Hydrological Summary for the United Kingdom

General

July was a very warm month with rainfall modestly above average for the UK as a whole. The high temperatures, particularly during a mid-month heat-wave, triggered surges in demand which locally overstretched water distribution networks (e.g. in parts of Sussex and South Wales). Overall reservoir stocks declined appreciably through July - by around 7% - but, importantly, they remain marginally above the late summer average, and stocks in all index reservoirs are well above drought minima. A few notable storms generated significant summer spates but generally rivers were in recession and July runoff totals were mostly within the normal seasonal range, albeit below average in most cases. A similar generalisation applies to groundwater levels in most of the outcrop areas of the major aquifers. However, early August increases in soil moisture deficits have left many eastern and southern catchments exceptionally dry and, given normal rainfall, a significant delay in the seasonal recovery in river flows and groundwater levels may be expected. In the English Lowlands, the recovery may need to be generated from a considerably lower base than in the last four years.

Rainfall

July rainfall totals displayed substantial spatial variability - reflecting the thundery and showery nature of much of the rainfall. Mid-month and the final week were particularly unsettled as vigorous frontal systems crossed the British Isles, mostly from the south-west. Accordingly, a few localities in Cornwall and South Wales recorded over twice the July average rainfall. By contrast, areas in the rainshadow of the western hills, and which missed the thunderstorms, were relatively dry - parts of the west Midlands recorded $<60 \%$ of the July average; some catchments along the eastern seaboard were even drier. High intensity rainfall events were particularly common in mid-month and towards month end. On the $17^{\text {th }}, \mathrm{St}$ Athan (South Wales) recorded 55 mm whilst Newry (Northern Ireland) registered 70 mm on the following day. On the $25^{\text {th }}$, Cardinham (Cornwall) reported 62 mm and, at month-end, a remarkably intense storm produced a threehour total of 54 mm at Borgue (Dumfries \& Galloway) estimated return period >100 years. Regional rainfall totals for July were mostly in the normal range across England \& Wales but, once again, well below average across much of Scotland. The episodic nature of the 2003 weather patterns is reflected in the accumulated rainfall totals. For Northern Ireland, the May-July period was the wettest since 1958 and most regional totals (northern Scotland excepted) were appreciably above average. However, in the 6-month timeframe regional totals are mostly below average, remarkably so in northern Scotland where deficiencies now extend over 12 months; the August-July rainfall was the lowest since 1969 for the Highland Region.

River Flows

The first half of July saw a continuation of the seasonal recession in most catchments with relatively depressed flows characterising many rivers draining impermeable catchments late in the second week. Thereafter, spates in mid-month, and more particularly towards month end in the west, generated a steep but short-lived recovery with notably high late-summer flows reported for some western
catchments; localised urban flooding was also common. July runoff totals were depressed across north-eastern Britain - commonly the lowest since August 1995 - and new minimum 12-month accumulations were established in a few Scottish catchments (e.g. the Carron). To the south, most runoff totals were in the normal range but the Camowen (NI) reported its $2^{\text {nd }}$ highest July flow. After an unprecedented sequence of above average monthly runoff totals, flows in many spring-fed eastern streams (including the Mimram) are now close to the late summer mean. Annual minimum flows in recent years have generally been considerably greater than those recorded over the 19891997 period. Given the parched condition of many eastern and southern catchments it is likely that this sequence will terminate this year with the possibility of notably low early autumn flows across the English Lowlands in particular.

Groundwater

Soil moisture deficits increased erratically in July but, notwithstanding the late July rainfall, they were considerably above average across most major outcrop areas by month-end, and increased further in early August. Infiltration during July was, as usual, minimal and groundwater level recessions continued in all the major aquifers. Recessions in the Chalk are generally following a typical shallow summer decline but groundwater levels in the most southerly outcrops are depressed (e.g. at Compton). Levels are also well below the average in the Jurassic Limestone of the Cotswolds (e.g. at Ampney Crucis) but generally within the normal range in the other limestone aquifers. In the Permo-Triassic sandstones levels in the Llanfair DC and Heathlanes index boreholes have closely approached the average for first time since 1999; the Yew Tree Farm hydrograph is also in sustained decline but has only just fallen below pre-2000 maxima. Overall groundwater resources are around the average for the time of year but, in the driest eastern outcrop areas particularly, the onset of the seasonal recovery is unlikely to be before the early winter.

Rainfall accumulations and return period estimates

Area	Rainfall	Jul 2003	$\text { May } 03$	$\begin{array}{r} \mathrm{Jul} 03 \\ R P \end{array}$	$\text { Feb } 03$	$\begin{array}{r} - \text { Jul } 03 \\ R P \end{array}$	$\text { Oct } 02$	$\begin{array}{r} \text { Jul } 03 \\ R P \end{array}$		$\begin{array}{r} 02 \text {-Jul } 03 \\ R P \end{array}$
England \& Wales	mm	$\begin{array}{r} 73 \\ 118 \end{array}$	$\begin{aligned} & 220 \\ & 114 \end{aligned}$	2-5	$\begin{array}{r} 338 \\ 86 \end{array}$	2-5	$\begin{aligned} & 897 \\ & 118 \end{aligned}$	5-15	$\begin{gathered} 1014 \\ 111 \end{gathered}$	2-5
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 89 \\ 104 \end{array}$	$\begin{aligned} & 274 \\ & 114 \end{aligned}$	2-5	$\begin{array}{r} 454 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1006 \\ 103 \end{array}$	2-5	$\begin{array}{r} 1161 \\ 96 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 54 \\ & 84 \end{aligned}$	$\begin{aligned} & 194 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 283 \\ 76 \end{array}$	$5-15$	$\begin{array}{r} 716 \\ 102 \end{array}$	2-5	$\begin{array}{r} 834 \\ 98 \end{array}$	2-5
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 58 \\ 110 \end{array}$	$\begin{aligned} & 192 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 293 \\ 86 \end{array}$	2-5	$\begin{aligned} & 695 \\ & 112 \end{aligned}$	$5-10$	$\begin{aligned} & 781 \\ & 104 \end{aligned}$	2-5
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 55 \\ & 93 \end{aligned}$	$\begin{aligned} & 220 \\ & 123 \end{aligned}$	$5-10$	$\begin{array}{r} 327 \\ 90 \end{array}$	2-5	$\begin{aligned} & 763 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 912 \\ & 111 \end{aligned}$	2-5
Anglian	mm	$\begin{array}{r} 53 \\ 109 \end{array}$	$\begin{aligned} & 185 \\ & 125 \end{aligned}$	$5-10$	$\begin{array}{r} 250 \\ 90 \end{array}$	2-5	$\begin{aligned} & 612 \\ & 124 \end{aligned}$	10-20	$\begin{aligned} & 701 \\ & 118 \end{aligned}$	5-15
Thames	mm	$\begin{array}{r} 51 \\ 105 \end{array}$	$\begin{array}{r} 147 \\ 92 \end{array}$	2-5	$\begin{array}{r} 231 \\ 74 \end{array}$	5-10	$\begin{aligned} & 677 \\ & 118 \end{aligned}$	$5-10$	$\begin{aligned} & 744 \\ & 108 \end{aligned}$	2-5
Southern	mm	$\begin{array}{r} 56 \\ 116 \end{array}$	$\begin{array}{r} 140 \\ 90 \end{array}$	2-5	$\begin{array}{r} 230 \\ 71 \end{array}$	5-15	$\begin{aligned} & 740 \\ & 113 \end{aligned}$	2-5	$\begin{aligned} & 823 \\ & 106 \end{aligned}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 74 \\ 143 \end{array}$	$\begin{aligned} & 180 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 295 \\ 83 \end{array}$	2-5	$\begin{aligned} & 847 \\ & 121 \end{aligned}$	5-15	$\begin{aligned} & 926 \\ & 110 \end{aligned}$	2-5
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 111 \\ & 160 \end{aligned}$	$\begin{aligned} & 261 \\ & 124 \end{aligned}$	$5-10$	$\begin{array}{r} 446 \\ 93 \end{array}$	2-5	$\begin{aligned} & 1112 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1188 \\ 101 \end{array}$	2-5
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 110 \\ & 143 \end{aligned}$	$\begin{aligned} & 293 \\ & 123 \end{aligned}$	$5-10$	$\begin{array}{r} 494 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1211 \\ 110 \end{array}$	2-5	$\begin{array}{r} 1330 \\ 101 \end{array}$	2-5
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 79 \\ & 84 \end{aligned}$	$\begin{aligned} & 295 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 494 \\ 87 \end{array}$	5-10	$\begin{array}{r} 1059 \\ 90 \end{array}$	5-10	$\begin{array}{r} 1194 \\ 83 \end{array}$	10-20
Highland	mm	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 340 \\ & 115 \end{aligned}$	2-5	$\begin{array}{r} 586 \\ 87 \end{array}$	2-5	$\begin{array}{r} 1137 \\ 78 \end{array}$	20-35	$\begin{array}{r} 1253 \\ 71 \end{array}$	150-250
North East	mm	$\begin{aligned} & 42 \\ & 57 \end{aligned}$	$\begin{array}{r} 174 \\ 84 \end{array}$	2-5	$\begin{array}{r} 295 \\ 72 \end{array}$	20-30	$\begin{aligned} & 859 \\ & 108 \end{aligned}$	2-5	$\begin{aligned} & 994 \\ & 102 \end{aligned}$	2-5
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 71 \\ & 93 \end{aligned}$	$\begin{aligned} & 257 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 436 \\ 87 \end{array}$	2-5	$\begin{array}{r} 1025 \\ 100 \end{array}$	<2	$\begin{array}{r} 1163 \\ 95 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 78 \\ 104 \end{array}$	$\begin{aligned} & 242 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 386 \\ 86 \end{array}$	2-5	$\begin{array}{r} 888 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1031 \\ 93 \end{array}$	2-5
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 74 \\ 102 \end{array}$	$\begin{aligned} & 222 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 336 \\ 82 \end{array}$	$5-10$	$\begin{aligned} & 827 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 946 \\ 97 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 108 \\ & 120 \end{aligned}$	$\begin{aligned} & 311 \\ & 120 \end{aligned}$	2-5	$\begin{array}{r} 525 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1207 \\ 104 \end{array}$	2-5	$\begin{array}{r} 1381 \\ 97 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 112 \\ & 103 \end{aligned}$	$\begin{aligned} & 381 \\ & 130 \end{aligned}$	5-15	$\begin{array}{r} 608 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1227 \\ 89 \end{array}$	$5-10$	$\begin{array}{r} 1390 \\ 82 \end{array}$	10-20
Northern Ireland	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 89 \\ 133 \end{array}$	$\begin{aligned} & 295 \\ & 141 \end{aligned}$	10-20	$\begin{aligned} & 458 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1002 \\ 115 \end{array}$	5-10	$\begin{array}{r} 1098 \\ 104 \end{array}$	2-5
								RP	Return	period

The monthly rainfall figures* are copyright of The Met Office and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since December 1998 are provisional (see page 12). The figures for England \& Wales are derived by the Hadley Centre and are updates of the homogenised series developed by the Climate Research Unit; the other national figures are derived from different raingauge networks to those used to derive the CRU data series. The return period estimates are based on tables provided by the Meteorological Office (see Tabony, R.C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 191170 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past. *See page 12 .

Rainfall . . . Rainfall . .

Key

00\% Percentage of
196|-90 average

Very wet

Substantially above average

Above average

Normal range

Below average

Substantially below average

Exceptionally low rainfall

Rainfall accumulation maps

Rainfall over the last three months for the UK as a whole has added to a cluster of wet May-July periods: since 1996, four have registered well above average rainfall. By contrast, all regions of Britain have recorded below average rainfall since January 2003. The February-July period was the second driest for the UK since 1984 - for parts of southern England it was the second driest such period since 1976 (and the driest in parts of north-east Scotland).

River flow . . . River flow

River flows - July 2003

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2000 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) May 2003 - July 2003, (b) February 2003 - July 2003, (c) August 2002 - July 2003

	River \%	\%lta	Rank		River	\%lta
a)	Leven (Leven Bridge)	e) 49	6/43	b)	Spey (Boat o, Brig)	67
	Thames (gauged)	60	31/121		Dee (Park)	69
	Coln	63	5/40		Whiteadder	47
	Dee (New Inn)	143	31/34		South Tyne	53
	Leven (Linnbrane)	159	36/40		Soar	53
	Camowen	186	31/32		Taw	57
	Annacloy	144	20/24		Teme	62

Rank
$2 / 51$
$2 / 31$
$2 / 34$
$1 / 40$
$3 / 32$
$3 / 45$
$4 / 33$

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels July 2003 / August 2003

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 67.68 31/07 68.91 West Woodyates

Level Date 15.98 14/07 45.17 04/08 $80.71 \quad 04 / 08$ 25.94 28/07 131.46 06/08 67.68 31/07 73.62 31/07

Jul. av.
17.19 44.86 77.66 25.67 33.23 77.00

Borehole

Chilgrove House Killyglen New Red Lion
Ampney Crucis Redbank
Skirwith
Yew Tree Farm

3932 31/07
113.84 29/06
12.27 25/07
$99.94 \quad 04 / 08$
$7.07 \quad 30 / 07$
130.23 17/07
13.83 08/08

Jul. av. Borehole
43.61 Llanfair DC 113.78 Morris Dancers 13.41 Heathlanes 100.45 Nuttalls Farm
130.29
13.48
$\begin{array}{lllll}7.77 & 130.98 & 15 / 07 & 129.59\end{array}$
Dul.
79.90 15/07 79.73
$32.24 \quad 24 / 07 \quad 32.37$
$62.51 \quad 14 / 07 \quad 62.19$
$\begin{array}{rrr}32.98 & 15 / 07 & 129.59 \\ 23.79 & 14 / 07 & 23.73\end{array}$
$\begin{array}{llll}\text { Alstonfield } & 179.14 & 15 / 07 & 179.05 \\ \text { Levels in metres above Ordnance Datum }\end{array}$

Groundwater. . . Groundwater

Groundwater levels - July 2003

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
(Note: Redbank is affected by groundwater abstraction.)

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2003	Apr	May	Jun	Jul	Aug	Min. Aug	Year* of min
NorthWest	N Command Zone	- 124929	89	88	74	85	69	62	38	1989
	Vyrnwy	55146	92	94	90	97	87	82	56	1996
Northumbrian	Teesdale	- 87936	79	77	74	75	72	60	45	1989
	Kielder	(199175)	(91)	(90)	(92)	(97)	(91)	(86)	(66)	1989
SevernTrent	Clywedog	44922	85	96	97	99	97	95	57	1989
	DerwentValley	- 39525	98	96	86	94	80	80	43	1996
Yorkshire	Washburn	- 22035	97	90	78	90	82	79	50	1995
	Bradford supply	- 41407	96	94	85	95	82	74	38	1995
Anglian	Grafham	(55490)	(86)	(91)	(94)	(97)	(95)	(89)	(66)	1997
	Rutland	(116580)	(87)	(93)	(95)	(94)	(91)	(87)	(74)	1995
Thames	London	- 202340	92	94	94	94	93	87	73	1990
	Farmoor	- 13830	93	93	94	91	95	89	84	1990
Southern	Bewl	28170	92	92	90	86	79	71	45	1990
	Ardingly	4685	100	100	100	100	92	77	66	1995
Wessex	Clatworthy	5364	100	99	86	79	65	55	43	1992
	BristolWW	- (38666)	(97)	(96)	(91)	(88)	(79)	(79)	(53)	1990
South West	Colliford	28540	83	83	81	81	79	76	47	1997
	Roadford	34500	92	91	87	83	79	75	46	1996
	Wimbleball	21320	100	98	92	86	77	68	53	1992
	Stithians	5205	100	96	89	86	81	76	39	1990
Welsh	Celyn and Brenig	- 131155	99	98	94	100	98	93	65	1989
	Brianne	62140	97	95	88	100	94	95	67	1995
	Big Five	- 69762	98	95	86	96	87	79	41	1989
	Elan Valley	- 99106	99	96	87	99	89	76	63	1989
Scotland(E)	Edinburgh/Mid Lothian	- 97639	96	94	87	92	84	76	51	1998
	East Lothian	- 10206	98	96	95	91	82	75	72	1992
Scotland(W)	Loch Katrine	- 111363	95	89	87	88	84	77	53	2000
	Daer	22412	95	97	89	98	70	74	58	1994
	Loch Thom	- 11840	100	94	88	95	85	85	59	2000
Northern Ireland	Total ${ }^{+}$	-	96	94	80	93	89	84	54	1995
	Silent Valley	- 20634	92	93	79	95	92	86	42	2000

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax: 01344854906

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

