Hydrological Summary for the United Kingdom

General

Significant rainfall during the last week of October provided a welcome break in the drought but rainfall deficiencies increased considerably over the month. With the exception of the 1959 and 1975/76 droughts the Feb-Oct rainfall total (provisional) for the UK was the lowest 9 -month accumulation for 74 years. Drought conditions, with seasonally depressed river flows, were exceptionally extensive by late October. The very limited early autumn rainfall resulted in a record Aug-Nov decline in reservoirs stocks. At a time when recoveries are normally gathering momentum, overall stocks for E\&W are around 22% below the monthly average; only in 1995 have early November stocks been lower (in a 15 -year record). The deterioration in the water resources outlook triggered calls for restraint in water usage and the activation of a range of low flow alleviation measures. The relatively even spatial intensity of the drought and, in much of the English Lowlands, reasonably healthy groundwater resources moderated the drought's impact through the summer. However the exceptionally dry late-October soils (which hampered late harvesting in eastern England) underline the need for sustained late autumn/early winter rainfall. This is essential to generate a belated recovery in river flows and aquifer recharge rates. The water resources outlook will require careful monitoring through the coming winter.

Rainfall

An extremely dry spell, beginning in early August, continued into late October before several active frontal systems produced significant rainfall, on the 31st especially when some localities registered $20-30 \mathrm{~mm}$. Some areas in central southern England had more rain in the six days to the 2 nd Nov than in the preceding 12 weeks. Nonetheless, October rainfall totals were well below average across much of the UK; several monthly minima were established (e.g. Solwaybank in Dumfries and Galloway reported its lowest October total in a 43-year record). Importantly from a resources perspective, many reservoir gathering grounds (including the Pennines) recorded below half the average October rainfall. In almost all regions this reinforced the already substantial rainfall deficiencies. For the Aug-Oct period, Scotland and Northern Ireland both registered their 2nd lowest total on record (after 1972). But the deterioration in the resources outlook is as much a reflection of the very limited rainfall since January. For E\&W, the Feb-Oct total was the second lowest, after 1959 , since 1921. The drought affects much the greater part of the UK - return periods for Feb-Oct rainfall exceed 50 years over wide areas (see page 2) - but there are appreciable regional and local variations; an especially intense drought afflicts parts of the Thames basin - provisionally the Feb-Oct rainfall for the west London area is likely to have been the second lowest in a series from 1697.

River flow

Very protracted seasonal river flow recessions continued through much of October and flows declined below lateOctober minima in some rivers (e.g. the Tawe, Tay and Luss Water). Short-lived spates at month end provided some relief but October runoff totals were depressed across much of the UK. Rivers draining impermeable western and northern catchments were characterised by exceptional low October mean flows - the lowest since 1972 in much of northern Britain and Northern Ireland. Rivers registering new monthly runoff minima showed a very wide distribution (from the Dorset Stour to the Nevis in western Scotland) and runoff was below 30% of average in many basins. A longer historical perspective is provided by the Severn where only in 1947 was the October flow lower - in an 83-
year record. A measure of the hydrological severity of the drought in northern Britain is provided by the JuneOct runoff for the Aberdeenshire Dee which was the lowest for any five-month sequence in as series from 1929. Generally 5 -month totals are close to long term minima in impermeable catchments across much of the country. As yet, flows are less severely depressed in the English Lowlands where the residual benefit of groundwater support can still be recognised. But as recessions continue and baseflow contributions decline, very low early winter flows may be anticipated.

Groundwater

Soil moisture deficits decreased briskly around month end but were still among the highest on record (for October) across most aquifer outcrop areas. Correspondingly, October recharge was minimal. The absence of significant recharge over the last nine months has produced a dramatic decline in groundwater levels - one with few modern parallels (1995 was comparable). But there are important spatial variations in the current health of groundwater resources. In the south-western Chalk, water-tables in some areas are approaching natural base levels (e.g. at Chilgrove) and a number of wells have been reported as dry. To the east and north, groundwater levels in the Chalk are mostly below average but still in the normal range; a few (e.g. in the Chilterns) remain a little above average. The delayed onset of the 2003 seasonal recovery is particularly evident in the Limestone aquifers where levels are generally well below average - but still considerably above drought minima. This remains true of many minor aquifers and most boreholes in the slower responding Permo-Triassic sandstones outcrops report levels within the normal late-autumn range. As with many summer/ autumn droughts, the role of groundwater has assumed an increased importance in relation to resources and the aquatic environment. However, its beneficial effect is lessening and the window of opportunity for winter recharge is narrowing across most outcrop areas. Rainfall over the next 8-10 weeks will heavily influence the 2004 groundwater resources outlook, in the east especially.

Rainfall accumulations and return period estimates

Area	Rainfall	Oct 2003
England \& Wales	mm	$\begin{aligned} & 68 \\ & 78 \end{aligned}$
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 50 \\ & 39 \end{aligned}$
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 54 \\ & 71 \end{aligned}$
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 53 \\ & 83 \end{aligned}$
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 45 \\ & 61 \end{aligned}$
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 44 \\ & 87 \end{aligned}$
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 40 \\ & 65 \end{aligned}$
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 57 \\ & 71 \end{aligned}$
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 58 \\ & 73 \end{aligned}$
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 92 \\ & 80 \end{aligned}$
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 88 \\ & 64 \end{aligned}$
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 77 \\ & 49 \end{aligned}$
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 110 \\ 56 \end{array}$
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 84 \\ & 87 \end{aligned}$
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \end{aligned}$
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 43 \\ & 37 \end{aligned}$
Tweed	mm	$\begin{aligned} & 57 \\ & 60 \end{aligned}$
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 51 \\ & 32 \end{aligned}$
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 66 \\ & 34 \end{aligned}$
Northern Ireland	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 53 \\ & 47 \end{aligned}$

Aug 03-Oct 03	Jun 03-Oct 03	Feb 03-Oct 03
$R P$	$R P$	$R P$

462		877	
73	$30-40$	96	$2-5$
610		993	
73	$20-30$	83	$5-15$
402		700	
67	$50-80$	82	$5-15$
389		668	
73	$20-30$	89	$2-5$
451		766	
78	$10-20$	93	$2-5$
321		592	
74	$10-20$	99	$2-5$
299		647	
61	$60-90$	94	$2-5$
318		745	
60	$80-120$	96	$2-5$
378		780	
66	$30-45$	93	$2-5$
591		1087	
77	$10-20$	93	$2-5$
668		1176	
76	$10-20$	90	$2-5$

698		1090	
$7 I I I O-I 50$	76	$60-90$	
859		1257	
73	$35-50$	$7 I$	$I 50-250$
450		$8 I 7$	
$66 I 50-250$	84	$5-15$	
550		944	
66	$70-100$	77	$20-30$
520		836	
68	$80-120$	75	$30-50$
456		763	
67	$70-100$	79	$20-30$
684		1146	
70	$30-50$	81	$10-20$
836		1265	
73	$30-45$	75	$40-60$
600		955	
$8 I$	$5-15$	90	$2-5$

Rainfall . . . Rainfall . .

Key
Sercentage of

August 2003 - October 2003
February 2003 - October 2003

Rainfall accumulation maps

The last three months add a third oustandingly dry August-Oct period for the UK (the others are in 1972 and 1947) - in a rainfall series from 1900. In this timeframe, the rainfall deficiencies show a remarkable spatial consistency, with most regions registering < 50% of average rainfall. Generally, the rainfall deficiencies over the February-October period are of greater water resources significance; in this timespan particularly severe droughts have developed across the South-East and in parts of north-eastern Britain.

River flow . . . River flow

River flows - October 2003

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2000 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) August 2003-October 2003, (b) June-October 2003

	River	\%lta	Rank		River	\%lta	Rank	River	\%lta	Rank
a)	Dee (Park)	20	1/31	b)	Ness	71	1/31	Eden	42	1/36
	Tay	36	1/51		Spey (Boat o'Brig)	43	1/51	Nith	34	1/46
	Soar	38	1/33		Dee (Woodend)	34	1/74	Cree	44	1/40
	Otter	53	1/41		S. Tyne	27	1/40	Luss	53	1/25
	Cynon	20	1/44		Taw	23	1/45	Nevis	54	1/21
	Teifi	23	1/45		Yscir	31	1/32	Carron	52	1/25
	Annacloy	10	1/24		Tawe	38	1/45	Ewe	61	1/33
					Dee (New Inn)	42	$6^{1 / 34}$	lta $=$ long term average Rank $1=$ lowest on record		

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels October 2003 / November 2003

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 60.87 03/11 West Woodyates

Level Date Oct.av.
13.32 13/10 14.88 $43.89 \quad 03 / 10 \quad 43.51$ $75.32 \quad 29 / 10 \quad 73.50$
25.36 04/11 25.47
129.37 20/10 $\quad 130.69$
$69.05 \quad 31 / 10 \quad 75.15$

Borehole
Chilgrove House Killyglen New Red Lion
Ampney Crucis Redbank
Skirwith
Yew Tree Farm

Level	Date	Oct. av.
34.92	$31 / 10$	42.48
113.55	$30 / 10$	114.84
9.62	$21 / 10$	11.57
99.17	$29 / 10$	100.44
6.78	$30 / 10$	7.86
129.84	$30 / 10$	129.94
13.93	$08 / 10$	13.45

Borehole	Level	Date	Oct. av.
Llanfair DC	79.62	$15 / 10$	79.54
Morris Dancers	32.20	$28 / 10$	32.40
Heathlanes	62.26	$14 / 10$	61.97
Nuttalls Farm	130.51	$08 / 10$	129.61
Bussels No.7a	23.40	$09 / 10$	23.54
Alstonfield	175.69	$15 / 10$	181.17
Levels in metres above Ordnance Datum			

Groundwater. . . Groundwater

Groundwater levels - October 2003

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
(Note: Redbank is affected by groundwater abstraction. Revised levels from July 2002 have been used for Compton House)

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{aligned} & 2003 \\ & \text { Jun } \end{aligned}$	Jul	Aug	Sep	Oct	Nov Min.Nov		Year*$\text { of } \mathrm{min} \text {. }$
NorthWest	N Command Zone	- 124929	85	69	62	45	37	33	33	2003
	Vyrnwy	55146	97	87	82	70	59	60	25	1995
Northumbrian	Teesdale	- 87936	75	72	60	48	38	39	33	1995
	Kielder	(199175)	(97)	(91)	(86)	(81)	(76)	(66)	(63)	1989
Severn Trent	Clywedog	44922	99	97	95	82	69	61	38	1995
	DerwentValley	- 39525	94	80	80	62	40	29	15	1995
Yorkshire	Washburn	- 22035	90	82	79	69	58	46	15	1995
	Bradford supply	- 41407	95	82	74	58	51	42	16	1995
Anglian	Grafham	(55490)	(97)	(95)	(89)	(79)	(72)	(64)	(44)	1997
	Rutland	(116580)	(94)	(91)	(87)	(79)	(73)	(66)	(59)	1995
Thames	London	- 202340	94	93	87	71	58	49	46	1996
	Farmoor	- 13830	91	95	89	71	54	43	43	2003
Southern	Bewl	28170	86	79	71	62	55	48	33	1990
	Ardingly	4685	100	92	77	53	32	15	15	2003
Wessex	Clatworthy	5364	79	65	55	43	25	14	14	2003
	BristolWW	- (38666)	(88)	(79)	(79)	(79)	(79)	(48)	(24)	1990
South West	Colliford	28540	81	79	76	71	64	59	42	1996
	Roadford	34500	83	79	75	71	63	53	18	1995
	Wimbleball	21320	86	77	68	57	46	34	26	1995
	Stithians	5205	86	81	76	68	57	50	18	1990
Welsh	Celyn and Brenig	- 131155	100	98	93	84	77	75	48	1989
	Brianne	62140	100	94	95	85	76	71	57	1995
	Big Five	- 69762	96	87	79	64	48	38	38	2003
	Elan Valley	- 99106	99	89	76	62	48	41	37	1995
Scotland(E)	Edinburgh/Mid Lothian	- 97639	92	84	76	67	56	48	48	2003
	East Lothian	- 10206	91	82	75	67	61	58	48	1989
Scotland(W)	Loch Katrine	- 111363	88	84	77	66	54	40	40	2003
	Daer	22412	98	70	74	66	55	42	42	2003
	Loch Thom	- 11840	95	85	85	77	71	69	69	2003
Northern	Total ${ }^{+}$	-	93	89	84	77	64	54	39	1995
Ireland	Silent Valley	- 20634	95	92	86	78	62	47	34	1995

() figures in parentheses relate to gross storage - denotes reservoir groups
+excludes Lough Neagh
*last occurrence - see footnote

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax:0870900 5050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

