with variance Hims

X 2
Prob (H'< x) = (1- & Fms) )N

gives

The probability density function is the derivative

2N ~ (Xe)? ~(2—)2\N -1
H_2 Xe Hrms ( 1-e '‘Hms )
rms
Hmax(Shr) corresponds to the turning point of this function, which occurs when
1 - -
\U=InN-In(1- 2"6(1-e ‘”)) (6.1-1)
2
where \IJ =7
Hrms

(see Longuet-Higgins 1952)

Equation (6. 1-1) may be solved using Newton's method of successive approximations, though

a good polynomial approximation to the root is
2
Y = (()-5664O5+O-316548Y+0-330573Y2-O-O73968Y3+0-006361Y4) (6.1-2)

14-
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where Y2 = InN

Alternatively. \'} may be obtained from the graph shown in Fig. 7.

Finally, equation (5. 5-3) gives

(6.1-3)

Hmax (3hr)= 2V2EW

6. 2 Extrapolation from a long series of values of Hmax(Shr)

The derived parameters Hg, T,, and Hya4(3hr) may be used to determine the long-term
distribution of wave heights. A designer of an offshore structure needs to know the height
of the highest wave that the structure will encounter during its lifetime. We estimate
Hmax(T yr). i. e. the most probable height of the highest wave in T years. Usually
values of Hmax(T yr) with T =10, 50, 100 are quoted.

Of course Hp,,4(T yr) is not an upper bound on the height of the highest wave in T years,
though it does represent a parameter of its probability distribution on which risk estimates
may be based. For example, one can be 90% sure that the largest wave in 50 years will

not exceed Hmax(SOyr) by more than 15%,

6. 2.1 The data required

The estimate 1 s based on values of Hma X(Bhr) collected over a period of time, The data
need not be continuous in time, though it is important that it gives an accurate picture of
the distribution of stormy and calm months, since it is assumed that the data used is
representative of the following T years. Often it is necessary to estimate Hpy a5 (50yT)
from only one year's data, when even ten years' data falls short of the ideal, One may
check that the data was not collected during an unusually stormy or calm period by

referring to the meteorological reports for the time, though at present it is not possible

to make accurate allowance for such conditions.

-16-



6. 2. 2 Plotting the data

The height range is divided into a number. n, of small intervals (say 0.0 - 0. 2m,

0.2-0.4m, ..... 24, 8 - 25, 0m), and the number of occurrences of Hpax(3hr) in
each interval counted. The next step is to plot these frequencies on graph paper and
then fit an extreme value distribution. Following Gumbel (1958), the mid-point of the
mth interval is plotted against the probability %‘:— where N is the total number of
observations in the time period under consideration, and Sm is the number of

occurrences of H (3hr) in the first m intervals (so N =Sp ). Jasper (1956) found

max
that certain wave parameters appear to follow a log-normal distribution and this is

the distribution that was fitted to data by I0S up to 1970.

Fitting is facilitated by the use of graph paper whose scales are such that a log-normal
distribution function appears as a straight line. The line is extrapolated to find heights
which have the required low probability of being exceeded. Confidence in the extrapolation

is based upon how well the straight line fits the data.

It has been found (Battjes. 1970) that a Weibull distribution generally gives a better fit
than the log-normal. Since 1970 JOS have used the two methods side-by-side, comparing

the goodness-of-fit to decide upon the distribution to be taken.

The Weibull distribution is a three-parameter distribution given by

~exp (- (X2A\C
Prob (X<x) = :) =0 (-(%5%)") :Z: ):2

where B and C are positive (see Weibull. 1951).

We have thus estimated the distribution function, P(x), of H,,(3hr) for very low

probabilities of exceedance,

6. 2. 3 Derivation of a time scale for the probability axis

The distribution function P(x). gives the probability that Hmax(3hr) is less than x metres
for a randomly chosen three hour period. In order to deduce return periods for given
heights we need to know the extent of correlation between successive values of Hmax(3hr).

However, it appears that very little error is incurred if we assume successive values of

-17-



Hyj5x(3hr) to be independent (see 7. 8). Then a height H which H (3hr) has

max
probability q of exceeding will be exceeded on average once every 1? trials.

The return period of H is therefore

T=¢ x 3hr
1 3
1-P(H) * 365x24 Yr

So the height, Ht. which Hp,,.(3hr) exceeds on average once every T years is given by

4. 3

T-1
(6. 2. 3-1)
=1-0-00034 T

Thus Hy may be read off the extrapolated graph of P(x) as the height corresponding to

probability P(H). It is this value which is taken as our estimate of Hyyz4(T yr).

_18_



7. A SUMMARY OF ASSUMPTIONS

In this section the major assumptions are summarized and sources of random error

indicated. An estimate of the resulting error is made where possible,

7.1 The method is based on a linear model. The sea surface is considered as the
resultant of a large number of summable sinusoidal components of random phase
(equation (. 4-1)) leading to a Gaussian distribution of surface elevation and statistical
symmetry about the mean line. Yet these are features only approximately exhibited by
actual waves. Moreover. it seems likely that non-linear phenomena, such as wave-
breaking will occur most frequently in the very high waves in which we are particularly

interested.

7.2 When E is calculated sampling errors occur in the estimation of E1 and Ez
(see Section 5. 4). Using the formulae for the moments of the distribution of the highest
wave in a record derived by Cartwright (1958), the estimate of E% turns out to have a
standard error of about 6%. Correlation between crests in the twelve-minute record is
ignored. but as stated in 5. 4, this should not significantly reduce the accuracy of the

method.

7.3 One of the more serious assumptions is made when we require a narrow spectrum to
derive équation (5. 5.-3) which gives the link between the distribution of zero up-cross
waves and the mean square surface elevation, E. When using data recorded by instruments
which exhibit the "hydrodynamic filter' effect (e. g. the shipborne wave recorder) this
assumption is probably more valid than with surface measuring instruments (such as the
Waverider buoy) which have a more extended high frequency response. It is worth noting
that the root-mean-square surface elevation, E% has been obtained without making any

bandwidth assumptions.

7.4 Having obtained Hg and T for a twelve-minute record we then make the fundamental
assumption that these values persist for the rest of the three-hour interval. This is the

stationarity assumption.

7.5 Any error in the estimation of Hg and TZ will be passed on to HmaX(Bhr). In addition

the theoretical distribution of the highest wave in the three hour interval is based on the

-19-



assumption that heights of adjacent zero up-cross waves are not correlated.

7. 6 When extrapolating to find the design wave (see Section 6. 2. 2) it is not clear which
extreme value distribution should be used, for it is possible for two distribution
functions to be almostdentical in the range for which data is available, yet differ by as

much as 15% at the probability corresponding to a 50-year return period.

Furthermore. there is no complete guarantee that the wave population will continue to

follow its previous probability curve right into the tail of the distribution.

The extrapolation itself is necessarily subjective to a considerable degree, since it is

a matter of judgement as to how much weight should be given to the higher observed points.

7.7 It will be noticed (see Section 6. 2. 3) that HT is the most probable height of the
highest wave in the most stormy three-hour period in T-years. whereas we are in fact
seeking Hpa«(T yr), the most probable height of the highest wave in the complete T years.
Hr and Hpa (T yr) will differ due to probability contributed to Hpyax(T yr) by the
probability distribution of the highest wave in the 2nd. 3rd. most stormy three-hour
periods., However. these probability contributions should be small. since the

probability density function of the highest wave in a three-hour period tails off rapidly
after reaching a peak. A rough calculation reveals that an estimate of Hmax(50yr) which

takes account of these contributions is typically 6% higher.

7.8 In the conversion of probabilities to return periods (see Section 6. 2. 3) successive
values of H .. (3hr) are assumed uncorrelated. However, in practice storms may

extend over several three-hour periods, producing a sequence of high values of H (3hr)

max
displaying a high degree of dependence. It is possible to make a rough estimate of the

errors involved as follows,

We suppose that a storm with a given Hyyg will have a duration D hours. and that this
H s 18 constant for the duration and zero outside it. Let P(H) be the long-term

probability distribution function of Hyp,g. found by plotting three-hourly values of Hrms

throughout a few years.

We attempt to estimate the most probable height of the highest wave to occur in storm 8.

where S is the storm with a 50-year return period. given that the duration of S is Dg( hours.

-20-



If we pick a 3-hour interval at random from the 50 years, the probability of finding the

root-mean-square wave height less than Hgg, the value during the 50 year storm is

50yr - Dsghr
S0yr

Ds0

i. e P(HSO) =1- '
50 x 365 x 24 (7. 8-1)

We can thus find Hgq from the extrapolated graph of P(H). the distribution function of

HI'mS'

Examination of actual wave data reveals that at a given location the mean zero up-
crossing period, Tz, is roughly the same whenever the sea is very high. This value
may therefore be obtained from the available data. and we get the number of waves

during the 50-year storm as

0
N=Dx60x6 (7. 8-2)
T,
These waves have root-mean-square wave height Hgg. so using (6.1-3) and (5. 5-3) we

get the most probable height of the highest wave in the 50-year storm as

1
H = Hso"’ 5 (7. 8-3)

where W is given by (6, 1-2).

1
Let us examine how H varies with DSO'

Suppose Dsq is large. From (7. 8-1) this leads to a small value of Hs(. since P(H) is
an increasing function. However. from (7. 8-2), N will be larger, since Ty, remains
approximately constant. and this leads to a larger value of g . Looking at (7. 8-3)

we see that the two effects will tend to cancel each other out.

A rough calculation confirms this expectation. Using data from the Northern North Sea

we find that T, is about 16 sec. during storms, and Hpmpg has a Weibull distribution



1-02
1-exp<—(5{729—2'i§> >for X>0-46m

P(x)=
0 iiieenneneanesfor x<046m
Therefore
- . Inin(1-P)"*
H\50—0-46+1226xp< 1_(02 )>
where, from (7. 8-1),p=1- D hr
50 yr

The results for various values of D are tabulated below

D hr N Y Hsgo H' % Error*
3 675 6. 59 14. 3 36.7 0.0
6 1350 7.28 13.5 36. 4 0.8
9 2025 7. 68 13.0 36.1 1.6
12 2700 7.97 12. 7 35. 8 2.3
15 3375 8.19 12. 4 35.6 3.0
18 4050 3.37 12,2 35.4 3.6

*Error incurred by assuming a 3-hour design storm.
A realistic value for the duration of the 50-year storm is 6-12 hours, so we conclude

that ignoring correlation between successive values of HmaX(Shr) produces errors which,

while not negligible, are comparatively small.
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8. A WORKED EXAMPLE

8.1 The Short-term Analysis

The method of obtaining H,. T, and Hmax(3hr) described in Sections 5 and 6.1 is
illustrated by performing the analysis on the welve-minute trace shown in Fig. 8.
The record was taken using a Datawell 'Wa verider' buoy in the Southern North Sea

(53°N, 3°E),

First the position of the mean line is estimated and drawn in. Then we have

A = 2,57m
B = 2.49m
C = 2. 7lm
D = 2.45m
Neg = 157
Nz= 108
The mean zero up-crossing period T, Qﬁx_@_ = 6. 67 sec.
Z
Using (5. 4-6) and (5. 4-7) we get
1 -1
EF = 2\[— (1+O 28967-0-247 6 > where 6 = In 108
= 0-821m.
and 1 D ) >'1
2 —-(0)- -
E2-= \/——<1 0-21167'-0-1036

=0-849m.

Averaging these estimates gives
E? = 0.835m

By (5. 5-4) the significant wave height is

Hg = 3. 34m
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HT' RANGE MID-PT Number of Cumulative P

(FT) X (PT) occurrences totals

0 -1 0.5 1 1 .0003

1 -2 1.5 2 3 L0010
2 -2 2.5 7 10 .0034
3-4 3.5 60 70 .0238
4 =5 4.5 98 168 .0573

5«6 5.5 139 307 .1048
6 =17 6.5 136 443 .1512
7-38 Te5 153 596 .2034
8 -9 8.5 156 752 . 2567

3 =10 9.5 176 928 . 3168
10 ~ 11 10.5 174 1102 3762
11 - 12 1.5 158 1260 « 4301
12 = 13 12.5 159 1419 L4844
13 = 14 13.5 174 1593 5438
14 - 15 14.5 150 1743 «5950
15 = 16 15.5 119 1862 <6357
16 = 17 16.5 128 1990 6794
17 - 18 17.5 M7 2107 <7793
13 = 19 18.5 104 2211 . T548
19 = 20 19.5 111 2322 L7927
20 = 21 20.5 83 2405 .8210
21 = 22 21.5 69 2474 8446
22 = 23 22.5 71 2545 .8688
23 - 24 23.5 56 2601 .8880
24 = 25 2445 47 2648 .9040
25 = 26 25.5 31 2679 .9146
26 - 27 26.5 34 2713 L9262
27 - 28 275 38 2751 .9392
28 - 29 28.5 26 2777 L9281
29 -~ 30 29.5 21 2798 <9552
30 = 31 30.5 31 2828 L9655
3 - 32 31.5 17 2845 L9713
32 - 33 32.5 18 2863 9774
33 = 34 33.5 9 2872 L9805
34 = 35 34.5 9 2881 L9836
3 — 36 35.5 7 2888 . 9260
36 = 37 36.5 7 2895 L9883
37 - 38 37.5 6 2901 .9904
38 - 39 38.5 1 2902 .9907
39 = 40 39.5 4 2906 - 9921
40 - 41 40.5 10 2916 .9955
41 = 42 41.5 3 2919 L9565
42 = 43 42.5 3 2922 .9976
43 - 44 43.5 1 2923 <9979
44 = 45 44.5 1 2924 .9982
49 = 50 49.5 1 2925 .9986
52 = 53 5245 2 2927 .9993
3~ 54 53.5 1 2928 .9997

Fig.9

Tabulation for the long-term analysis.
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The estimated number of zero up-cross waves in the three-hour period is then

3 x 60 x 60

T,

1620.

N =

From (6. 1-2) or using Fig 7

v

7.46

and. finally. using (6. 1-3)

Hmax(3hr) = 6.45m

8.2 The Long-term Analysis

For this example we use listings of Hmax(Shr) derived from data recorded by a
shipborne Wave Recorder installed on the Sevenstones Light Vessel (50°N, 6°W)
during the period Jan. - Dec. 1968. The cumulative totals of occurrences of
Hmax(3hr) in each region 0-1ft, 1-2ft, ....... , 94-55 ft. are obtained and divided
by the total number of obs ervations plus one to give the probability values. p;, to be

plotted against height, x;. A tabluation of these quantities is shown in Fig. 9.
The points (xj, pj) are plotted using log-normal scales in Fig. 10.

As one would expect. there is greatest scatter at the top end of the graph, where there
are few samples. A straight line is fitted to follow the curve of points at the end

corresponding to the rougher seas in which we are interested.

To find H),,(50 yrs). the most probable height of the highest wave in fifty years, we

need to extrapolate the line to probability

__3hr
50yr

1 = .9999932 (from (6. 2.3 -1))

Fromthe graph. we therefore have

Hmax(50yr) = 80ft.
Similarly Hmax(100yr) = 83ft.
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