Hydrological Summary for the United Kingdom

General

Weather conditions during February contrasted with those which typified most of the late autumn and early winter. With high pressure dominant the rainfall total for the UK was, provisionally, the second lowest - for February - in the last 18 years. Across most of the country the risk of flooding declined as sustained recessions characterised most river basins. Flood drawdown releases made a minor contribution to a significant reduction in overall reservoir stocks over

Rainfall

the month, but they remain very close to the late winter average for England and Wales as a whole; with few exceptions, stocks in major impoundments currently exceed 90% of capacity. Though generally in decline from the January peaks, groundwater levels in most major aquifers remain well above average. The healthy water resources outlook is a reflection of the abundant rainfall (and recharge) over the autumn and early winter. Considerable early March rainfall generally eliminated modest soil moisture deficits - and provided a reminder that most catchments are likely to remain vulnerable to substantial rainfall well into the spring.

February was a dry, sunny month with many areas experiencing a notably wide range of temperatures; an unusual weather combination in the context of the preceding run of months. The infrequency of rain-bearing frontal systems resulted in below average precipitation across much the greater part of the UK. Damaging blizzards (e.g. on the $3^{\text {rd }}$) - with substantial snow accumulations - produced considerable transport disruption in Scotland. However precipitation totals were influenced more by the preponderance of dry days in midmonth; many areas reported little more than a trace of rain over the fortnight beginning on the $11^{\text {th }}$. A few localities (e.g. Milford Haven and Morecambe) reported marginally above average February rainfall but most catchments registered between 40% and 70% of average; parts of eastern Scotland were especially dry. Provisionally GB registered its third lowest rainfall total in the last 43 months. A continuation of a notable longer term rainfall deficiency in the north and west, contributed to the second lowest winter (Dec-Feb) rainfall total for Scotland since 1964. To the south, winter rainfall totals for all regions were within the normal range, but above average rainfall again characterised much of the English lowlands - many catchments reported their fifth successive wet winter. Western and northern Scotland aside, regional rainfall accumulations over the last 12 months are also above average - notably so for Thames and East Anglia; Northern Ireland is also relatively wet in this timeframe.

River FIow

In contrast to the exceptional flows - and associated high flood risk - that typified many rivers earlier in the winter, February saw recessions extending throughout most of the month - but with steep recoveries around month-end in many basins. February runoff totals displayed a clear distinction between the responsive, impermeable catchments in the west and north and baseflow-dominated rivers in the English Lowlands. In the former, February mean flows were well below normal - some Scottish and Welsh rivers registering only around 50% of average. Similarly modest runoff typified a few impermeable lowland
catchments but spring-fed rivers - benefiting from the exceptional groundwater recharge earlier in the winter remained close to seasonal maxima. Relative to the longterm average there was a strong SE/NW gradient in runoff for the winter as a whole. In western Scotland the river Nevis registered its second lowest Dec-Feb runoff on record, whilst the Stringside and Little Ouse (in East Anglia) recording new maximum winter runoff totals. In many more chalk streams the winter runoff ranks second only to 2000/01; over the last three winters runoff has typically exceeded the preceding average by 50% or more - corresponding to a substantial redefinition of the high flow regime at many gauging stations.

Groundwater

Rainfall was below 50\% of the February average across large parts of the Chalk outcrop and the dry, mild spell in mid-month saw modest soil moisture deficits established in some eastern and southern areas. Infiltration rates were well below average for February - typically $25-50 \%$ of average - helping to avoid a repeat of the extensive groundwater flooding in early 2001 when late-winter watertables reached the surface in many 'dry' valleys. Significant declines in groundwater levels were reported for a number of the more responsive Chalk wells and boreholes in February (e.g.Chilgrove and Rockley); nonetheless, levels remain notably high (Killyglen in Northern Ireland remains an exception). In many slowerresponding wells (e.g. Therfield), levels are still rising and exceed pre-2000 February maxima in some areas, including the Chilterns. Levels in the Middle Jurassic of the Cotswolds have fallen to within the normal range but in most limestone outcrops, late-winter levels are close to seasonal maxima. Spatial variability is considerable across the Permo-Triassic sandstone outcrops but, aside from wells affected by abstraction (e.g. Redbank), levels remain high - exceptionally so for some index wells in North Wales, the North-West and the Midlands. The early March rainfall has arrested the development of soil moisture deficits but the length of the 2002/03 recharge season will be heavily dependant on rainfall over the next $4-6$ weeks.

Rainfall accumulations and return period estimates

Area	Rainfall	Feb 2003	$\text { Dec } 0$	$\begin{gathered} -\mathrm{Feb} 03 \\ R P \end{gathered}$	$\text { Sep } 02$	$\begin{array}{r} \text {-Feb } 03 \\ R P \end{array}$	$\text { Jun } 02$	$\begin{gathered} \text { Feb } 03 \\ R P \end{gathered}$	Mar	$\begin{array}{r} \text { Feb } 03 \\ R P \end{array}$
England \& Wales	mm $\%$	$\begin{aligned} & 39 \\ & 60 \end{aligned}$	$\begin{aligned} & 278 \\ & 111 \end{aligned}$	2-5	$\begin{aligned} & 639 \\ & 125 \end{aligned}$	10-20	$\begin{aligned} & 864 \\ & 121 \end{aligned}$	10-20	$\begin{array}{r} 1046 \\ 115 \end{array}$	5-10
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 51 \\ & 65 \end{aligned}$	$\begin{array}{r} 288 \\ 89 \end{array}$	2-5	$\begin{array}{r} 656 \\ 95 \end{array}$	2-5	$\begin{aligned} & 959 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1225 \\ 102 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 24 \\ & 40 \end{aligned}$	$\begin{array}{r} 217 \\ 97 \end{array}$	2-5	$\begin{aligned} & 489 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 731 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 892 \\ & 105 \end{aligned}$	2-5
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 27 \\ & 50 \end{aligned}$	$\begin{array}{r} 195 \\ 97 \end{array}$	2-5	$\begin{aligned} & 459 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 641 \\ & 111 \end{aligned}$	2-5	$\begin{aligned} & 794 \\ & 105 \end{aligned}$	2-5
Yorkshire	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 34 \\ & 59 \end{aligned}$	$\begin{aligned} & 231 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 505 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 763 \\ & 120 \end{aligned}$	$5-15$	$\begin{aligned} & 909 \\ & 111 \end{aligned}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 20 \\ & 53 \end{aligned}$	$\begin{aligned} & 189 \\ & 133 \end{aligned}$	$5-10$	$\begin{aligned} & 414 \\ & 138 \end{aligned}$	25-40	$\begin{aligned} & 591 \\ & 130 \end{aligned}$	20-30	$\begin{aligned} & 715 \\ & 120 \end{aligned}$	10-20
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 26 \\ & 58 \end{aligned}$	$\begin{aligned} & 227 \\ & 127 \end{aligned}$	$5-10$	$\begin{aligned} & 497 \\ & 136 \end{aligned}$	10-20	$\begin{aligned} & 666 \\ & 126 \end{aligned}$	10-20	$\begin{aligned} & 833 \\ & 121 \end{aligned}$	5-15
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 34 \\ & 63 \end{aligned}$	$\begin{aligned} & 272 \\ & 126 \end{aligned}$	$5-10$	$\begin{aligned} & 587 \\ & 130 \end{aligned}$	10-20	$\begin{aligned} & 749 \\ & 123 \end{aligned}$	$5-15$	$\begin{aligned} & 922 \\ & 118 \end{aligned}$	5-10
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 42 \\ & 64 \end{aligned}$	$\begin{aligned} & 252 \\ & 103 \end{aligned}$	2-5	$\begin{aligned} & 632 \\ & 132 \end{aligned}$	10-20	$\begin{aligned} & 786 \\ & 120 \end{aligned}$	5-10	$\begin{aligned} & 990 \\ & 118 \end{aligned}$	5-10
SouthWest	mm	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{array}{r} 358 \\ 95 \end{array}$	2-5	$\begin{aligned} & 776 \\ & 109 \end{aligned}$	2-5	$\begin{aligned} & 953 \\ & 102 \end{aligned}$	2-5	$\begin{array}{r} 1232 \\ 105 \end{array}$	2-5
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 61 \\ & 63 \end{aligned}$	$\begin{array}{r} 347 \\ 88 \end{array}$	2-5	$\begin{aligned} & 816 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1028 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1327 \\ 101 \end{array}$	2-5
Scotland	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 58 \\ & 57 \end{aligned}$	$\begin{array}{r} 294 \\ 73 \end{array}$	5-15	$\begin{array}{r} 672 \\ 79 \end{array}$	10-20	$\begin{array}{r} 1014 \\ 88 \end{array}$	5-10	$\begin{array}{r} 1333 \\ 93 \end{array}$	2-5
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 70 \\ & 55 \end{aligned}$	$\begin{array}{r} 339 \\ 66 \end{array}$	10-20	669	$20-170$	$\begin{array}{r} 1011 \\ 71 \end{array}$	50-80	$\begin{array}{r} 1378 \\ 78 \end{array}$	30-40
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 26 \\ & 40 \end{aligned}$	$\begin{array}{r} 221 \\ 86 \end{array}$	2-5	$\begin{aligned} & 628 \\ & 116 \end{aligned}$	$5-10$	$\begin{aligned} & 937 \\ & 122 \end{aligned}$	10-20	$\begin{array}{r} 1116 \\ 115 \end{array}$	5-15
Tay	mm	$\begin{aligned} & 47 \\ & 50 \end{aligned}$	$\begin{array}{r} 266 \\ 73 \end{array}$	$5-10$	$\begin{array}{r} 667 \\ 91 \end{array}$	2-5	$\begin{array}{r} 1029 \\ 106 \end{array}$	2-5	$\begin{array}{r} 1343 \\ 109 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 41 \\ & 52 \end{aligned}$	$\begin{array}{r} 223 \\ 73 \end{array}$	$5-10$	$\begin{array}{r} 581 \\ 90 \end{array}$	2-5	$\begin{aligned} & 922 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 1196 \\ 108 \end{array}$	2-5
Tweed	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 31 \\ & 46 \end{aligned}$	$\begin{array}{r} 225 \\ 86 \end{array}$	2-5	$\begin{aligned} & 559 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 837 \\ 110 \end{array}$	2-5	$\begin{array}{r} 1039 \\ 107 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 70 \\ & 69 \end{aligned}$	$\begin{array}{r} 315 \\ 78 \end{array}$	$5-10$	$\begin{array}{r} 812 \\ 96 \end{array}$	2-5	$\begin{array}{r} 1183 \\ 104 \end{array}$	2-5	$\begin{array}{r} 1533 \\ 108 \end{array}$	2-5
Clyde	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 77 \\ & 65 \end{aligned}$	$\begin{array}{r} 314 \\ 65 \end{array}$	10-20	$\begin{array}{r} 760 \\ 73 \end{array}$	15-25	$\begin{array}{r} 1160 \\ 84 \end{array}$	$5-10$	$\begin{array}{r} 1569 \\ 93 \end{array}$	2-5
Northern Ireland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 65 \\ & 83 \end{aligned}$	$\begin{array}{r} 242 \\ 82 \end{array}$	2-5	$\begin{aligned} & 649 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 921 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1220 \\ 115 \end{array}$	5-10

Rainfall . . . Rainfall . .

Key

00\% Percentage of
196|-90 average

Very wet

Substantially above average

Above average

Normal range

Below average

Substantially below average

Exceptionally low rainfall

December 2002 - February 2003
September 2002 - February 2003

Rainfall accumulation maps

The wet December helped ensure the winter rainfall total for England and Wales was again above average - for the sixth successive year (although the average was only marginally exceeded in a couple of the winters). Like Scotland, Northern Ireland was relatively dry, provisionally the Dec-Feb rainfall total was the second lowest since 1985. Over the six-month timespan, rainfall was exceptionally low in much of northern and western Scotland; for the Highland Region the Sep-Feb total was the lowest in the 27-year regional series.

River flow . . . River flow

River flows - February 2003

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station.

River flow
 River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2000 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations

a) | River | \%lta | Rank |
| :--- | ---: | ---: |
| Dover Beck | 177 | $27 / 28$ |
| Bedford Ouse | 183 | $68 / 70$ |
| | Stringside | 220 |
| $37 / 37$ | | |
| | Little Ouse | 189 |
| Colne | $233 / 33$ | |
| | Lee | $42 / 43$ |
| Blackwater | 196 | $114 / 118$ |
| | Lambourn | 207 |
| | $50 / 51$ | |
| | Nevis | 63 |
| | | $2 / 21$ |

(a) December 2002

River	\%lta	Rank
bess	56	$2 / 30$
Deveron	161	$40 / 40$
Dee	148	$29 / 30$
Torne	169	$30 / 31$
Thames N	167	$114 / 120$
Kennet	177	$40 / 41$
Mole	166	$27 / 28$

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels February 2003 / March 2003

Borehole	Level	Date	Feb.av.	Borehole	Level	Date	Feb.av.	Borehole	L	Date	Feb. av
Dalton Holme	22.76	13/02	18.71	Chilgrove House	62.51	28/02	57.58	Llanfair DC	80.40	15/02	80.03
Washpit Farm	47.96	25/02	44.33	Killyglen	115.73	05/02	115.77	Morris Dancers	32.20	28/02	32.39
Stonor Park	87.23	02/03	75.75	New Red Lion	20.62	26/02	16.24	Heathlanes	62.81	24/02	62.02
Dial Farm	25.81	06/02	25.51	Ampney Crucis	101.81	03/03	102.23	Nuttalls Farm	130.83	11/02	129.4
Rockley	141.52	02/03	138.27	Redbank	7.67	26/02	8.30	Bussels No.7a	24.63	26/02	24.32
Little Bucket Farm	85.47	28/02	70.15	Skirwith	130.88	26/02	130.61	Alstonfield	201.45	14/02	198.62
West Woodyates	93.16	28/02	93.22	Yew Tree Farm	14.27	21/02	13.66	Levels in metr	ove	Ina	atum

Groundwater. . . Groundwater

Groundwater levels - February 2003

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
(Note: Redbank is affected by groundwater abstraction.)

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage of live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{gathered} 2002 \\ \text { Oct } \end{gathered}$	2003					Min. Mar	$\begin{aligned} & \text { Year* } \\ & \text { of min. } \end{aligned}$
				Nov	Dec	Jan	Feb	Mar		
NorthWest	N Command Zone	- 124929	68	66	79	86	93	89	78	1996
	Vyrnwy	55146	62	86	99	99	94	92	59	1996
Northumbrian	Teesdale	- 87936	77	89	92	93	93	79	72	1996
	Kielder	(199175)	(86)	(94)	(90)	(99)	(99)	(91)	(81)	1993
SevernTrent	Clywedog	44922	71	86	78	88	81	85	77	1996
	DerwentValley	- 39525	78	95	99	100	98	98	46	1996
Yorkshire	Washburn	- 22035	75	89	90	99	97	97	53	1996
	Bradford supply	- 41407	83	95	100	100	100	96	53	1996
Anglian	Grafham	(55490)	(89)	(88)	(90)	(89)	(84)	(86)	(72)	1997
	Rutland	(116580)	(85)	(89)	(94)	(93)	(90)	(87)	(71)	1992
Thames	London	- 202340	81	84	96	97	97	92	83	1988
	Farmoor	- 13830	91	83	94	91	91	93	64	1991
Southern	Bewl	28170	78	73	80	86	92	92	50	1989
	Ardingly	4685	92	88	100	100	100	100	89	1992
Wessex	Clatworthy	5364	62	73	100	100	100	100	82	1992
	BristolWW	- (38666)	(71)	(78)	(93)	(99)	(98)	(97)	(65)	1992
South West	Colliford	28540	63	63	71	78	81	83	57	1997
	Roadford	34500	83	82	91	95	92	92	35	1996
	Wimbleball	21320	73	80	98	100	100	100	72	1996
	Stithians	5205	54	55	84	100	99	100	45	1992
Welsh	Celyn and Brenig	- 131155	88	90	94	96	96	99	69	1996
	Brianne	62140	80	83	98	99	99	97	94	1998
	Big Five	- 69762	53	62	89	96	99	98	85	1988
	Elan Valley	- 99106	64	68	100	100	100	99	88	1993
Scotland(E)	Edinburgh/Mid Lothian	- 97639	88	89	94	95	99	96	73	1999
	East Lothian	- 10206	92	100	99	99	100	98	91	1990
Scotland(W)	Loch Katrine	- 111363	74	77	88	89	97	95	93	1999
	Daer	22412	94	100	100	100	99	95		
	Loch Thom	- 11840	87	100	100	100	100	100	98	2001
Northern Ireland	Total ${ }^{+}$	-	75	95	100	99	98	96	82	2002
	Silent Valley	- 20634	69	93	100	98	98	92	57	2002
() figures in parentheses relate to gross storage - denotes reservoir groups				+excludes Lough Neagh				*last occurrence - see footnote		

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The minimum storage figures relate to the 1988-2003 period only (except for West of Scotland and Northern Ireland where data commence in the mid-1990's). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland), data for Northern Ireland are provided by the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (address opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies; over the coming months further monthly raingauge totals will be included for selected regions. Until the access to these additional data has stabilised the regional figures (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax: 01344854906

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

