Hydrological Summary for the United Kingdom

General

November was a mild month with large spatial variations in rainfall. The South East was exceptionally wet but drought severity increased across large areas of the Midlands and northern Britain where November rainfall was below average. Nationwide, regional rainfall deficiencies remain large but the drought is less spatially coherent than early in the autumn. Most regions saw modest but important increases in reservoir levels during November. Overall stocks for E\&W now exceed those of early December 1995 - but remain around 20% below the early-winter average with some reservoirs particularly low (e.g. Kielder, Ardingly). Stocks are low in Scotland and Northern Ireland also. River flows picked up smartly in late November and significant groundwater recharge has begun in some areas. Generally, groundwater resource prospects have improved significantly - appreciable infiltration in December is expected across most outcrop areas. However, temporary drought-breaks are relatively common in the UK and the episodic nature of the 2003 drought may continue. Water resources prospects for summer 2004 will be heavily dependant on rainfall over the next three months; a wet spring - postponing the seasonal onset of runoff and recharge recessions - would be very beneficial.

Rainfall

High pressure continued to dominate synoptic patterns in the first half of November - increasing rainfall deficiencies across the country. Cyclonic conditions returned during the third week and one particularly slow-moving system generated rainfall totals of $40-80 \mathrm{~mm}$ across much of the South-East (Wisley, Surrey registered 95 mm in 96 hrs ; some localities reported more rainfall than over the preceding three months). The, mostly moderate intensity, rainfall was very effective in reducing soil moisture deficits. Further rainfall over the following weekend contributed to November totals of twice the average in parts of the SouthEast. Well above average rainfall characterised parts of SW Scotland also. By contrast, rainfall was only $50-70 \%$ across the north Midlands and parts of the North East. Importantly, this was also true of some reservoir gathering grounds (e.g. in the Pennines, and in the South-West where the highest rainfall favoured coastal locations). Regional variability was large but the UK rainfall total was marginally above the November average. Nonetheless, the provisional Feb-Nov totals for E\&W and Scotland rank third driest (after 1921 and 1959) in the last 116 years, and the lowest since 1955 respectively. Accumulated rainfall deficiencies exceed 20% in most regions of the UK. The drought remains very extensive but the November rainfall has changed its focus - the most severe deficiencies (over 10 months) are now found in northern England and eastern Scotland but within-region variations are also significant; severe drought conditions characterise parts of the Midlands for instance.

River flows

Despite some moderate spates triggered by late-October rainfall, mid-November daily flows were very depressed across most of the UK. Minimum November flows were closely approached in many rivers, and eclipsed in a few (including the Tay, in a 52-year record). Thereafter, recoveries were evident in most catchments - but their magnitude varied greatly. In the South-East, the Mimram peaked at its highest instantaneous November flow; localised flooding and Flood Watches were common in
the English Lowlands. (The co-existence of ongoing drought conditions and significant flood risk is not especially rare during the late autumn). Notable spates were more widespread in Scotland where the Cree registered a new November max. flow on the $29^{\text {th }}$. Despite this very welcome upturn, November runoff totals were substantially below average in almost all index catchments; the Teme reported a new minimum runoff for November and some index rivers reported their $9^{\text {th }}$ successive month with below average runoff. Correspondingly, the drought's severity (and the decline in water resources) is well captured in the runoff accumulations since January: the Spey, South Tyne, Exe and Yscir are amongst those river establishing new minimum 10-month runoff totals for any start month.

Groundwater

The 10 days beginning on the $21^{\text {st }}$ witnessed a dramatic decline in soil moisture deficits over many aquifer outcrops, allowing infiltration to recommence in some areas where water-tables are most depressed (the southern Chalk especially). But soils remain seasonally very dry across parts of the Midlands, Yorkshire and East Anglia (coastal areas of NE Britain also). The full effect of the lateNovember infiltration has yet to register on the groundwater hydrographs but upturns, from a very low base, were recorded at index wells in the Jurassic Limestone, Magnesian Limestone and in the south-western Chalk. However, recessions continue across much of the Chalk at Chilgrove, late November levels were the $3{ }^{\text {rd }}$ lowest in a continuous series from 1836. The degree of water-table depression is more modest to the north but, generally, levels in the Chalk are below any recorded since 1996 or 1997. This is also true of the more responsive Permo-Triassic outcrops but levels remain very healthy in over large areas, although spatial variations are large reflecting differing recharge patterns and aquifer characteristics. Overall groundwater resources are significantly healthier than at the same time in 1995 and 1996 - a reflection of the health of groundwater resources at the onset of the 2003 drought. Above average rainfall is now needed to generate a sustained recovery in levels through the winter.

Rainfall accumulations and return period estimates

Area	Rainfall	Nov 2003	Aug 03-Nov 03 RP		Jun 03-Nov 03 RP		Feb 03-Nov 03 RP		Dec 02-Nov 03 RP	
England \& Wales	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 117 \\ & 125 \end{aligned}$	$\begin{array}{r} 241 \\ 72 \end{array}$	5-15	$\begin{array}{r} 389 \\ 84 \end{array}$	5-10	$\begin{array}{r} 579 \\ 80 \end{array}$	10-20	$\begin{array}{r} 817 \\ 90 \end{array}$	2-5
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 109 \\ 89 \end{array}$	$\begin{array}{r} 265 \\ 56 \end{array}$	35-50	$\begin{array}{r} 427 \\ 67 \end{array}$	30-40	$\begin{array}{r} 719 \\ 75 \end{array}$	20-30	$\begin{array}{r} 956 \\ 79 \end{array}$	10-20
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 59 \\ & 68 \end{aligned}$	$\begin{array}{r} 177 \\ 56 \end{array}$	35-50	$\begin{array}{r} 293 \\ 66 \end{array}$	30-40	$\begin{array}{r} 461 \\ 46 \\ 67 \end{array}$	70-100	$\begin{array}{r} 654 \\ 77 \end{array}$	20-30
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 54 \\ & 75 \end{aligned}$	$\begin{array}{r} 150 \\ 56 \end{array}$	30-40	$\begin{array}{r} 275 \\ 73 \end{array}$	10-20	$\begin{array}{r} 443 \\ 73 \end{array}$	20-30	$\begin{array}{r} 611 \\ 81 \end{array}$	$5-15$
Yorkshire	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 62 \\ & 77 \end{aligned}$	$\begin{array}{r} 185 \\ 63 \end{array}$	15-25	$\begin{array}{r} 329 \\ 79 \end{array}$	5-10	$\begin{array}{r} 513 \\ 78 \end{array}$	10-20	$\begin{array}{r} 709 \\ 86 \end{array}$	$5-10$
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 72 \\ 125 \end{array}$	$\begin{array}{r} 144 \\ 68 \end{array}$	10-20	$\begin{array}{r} 276 \\ 88 \end{array}$	2-5	$\begin{array}{r} 394 \\ 80 \end{array}$	$5-15$	$\begin{array}{r} 563 \\ 94 \end{array}$	2-5
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 111 \\ & 171 \end{aligned}$	$\begin{array}{r} 178 \\ 73 \end{array}$	5-10	$\begin{array}{r} 277 \\ 79 \end{array}$	5-10	$\begin{array}{r} 410 \\ 74 \end{array}$	10-20	$\begin{array}{r} 611 \\ 89 \end{array}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 139 \\ & 164 \end{aligned}$	$\begin{array}{r} 227 \\ 78 \end{array}$	2-5	$\begin{array}{r} 320 \\ 81 \end{array}$	5-10	$\begin{array}{r} 458 \\ 74 \end{array}$	10-20	$\begin{array}{r} 696 \\ 89 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 113 \\ & 137 \end{aligned}$	$\begin{array}{r} 196 \\ 65 \end{array}$	5-15	$\begin{array}{r} 321 \\ 79 \end{array}$	5-10	$\begin{array}{r} 491 \\ 75 \end{array}$	10-20	$\begin{array}{r} 701 \\ 84 \end{array}$	$5-10$
SouthWest	mm	$\begin{array}{r} 108 \\ 86 \end{array}$	$\begin{array}{r} 254 \\ 61 \end{array}$	15-25	$\begin{array}{r} 435 \\ 78 \end{array}$	5-10	$\begin{array}{r} 699 \\ 78 \end{array}$	10-20	$\begin{array}{r} 973 \\ 83 \end{array}$	$5-10$
Welsh	mm	$\begin{array}{r} 129 \\ 91 \end{array}$	$\begin{array}{r} 303 \\ 61 \end{array}$	20-30	$\begin{array}{r} 480 \\ 74 \end{array}$	10-20	$\begin{array}{r} 797 \\ 78 \end{array}$	10-20	$\begin{array}{r} 1083 \\ 82 \end{array}$	5-15
Scotland	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 157 \\ & 104 \end{aligned}$	$\begin{array}{r} 362 \\ 64 \end{array}$	35-50	$\begin{array}{r} 517 \\ 69 \end{array}$	40-60	$\begin{array}{r} 855 \\ 75 \end{array}$	40-60	$\begin{array}{r} 1091 \\ 76 \end{array}$	60-90
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 174 \\ 86 \end{array}$	$\begin{array}{r} 447 \\ 64 \end{array}$	30-40	$\begin{array}{r} 612 \\ 68 \end{array}$	35-50	$\begin{array}{r} 1033 \\ 75 \end{array}$	35-50	$\begin{array}{r} 1302 \\ 74 \end{array}$	70-100
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 78 \\ & 79 \end{aligned}$	$\begin{array}{r} 233 \\ 63 \end{array}$	30-40	$\begin{array}{r} 311 \\ 61110-150 \end{array}$		528		$\begin{array}{r} 723 \\ 74 \end{array}$	50-80
Tay	mm	$\begin{aligned} & 147 \\ & 122 \end{aligned}$	$\begin{array}{r} 261 \\ 57 \end{array}$	35-50	$\begin{array}{r} 398 \\ 65 \end{array}$	30-45	$\begin{array}{r} 697 \\ 73 \end{array}$	30-40	$\begin{array}{r} 916 \\ 74 \end{array}$	30-45
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 110 \\ 98 \end{array}$	$\begin{array}{r} 244 \\ 57 \end{array}$	40-60	$\begin{array}{r} 386 \\ 67 \end{array}$	30-45	$\begin{array}{r} 630 \\ 72 \end{array}$	40-60	$\begin{array}{r} 813 \\ 73 \end{array}$	50-80
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 81 \\ & 87 \end{aligned}$	$\begin{array}{r} 200 \\ 55 \end{array}$	50-80	$\begin{array}{r} 319 \\ 63 \end{array}$	40-60	$\begin{array}{r} 536 \\ 69 \end{array}$	60-90	$\begin{array}{r} 730 \\ 75 \end{array}$	30-45
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 195 \\ & 136 \end{aligned}$	$\begin{array}{r} 355 \\ 63 \end{array}$	20-30	$\begin{array}{r} 536 \\ 73 \end{array}$	10-20	$\begin{array}{r} 880 \\ 79 \end{array}$	10-20	$\begin{array}{r} 1125 \\ 79 \end{array}$	15-25
Clyde	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 219 \\ & 121 \end{aligned}$	$\begin{array}{r} 447 \\ 65 \end{array}$	20-30	$\begin{array}{r} 661 \\ 74 \end{array}$	10-20	$\begin{array}{r} 1055 \\ 79 \end{array}$	10-20	$\begin{array}{r} 1292 \\ 76 \end{array}$	30-50
Northern Ireland	mm $\%$	$\begin{aligned} & 120 \\ & 116 \end{aligned}$	$\begin{array}{r} 262 \\ 65 \end{array}$	10-20	$\begin{array}{r} 434 \\ 80 \end{array}$	5-10	$\begin{array}{r} 720 \\ 85 \end{array}$	5-10	$\begin{array}{r} 897 \\ 85 \end{array}$	5-10
								$R P=$ Return period		

Rainfall . . . Rainfall . .

Key

00\% Percentage of
196|-90 average

Very wet

Substantially above average

Above average

Normal range

Below average

Substantially below average

Exceptionally low rainfall

August 2003 - November 2003
February 2003 - November 2003

Rainfall accumulation maps

Across the UK, several phases may be recognised in the 2003 drought. Generally, the most severe regional rainfall deficiencies are for timespans of four and ten months. Despite November's modest moderation in drought intensity, the August-November rainfall total for Great Britain was the 4th lowest in a record from 1869; the same ranking applies to the February-November rainfall (1921 was significantly drier) but the return periods associated with the 10 -month deficiencies tend to be greater.

River flow . . . River flow

River flows - November 2003

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow
 River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2000 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) August 2003 - November 2003, (b) February 2003 - November 2003

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels November 2003 / December 2003 Washpit Farm Stonor Park Dial Farm Rockley West Woodyates

Level Date	Nov. av.	
12.56	$13 / 11$	14.81
43.32	$05 / 11$	43.27
73.27	$02 / 12$	72.66
25.36	$04 / 11$	25.45
128.85	$02 / 12$	131.67
59.62	$30 / 11$	63.31
69.67	$30 / 11$	81.11

14.81
43.27 72.66
25.45 63.31 81.11 Yew Tree Farm

Level	Date	Nov.av.	Borehole	Level	Date	Nov.av.	
34.24	$30 / 11$	46.71		Llanfair DC	79.85	$15 / 11$	79.66
116.67	$30 / 11$	116.08		Morris Dancers	32.15	$28 / 11$	32.39
8.82	$27 / 11$	12.22		Heathlanes	62.18	$11 / 11$	61.95
100.08	$02 / 12$	101.22		Nuttalls Farm	130.71	$10 / 11$	129.56
7.03	$27 / 11$	8.00		Bussels No.7a	23.38	$06 / 11$	23.64
129.71	$28 / 11$	129.99		Alstonfield	177.32	$14 / 11$	186.47
13.93	$08 / 10$	13.54		Levels in metres	above Ordnance Datum		

Groundwater. . . Groundwater

Groundwater levels - November 2003

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
(Note: Redbank is affected by groundwater abstraction. Yew Tree Farm levels are now received quarterly.)

Reservoirs . . . Reservoirs

Guide to the variation in overall
reservoir stocks for England and
Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The storage figures relate to the 1988-2003 period only (except for West of Scotland and Northern Ireland where data commence in the mid-1990's). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax:0870900 5050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

