Hydrological Summary for the United Kingdom

General

The episodic weather patterns which have been a feature of the last year continued during May. Notable late-winter and spring rainfall deficiencies increased in a number of lowland catchments, but were greatly moderated in most regions as the late-April rainfall heralded a prolonged unsettled spell. Due to the seasonally high soil moisture deficits, the rainfall - though very welcome to farmers and growers - was too late to be hydrologically effective in much of the English Lowlands; correspondingly some river flows were relatively depressed by late May. In the west and north however, the abundant late spring rainfall provided a very valuable late boost to reservoir stocks - entering June, overall stocks for England and Wales were appreciably above the early summer average. This, together with groundwater levels which, despite notably falls through the spring, remain mostly within, or above, the normal early summer range, confirms that the water resources outlook is much healthier than the spring rainfall deficiencies might imply. Nonetheless, in the event of a dry summer notably low river flows may be expected in impermeable catchments and the autumn recovery in runoff and recharge rates may be significantly delayed.

Rainfall

The breakdown of the long-dominant anticyclonic conditions during the third week of April allowed Atlantic frontal systems to cross the UK with a greatly increased frequency - the majority following tracks across western and northern regions. Mid-May was especially wet - a daily rainfall total of 52.2 mm was reported for Silent Valley (Northern Ireland) on the $15^{\text {th }}$ and the month ended dramatically with heatwave conditions and violent thunderstorms with hailstones and localised flash flooding. An especially severe storm - with remarkable surface runoff and debris slides - afflicted Yarrowford and Selkirk (in the Tweed basin) on the $30^{\text {th }}$. The showery nature of much of the rainfall resulted in significant spatial variability but the May totals strongly reflect the synoptic pattern. Parts of the western Highlands and Northern Ireland reported over 200\% of average rainfall; provisional data suggest that Scotland had its $2^{\text {nd }}$ wettest May since 1925. By contrast, May rainfall in a few southern and eastern coastal areas fell below 70% and spring (MarchMay) totals were particularly low throughout the English Lowlands (and parts of the North-East). In such areas a notable drought can be traced back to mid-February - for the Thames basin the Feb-May rainfall is (provisionally) the second lowest, after 1976, since 1956. Fortunately, in a water resources context, the 9 - and 12-month rainfall accumulations are above average, and close to the average in all regions apart from northern Scotland.

River FIow

In most western and northern catchments, the protracted recessions which resulted in notably low flows in midApril were smartly reversed towards month-end. May began with spate conditions characterising many responsive catchments and relatively high late-spring runoff continued into the third week. At the same time flows in groundwater-fed rivers across the English Lowlands were also healthy (following abundant winter recharge) but, by month-end flows were substantially below average in many impermeable catchments. The Thames and Warwickshire Avon both reported their second lowest May minima since 1992 and May runoff
totals fell below 60% of average for a number of index rivers. By contrast, runoff in many Scottish rivers was well above average - the second highest in a 21 -year record for the Nevis - terminating a protracted low runoff episode in the Highlands (the Ness and Ewe were among many rivers for which a new July-April runoff minimum had just been established). May runoff totals were high also in Northern Ireland and North Wales - the Dee reported its second highest May flow since 1969. With the exception of some groundwater-fed rivers, spring (March-May) runoff totals were significantly below average, notably so in north-eastern England, but over the last 12 months most runoff accumulations are well within the normal range (northern Scotland excepted).

Groundwater

High evaporative demands and below average rainfall resulted in soil moisture deficits across much of the English Lowlands that were more typical of early August than the end of May - serving to confirm the end of the 2002/03 recharge season across most major aquifers. Infiltration during May was minimal (thunderstorms produced some very localised infiltration) and drought conditions throughout much of the spring resulted in March-May recharge totals of less than a quarter of the long term average across much of the eastern Chalk. Fortunately a counterbalance is provided by the notably high recharge during the Sept 2002-Jan 2003 period (and preceding winters). The net result in the Chalk is that, although groundwater levels are relatively depressed in the south-western outcrops, levels are in the normal range across most of the aquifer. A similar picture characterises levels in a number of minor aquifers (e.g. the Norfolk Drift and Essex Gravels). The 2003 spring recession was particularly steep in the limestone aquifers, at Ampney Crucis especially where only during the 1976 and 1984 droughts have lower May levels been recorded. Steep spring declines were evident in the more responsive Permo-Triassic units but, generally, the large storage within the aquifer - which mitigates against rapid change - has generally left levels well above the early summer average.

NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall accumulations and return period estimates

Area	Rainfall	May 2003	Feb 03-May 03 RP		$\begin{array}{r} \text { Dec } 02-\text { May } 03 \\ R P \end{array}$		$\text { Sep 02-May } 03$$R P$		$\begin{array}{r} \text { Jun 02-May } 03 \\ R P \end{array}$	
England \& Wales	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 71 \\ 109 \end{array}$	$\begin{array}{r} 193 \\ 73 \end{array}$	5-15	$\begin{array}{r} 432 \\ 96 \end{array}$	2-5	$\begin{array}{r} 793 \\ 112 \end{array}$	2-5	$\begin{array}{r} 1018 \\ 112 \end{array}$	5-10
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 113 \\ & 150 \end{aligned}$	$\begin{array}{r} 292 \\ 92 \end{array}$	2-5	$\begin{array}{r} 529 \\ 94 \end{array}$	2-5	$\begin{array}{r} 897 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1200 \\ 100 \end{array}$	<2
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 78 \\ 126 \end{array}$	$\begin{array}{r} 168 \\ 68 \end{array}$	10-20	$\begin{array}{r} 361 \\ 88 \end{array}$	2-5	$\begin{array}{r} 633 \\ 98 \end{array}$	2-5	$\begin{aligned} & 875 \\ & 103 \end{aligned}$	2-5
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 68 \\ 115 \end{array}$	$\begin{array}{r} 168 \\ 73 \end{array}$	5-10	$\begin{array}{r} 336 \\ 89 \end{array}$	2-5	$\begin{aligned} & 600 \\ & 104 \end{aligned}$	2-5	$\begin{aligned} & 783 \\ & 104 \end{aligned}$	2-5
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 77 \\ 128 \end{array}$	$\begin{array}{r} 184 \\ 75 \end{array}$	$5-10$	$\begin{array}{r} 380 \\ 93 \end{array}$	2-5	$\begin{aligned} & 655 \\ & 104 \end{aligned}$	2-5	$\begin{aligned} & 913 \\ & 111 \end{aligned}$	2-5
Anglian	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 52 \\ 109 \end{array}$	$\begin{array}{r} 117 \\ 66 \end{array}$	10-20	$\begin{aligned} & 287 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 512 \\ & 116 \end{aligned}$	$5-10$	$\begin{aligned} & 689 \\ & 116 \end{aligned}$	$5-10$
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 49 \\ & 87 \end{aligned}$	$\begin{array}{r} 133 \\ 64 \end{array}$	10-20	$\begin{array}{r} 335 \\ 98 \end{array}$	2-5	$\begin{aligned} & 604 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 773 \\ & 112 \end{aligned}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 47 \\ & 87 \end{aligned}$	$\begin{array}{r} 137 \\ 61 \end{array}$	10-20	$\begin{array}{r} 376 \\ 97 \end{array}$	2-5	$\begin{aligned} & 690 \\ & 111 \end{aligned}$	2-5	$\begin{aligned} & 853 \\ & 109 \end{aligned}$	2-5
Wessex	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 54 \\ & 89 \end{aligned}$	$\begin{array}{r} 170 \\ 68 \end{array}$	$5-15$	$\begin{array}{r} 380 \\ 89 \end{array}$	2-5	$\begin{aligned} & 760 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 914 \\ & 109 \end{aligned}$	2-5
SouthWest	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 80 \\ 111 \end{array}$	$\begin{array}{r} 264 \\ 78 \end{array}$	$5-10$	$\begin{array}{r} 538 \\ 87 \end{array}$	2-5	$\begin{aligned} & 957 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 1134 \\ 97 \end{array}$	2-5
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 116 \\ & 141 \end{aligned}$	$\begin{array}{r} 317 \\ 87 \end{array}$	2-5	$\begin{array}{r} 603 \\ 91 \end{array}$	2-5	$\begin{array}{r} 1072 \\ 102 \end{array}$	2-5	$\begin{array}{r} 1284 \\ 98 \end{array}$	2-5
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 140 \\ & 163 \end{aligned}$	$\begin{array}{r} 339 \\ 87 \end{array}$	2-5	$\begin{array}{r} 574 \\ 83 \end{array}$	5-10	$\begin{array}{r} 952 \\ 83 \end{array}$	5-15	$\begin{array}{r} 1294 \\ 90 \end{array}$	5-10
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 175 \\ & 190 \end{aligned}$	$\begin{array}{r} 421 \\ 89 \end{array}$	2-5	$\begin{array}{r} 690 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 1020 \\ 71 \end{array}$	50-80	$\begin{array}{r} 1362 \\ 77 \end{array}$	35-50
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 95 \\ 138 \end{array}$	$\begin{array}{r} 217 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 412 \\ 89 \end{array}$	2-5	$\begin{aligned} & 819 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1128 \\ 116 \end{array}$	$5-15$
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 120 \\ 144 \end{array}$	$\begin{array}{r} 299 \\ 86 \end{array}$	2-5	$\begin{array}{r} 517 \\ 83 \end{array}$	$5-10$	$\begin{array}{r} 919 \\ 93 \end{array}$	2-5	$\begin{array}{r} 1281 \\ 104 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 100 \\ 135 \end{array}$	$\begin{array}{r} 244 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 426 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 784 \\ 90 \end{array}$	2-5	$\begin{array}{r} 1126 \\ 101 \end{array}$	2-5
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 103 \\ & 145 \end{aligned}$	$\begin{array}{r} 218 \\ 79 \end{array}$	$5-10$	$\begin{array}{r} 412 \\ 88 \end{array}$	2-5	$\begin{aligned} & 746 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1024 \\ 106 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 129 \\ 152 \end{array}$	$\begin{array}{r} 343 \\ 90 \end{array}$	2-5	$\begin{array}{r} 589 \\ 86 \end{array}$	2-5	$\begin{array}{r} 1085 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1456 \\ 102 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 167 \\ & 183 \end{aligned}$	$\begin{array}{r} 394 \\ 90 \end{array}$	2-5	$\begin{array}{r} 631 \\ 78 \end{array}$	5-15	$\begin{array}{r} 1077 \\ 79 \end{array}$	10-20	$\begin{array}{r} 1478 \\ 87 \end{array}$	$5-10$
Northern Ireland	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 123 \\ & 173 \end{aligned}$	$\begin{array}{r} 286 \\ 95 \end{array}$	2-5	$\begin{array}{r} 463 \\ 90 \end{array}$	2-5	$\begin{aligned} & 870 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 1141 \\ 108 \end{array}$	2-5
							$R P=$ Return period			

Rainfall . . . Rainfall . .

Key

00\% Percentage of
1961-90 average

Very wet

Substantially above average

Above average

Normal range

Below average

Substantially below average

Exceptionally low rainfall

February 2003 - May 2003
June 2002 - May 2003

Rainfall accumulation maps

Notwithstanding the wet May in the west and north, appreciable rainfall defiencies exist over the Feb-May period for all regions. Provisional figures indicate that the 4-month total for Great Britain was the second lowest (after 1984) since 1975. The twelve-month timeframe presents a contrasting picture. Aside from the still notable deficiencies in northern and western Scotland, the June-May rainfall was close to, or above, average in all regions.

River flow . . . River flow

River flows - May 2003

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2000 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) February 2003 - May 2003, (b) June 2002 - May 2003

River	\%lta	Rank		River	\%lta	Rank	River	\%lta	Rank
Spey	73	5/51	b)	Ness	63	2/30	Brue	127	33/37
Tyne	59	4/39		Deveron	131	37/40	Cynon	78	5/43
Whiteadder	46	2/34		Dee	131	30/30	Luss	75	1/24
South Tyne	55	1/41		Dover Beck	145	25/27	Nevis	69	2/20
Soar	50	4/32		Mimram	141	46/49	Carron	53	1/24
Taw	59	5/45		Blackwater	146	49/50	Ewe	64	1/32
Teme	63	4/33		Wilts. Avon	152	37/38	Naver	72	1/25
						6	lta $=$ long term average Rank $1=$ lowest on record		

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater Ievels May 2003 / June 2003

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 73.74 03/06 72.48 West Woodyates

Level Date May av.
18.51 09/05 18.96 $47.18 \quad 20 / 05 \quad 45.42$ 84.28 02/06 $\quad 78.42$
$26.11 \quad 30 / 05 \quad 25.71$
$134.46 \quad 02 / 06 \quad 136.24$ 84.67

Borehole
Chilgrove House Killyglen New Red Lion
Ampney Crucis
Redbank
Skirwith
Yew Tree Farm

Level	Date	May av.	Borehole	Level	Date	May av.	
44.57	$31 / 05$	49.01		Llanfair DC	80.10	$15 / 05$	79.92
115.15	$02 / 06$	114.53		Morris Dancers	32.22	$20 / 05$	32.38
13.95	$28 / 05$	16.03		Heathlanes	62.63	$20 / 05$	62.08
100.27	$02 / 06$	101.28		Nuttalls Farm	131.09	$16 / 05$	129.57
7.33	$31 / 05$	8.00		Bussels No.7a	24.14	$20 / 05$	24.01
130.53	$22 / 05$	130.60		Alstonfield	182.02	$15 / 05$	186.93
14.24	$05 / 06$	13.61		Levels in metres above Ordnance Datum			

Groundwater. . . Groundwater

Groundwater levels - May 2003

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
(Note: Redbank is affected by groundwater abstraction.)

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax: 01344854906

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

