Hydrological Summary for the United Kingdom

General

Apart from a wet and blustery start, the first three weeks of April were mainly dry, extending a dry spell which started in mid-February. Rainfall deficiencies in the 3 month period are nationwide and have caused a sharp spring drought with notably low river flows outside of the south east of England. Persistent high pressure developed early in the month; subtle shifts in its position wrought significant changes in temperature; the highest Scottish April temperature was recorded and temperatures not seen for 50 years or more featured in E\&W and NI - this contrasted with a cold interludes and a little snow. The generally sunny conditions, lack of rain and some brisk winds generated high evaporative demands; record totals were estimated for extensive areas along the western seaboard, South Wales, East Anglia, and southern England. From southern Scotland into E\&W, evaporation was between 20 and 50% above average and SMDs were more than twice the average over much of England. The water resources position has deteriorated through April; reservoir contents have been below average for 3 successive months and are now about 4% below 1988-2002 figures. The month-end rainfall provided a welcome boost to overall contents and stimulated some rapid recoveries in river flows. The likely end to the recharge season has overall groundwater stocks in a healthy state.

Rainfall

A short spell of rainfall at the beginning of April heralded a return to widespread dry conditions for the following three weeks. Frontal rain from slow moving weather systems arrived in Cumbria, central Scotland and Wales on the 21 st $-22^{\text {nd }}$, reducing the risk of forest and heath fires. Cyclonic conditions from the $25^{\text {th }}$ brought significant rainfall to most areas with heavy rainfall in the north and west, resulting in monthly averages closer to the mean. Throughout the UK, rainfall totals were below average, with less than 50% in the Western Isles (particularly), the north east England seaboard, the East Midlands, central London, eastern Kent and south Dorset.
The 3-month accumulated rainfall totals (Feb-Apr) are below 75% of normal over the UK; the driest since 1956, with less than 50% in the Northumbrian and Anglian regions. From March 8-April 24, some places had less than 5 mm of rainfall, the northeast of England especially. In Wallingford, the 45 days from 8 March recorded 4 raindays totalling 2.6 mm . The exceptionally low 9-month accumulation in western and northern Scotland is in strong contrast with E\&W, the latter reflecting the heavy autumn rainfall. Over the 12 months from May 2002 however, only western and northern Scotland are below average.

River Flows

Country-wide recessions have persisted since early February through to the last week of April, punctuated by short-lived spates. The severity of the decline in flows was principally linked to whether the rivers had significant baseflow support from the Chalk and Lincolnshire Limestone aquifers; in these cases, April mean flows were close to average - only the Mimram and Itchen of the index rivers were above. For the mixed and less permeable catchments elsewhere, all monthly flows were depressed, many notably so. Worst affected were from Cumbria and Northumberland north into Scotland, where a wide spread of stations recorded new April monthly minima, including the rivers Ness, Spey, Dee, Don, Tay, Tweed, Nevis, and

Carron. Many other index rivers were exhibiting their $2^{\text {nd }}$ or $3^{\text {rd }}$ lowest monthly April flows. The rivers Ness, Tweed (at Norham), Tawe, Luss Water, Nevis and Naver all recorded their lowest daily April flows.
Low 3-monthly accumulations (Feb-Apr) in northern Scotland and Northumbria are similarly notable, with the Luss Water, Nevis, Naver and South Tyne registering new minima.
The final week of April saw significant rainfall generating some very rapid hydrograph responses, such as in the Tawe and Cynon; unsettled conditions early in May should generate widespread flow recovery, particularly in impermeable catchments.

Groundwater

The combination of low rainfall, high evaporative demand and consequent high SMDs has probably terminated the recharge season. For the majority of index wells the dry late winter and early spring have seen recessions of varying severity. The slowest responding wells in central area of the Chilterns were still exhibiting water levels close to the 2002-3 maximum, but these moderated eastwards though East Anglian and eastern Kent levels are still above or well above average. The northern and southern Chalk is characterised by levels close to or slightly below average, whilst in the far west of the Chalk outcrop some wells show more depressed levels. The Chalk in Northern Ireland has shown the greatest diminution in storage, although the record is short. The Permo-Triassic sandstones do not present a coherent picture; those wells in the West Midlands and Lancashire have levels well above average or close to the maximum recorded. In the Eden valley (Cumbria), Devon, the Welsh Dee valley and Nottinghamshire levels are close to average.
The resources picture for groundwater is generally satisfactory; May is typically the last month where stocks may be replenished but this looks unlikely in the lowlands and attention will focus on the development of SMDs throughout the summer and their persistence into the autumn.

Rainfall accumulations and return period estimates

Rainfall . . . Rainfall . .

Key

00\% Percentage of
1961-90 average

Very wet

Substantially above average

Above average

Normal range

Below average

Substantially below average

Exceptionally low rainfall

February 2003 - April 2003

August 2002 - April 2003

Rainfall accumulation maps

Provisionally, comparing February - April accumulations, 2003 was the driest since 1976 in E\&W and since 1969 in Scotland. Precipitation in the North East, Tweed and Northumbrian regions for those 3 months has been the lowest in at least 40 years, and in Anglian, the driest since 1976. For Scotland as a whole, in the 9 month timeframe August-April has been the driest for 30 years, with the Highland and Clyde areas experiencing their driest August-April since 1968/1969.

River flow . . . River flow

River flows - April 2003

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2000 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations

River	\%lta	Rank	River	\%lta
a)	Spey	66	$3 / 51$	Yscir

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels April 2003 / May 2003

Borehole

 Dalton Holme Washpit Farm Stonor ParkDial Farm Rockley West Woodyates

Level Date
20.42 10/04 48.43 16/04 85.78 30/04 26.12 01/04
136.61 30/0
84.57 30/04
Apr. av.
19.52
45.33
77.83
25.68
137.59
72.41
88.51

Borehole
Chilgrove House Killyglen New Red Lion
Ampney Crucis
Redbank
Skirwith
Yew Tree Farm

Level	Date	Apr. av.	Borehole	Level	Date	
48.64	30/04	52.32	Llanfair DC	80.24	15/04	80.00
114.23	05/05	115.03	Morris Dance	32.22	24/04	32.39
15.57	30/04	16.52	Heathlanes	62.72	23/04	62.08
100.55	30/04	101.74	Nuttalls Farm	131.07	16/04	129.45
7.44	29/04	8.17	Bussels No.7a	24.33	24/04	24.19
130.67	23/04	130.65	Alstonfield	184.91	15/04	193.56
14.24	08/05	13.64	evels in m	ove	dnanc	atum

Groundwater. . . Groundwater

Groundwater levels - April 2003

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
(Note: Redbank is affected by groundwater abstraction.)

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{array}{r} 2002 \\ \text { Dec } \end{array}$	$\begin{aligned} & 2003 \\ & \text { Jan } \end{aligned}$	Feb	Mar	Apr	May	Min. May	Year* of min
NorthWest	N Command Zone	- 124929	79	86	93	89	88	74	74	2003
	Vyrnwy	55146	99	99	94	92	94	90	70	1996
Northumbrian	Teesdale	- 87936	92	93	93	79	77	74	74	2003
	Kielder	(199175)	(90)	(99)	(99)	(91)	(90)	(92)	(85)	1990
Severn Trent	Clywedog	44922	78	88	81	85	96	97	85	1988
	DerwentValley	- 39525	99	100	98	98	96	86	54	1996
Yorkshire	Washburn	- 22035	90	99	97	97	90	78	76	1996
	Bradford supply	- 41407	100	100	100	96	94	85	60	1996
Anglian	Grafham	(55490)	(90)	(89)	(84)	(86)	(91)	(94)	(73)	1997
	Rutland	(116580)	(94)	(93)	(90)	(87)	(93)	(95)	(72)	1997
Thames	London	- 202340	96	97	97	92	94	94	86	1990
	Farmoor	- 13830	94	91	91	93	93	94	81	2000
Southern	Bewl	28170	80	86	92	92	92	90	63	1990
	Ardingly	4685	100	100	100	100	100	100		
Wessex	Clatworthy	5364	100	100	100	100	99	86	81	1990
	BristolWW	- (38666)	(93)	(99)	(98)	(97)	(96)	(91)	(85)	1990
SouthWest	Colliford	28540	71	78	81	83	83	81	56	1997
	Roadford	34500	91	95	92	92	91	87	41	1996
	Wimbleball	21320	98	100	100	100	98	92	79	1992
	Stithians	5205	84	100	99	100	96	89	65	1992
Welsh	Celyn and Brenig	- 131155	94	96	96	99	98	94	75	1996
	Brianne	62140	98	99	99	97	95	88	86	1997
	Big Five	- 69762	89	96	99	98	95	86	85	1997
	Elan Valley	- 99106	100	100	100	99	96	87	87	2003
Scotland(E)	Edinburgh/Mid Lothian	- 97639	94	95	99	96	94	87	62	1998
	East Lothian	- 10206	99	99	100	98	96	95	89	1992
Scotland(W)	Loch Katrine	- 111363	88	89	97	95	89	87	83	2001
	Daer	22412	100	100	99	95	97	89	89	2003
	Loch Thom	- 11840	100	100	100	100	94	88	88	2003
Northern	Total ${ }^{+}$	\bullet	100	99	98	96	94	80	80	2003
Ireland	Silent Valley	- 20634	100	98	98	92	93	79	58	2000
() figures in parentheses relate to gross storage - denotes reservoir groups				+excludes Lough Neagh				*last occurrence - see footnote		

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland), data for Northern Ireland are provided by the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (address opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies; over the coming months further monthly raingauge totals will be included for selected regions. Until the access to these additional data has stabilised the regional figures (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax: 01344854906

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

