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SUMMARY 
 

 
 
 

1.   Changes in the seasonal timing of re-occurring biological events, or phenology, are a 

widely reported ecological response to environmental change. Previous studies have 

demonstrated that plankton populations have shifted their phenology in recent decades 

but there is a lack of consistency with respect to the phenological metrics analysed. 

2.   We analysed an eight-decade data set (1934-2009) on the seasonal dynamics of 

Daphnia galeata in the North Basin of Windermere, UK.  Rates of phenological 

change derived from ten different phenological metrics were compared. We evaluated 

the evidence for effects of spring water temperature, phytoplankton phenology and 

over-wintering population size on D. galeata phenology. 

3.  Nine of the ten phenological metrics showed statistically significant trends towards 

earlier seasonal timing, though rates of change varied (3.7-6.7 days per decade). 

Regression analyses showed a consistent effect of spring water temperature and 

phytoplankton phenology on the timing of D. galeata spring population development. 

The amount of variability explained by these drivers, the precise phytoplankton metric 

related most closely to D. galeata phenology and the importance of over-wintering 

population size differed markedly among D. galeata metrics. 

4.   Hierarchal models showed that the seasonal timing of the phytoplankton peak had the 

most consistent effect upon D. galeata phenology and that temperatures in the month 

previous to the average timing of population development were influential. 

5.   Phenological metrics differ mathematically and conceptually. They indicate different 

population dynamical processes and are influenced by different ecological 

mechanisms. Combining information from different phenological metrics will greatly 

improve mechanistic understanding of the factors influencing phenological change. 
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Introduction 
 

 
 
 

Changes in the timing of seasonally re-occurring biological events, or phenology, are one of 

the most powerful biological responses to environmental change, particularly climate change 

(IPCC, 2007). There have been numerous demonstrations of a shift towards earlier spring 

timing for a range of life-history events, from a diversity of plant and animal taxa across 

marine, freshwater and terrestrial environments (Parmesan & Yohe, 2003; Root et al., 2003; 

Thackeray et al., 2010). Such changes raise concern as they may de-synchronise key trophic 

interactions within ecosystems and therefore impinge upon ecosystem functioning 

(Harrington, Woiwod & Sparks, 1999; Visser & Both, 2005; Thackeray et al., 2010). In 

freshwater environments, the potential for de-synchronisation is apparent given that variable 

rates of phenological change have been reported in phytoplankton (Thackeray, Jones & 

Maberly, 2008; Meis, Thackeray & Jones, 2009), zooplankton (Winder & Schindler, 2004; 

Adrian, Wilhelm & Gerten, 2006), macroinvertebrates (Doi, 2008), amphibians (Chadwick, 

Slater & Ormerod, 2006; Carroll et al., 2009) and fish (Winfield et al., 2004). 

 

 
 
 
 

The potential ecosystem consequences of phenological shifts necessitate that we develop an 

understanding of the processes driving them. Changes in the timing of spring zooplankton 

populations, compared to changes at adjacent trophic levels, are key to understanding the 

consequences of phenological change upon food web structure. The larvae of spring- 

spawning fish depend upon spring zooplankton populations as a food resource and the latter, 

in turn, depend upon the seasonal pulse in edible phytoplankton. The phenology of 

zooplankton populations is likely to be affected by ambient temperature and food resource 

availability, which influence rates of population growth. Variation in water temperature 

affects age at maturation, rates of egg development and the frequency with which offspring 
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are released at moulting (Hall, 1964; Vijverberg, 1980; Weetman & Atkinson, 2004). Food 

availability affects clutch size, and also the proportion of the population bearing eggs 

(Guisande & Gliwicz, 1992; George & Reynolds, 1997). Recent studies have suggested that 

long-term trends in spring temperature and food phenology have a particularly strong 

influence on Daphnia phenology (Hampton, Romare & Seiler, 2006; Schalau et al., 2008). 

The magnitude of the over-wintering population also influences the phenology of the 

subsequent Daphnia spring maximum (Romare et al., 2005; Hampton et al., 2006), 

presumably by affecting the time needed for the population to increase above a 

predetermined population size threshold, or to reach carrying capacity. 

 

 
 
 
 

Despite growing interest in phenological changes in plankton communities, their drivers, and 

the consequences of change, there is a surprising lack of consistency in the metrics used to 

describe their seasonal timing of population development. A diverse array of metrics have 

been used which can be categorised broadly as measures of the seasonal timing of i) the onset 

of population growth, ii) peak abundance or iii) the centre of the growing season. Measures 

of the onset of population growth have included the day of the year on which a species is first 

detected by a sampling programme (Adrian et al., 2006), the time at which the population 

increases above a selected absolute or relative abundance threshold (Greve et al., 2005; 

Romare et al., 2005; Hampton et al., 2006; Thackeray et al., 2010) or have been based upon 

quantiles of the area under a curve fitted to the seasonal abundance data (Rolinski et al., 

2007). The timing of peak abundance has also been determined based upon such curve-fitting 

approaches (Rolinski et al., 2007), as well as by identifying the sampling date on which the 

maximum abundance was recorded in the original data (Winder & Schindler, 2004; Adrian et 

al., 2006; Thackeray et al., 2008). Measures of the centre of the growing season include the 

centre of gravity of the seasonal population maxima (Edwards & Richardson, 2004; 
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Thackeray et al., 2008; Meis et al., 2009) or the 50
th 

percentile of the cumulative seasonal 

abundance (Greve et al., 2005). 

 
 
 
 
 

Aside from the obvious mathematical differences, there are also clear conceptual differences 

among these metrics. The corollary of this is that the mechanistic interpretation of the factors 

affecting observed phenological change depends strongly upon the definition of phenology 

being employed. Plankton phenological metrics represent changes at the population level, and 

are influenced by temporal changes in the balance between the rate of replication or birth, and 

the rate of various loss processes (Thackeray et al., 2008). The onset of population growth 

occurs when the rate of population growth exceeds the rate of population loss (i.e. positive 

net population growth), whereas the timing of peak abundance occurs when the rate of growth 

is balanced by the rate of loss (Thackeray et al., 2008). After the population peak, a phase of 

negative population growth occurs since loss processes exceed the rate of population growth. 

 

 
 
 
 

As a result of the conceptual differences among metrics we would expect our estimates of 

phenological changes, and the interpretation of the drivers behind them, to be metric- 

dependent. As yet no study has sought to examine patterns and drivers of plankton 

phenological change, while considering the full range of phenological metrics that are 

commonly used. By collating metrics in this way, inferences regarding the evidence for 

change and the potential drivers of change should be more robust. The primary aim of the 

present study was, therefore, to use a multi-metric approach to examine the evidence for 

phenological shifts in a Daphnia population and to explore potential drivers of these changes. 

A suite of phenological metrics were used to determine long-term trends in the seasonal 
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timing of Daphnia spring population development. Phenological changes calculated using 

each metric were then related to three possible determinants of spring phenology; 1) spring 

water temperature, 2) the seasonal timing of spring phytoplankton growth and 3) the 

magnitude of the over-wintering Daphnia population. We then compared results derived from 

each phenological metric to assess the extent to which phenological trends and the effects of 

driving variables depend upon the choice of phenological metric. Hierarchal modelling was 

also used to group driving variables into conceptual classes in order to assess consistent, 

higher-level patterns in the drivers of spring D. galeata phenology. 

 

 
 
 
 

Materials and methods 
 
 
 
 
 
 

Field methods 
 

Data were collected under an ongoing long-term monitoring programme in the pelagic zone of 

the North Basin of Windermere, UK (54
o
20’N, 2

o
57’W). The basin covers an area of 8.1 km

2  

and has a mean depth of 25 m (maximum depth 64 m, Ramsbottom (1976)). The ecology of 

Windermere was summarised by Reynolds & Irish (2000). Samples of crustacean zooplankton 

have been collected from the North Basin of Windermere since the mid-1930s, while other 

physical and chemical variables have been recorded over shorter time periods. 

 
The present analysis focussed on two time periods. Firstly phenological trends for Daphnia 

 
were analysed over the whole period for which zooplankton data were available (1934 – 

 
2009). Secondly, the relationships between phenological data and potential driving variables 

were analysed over the period 1964 – 2009, for which data on both chlorophyll a and in-lake 

water temperature were available. Throughout these two time periods, consistent methods 
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were used to collect physical, chemical and biological data at one to two-weekly intervals. 
 
 
 
 
 
 

Vertical temperature profiles were recorded over the deep point of the lake. Measurements 

were taken with a Mackereth oxygen electrode in the 1960s and 1970s and a Yellow Springs 

Instruments probe since the 1980s (George, Talling & Rigg, 2000). To avoid any inherent 

bias in the data, due to among-season differences in the depth resolution of the data, the raw 

data were linearly interpolated vertically and then linearly interpolated through time to give 

temperatures on a one-metre, daily grid (Jones, Winfield & Carse, 2008). A volume-weighted 

 
0-10 m mean water temperature was calculated for comparison with the D. galeata data since 

this is the part of the water column typically inhabited by this species during spring 

(Thackeray et al., 2005). These temperature data were then averaged by month and changes 

in each D. galeata phenological metric were analysed with respect to monthly mean 

temperatures from the month containing the mean day of year on which that phenological 

phase occurred (hereafter the current month) and the previous month. This allowed the 

possibility of time-lagged temperature effects and resulted in different metrics being analysed 

with respect to March – April, April – May or May – June monthly mean temperatures. 

Integrated surface water samples for the determination of chlorophyll a concentrations were 

collected using a weighted plastic tube (Lund, 1949) and analysed spectrophotometrically 

according to Talling (1974). 

 

 
 
 
 

Zooplankton were collected by 40 m vertical net hauls (mesh size 120 µm, mouth diameter 

 
0.3 m) in the pelagic zone. Samples were initially fixed with a small quantity of 70% ethanol, 

before being preserved in 4% formaldehyde. Zooplankton were examined under a stereo- 

zoom microscope and all individuals were counted unless high population densities made this 
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unfeasible. If this was the case, zooplankton were enumerated in sub-samples drawn from the 

homogenised whole sample using a Stempel pipette. The present analysis uses data on the 

total numbers of Daphnia galeata (Sars) collected in each sample. The long-term record of 

zooplankton community composition is somewhat fragmented; data from these net hauls 

were available only for a subset of years within each decade. However, the available data 

have a good temporal distribution, with at least 3 full years of data available for every decade 

from the 1930s to the 2000s. At present, full seasonal cycles of D. galeata abundance are 

available for 1934-1936, 1944-1946, 1954-1956, 1961-1974, 1976-1978, 1985-1987, 1994- 

1996, 2000-2006 and 2009. Mean January abundances of D. galeata were used to indicate the 

magnitude of the over-wintering population at the start of each year. 

 

 
 
 
 

Phenological metrics 
 

 
For both the D. galeata and chlorophyll a data, a range of different metrics (ten in all) were 

used to quantify the seasonal timing of spring population development. These were selected 

to represent the various approaches currently used in the plankton phenology literature. Three 

broad conceptual categories of metric were used in the analysis. We distinguished measures 

of the onset of spring population development, the timing of maximum abundance and the 

central point of the growing season. 

 

 
 
 
 

Onset of spring population development (“Onset”) 
 

 
Absolute abundance thresholds. The day of each year on which population size, or 

chlorophyll a concentration, first exceeded an absolute abundance threshold was determined 

(Romare et al., 2005; Hampton et al., 2006; Berger et al., 2010). For D. galeata data a 
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threshold abundance of 0.2 individuals L
-1 

was set, as each year this value was exceeded 

during the early stages of the spring peak but not during the small abundance fluctuations that 

typically occurred during the preceding winter months. Given that the phenology of 

phytoplankton biomass was being used as a statistical predictor of D. galeata phenology, the 

threshold abundance was chosen to be one that was relevant to the grazer population. 

Chlorophyll a data were approximated to carbon concentrations according to Reynolds 

(2006) and a threshold concentration of 0.1 mg C L
-1 

was set since low zooplankton 

 
population growth and lower percentages of egg-bearing females for Daphnia hyalina and D. 

galeata have been observed below this threshold (Geller, 1985; George & Reynolds, 1997). 

 

 
 
 
 

Relative abundance thresholds. Two different types of relative abundance thresholds were 

employed. The first type was the day of the year on which the abundance exceeded 25%, or 

50%, of the maximum spring abundance for each year (Thackeray et al., 2010). The second 

type was the day of the year on which cumulative D. galeata abundance, or chlorophyll a 

concentration, exceeded 25% of the spring total (Greve et al., 2005). In order to focus the 

analysis upon spring dynamics and avoid the influence of summer/autumn population 

dynamics, these metrics were calculated between February and July for D. galeata and 

January and June for chlorophyll a. The exclusion of January data for D. galeata prevented 

fluctuations in declining overwintering pelagic populations from influencing this measure of 

spring dynamics. 

 

 
 
 
 

Curve-fitting approaches. Following Rolinski et al. (2007), a six-parameter Weibull-type 

function was fitted to the chlorophyll a and the D. galeata abundance data for each year and 
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was used to determine the day of the year on which the population exceeded a defined 

quantile of the area under the curve (set at 5% of the integrated population size). 

 

 
 
 
 

The timing of maximum abundance (“Peak”) 
 

 
Smoothing the seasonal data. A generalised additive model (GAM) with a Gamma error 

distribution was fitted to each seasonal data set. The usefulness of GAMs to describe patterns 

of seasonal variation in plankton data was demonstrated by Ferguson et al. (2008). A Gamma 

error distribution was appropriate since the data sets varied on a continuous scale and had a 

positive skew. The day of the year corresponding to the maximum fitted value was 

determined for D. galeata and chlorophyll a. 
 
 
 
 
 
 

Day of maximum abundance.  A commonly used metric in the plankton phenology literature is 

simply the day of the year on which the maximum abundance was recorded (Winder & 

Schindler, 2004; Adrian et al., 2006; Thackeray et al., 2008). In the present analysis, the days 

of the year corresponding to the maximum observed D. galeata abundance and the maximum 

observed chlorophyll a concentration were determined. Since this metric is potentially 

sensitive to sampling frequency and sample processing errors, various authors have smoothed 

the data before determining the seasonal timing of peak abundance in the hope that this will 

produce a more robust phenological metric. In the present analysis we addressed this issue by 

using complementary approaches based upon curve-fitting and smoothing of the seasonal data. 
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Curve-fitting approaches. As for the determination of onset dates, the six-parameter Weibull- 

type function fitted to each set of seasonal D. galeata and chlorophyll a data was used to 

determine the day of maximum abundance. This corresponded to the time at which the fitted 

Weibull function reached its maximum value (Rolinski et al., 2007). 

 

 
 
 
 

The central point of the growing season (“Growing Season”). 
 

 
Centre of gravity. For each year of D. galeata and chlorophyll a data we calculated the centre 

of gravity of the spring population (Edwards & Richardson, 2004; Thackeray et al., 2008; 

Meis et al., 2009). The centre of gravity was calculated using data collected between January 

and June for chlorophyll a and between February and July for D. galeata. 

 

 
 
 
 

50
th 

percentile of cumulative abundance. For each year we determined the first day of the 

year on which the D. galeata abundance, or chlorophyll a concentration, exceeded 50% of 

the cumulative spring abundance (Greve et al., 2005). The analysis was based upon the 

cumulative abundance between February and July for D. galeata and between January and 

June for chlorophyll a. 

 

 
 
 
 

Statistical modelling 
 
 
 
 
 
 

Long-term changes in spring phenology were assessed by linear regression of each metric 

against year. Residuals from each regression were checked for normality and 

homoscedasticity using quantile - quantile and residual - fit plots. Cook’s distances were 
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checked to ensure that each trend was not unduly influenced by any one observation. These 

diagnostics did not reveal any problems associated with non-normality of residuals, 

heteroscedasticity or influence. In each case, residuals were plotted against year to establish 

whether trends showed evidence of non-linearity. This was further examined by fitting each 

trend with a quadratic year term and by modelling the effect of year using a smooth term, 

fitted using a GAM. The change in residual deviance associated with fitting the non-linear vs. 

linear trend was assessed by an F-test. For all metrics, long-term changes in phenology were 

best approximated as a linear trend over time. Quadratic temporal trends and smoothers fitted 

using additive models did not result in a significantly better description of the long-term trend 

(nested model comparisons based on F tests, all P>0.05, results not shown). The possible 

influence of temporal autocorrelation was checked by plotting autocorrelation functions of 

residuals and comparing parameter values and significance levels in models including and 

excluding empirical (exponential) variograms that would capture temporal error structure. 

The estimated slope parameters of the statistical models and their statistical significance were 

little affected by the incorporation of a temporal error structure (generalised least squares 

regression, not shown). 

 

 
 
 
 

To complement this assessment of phenological change, the decadal “average” seasonal 

pattern in D. galeata abundance was compared between the first and last decades of the 

dataset; the 1930s and the 2000s. While the analysed phenological metrics did not yield 

information on the seasonal timing of population collapse, this approach allowed direct 

comparison of the whole seasonal distribution of D. galeata abundance in the two decades. 

This method respected the nested temporal structure of the dataset; for each decade data were 

available for a subset of years. Within both decades, data from each year were pooled and a 

GAM (with Gamma error distribution and log link function) was used to fit a single smoother 
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term to model the effect of day of the year on abundance. To compare the two decades, the 

estimated means, standard errors and assumed Gamma distribution for the 1930s data were 

used to draw 1000 random values from the distribution at each day of year. Under the null 

hypothesis of no difference between the two decades, the fitted smoother to the 2000s data 

should be comparable to the 1000 simulated series’ based upon the 1930s parameters. This 

approach is the commonly used technique of parametric bootstrapping (Efron & Tibshirani, 

1993). In this case the test statistic used to assess the significance was: 

21   p            

22 Tp  =      
23 
24 
25 

26 290 
27 
28 

291 
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58 
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where E t  and V t  are the mean and variance of Daphnia abundance at day of year t 

 
respectively, estimated from the fitted model, and  p     is the estimated abundance at day of 

year t for the pth set of simulated data. p=999 sets of simulations were drawn using the 

1930s parameters and the P-value was given by assessing how extreme the test statistic from 

the observed 2000s data, T, was compared with each of the test statistics from the simulated 

data Tp, based upon the 1930s parameters. More formally this is given by #{Tp ≥ T}/1000 

(Efron & Tibshirani, 1993). 
 
 
 
 
 
 

For each of the ten phenological metrics in turn, multiple linear regression was used to assess 

the evidence for driving effects of spring water temperatures, phytoplankton phenology and 

the magnitude of the over-wintering Daphnia population (January mean D. galeata 

abundance). As there was no a priori reason to believe that one particular driver would be 

particularly influential, a series of models was run which collectively encompassed all 

possible combinations of temperature and food phenology variables. For each D. galeata 

phenological metric, candidate models included the mean temperature either of the current 
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month or of the previous month (see earlier), and contained one of the ten possible 

phenological metrics for the seasonal timing of spring phytoplankton growth: 

 

 
 
 
 

 oa  h  hnn   =         �ThrraP       hloh hn                 oa  W n 
 
 
 
 
 
 

Where each of the i = 1,…,10 phenological metrics for D. galeata (DaphPhen) is a function 

of one of j = 1,…,2 possible temperature variables (Temp), one of k = 1,…,10 possible 

phenological metrics for chlorophyll a (ChlorPhen) and the overwintering D. galeata 

population (DaphWin). α and β1 – β3 represent the intercept and slope parameters, 

respectively, of the fitted models. For each D. galeata phenology metric, models were run 

with all possible combinations of one temperature predictor and one chlorophyll a phenology 

predictor. All nested models were also run (i.e. all possible models containing 2 and 1 

predictors). 

 

 
 
 
 

Model performance was assessed by ranking all models by their respective AICc values and 

calculating Akaike weights (Burnham & Anderson, 2002). The latter indicate the relative 

level of support for each model, given the data. The difference in AIC between each model 

and the most highly ranked model (∆AIC) was used to assess which models received similar 

levels of support from the data. For each model nested within the top model, the significance 

of the ∆AIC was determined using the likelihood ratio test (LRT), with the extra penalty term 

the AIC adds to the likelihood accounted for (Conner, Seborg & Larimore, 2004). Models 

that yielded a non-significant result in this comparison were considered to have very similar 

levels of support. We therefore interpreted all models with AICc values lower than the first 
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nested model judged less optimal than the top model. In what follows, it is these models 

alone that we present. To give a simple assessment of the structure of the set of top models 

for each D. galeata metric, we calculated the total number of fitted predictor terms within all 

constituent models and determined the proportion of these terms that related to effects of 

temperature, chlorophyll a phenology and over-wintering population size. Top models, 

judged by AICc, and their residuals were examined for normality, homoscedasticity, 

autocorrelation and influence as outlined previously. As in the case of the trend analyses, 

these diagnostics did not reveal any problems associated with non-normality of residuals, 

heteroscedasticity or influence, and model parameters were little affected by the inclusion of 

temporal error structures (generalised least squares regression, results not shown). 

Furthermore, correlations between predictor variables that co-occurred in the statistical 

models were examined and found to be generally weak (range of absolute values for 

Pearson’s r = 0.07-0.57), indicating that results were unlikely to be adversely affected by 

colinearity among predictors. All of the above analyses were conducted using the base, mgcv, 

nlme and cardidates packages in R version 2.9.2 (Wood & Augustin, 2002; Rolinski et al., 

2007; R Development Core Team, 2009; Pinheiro et al., 2010). 
 
 
 
 
 
 

In an attempt to unify the results from the regression analyses performed upon each of the D. 

galeata metrics, a hierarchal modelling procedure was adopted. Specific predictor variables 

(two temperature variables, ten chlorophyll a phenological metrics and D. galeata over- 

wintering abundance) were grouped into dummy high-level grouping variables that reflected 

the conceptual classes to which those predictors belonged i.e. temperature (irrespective of the 

month being considered) and the onset, peak or central point of the growing season for 

phytoplankton. This made it possible to test if the higher-level variables were significant 

predictors across the D. galeata responses. Specifically, hierarchal models were used to 
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examine the evidence for the overall effect of temperature upon phenology and were used to 

identify which broad phenological attributes of spring phytoplankton growth (onset, peak, 

growing season mid-point) were important and consistent predictors. The primary advantage 

of the approach is that it can be used to resolve the key predictors of D. galeata phenological 

change, while considering a range of possible descriptors for each predictor. This reduces the 

extent to which results depend upon the specific choice of predictor variable. 

 

 
 
 
 

For the analysis of each D. galeata metric, changes in phenology were related to the 

magnitude of the over-wintering population, temperature (within which the temperature data 

for the current and previous month were nested) and spring chlorophyll a phenology. In the 

latter case, the three conceptual classes of phenological metric (Onset, Peak and 

GrowingSeason) were nested within the high-level chlorophyll predictor, and the specific 

phenological metrics were nested within each of these conceptual classes. The modelling 

structure was as follows: 

 

oa  h  hnn   =  �Thrra hloh  hn oa  W n 
 
 

where: 
 

 

Thrra =      uooMln hohvMln 
 
 

hloh  hn =  on  h ?hhok sGolw ng  ho ln 
 
 

Once again, α and β1 – β8 represent the intercept and slope parameters, respectively, of the 

fitted models. The model was implemented using Monte Carlo simulations to arrive 

iteratively at a converged solution for the values of each of the parameters. The distribution 

of the parameter estimates from the 10000 simulations performed was used to assess 
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significance of each term in the model. Analyses were run in WinBUGS version 1.4.3 (Lunn 

 
et al., 2000). 
 
 
 
 
 

 

Results 
 
 
 
 
 
 

Patterns of changing D. galeata phenology 
 
 
 
 
 
 

During the study period, D. galeata consistently produced a single spring peak each year, and 

additional summer or late autumn peaks in some years (Fig. 1). Visual inspection of the data 

suggested that the main spring peak had advanced in its seasonal timing since the initiation of 

the monitoring programme. Indeed, the calculated phenological metrics suggested that this 

was the case, though estimated rates of change were rather variable, ranging between 0.37 

and 0.67 days per year (Table 1, Fig. 2). All but one of the trends were statistically 

 
significant, the exception being that derived when using 25% of the peak spring abundance as 

a phenological indicator. Comparison of the average seasonal pattern in the 1930s and 2000s, 

using generalised additive models, showed a considerable and significant advance in the 

seasonal timing of both the spring population increase and population collapse over the eight 

decades of study (P=0.001, Fig. 3). 

 

 
 
 
 

Drivers of changing D. galeata phenology: individual metrics 
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Data derived using each phenological metric were analysed to determine the evidence for an 

effect of spring temperature, phytoplankton phenology and over-wintering abundance on the 

timing of spring population development. Calculated AICc weights indicated that, for each of 

the D. galeata phenological metrics under consideration, no single statistical model received 

overwhelming support. Rather, sets of top-ranking models received similar levels of support. 

 

 
 
 
 

Examination of the top-ranked models, judged by AICc and likelihood ratio tests, showed 

that the strength of the relationships between spring D. galeata phenology and the driving 

variables differed markedly when using different phenological metrics (Supporting tables 1- 

3). Two of the onset metrics were related only weakly to the selected drivers. When the 

timing of the spring population development was based upon the population size exceeding 

25% of the peak abundance, the top-ranked model had a less optimal AICc value than the 

corresponding null model and explained only 3% of the variability in phenology (Supporting 

table 1). Similarly, when using the absolute abundance threshold as a phenological metric the 

top five models had AICc values that were only slightly more optimal than that of the null 

model, and explained between 7% and 13% of the variability in phenology. These models 

contained effects of previous and current temperatures and chlorophyll a phenology. 

 

 
 
 
 

Considering the remaining indicators of the onset of spring D. galeata population 

development (50% of the peak abundance, 25% of the cumulative spring abundance, Weibull 

curve onset) some commonalities were evident. For all three of these metrics, top models 

consistently included an effect of temperature, specifically in April, such that the onset of 

population development was earlier in warm years (Fig. 4, Supporting table 1). Given that the 

mean seasonal timing of all three metrics fell within May, this suggested that D. galeata 
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phenology was exhibiting a lagged response to previous temperature conditions. There was 

some support for an effect of May temperatures when using the accrual of 25% of the spring 

cumulative abundance as a phenological metric. Top models also consistently included an 

effect of phytoplankton phenology (Fig. 4), though no single metric appeared consistently 

throughout these models (Supporting table 1). Rather, models containing a range of different 

phytoplankton phenology metrics received similar levels of support. Nevertheless, the 

consistent result was that the phenology of the spring phytoplankton bloom influenced that of 

the spring D. galeata population. Most effects indicated that D. galeata spring population 

development occurred later when spring phytoplankton biomass development occurred later. 

A key difference in the structure of the top models occurred with respect to the relationship 

between the timing of spring population development and the magnitude of the over- 

wintering population. Only when phenology was defined using 25% of the cumulative spring 

abundance, did this effect appear in the top-ranked statistical models. Furthermore, these 

three measures of the onset of D. galeata spring population development differed 

considerably with respect to the amount of phenological variability explained by the selected 

driving variables. 

 

 
 
 
 

Top models associated with the three measures of the timing of peak D. galeata population 

size (day of maximum, Weibull peak, GAM peak) consistently included an effect of 

temperature, particularly previous spring temperatures (Fig. 4, Supporting table 2). The mean 

seasonal timing of all three metrics fell within June and the majority of the top models 

associated with these variables included an effect of May temperatures. As was the case for 

the analyses of the onset of population development, peak population size occurred earlier in 

warm years. Many of these models also included an effect of phytoplankton phenology on D. 

galeata phenology, though a number of different phytoplankton phenology metrics appeared 
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in these models with no overwhelming support for one metric in particular (Fig. 4, Supporting 

table 2). Adjusted R
2 

values suggested that peak timings determined by GAMs were more 

strongly predicted by water temperature and chlorophyll a phenology than timings derived 

from Weibull functions and the day of the maximum abundance (Supporting table 2). 

 
 
 
 
 

The same lagged effect of May temperatures was supported by models of the centre of 
 

gravity of the spring population and the timing of the 50
th 

percentile of cumulative abundance 

(Fig. 4, Supporting table 3). Indeed, in both cases, models containing only May temperatures 

were judged most optimal. In addition to May temperatures, phytoplankton phenology 

affected spring D. galeata phenology when using either response metric. However, there was 

evidence for an effect of zooplankton over-wintering populations only when analysing the 

centre of gravity of the spring D. galeata population development. 

 

 
 
 
 

Drivers of changing D. galeata phenology: hierarchic modelling 
 
 
 
 
 
 

Separate analyses of each D. galeata phenological metric revealed consistent effects of 

temperature, though the choice of metric affected whether previous or current temperatures 

were well supported as predictors. While there was consistent evidence for an effect of 

chlorophyll a phenology on the timing of D. galeata population development, there was little 

consistency among models regarding the most influential chlorophyll a metric. Furthermore, 

for some chlorophyll a metrics, the direction of the relationship with D. galeata spring 

population development was inconsistent when different metrics were used to define D. 

galeata phenology. For example, the sign of the relationship between D. galeata phenology 
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and the chlorophyll Weibull onset metric differed when D. galeata phenology was quantified 

using the Weibull onset method and the GAM peak method (Supporting tables 1 and 2). 

Given these inconsistencies, hierarchal models were used to assess whether consistent higher 

level relationships could be observed between particular conceptual classes of chlorophyll a 

phenological metrics and D. galeata phenology. 

 

 
 
 
 

Table 2 shows the significant results obtained using this approach. Unlike in Supporting tables 

1 to 3, all models were run with all terms included due to the Bayesian method of parameter 

estimation. A significant effect of temperature upon phenology was found for nine of the ten 

D. galeata metrics. Temperatures from the current and previous months were important 

predictors for almost all of the onset-type metrics, while for peak and centre of growing 

season type metrics previous temperatures were consistently important. Significant effects of 

chlorophyll a phenology were found when using six of the ten metrics to quantify the seasonal 

timing of D. galeata population development (Table 2). In every case, the timing of the spring 

chlorophyll peak was a significant component of this overall effect. As was the case in the 

multi-model analyses, the magnitude of the over-wintering population was found 

to be a significant predictor only when analysing the accrual of 25% of the cumulative spring 

abundance or the centre of gravity of the spring population. 

 

 
 
 
 

Discussion 
 
 
 
 
 
 

The principal aim of the present study was to investigate the seasonal dynamics of D. galeata 

 
over eight decades for evidence of phenological change, and to explore potential drivers of 
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change. To our knowledge this is the longest existing phenological data set for a freshwater 

plankton population. Crucially we analysed patterns and drivers of change by simultaneously 

using multiple phenological metrics, all of which have been employed in the existing 

literature. Metrics differ mathematically and conceptually and thus reveal different aspects 

and drivers of phenological change. While the value of multi-metric approaches has been 

recognised in long-term studies of some plankton populations (Maberly et al., 1994) and in 

ecologically based water quality assessment (Coates et al., 2007) this approach has rarely 

been used specifically to examine phenological changes in lake communities (but see Rolinski 

et al., 2007), with disparate studies essentially employing different and singular definitions of 

phenology. 

 

 
 
 
 

The present multi-metric analysis provided robust evidence for a phenological advance in 

spring D. galeata populations over eight decades. All ten of the metrics showed a tendency 

towards earlier spring development of D. galaeta populations, and additive modelling 

showed that this was accompanied by earlier seasonal population declines. When using 25% 

of the peak abundance as a phenological metric, the seasonal timing of population 

development appeared to occur extremely early in some years. In these years small and short- 

lived increases in winter populations, prior to the main period of spring increase, surpassed 

25% of the peak spring abundance for the year. Though these seasonal “false starts” resulted 

in the overall trend being non-significant, the direction of change was in qualitative 

agreement with that based upon the remaining metrics. These results are in broad agreement 

with other studies that have documented phenological advances in zooplankton communities 

(Adrian et al., 2006). However, depending upon which metric was considered, estimated 

rates of phenological change varied between 3.7 and 6.7 days per decade. This degree of 

variability is comparable with that found among species, in comparative studies (Parmesan & 
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Yohe, 2003; Root et al., 2003; Root et al., 2005; Parmesan, 2007). Visser and Both (2005), 

suggested that phenological changes in focal organisms be compared to the “yardstick” of 

similar changes in the organisms with which they interact. Differences in metric choice 

among studies have the potential to influence the outcome of such comparisons. The 

conceptual class of phenological metric has rarely been included as an explicit determinant of 

change in interspecific comparisons, since many phenological data sets contain information on 

only one metric (but see Thackeray et al., 2010). 

 

 
 
 
 

We explored the influence of spring water temperature, phytoplankton phenology and over- 

wintering population size upon spring D. galeata phenology. Many of the analyses provided 

evidence for an effect of spring temperature upon the timing of spring population 

development, as has been noted in other long-term studies (Gerten & Adrian, 2000; Hampton 

et al., 2006) and large-scale experiments (Feuchtmayr et al., 2010). Indeed, population 

models have suggested that long-term changes in temperature have a more significant 

influence on Daphnia phenology that the seasonal timing of resource availability (Schalau et 

al., 2008). Warming increases rates of population growth via effects upon rates of maturation, 

neonate release and egg development (Hall, 1964; Vijverberg, 1980; Weetman & Atkinson, 

2004). Furthermore, warming enhances the population grazing rate via increases in individual 

grazing rates (McMahon, 1965; Burns, 1969) and the increase in the number of grazers. We 

would therefore expect warming to bring about an earlier onset of population growth, 

assuming sufficient food resources, and an earlier over-exploitation of phytoplankton food 

resources leading to an advance in the seasonal collapse of the D. galeata population. Both of 

these changes were evident when using additive models to compare average seasonal 

dynamics during the 1930s and 2000s. However, it must be noted that changes in temperature 

could have indirect effects upon zooplankton population development, by influencing 
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phytoplankton communities via temperature effects on growth and due to correlated changes 

in the physical structuring of the water column (Feuchtmayr et al., 2011). 

 

 
 
 
 

The results of this study support the assertion that the phenological effects of warming depend 

upon the seasonal timing of the warming trend (Wagner & Benndorf, 2007; Huber, Adrian & 

Gerten, 2010). Specifically, both the multi-model analyses for each metric and the hierarchal 

modelling suggest that the phenology of spring population development depends upon 

temperatures at a specific time of year, prior to the main period of population growth. This 

agrees with the findings of Madgwick et al. (2006); the structure of a plankton community at a 

particular point in time is a biological response to previous environmental conditions. For 

eight of the ten metrics, the majority of top regression models included an effect of previous 

temperatures. For onset-type metrics this equated with April temperatures, while for the later 

occurring peak and mid-growing season-type metrics May temperatures were more important. 

Hierarchal modelling confirmed that a significant effect of previous temperatures upon 

phenology was evident for seven of the ten D. galeata metrics. Aside from this dependence of 

the precise temperature effect upon the conceptual D. galeata metric 

class, for two of the onset variables none of the fitted models represented a substantial 

improvement on the null model. Therefore, the ability to detect a relationship between water 

temperature and D. galeata phenology, and the precise nature of this relationship, depends 

upon the chosen phenological metric. 

 

 
 
 
 

Less consistency was found among regression models with respect to the effects of 

phytoplankton phenology. The most well supported models for many of the D. galeata 

metrics in the multi-model analyses included an effect of phytoplankton phenology. In the 
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majority of cases these terms indicated that D. galeata population development occurred later 

when spring phytoplankton growth occurred later. This is in keeping with the idea that the 

seasonal timing of food availability should be a decisive factor for grazer phenology, since 

clutch sizes, and proportions of egg-bearing females will increase in response to seasonal 

food increase (Guisande & Gliwicz, 1992; George & Reynolds, 1997) However, the top 

statistical models in these analyses contained a range of chlorophyll a phenological metrics as 

predictors and did not provide overwhelming support for the importance of one 

phytoplankton metric in particular. Furthermore, the effects of some phytoplankton metrics 

were not consistent when different metrics were used to define D. galeata phenology. 

Hierarchal modelling was therefore used to search for more consistent, higher-level, 

relationships between D. galeata phenology and phytoplankton phenology. These analyses 

suggested that, when chlorophyll a phenology was a significant predictor of D. galeata 

phenology, it was typically the timing of the chlorophyll peak that was most important. So, 

although a consistent effect of a specific aspect of phytoplankton phenology could not be 

observed at the metric level, it could be at a higher conceptual level. 

 
 

 

The direction of causality in the relationship between phytoplankton and D. galeata 

phenology may be equivocal. While the seasonal increase in phytoplankton concentrations 

will permit D. galeata population growth, grazing by the latter will contribute to the decline 

in spring phytoplankton peak. However, grazing is not the sole determinant of the collapse of 

spring phytoplankton blooms. For example, spring phytoplankton populations may decline in 

response to nutrient limitation (Reynolds, 2006; Thackeray et al., 2008) and sedimentation 

(Huisman & Sommeijer, 2002). Therefore, it is conceivable that factors external to, and 

independent of, the grazer-phytoplankton interaction influence the phenology of the latter, 
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logy as a predictor is justified. Changes in the phenology of zooplankton and their 

phytoplankton resources must be considered within the context of their joint dynamics, but 

also with respect to external driving forces. The corollary of this dynamic interplay between 

grazers and resources is that there is the potential for changes in lake trophic state to influence 

the phenology of zooplankton populations, via effects of nutrient availability on the 

phenology of phytoplankton (Thackeray et al., 2008; Feuchtmayr et al. 

2010). Long-term changes in nutrient availability influence the balance between 

phytoplankton replication rates and grazing losses, potentially affecting the timing of the 

onset of food limitation in the grazers. While it is recognised that changing trophic state can 

influence phytoplankton phenology, there is a need to develop a mechanistic understanding 

of how this effect might propagate to higher trophic levels. 

 

 
 
 
 

Some previous studies have suggested that the magnitude of over-wintering populations can 

have a significant effect upon spring D. galeata phenology (Romare et al., 2005; Hampton et 

al., 2006). There was only weak evidence for this in the North Basin of Windermere. Such an 

effect was consistently observed only when two metrics were used to indicate D. galeata 

phenology. This particular result highlights the importance that the choice of phenological 

metric can have on the ecological interpretation of change. 

 

 
 
 
 

In the regression analyses of individual D. galeata phenological metrics, maximal adjusted R
2 

values indicated that approximately half of the variability in the seasonal timing of spring 

population development could be explained by the environmental drivers that were 

investigated. While some of this unexplained variability may have arisen due to the effects of 

sampling and sub-sampling errors, other important drivers of phenological change are 
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probably present. In the analysis chlorophyll concentrations were used to quantify the timing 

of the seasonal phytoplankton peak, making the implicit assumption that all taxa in the spring 

phytoplankton community were ingestible to Daphnia. Cryptomonas spp., Chlorella spp. and 

Asterionella formosa (Hassall) that are typically present and abundant throughout the spring 

bloom in Windermere (Reynolds & Irish, 2000) can be consumed by Daphnia (Schindler, 

1971; Nadin-Hurley & Duncan, 1976; Reynolds, 2006). There is also evidence that Daphnia 

are capable of consuming filamentous phytoplankton (Nadin-Hurley & Duncan, 1976; 

Fulton, 1988; Epp, 1996) such that Aulacoseira, which also makes a substantial contribution 

to the Windermere spring phytoplankton bloom, could also be consumed. However, at 

present, detailed phytoplankton species data are not available for all of the study years, 

reducing the feasibility of a more detailed assessment of the food spectrum. The role of 

seasonal changes in food quality in determining D. galeata phenology would perhaps be 

better studied by examining sestonic carbon, phosphorus and fatty acid content; attributes that 

are known to affect Daphnia reproductive parameters (Sterner & Schulz, 1998). Since the 

nutritive content of phytoplankton cells is a variable property (Sterner et al., 1998), detailed 

and direct study would be needed to resolve this issue rather than making simple assumptions 

based upon the available phytoplankton species data. It is also plausible that long-term 

changes in the phenology and abundance of potential competitors and predators (Wagner & 

Benndorf, 2007), could affect D. galeata phenology by affecting population growth and loss 

rates, respectively. 

 

 
 
 
 

In the case of the phenological metric based upon an absolute abundance threshold, it must 

also be noted that changes in phenology could be confounded with changes in population 

size. Miller-Rushing, Inouye & Primack (2008) noted that changes in the population size of 

flowering plants may alter the time of year at which first flowering dates are detected even if 
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the timing of peak flowering remains unchanged, while Stine, Huybers & Fung (2009) noted 

that analyses of long-term changes in the phase of the annual temperature cycle will be 

confounded with changes in annual mean temperature if analyses are based upon the seasonal 

timing of absolute temperature thresholds. Therefore, it is conceivable that changes in mean 

D. galeata abundance among years might affect the seasonal timing of any given population 

size being achieved, even if the timing of population increase has not changed. There is a 

need to examine the influence of changing population size upon different phenological 

metrics, as this has not been rigorously analysed in the plankton literature. 

 

 
 
 
 

The effect of metric choice on observed patterns of change has been discussed in studies of 

terrestrial plants and birds (Miller-Rushing et al., 2008; Lehikoinen & Sparks, 2010), but had 

not yet received in-depth consideration for plankton communities. The former studies have 

prompted the general recommendation that, when possible, phenological studies should use 

metrics that capture the whole seasonal distribution of activity for the focal organisms 

(Miller-Rushing et al., 2008). While this might not be possible for many existing 

phenological data sets, the temporal organisation of plankton monitoring programmes allows 

such an approach. There is probably no single, “best”, metric to use in such studies since 

individual metrics or classes of metrics will be more or less suited to the ecological questions 

being addressed. The exact choice of metrics used in any one analysis should be informed by 

conceptual considerations of the ecological processes under study, and by the underlying 

hypotheses being tested. If a range of candidate metrics are relevant to those processes, 

testing all of them may strengthen inferences about ecological processes. It is clear that there 

is a need for an underlying mechanistic theory of the drivers of plankton phenological change 

and for experimental and modelling approaches that can disentangle the drivers of phenology 

for different broad classes of phenological event. Future studies should explore combining 
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multiple metrics to create a basket of phenological indicators that might then be used to 

explore the drivers and consequences of phenological change. 
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Table 1 Linear models of trends in the seasonal timing of Daphina galeata spring population 

development. Shown are the slope parameter of each model (in d yr
-1

) and its respective 

standard error [B(s.e.)], the F statistic and its associated P value (F, P) and the adjusted R- 

squared (Adj. R
2
). F statistic degrees of freedom are 1,36 for Weibull curve onset/peak 

models and 1,38 for all other models. 

16 
Phenological metric  Metric 

17 
18 

19 type 

B (s.e.) F  P  Adj. R
2
 

20    

21 First day abundance exceeds 0.2 L
-1 

Onset -0.67 (0.12) 31.68 <0.001 0.44 
22 

23 Exceed 25% peak abundance Onset -0.40 (0.21) 3.65 0.064 0.06 
24 
25 

Exceed 50% peak abundance Onset -0.41 (0.11) 14.19 <0.001 0.25 
26 
27 

28 Accrual of 25% of cumulative 

29 

30 abundance 

Onset -0.40 (0.11) 13.60 <0.001 0.24 

31    

32 Weibull curve onset Onset -0.38 (0.11) 12.06 0.001 0.23 
33 

34 GAM peak Peak -0.55 (0.09) 35.69 <0.001 0.47 
35 
36 

Day of maximum abundance Peak -0.53 (0.11) 21.74 <0.001 0.35 
37 
38 

39 Weibull curve peak Peak -0.50 (0.10) 23.87 <0.001 0.38 
40    

41 Centre of gravity Growing 
42 

43 season 
44 

-0.37 (0.09) 15.36 <0.001 0.27 

45 
46 
47 
48 
49 

50 859 
51 
52 
53 860 
54 
55 
56 
57 
58 
59 
60 

Accrual of 50% of cumulative 

abundance 

Growing 

season 

-0.47 (0.09) 26.47 <0.001 0.40 
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15 866 
16 
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18 867 
19 

20 868 
21 
22 869 
23 
24 

25 870 
26 
27 871 
28 
29 872 
30 

 

Table 2 Hierarchal models for Daphnia galeata phenological change, as indicated by each 

calculated metric. All models were run with all terms present and only those terms significant 

at the 10% level are shown here. Estimated slope parameters together with 95% confidence 

intervals are given for each high-level predictor [B(95% C.I.)], as well as the corresponding P 

value (P). Units for slope parameters are d °C
-1 

for temperature effects, d d
-1 

for chlorophyll 

phenology effects and d Daphnia L
-1 

for effects of the overwintering population. For each 

high-level predictor, the associated lower-level predictor variables which have a significant 

 
effect on D. galeata phenology are indicated. Temperature effects are grouped by whether the 

key variable is the mean value from the Previous or Current month. The effects of 

Chlorophyll a phenology are subdivided according to whether onset, peak or centre of 

growing season type metrics are important predictors. 

31    

32 High-level predictors  B (95% C.I.)  P  Lower-level predictors 
33 
34 First day abundance exceeds 0.2 L-1

 

35 
36 Temperature -7.41 (-13.19,-1.63) 0.017 Current 
37 
38 

Exceed 25% peak abundance 

40 

41 No significant terms 

42    

43 Exceed 50% peak abundance 
44 
45 Temperature 
46 
47 Chlorophyll  a phenology 
48 
49 

Accrual of 25% of cumulative  abundance 
50 
51 

52 Temperature 
53 

54 Chlorophyll  a phenology 
55 
56 Over-wintering population 
57 

58 Weibull curve onset 
59 

 

 
-6.29 (-11.17,-1.41) 

 
0.30 (-0.03,0.63) 
 

 
 
 

-7.44 (-12.66,-2.23) 

 
0.55 (0.22,0.88) 

 
-130.20 (-237.7,-22.78) 

 

 
0.017 

 
0.079 
 

 
 
 

0.003 

 
0.003 

 
0.024 

 

 
Previous 

 
Peak 
 

 
 
 

Previous Current 

 
Peak 

60 Temperature -5.73 (-10.11,-1.35) 0.015 Current 
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2 
3 

Chlorophyll  a phenology 0.31 (-0.02,0.64) 0.073 Onset Peak 
4 
5 

6 GAM peak 
7 

8 Temperature 
9 

10 Chlorophyll  a phenology 
11 
12 Day of maximum  abundance 
13 
14 Temperature 
15 
16 

Chlorophyll  a phenology 
17 
18 

19 Weibull curve peak 
20 

-9.26 (-13.25,-5.29) 
 
0.32 (-0.04,0.67) 
 

 
 
 

-8.72 (-15.12,-2.32) 

 
0.42 (0.09,0.76) 

0.000 
 
0.085 
 

 
 
 

0.012 

 
0.018 

Previous 
 
Peak 
 

 
 
 

Previous 

 
Peak 

21 Temperature -5.89 (-10.87,-0.91) 0.027 Previous 
22 

23 Centre of gravity 
24 
25 Temperature 
26 
27 

Chlorophyll  a phenology 
28 
29 

30 Over-wintering population 

-5.89 (-10.05,-1.73) 

 
0.34 (0.03,0.65) 

 
-73.92 (-154.9,7.1) 

0.010 

 
0.038 

 
0.008 

Previous 

 
Peak 

31    

32 
33 
34 

35 
36 873 
37 
38 

39 874 
40 875 
41 

42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

Accrual of 50% of cumulative  abundance 
 
Temperature -6.81 (-10.89,-2.73) 0.003 Previous 
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Figure legends 
 

 
 
 

Fig. 1 Proportional symbol plot of seasonal and inter-annual variations in Daphnia galeata 

abundance in the North Basin of Windermere. Scale bar shows the relationship between 

symbol size and population size. 

 

 
 
 
 

Fig. 2 Inter-annual variation in the seasonal timing of spring Daphnia galeata population 

development, according to the ten phenological metrics described in the text. On each plot the 

fitted regression line for the long-term trend (see Table 1) has been superimposed. All data 

are plotted as annual anomalies from the mean of the respective series. 
 
 
 
 
 
 

Fig. 3 Smoothers of seasonal variation in Daphnia galeata abundance in the 1930s (dashed 

line) and 2000s (solid black line). Grey lines are a series of realisations of abundance based 

upon sampling from a Gamma distribution centred on the 1930s, baseline, period. The 1930s 

smoother is fitted to pooled 1934-1936 data and the 2000s smoother is fitted to pooled 2004- 

2006 data. 
 
 
 
 
 
 

Fig. 4 For each Daphnia galeata metric, the percentage of predictor terms in top models that 

indicate effects of temperature (black), chlorophyll a phenology (grey) and the magnitude of 

the over-wintering population (white). D.galeata metrics are grouped according to conceptual 

class (onset, peak and growing season), with classes separated by vertical dashed lines. See 

online supporting information for more details of fitted models. 
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35 Null model 
36  
37 May temp 
38 
39 April temp 
40 
 

11 

  R 

42 

 
 

1 

2 

3 Supporting table 1 Models for Daphnia phenological change, using onset-type metrics. 
4 
5 

6 Model selection was based upon differences in Akaike’s Information Criterion adjusted for 
7 

8 small sample size (∆AICc) and the Akaike weight (wi). Also shown are the adjusted R- 
9 
10 

squared values (Adj. R
2
) and the number of parameters in each model, inclusive of the error 

12 

13 variance (k). The most parsimonious model is displayed in bold. Where models judged less 
14 

15 optimal than the most parsimonious model, by AICc, are nested within the most parsimonious 
16 
17 

18 model a likelihood ratio test was performed on the ∆AIC value. This was done to assess the 
19 
20 significance of the difference in support for the two models. The P value associated with this 
21 
22 test is given only for models nested within the top model (LRT P). DOM = day of maximum, 
23 
24 

25 CofG = centre of gravity. + or – is used to indicate the sign of the slope parameter estimated 
26 

27 for each relationship. 
28 

29 

30 
Predictors  k Adj. 

31 2 

32 

33 First day abundance exceeds 0.2 L
-1

 

34 

2 

∆AICc  wi LRT 

P   

 

(-) 

 
(-) 

 

41 
50% cumulative Chlorophyll (+) 

 

43 

44 Chlorophyll DOM (+) 
45 

46 May temp (-), Chlorophyll DOM (+)* 
47 

48 Exceed 25% peak abundance 
49 
50 Null model 
51 

3 0.13 

 
3 0.12 

 
3 0.07 

 
3 0.07 

 
4 0.13 
 

 
 
 

2 

0.00 

 
0.38 

 
1.58 

 
1.59 

 
1.78 

0.08 

 
0.06 

 
0.03 

 
0.03 

 
0.03 0.089 

52 
Daph. Jan (-) ** 

53 
54 

55 Exceed 50% peak abundance 
56 

57 Null model 
58 

3 0.03 0.00 0.07 
 

 
 
 

2 

59 April temp (-) 
60 

3 0.20 0.00 0.12 

  April temp (-), Chlorophyll DOM (+)  4  0.23  0.95  0.07  0.152   
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1 

2 
3 
4 

April temp (-), Chlorophyll CofG (+) 
5 
6 

7 Chlorophyll DOM (+) 
8 

9 April temp (-), 25% cumulative Chlorophyll (+) 
10 

11 Chlorophyll CofG (+) 
12 
13 April temp (-), Chlorophyll GAM peak (+) 
14 
15 April temp (-), 50% cumulative Chlorophyll (+) 
16 
17 

Accrual of 25% of cumulative  abundance 

19 

20 Null model 
21 
22 April temp (-), Chlorophyll DOM (+), Daph. Jan (-) 
23 

24 May temp (-), Chlorophyll DOM (+), Daph. Jan (-) 
25 

26 April temp (-), Chlorophyll GAM peak (+), Daph. Jan (-) 
27 
28 

April temp (-),50% cumulative Chlorophyll (+), Daph. Jan (-) 
29 
30 

31 Weibull curve onset 

32 

33 Null model 
34 
35 April temp (-) 
36 
37 April temp (-), Chlorophyll >0.1 mgC L

-1 
(+) 

38 
39 April temp (-), Chlorophyll DOM (+) 
40 
41 

April temp (-), 25% peak Chlorophyll (-) 
42 
43 

44 April temp (-), Chlorophyll GAM peak (+) 
45 

46 April temp (-), 50% peak Chlorophyll (-) 
47 
48 April temp (-), Chlorophyll Weibull onset (-) 
49 

50 *last model with AICc less than that of the null model 
51 

 
 
 
 
4 0.21 

 
3 0.13 

 
4 0.19 

 
3 0.12 

 
4 0.19 

 
4 0.18 
 

 
 
 

2 

 
5 0.50 

 
5 0.45 

 
5 0.43 

 
5 0.40 
 

 
 
 

2 

 
3 0.42 

 
4 0.42 

 
4 0.41 

 
4 0.40 

 
4 0.40 

 
4 0.40 

 
4 0.40 

 
 
 

 
1.49 

 
2.17 

 
2.22 

 
2.30 

 
2.34 

 
2.37 
 
 
 
 
 

 
0.00 

 
2.46 

 
3.44 

 
4.57 
 
 
 
 
 

 
0.00 

 
1.61 

 
2.09 

 
2.39 

 
2.42 

 
2.54 

 
2.76 

 
 
 

 
0.06 

 
0.04 

 
0.04 

 
0.04 

 
0.04 

 
0.04 
 
 
 
 
 

 
0.40 

 
0.12 

 
0.07 

 
0.04 
 
 
 
 
 

 
0.19 

 
0.09 

 
0.07 

 
0.06 

 
0.06 

 
0.05 

 
0.05 

 
 
 

 
0.108 
 

 
 
 

0.069 
 

 
 
 

0.064 

 
0.063 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.104 

 
0.077 

 
0.064 

 
0.063 

 
0.059 

 
0.051 

52 **the most highly ranked model was not an improvement on the null model 
53 
54 
55 
56 
57 
58 
59 
60 
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1 

2 
3 
4 
5 

6 Supporting table 2 Models for Daphnia phenological change, using peak-type metrics. 
7 

8 Model selection was based upon differences in Akaike’s Information Criterion adjusted for 
9 
10 small sample size (∆AICc) and the Akaike weight (wi). Also shown are the adjusted R- 
11 
12 

13 squared values (Adj. R
2
) and the number of parameters in each model, inclusive of the error 

14 

15 variance (k). The most parsimonious model is displayed in bold. Where models judged less 
16 
17 

optimal than the most parsimonious model, by AICc, are nested within the most parsimonious 

19 

20 model a likelihood ratio test was performed on the ∆AIC value. This was done to assess the 
21 

22 significance of the difference in support for the two models. The P value associated with this 
23 
24 

test is given only for models nested within the top model (LRT P).  DOM = day of 

26 
27 maximum, CofG = centre of gravity. + or – is used to indicate the sign of the slope parameter 
28 

29 estimated for each relationship. 
30 
31 
32 
33 
34 

35 

36 Predictors  k Adj. 
37 R

2
 

38 GAM peak 
39 

∆AICc  wi LRT 
P 

40 
Null model 

41 
42 

43 May temp (-) 
44 

45 May temp (-), Chlorophyll DOM (+) 
46 
47 May temp (-), Chlorophyll GAM peak (+) 
48 
49 May temp (-), 50% cumulative Chlorophyll (+) 
50 
51 May temp (-), Chlorophyll Weibull onset (+) 
52 
53 

May temp (-), 25% cumulative Chlorophyll (+) 
54 
55 

56 May temp (-), Daph. Jan (-) 
57 

58 May temp (-), Chlorophyll Weibull peak (+) 
59 

60 Day of maximum  abundance 

 

2 

 
3 0.54 

 
4 0.55 

 
4 0.55 

 
4 0.54 

 
4 0.54 

 
4 0.53 

 
4 0.53 

 
4 0.53 

 
 
 

0.00 

 
1.30 

 
1.50 

 
1.72 

 
2.13 

 
2.47 

 
2.49 

 
2.59 

 
 
 

0.18 

 
0.09 

 
0.08 

 
0.07 

 
0.06 

 
0.05 

 
0.05 

 
0.05 

 

 
 
 
 
 

0.121 

 
0.107 

 
0.094 

 
0.073 

 
0.059 

 
0.058 

 
0.055 
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Null model 2  
 

May temp (-), Chlorophyll DOM (+) 
 

4 
 

0.30 
 

0.00 
 

0.14  

 

Chlorophyll DOM (+) 
 

3 
 

0.22 
 

0.79 
 

0.09 
 

0.055 

 

 

 
1 

2 
3 
4 
5 
6 

7 
8 

9    

10 Weibull curve peak 
11 

12 Null model 
13 
14 May temp (-) 
15 
16 

May temp (-), Chlorophyll DOM (+) 
17 
18 

19 May temp (-), 50% cumulative Chlorophyll (+) 
20 

21 May temp (-), Chlorophyll GAM peak (+) 
22 

23 May temp (-), 25% cumulative Chlorophyll (+) 
24 

25 May temp (-), Chlorophyll >0.1 mgC L
-1 

(+) 
26 
27 Chlorophyll DOM (+) 
28 
29 

May temp (-), 25% peak Chlorophyll (+) 
30 
31 

32 50% cumulative Chlorophyll (+) 

 

 
2 

 
3 0.26 

 
4 0.31 

 
4 0.28 

 
4 0.28 

 
4 0.25 

 
4 0.24 

 
3 0.17 

 
4 0.23 

 
3 0.17 

 
 
 
 
 

0.00 

 
0.40 

 
1.32 

 
1.36 

 
2.20 

 
2.55 

 
2.66 

 
2.76 

 
2.79 

 
 
 
 
 

0.14 

 
0.11 

 
0.07 

 
0.07 

 
0.05 

 
0.04 

 
0.04 

 
0.03 

 
0.03 

 

 
 
 
 
 
 
 

0.110 

 
0.124 

 
0.121 

 
0.072 

 
0.058 
 

 
 
 

0.051 

33    
34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
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18 

25 

 
 
1 

2 
3 
4 
5 

6 Supporting table 3 Models for Daphnia phenological change, using growing season-type 
7 

8 metrics. Model selection was based upon differences in Akaike’s Information Criterion 
9 
10 adjusted for small sample size (∆AICc) and the Akaike weight (wi). Also shown are the 
11 
12 

13 adjusted R-squared values (Adj. R
2
) and the number of parameters in each model, inclusive of 

14 

15 the error variance (k). The most parsimonious model is displayed in bold. Where models 
16 
17 

judged less optimal than the most parsimonious model, by AICc, are nested within the most 

19 

20 parsimonious model a likelihood ratio test was performed on the ∆AIC value. This was done 
21 

22 to assess the significance of the difference in support for the two models. The P value 
23 
24 

associated with this test is given only for models nested within the top model (LRT P). DOM 

26 
27 = day of maximum, CofG = centre of gravity. + or – is used to indicate the sign of the slope 
28 

29 parameter estimated for each relationship. 
30 
31 
32 
33 
34 

35 

36 Predictors  k Adj. 
37 R

2
 

38 Centre of gravity 
39 

∆AICc  wi LRT 
P 

40 
Null model 

41 
42 

43 May temp (-) 
44 

45 May temp (-), Daph. Jan (-) 
46 
47 May temp (-), Chlorophyll DOM (+), Daph. Jan (-) 
48 
49 May temp (-), Chlorophyll Weibull onset (+) 
50 
51 May temp (-), Chlorophyll GAM peak (+), Daph. Jan (-) 
52 
53 

May temp (-), Chlorophyll DOM (+) 
54 
55 

56 May temp (-), Chlorophyll GAM peak (+) 
57 

58 May temp (-), Chlorophyll Weibull onset (+), Daph. Jan (-) 
59 

60 May temp (-), 25% cumulative Chlorophyll (+) 

 

2 

 
3 0.21 

 
4 0.25 

 
5 0.28 

 
4 0.20 

 
5 0.26 

 
4 0.19 

 
4 0.19 

 
5 0.25 

 
4 0.18 

 
 
 

0.00 

 
0.73 

 
1.61 

 
2.25 

 
2.30 

 
2.35 

 
2.56 

 
2.63 

 
2.65 

 
 
 

0.12 

 
0.08 

 
0.05 

 
0.04 

 
0.04 

 
0.04 

 
0.03 

 
0.03 

 
0.03 

 

 
 
 
 
 

0.140 

 
0.104 

 
0.067 

 
0.124 

 
0.064 

 
0.056 

 
0.106 

 
0.053 
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May temp (-), 50% cumulative Chlorophyll (+) 4 0.18 2.67 0.03 0.053 

May temp (-), Chlorophyll >0.1 mgC L
-1 

(-) 
 

4 
 

0.18 
 

2.71 
 

0.03 
 

0.051 

 

 

 
1 

2 
3 
4 
5 
6 

7    

8 Accrual of 50% of cumulative  abundance 
9 

10 Null model 
11 

12 May temp (-) 
13 
14 

May temp (-), Chlorophyll GAM peak (+) 
15 
16 

17 May temp (-), Chlorophyll CofG (+) 
18 

19 May temp (-), Chlorophyll DOM (+) 
20 

 

 
2 

 
3 0.33 

 
4 0.31 

 
4 0.31 

 
4 0.31 

 

 
 
 
 

0.00 

 
2.39 

 
2.50 

 
2.55 

 

 
 
 
 

0.22 

 
0.07 

 
0.06 

 
0.06 

 
 
 
 
 
 

 
0.062 

 
0.058 

 
0.056 

21    
22 
23 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 


