Hydrological Summary for the United Kingdom

General

December was a generally mild and, in most regions, a relatively dry month. A notably dry spell which began in mid November stretched beyond four weeks in much of southern and eastern Britain - contributing to the second (provisionally) driest November/December since 1953 for England and Wales; rainfall was especially meagre in parts of eastern England. Notwithstanding limited December replenishment, overall reservoir stocks for England and Wales were approximately 4% above average entering 2005 - but stocks in most reservoirs across southern England were appreciably below average, albeit well above drought minima. In Scotland, most reservoirs were at, or close to, capacity. December catchment runoff totals and groundwater levels were mostly below average but well within the normal range. The water resources outlook is generally healthy but the limited late autumn and early winter rainfall has been insufficient to generate a groundwater recovery in much of the eastern and southern Chalk; groundwater levels will require careful monitoring over the next three months.

Rainfall

December began with high pressure, which dominated the latter half of November, still acting as the most influential synoptic feature. The associated very dry spell extended to 25-30 days in much of eastern Britain. A vigorous frontal system on the $14^{\text {th }}$ proved pivotal bringing significant rainfall to much of Britain (a 75 mm daily total was reported from Lussa, Kintyre) and heralding a sequence of deep Atlantic depressions; importantly, however, most followed tracks relatively remote from southern England. A cold snap was associated with significant snowfall (as far south as Dorset) around Christmas. December rainfall totals reflected the dominant synoptic patterns - with rain-shadow effects particularly influential in the east. In parts of the Scottish Highlands, totals approached 200%, some western catchments in Wales and Northern Ireland were also notably wet. By contrast, much of eastern Britain reported less than half the average rainfall with December totals of $<30 \%$ in parts of the Midlands. More significantly, the regional rainfall deficiencies for the Nov/Dec period were very substantial across much of the UK, and especially notable in a zone from Kent to Northumbria; in the south these deficiencies continued to build well into January. 2004 was a notably wet year for Scotland as a whole whilst rainfall totals for Northern Ireland and England \& Wales were near average. Although most regions of England reported above average rainfall, its distribution through the year was unfavourable in relation to the resources outlook.

River FIow

Unusually steep recessions characterised the first half of December, resulting in flows in a number of index rivers (including the Taw, Great Stour and Faughan) approaching their mid-December minima. Thereafter, a spatially uneven recovery gained momentum. By year-end, flows were generally within the normal range (in much of northern Britain this recovery heralded exceptionally high flows in early January). The recoveries were sufficient to produce above average December flows in a few, mostly northwestern, catchments but, generally, runoff totals were appreciably below average - typically in the $40-80 \%$ range

NATURAL ENVIRONMENT RESEARCH COUNCIL
across England. Flows were particularly depressed in some sheltered eastern catchments - the Whiteadder and Soar reported their second lowest December runoff in the last 30 years. Runoff deficiencies for the Nov/Dec period were also substantial in many responsive catchments across southern England. Flows in many rivers draining permeable catchments remained more than usually stable over the latter half of 2004, confirming the limited groundwater recharge (see below). In contrast to the regional rainfall figures, catchment runoff totals for 2004 as a whole are mostly below average (notably so for the Medway) reflecting, in large part, the notably high actual evaporation losses - across the English Lowlands especially.

Groundwater

Despite the low rainfall across most aquifer outcrop areas, residual soil moisture deficits were sensibly eliminated in all but a few parts of eastern England by early January. However, infiltration totals for December were well below average, declining to less than 20% in much of the eastern Chalk. As a consequence, the 2004 groundwater level recessions for the eastern Chalk have extended into the new year, and levels in parts of the Chalk (e.g. Stonor, Redlands) are at their lowest since 1998 and levels in most index wells are significantly below average for the late winter. However, the residual benefit of abundant recharge, to the Chalk, over previous winters can still be identified - thus levels remain substantially above winter drought minima (e.g. those for 1991, 1992 and 1997). Groundwater levels in the limestone aquifers have generally declined from their very healthy early autumn levels but remain in the normal end-of-year range. This is true of levels in most Permo-Triassic sandstones outcrops also although levels in many index wells begin 2005 at their lowest January level for around seven years. Overall groundwater resources for England and Wales remain close to average but the barely discernible seasonal recovery in the eastern (and parts of the southern) Chalk implies a need for substantial late winter and spring recharge to avoid depressed groundwater levels in the summer.

Rainfall accumulations and return period estimates

Area	Rainfall	Dec 2004	Nov	-Dec 04 RP	$\text { Sep } 0$	$\begin{gathered} -\operatorname{Dec} 04 \\ R P \end{gathered}$	$\text { Apr } 04$	Dec 04 RP	$\text { Jan } 0$	$\begin{aligned} \text { Dec } 04 \\ R P \end{aligned}$
England \& Wales	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 60 \\ & 63 \end{aligned}$	$\begin{array}{r} 108 \\ 58 \end{array}$	10-20	$\begin{array}{r} 313 \\ 89 \end{array}$	2-5	$\begin{aligned} & 742 \\ & 109 \end{aligned}$	2-5	$\begin{aligned} & 965 \\ & 106 \end{aligned}$	2-5
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 114 \\ 91 \end{array}$	$\begin{array}{r} 190 \\ 76 \end{array}$	2-5	$\begin{array}{r} 486 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1030 \\ 112 \end{array}$	2-5	$\begin{array}{r} 1358 \\ 112 \end{array}$	5-10
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 51 \\ & 63 \end{aligned}$	$\begin{aligned} & 83 \\ & 49 \end{aligned}$	20-30	$\begin{array}{r} 283 \\ 88 \end{array}$	2-5	$\begin{aligned} & 731 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 975 \\ & 113 \end{aligned}$	5-10
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 38 \\ & 48 \end{aligned}$	$\begin{aligned} & 83 \\ & 55 \end{aligned}$	5-15	$\begin{array}{r} 255 \\ 91 \end{array}$	2-5	$\begin{aligned} & 637 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 814 \\ & 106 \end{aligned}$	2-5
Yorkshire	mm	$\begin{aligned} & 38 \\ & 47 \end{aligned}$	$\begin{aligned} & 76 \\ & 46 \end{aligned}$	20-30	$\begin{array}{r} 249 \\ 81 \end{array}$	2-5	$\begin{aligned} & 696 \\ & 111 \end{aligned}$	2-5	$\begin{aligned} & 914 \\ & 109 \end{aligned}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 27 \\ & 49 \end{aligned}$	$\begin{aligned} & 70 \\ & 62 \end{aligned}$	5-10	$\begin{array}{r} 194 \\ 90 \end{array}$	2-5	$\begin{aligned} & 561 \\ & 120 \end{aligned}$	5-10	$\begin{aligned} & 712 \\ & 118 \end{aligned}$	5-15
Thames	mm	$\begin{aligned} & 47 \\ & 66 \end{aligned}$	$\begin{aligned} & 89 \\ & 65 \end{aligned}$	5-10	$\begin{array}{r} 235 \\ 90 \end{array}$	2-5	$\begin{aligned} & 567 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 729 \\ & 104 \end{aligned}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 64 \\ & 78 \end{aligned}$	$\begin{aligned} & 99 \\ & 59 \end{aligned}$	5-10	$\begin{array}{r} 260 \\ 82 \end{array}$	2-5	$\begin{array}{r} 573 \\ 98 \end{array}$	2-5	$\begin{array}{r} 755 \\ 96 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 70 \\ & 74 \end{aligned}$	$\begin{array}{r} 109 \\ 60 \end{array}$	5-10	$\begin{array}{r} 302 \\ 90 \end{array}$	2-5	$\begin{aligned} & 629 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 846 \\ 99 \end{array}$	2-5
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 112 \\ 80 \end{array}$	$\begin{array}{r} 172 \\ 64 \end{array}$	5-10	$\begin{array}{r} 426 \\ 89 \end{array}$	2-5	$\begin{aligned} & 851 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1189 \\ 100 \end{array}$	<2
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 140 \\ 90 \end{array}$	$\begin{array}{r} 234 \\ 78 \end{array}$	2-5	$\begin{aligned} & 593 \\ & 107 \end{aligned}$	2-5	$\begin{array}{r} 1047 \\ 106 \end{array}$	2-5	$\begin{array}{r} 1432 \\ 106 \end{array}$	2-5
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 192 \\ & 123 \end{aligned}$	$\begin{array}{r} 311 \\ 99 \end{array}$	2-5	$\begin{aligned} & 687 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 1265 \\ 117 \end{array}$	10-20	$\begin{array}{r} 1680 \\ 114 \end{array}$	5-15
Highland	mm	$\begin{aligned} & 292 \\ & 151 \end{aligned}$	$\begin{aligned} & 473 \\ & 121 \end{aligned}$	2-5	$\begin{aligned} & 939 \\ & 125 \end{aligned}$	5-15	$\begin{array}{r} 1556 \\ 122 \end{array}$	15-25	$\begin{array}{r} 2104 \\ 121 \end{array}$	25-40
North East	mm	$\begin{aligned} & 79 \\ & 81 \end{aligned}$	$\begin{array}{r} 153 \\ 76 \end{array}$	2-5	$\begin{aligned} & 399 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 896 \\ & 116 \end{aligned}$	5-10	$\begin{array}{r} 1158 \\ 112 \end{array}$	5-10
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 118 \\ 88 \end{array}$	$\begin{array}{r} 186 \\ 71 \end{array}$	5-10	$\begin{aligned} & 533 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 1142 \\ 123 \end{array}$	10-20	$\begin{gathered} 1429 \\ 111 \end{gathered}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 109 \\ 96 \end{array}$	$\begin{array}{r} 167 \\ 72 \end{array}$	$5-10$	$\begin{aligned} & 471 \\ & 102 \end{aligned}$	2-5	$\begin{aligned} & 995 \\ & 117 \end{aligned}$	5-15	$\begin{array}{r} 1266 \\ 111 \end{array}$	5-10
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 65 \\ & 67 \end{aligned}$	$\begin{array}{r} 104 \\ 54 \end{array}$	10-20	$\begin{array}{r} 365 \\ 95 \end{array}$	2-5	$\begin{aligned} & 863 \\ & 115 \end{aligned}$	$5-10$	$\begin{array}{r} 1134 \\ 113 \end{array}$	5-10
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 157 \\ & 105 \end{aligned}$	$\begin{array}{r} 243 \\ 82 \end{array}$	2-5	$\begin{aligned} & 616 \\ & 103 \end{aligned}$	2-5	$\begin{aligned} & 1183 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 1578 \\ 110 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 241 \\ & 130 \end{aligned}$	$\begin{aligned} & 372 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 805 \\ & 107 \end{aligned}$	2-5	$\begin{array}{r} 1483 \\ 115 \end{array}$	5-10	$\begin{array}{r} 1968 \\ 112 \end{array}$	5-10
Northern Ireland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \end{aligned}$	$\begin{array}{r} 154 \\ 71 \end{array}$	5-10	$\begin{array}{r} 394 \\ 91 \end{array}$	2-5	$\begin{array}{r} 801 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1072 \\ 98 \end{array}$	2-5

$\%=$ percentage of 196I-90 average $\quad R P=$ Return period
The monthly rainfall figures* provided by the Met Office are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since July 2004 are provisional (see page 12). Revised Met Office totals for 1961-2003 have been recently incorporated. The figures for England \& Wales are derived by the Hadley Centre and are updates of the homogenised series developed by the Climate Research Unit; the other national figures are derived from different raingauge networks to those used to derive the CRU data series. The return period estimates are based on tables provided by the Met Office (see Tabony, R. C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past. "See page 12.

Rainfall . . . Rainfall . .

Key

Sery wet

November 2004 - December 2004
January 2004 - December 2004

Rainfall accumulation maps

Over a large part of the UK, the late autumn and early winter is, on average, the wettest part of the year. Rainfall deficiencies over this period can therefore be of particular water resources significance. In 2004, the Nov/Dec rainfall totals were $<65 \%$ of average in most regions of England - for the Yorkshire region it was the lowest total in a series from 1961. In contrast to these important shorter term deficiencies, rainfall totals for 2004 were healthy in all regions, and for Scotland as a whole added another notably wet year to the large cluster over the post-1980 period.

River flows - December 2004

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2001 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow
 River flow

Notable runoff accumulations

a)	River	\%lta
Mole	49	Rank
Medway	33	$5 / 30$
Ouse (Sussex)	36	$7 / 44$
Otter	51	$5 / 43$
Dart	59	$7 / 47$
Kenwyn	51	$3 / 37$
Cynon	51	$6 / 47$
	Dee (New Inn)	69
Annacloy	53	$3 / 36$

(a) November 2004 - December 2004, (b) January 2004 - December 2004
River \%lt
b) Spey (Boat o'Brig) 119 Deveron 136 Leven (Leven Br) 131 Soar 82 Witham 142 Stringside 133
Rank
$47 / 52$
$39 / 44$
$38 / 44$
$8 / 33$
$40 / 45$
$30 / 36$

River	\%lta	Rank
Lambourn	79	$8 / 42$
Medway	57	$1 / 41$
Ouse (Sussex)	68	$4 / 39$
Avon (Wilts)	77	$7 / 39$
Ewe	123	$32 / 34$
Naver	121	$24 / 27$
Faughan	85	$5 / 28$

lta $=$ long term average
Rank $1=$ lowest on record

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels December 2004 / January 2005

Borehole

 Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 62.46 08/01 West WoodyatesLevel Date Dec.av.
17.33 13/12 $\quad 15.59$ $45.62 \quad 07 / 01 \quad 43.35$ $68.00 \quad 12 / 01 \quad 72.86$ $25.50 \quad 15 / 12 \quad 25.41$ $\begin{array}{rrr}134.72 & 12 / 01 & 133.79 \\ 62.46 & 08 / 01 & 64.80\end{array}$ $87.12 \quad 31 / 12 \quad 86.77$

Borehole
Chilgrove House Killyglen New Red Lion Ampney Crucis Newbridge Skirwith Yew Tree Farm

Level Date

41.75 31/12
$116.9631 / 12$
16.79 20/12
102.16 12/01
10.62 05/01
30.51 17/12
$14.27 \quad 06 / 10$

$$
130.22
$$

Borehole

Llanfair DC

 Morris Dancers Heathlanes Nuttalls Farm Bussels No.7a AlstonfieldLevel Date Dec.av.
80.01 15/12 79.86
$31.91 \quad 23 / 12 \quad 32.39$
$61.83 \quad 15 / 12 \quad 61.95$
$129.28 \quad 07 / 12 \quad 129.51$
23.51 21/12 23.84
195.47 15/12 192.44
above Ordnance Datum

Groundwater. . . Groundwater

Groundwater levels - December 2004

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2004	Oct	Nov	2005		Avg. Jan	Min. Jan	Year* of min.
						Dec	Jan			
NorthWest	N Command Zone	- 124929	73	86	91	85	91	85	51	1996
	Vyrnwy	55146	67	78	94	85	100	90	35	1996
Northumbrian	Teesdale	- 87936	97	97	98	94	90	87	41	1996
	Kielder	(199175)	(94)	(93)	(96)	(86)	(98)	(92)	(70)	1990
Severn Trent	Clywedog	44922	92	80	82	78	83	83	54	1996
	DerwentValley	- 39525	98	93	95	100	100	90	10	1996
Yorkshire	Washburn	- 22035	95	85	89	89	90	82	23	1996
	Bradford supply	- 41407	90	91	100	98	99	88	22	1996
Anglian	Grafham	(55490)	(76)	(74)	(78)	(86)	(92)	(83)	(57)	1998
	Rutland	(116580)	(87)	(81)	(78)	(86)	(93)	(82)	(60)	1991
Thames	London	- 202340	84	76	81	83	87	84	60	1991
	Farmoor	- 13830	98	99	96	92	98	90	71	1991
Southern	Bewl	28170	81	74	68	63	60	75	38	1991
	Ardingly	4685	71	60	60	60	69	88	41	2004
Wessex	Clatworthy	5364	64	56	65	89	100	92	54	2004
	BristolWW	- (38666)	(66)	(57)	(56)	(58)	(64)	(77)	(40)	1991
SouthWest	Colliford	28540	55	50	60	62	66	81	46	1996
	Roadford	34500	51	55	57	58	69	79	23	1996
	Wimbleball	21320	69	63	73	76	79	84	46	1996
	Stithians	5205	57	50	60	61	60	79	33	2002
Welsh	Celyn and Brenig	-131155	82	92	97	95	97	91	54	1996
	Brianne	62140	85	100	99	93	98	97	76	1996
	Big Five	- 69762	71	82	87	92	97	88	67	1996
	Elan Valley	- 99106	81	100	100	99	100	96	56	1996
Scotland(E)	Edinburgh/Mid Lothian	- 97639	80	94	87	88	87	91	60	1999
	East Lothian	- 10206	100	100	100	100	100	95	48	1990
Scotland(W)	Loch Katrine	- 111363	74	94	97	94	100	90	80	2004
	Daer	22412	90	100	100	100	100	98	83	1996
	Loch Thom	- 11840	100	100	100	100	100	98	90	2004
Northern	Total ${ }^{+}$	-	72	73	85	88		85	61	2002
Ireland	Silent Valley	- 20634	58	64	73	72	69	82	39	2002

() figures in parentheses relate to gross storage - denotes reservoir groups ${ }^{+}$excludes Lough Neagh *last occurrence - see footnote

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national ans regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded
as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries

National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB

Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

NATURAL
ENVIRONMENT

