Hydrological Summary for the United Kingdom

General

September rainfall was close to average for the UK as a whole but its distribution greatly favoured western and northern uplands. A large proportion of the east and south received less than half the monthly average; consequently soil moisture deficits increased considerably over the month and river flows declined substantially after the August spates. Despite a few flood drawdown releases (e.g. at Clywedog) levels in most western and northern reservoirs increased considerably through September and overall stocks for England and Wales were around 14% above average at month end. Stocks in some reservoirs in the South-West declined but remain well within the normal autumn range. Runoff totals were also fairly typical of September, although spatial variations were large. Recharge is underway in a number of the more responsive aquifers and September levels were mostly within the normal mid-autumn range, but appreciably below average in much of the southern Chalk. The resources outlook is generally good; rainfall amounts over the next six weeks will be very influential in initiating (in much of the lowlands) and consolidating the seasonal recoveries in river flows and groundwater levels.

Rainfall

In contrast to much of August, Indian Summer conditions characterised early September with exceptional high temperatures and predominately anticyclonic synoptic patterns characterising the first nine days - during which precipitation was restricted to fog-drip throughout much of the English Lowlands. Thereafter, incursions of low pressure systems were more common - particularly in northern Britain where frontal rainfall produced some notable storm totals (e.g. Lusa 51 mm on the $14^{\text {th }}$, Sloy 77 mm on the $20^{\text {th }}$, Capel Curig, 56 mm in 12 hrs - also on the $20^{\text {th }}$), and many catchments in Northern Ireland registered $15-25 \mathrm{~mm}$ on the $29 / 30^{\text {th }}$. The preferred tracks of the frontal systems are clearly reflected in the September rainfall totals. The uplands of western Britain mostly reported above average rainfall with parts of the Scottish Highlands reaching twice the average. By contrast, lowlying eastern and southern catchments were much drier with large areas of eastern Britain registering less than half the 1961-90 average; a few, mostly coastal, districts (e.g. in Kent) recording less than 30%. Rainfall throughout the summer half-year (Apr-Sept) has been erratic but all regional totals exceed the average - marginally so for the Southern region where for some localities (e.g. Havant) five of the last six months have been below average. The total for Anglian region is, provisionally, the highest since 1968 - and for some catchments it was the $7^{\text {th }}$ above average summer half-year in the last eight. Appreciable long term deficiencies are still evident (e.g. in the South West from Jan. 2003) but rainfall totals for the year thus far are close to, or above, average for all regions.

River flows

The normal north-west/south-east contrast in runoff rates across the UK was strongly accentuated in September as heavy rainfall and near-saturated catchments promoted spate conditions in the NW whilst limited rainfall, mostly dry catchments and (in most areas) declining baseflow contributions resulted in modest flows in much of eastern and southern England. Notable spates were common in rivers draining the hills of northern Britain on the 19-21 $1^{\text {st }}$ the Ness reported its highest September flow in a record
from 1973. September runoff totals exceeded the average in most catchments from Wales to northern Scotland; both the Ness and Nevis eclipsed previous September maxima. Flows in the English Lowlands were typified by the Thames: flows began the month appreciably above average but ended it appreciably below, albeit well within the normal range. Recessions were most persistent in the more southerly catchments where runoff totals were commonly less than 70%; the Otter registered its $2^{\text {nd }}$ lowest Sept. runoff. Accumulated runoff over the last six months broadly reflect the September pattern; April-Sept totals in the lower quartile are confined to a few catchments in central southern and south-west England (the Lower Bann in Northern Ireland also).

Groundwater

Most frontal systems followed tracks remote from the English Lowlands during September; as a consequence, rainfall across many major aquifers was less than 50% of average. In addition, evaporative demands were seasonally high throughout most of the UK - 20-30\% above average across much of the southern Chalk outcrop. Thus, contrary to the normal seasonal pattern, soil moisture deficits increased in much of southern and eastern Britain; by month end they exceeded the average across the greater part of the Chalk outcrop. Recharge opportunities were therefore modest but early groundwater level recoveries (heralded by the exceptional August downpours) continued in some responsive aquifer units - notably in the Carboniferous Limestone where the September level at Alstonfield was the highest, by a considerable margin, in a 30 -year record. Less dramatic recoveries were reported for other limestone index wells (e.g. in the Lincs. Limestone and the northern Chalk). Elsewhere in the Chalk, levels remain within the normal autumn range - but relatively depressed in the southwestern outcrops. Levels in most of the Permo-Triassic sandstones outcrops are also healthy, notably so in some of the more northerly outcrops (Yew Tree Farm especially). More modest exceedance of the September average characterises most of the minor aquifers in East Anglia (e.g. the Norfolk Drift and Essex Gravels).

Centre for
Ecology \& Hydrology
NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall accumulations and return period estimates

Area	Rainfall	Sep 2004	Jul 04-	$\text { Sep } 04$	$\text { Apr } 0$	$\text { t-Sep } 04$	$\text { Jan } 04$	$\begin{gathered} \operatorname{sep} 04 \\ R P \end{gathered}$		$\text { Sep } 04$
England \& Wales	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 50 \\ & 64 \end{aligned}$	$\begin{aligned} & 281 \\ & 129 \end{aligned}$	5-10	$\begin{aligned} & 479 \\ & 117 \end{aligned}$	5-10	$\begin{aligned} & 702 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1372 \\ 94 \end{array}$	2-5
NorthWest	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 128 \\ & 109 \end{aligned}$	$\begin{aligned} & 458 \\ & 146 \end{aligned}$	15-25	$\begin{aligned} & 672 \\ & 124 \end{aligned}$	5-15	$\begin{array}{r} 1000 \\ 119 \end{array}$	5-15	$\begin{array}{r} 1904 \\ 98 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 45 \\ & 61 \end{aligned}$	$\begin{aligned} & 298 \\ & 133 \end{aligned}$	5-15	$\begin{aligned} & 484 \\ & 119 \end{aligned}$	5-10	$\begin{aligned} & 729 \\ & 117 \end{aligned}$	$5-10$	$\begin{array}{r} 1308 \\ 93 \end{array}$	2-5
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 53 \\ & 81 \end{aligned}$	$\begin{aligned} & 252 \\ & 133 \end{aligned}$	5-10	$\begin{array}{r} 433 \\ 119 \end{array}$	5-10	$\begin{aligned} & 610 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1166 \\ 93 \end{array}$	2-5
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 31 \\ & 44 \end{aligned}$	$\begin{aligned} & 276 \\ & 133 \end{aligned}$	5-10	$\begin{aligned} & 481 \\ & 123 \end{aligned}$	5-10	$\begin{aligned} & 699 \\ & 117 \end{aligned}$	$5-10$	$\begin{array}{r} 1290 \\ 95 \end{array}$	2-5
Anglian	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 33 \\ & 66 \end{aligned}$	$\begin{aligned} & 250 \\ & 161 \end{aligned}$	30-40	$\begin{aligned} & 404 \\ & 133 \end{aligned}$	15-25	$\begin{aligned} & 555 \\ & 126 \end{aligned}$	10-20	$\begin{aligned} & 999 \\ & 101 \end{aligned}$	2-5
Thames	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 29 \\ & 48 \end{aligned}$	$\begin{aligned} & 204 \\ & 121 \end{aligned}$	2-5	$\begin{aligned} & 366 \\ & 111 \end{aligned}$	2-5	$\begin{aligned} & 528 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1013 \\ 89 \end{array}$	5-10
Southern	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 30 \\ & 42 \end{aligned}$	$\begin{aligned} & 181 \\ & 103 \end{aligned}$	2-5	$\begin{aligned} & 338 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 520 \\ 97 \end{array}$	2-5	$\begin{array}{r} 1101 \\ 89 \end{array}$	5-10
Wessex	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 47 \\ & 64 \end{aligned}$	$\begin{aligned} & 206 \\ & 106 \end{aligned}$	2-5	$\begin{aligned} & 368 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 586 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1215 \\ 90 \end{array}$	$5-10$
SouthWest	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 57 \\ & 61 \end{aligned}$	$\begin{aligned} & 294 \\ & 117 \end{aligned}$	2-5	$\begin{aligned} & 480 \\ & 103 \end{aligned}$	2-5	$\begin{aligned} & 817 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 1651 \\ 89 \end{array}$	5-10
Welsh	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 126 \\ & 107 \end{aligned}$	$\begin{aligned} & 361 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 574 \\ & 104 \end{aligned}$	2-5	$\begin{aligned} & 959 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1937 \\ 92 \end{array}$	2-5
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 168 \\ & 117 \end{aligned}$	$\begin{aligned} & 431 \\ & 121 \end{aligned}$	5-10	$\begin{aligned} & 744 \\ & 122 \end{aligned}$	10-20	$\begin{array}{r} 1158 \\ 116 \end{array}$	5-15	$\begin{array}{r} 2195 \\ 95 \end{array}$	2-5
Highland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 240 \\ & 143 \end{aligned}$	$\begin{aligned} & 494 \\ & 122 \end{aligned}$	5-10	$\begin{aligned} & 865 \\ & 125 \end{aligned}$	10-20	$\begin{array}{r} 1414 \\ 127 \end{array}$	15-25	$\begin{array}{r} 2652 \\ 98 \end{array}$	2-5
North East	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 68 \\ & 74 \end{aligned}$	$\begin{aligned} & 278 \\ & 107 \end{aligned}$	2-5	$\begin{aligned} & 552 \\ & 117 \end{aligned}$	5-10	$\begin{aligned} & 814 \\ & 112 \end{aligned}$	$5-10$	$\begin{array}{r} 1471 \\ 89 \end{array}$	5-10
Tay	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 117 \\ 97 \end{array}$	$\begin{aligned} & 427 \\ & 141 \end{aligned}$	10-20	$\begin{aligned} & 731 \\ & 137 \end{aligned}$	30-40	$\begin{array}{r} 1018 \\ 114 \end{array}$	$5-10$	$\begin{array}{r} 1868 \\ 92 \end{array}$	2-5
Forth	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 102 \\ 90 \end{array}$	$\begin{aligned} & 343 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 614 \\ & 123 \end{aligned}$	5-15	885	2-5	$\begin{array}{r} 1664 \\ 91 \end{array}$	5-10
Tweed	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 71 \\ & 77 \end{aligned}$	$\begin{aligned} & 337 \\ & 131 \end{aligned}$	5-15	$\begin{aligned} & 567 \\ & 124 \end{aligned}$	5-15	$\begin{aligned} & 838 \\ & 118 \end{aligned}$	$5-10$	$\begin{array}{r} 1513 \\ 94 \end{array}$	2-5
Solway	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 171 \\ & 119 \end{aligned}$	$\begin{aligned} & 470 \\ & 131 \end{aligned}$	5-15	$\begin{aligned} & 723 \\ & 118 \end{aligned}$	5-10	$\begin{array}{r} 1118 \\ 114 \end{array}$	$5-10$	$\begin{array}{r} 2166 \\ 96 \end{array}$	2-5
Clyde	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 213 \\ & 116 \end{aligned}$	$\begin{aligned} & 531 \\ & 121 \end{aligned}$	$5-10$	$\begin{aligned} & 880 \\ & 122 \end{aligned}$	5-15	$\begin{array}{r} 1365 \\ 115 \end{array}$	$5-10$	$\begin{array}{r} 2645 \\ 96 \end{array}$	2-5
Northern Ireland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 273 \\ & 102 \end{aligned}$	2-5	$\begin{aligned} & 504 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 775 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 1604 \\ 97 \end{array}$	2-5

[^0]
Rainfall . . . Rainfall . .

Key

Above average Sery wet

July 2004 - September 2004
January 2004 - September 2004

Rainfall accumulation maps

The July-September period in 2004 was the 4th wettest since 1960 for the UK as a whole; Anglian region was exceptionally wet (recording the 2 nd highest rainfall in the last 37 years) - note however that rainfall was below average for the Western and Northern Isles. In the 9-month timeframe, rainfall totals are also notably high - for the UK only 2002 and 1988 have been wetter since 1958 - but parts of southern England reported below average Jan-Sept rainfall totals.

River flows - September 2004

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2001 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations

a)	River	\%lta	Rank	River	\%lta
Ness	175	$32 / 32$	Rank		
Tay	196	$50 / 52$	Torne	191	$31 / 32$
Tyne (Bywell)	185	$44 / 46$	Dover Beck	213	$28 / 29$
	182	$39 / 41$	Witham	296	$46 / 46$
S Tyne	187	$43 / 43$	Eden	202	$36 / 37$
Derwent (Yorks)	155	$45 / 46$	Leven (Linnbrane)	171	$39 / 41$
Trent	155	Annacloy	179	$23 / 25$	
Dove	203	$42 / 43$			

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels September / October 2004

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 64.17 30/09 West Woodyates

Level Date Sep. av.
17.01 13/09 15.41 $44.45 \quad 05 / 10 \quad 43.99$ $69.96 \quad 05 / 10 \quad 74.93$ 25.59 01/09 25.55 $130.21 \quad 05 / 10 \quad 131.02$ $70.85 \quad 30 / 09 \quad 72.99$

Borehole
Chilgrove House Killyglen New Red Lion
Ampney Crucis
Newbridge
Skirwith
Yew Tree Farm

Level	Date	Sep. av.
37.89	$30 / 09$	40.78
114.55	$30 / 09$	114.38
14.76	$27 / 09$	11.61
100.79	$05 / 10$	100.07
10.04	$30 / 09$	9.54
130.00	$16 / 09$	130.08
14.27	$06 / 10$	13.41

Borehole Llanfair DC Morris Dancers Heathlanes Nuttalls Farm Bussels No.7a $\begin{array}{llll}\text { Alstonfield } \quad 200.85 & 06 / 09 \quad 176.72\end{array}$ Levels in metres above Ordnance Datum

Groundwater. . . Groundwater

Groundwater levels - September 2004

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly.

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{aligned} & 2004 \\ & \text { Jun } \end{aligned}$	Jul	Aug	Sep	Oct	Avg. Oct	Min. Oct	$\begin{aligned} & \text { Year* } \\ & \text { of min. } \end{aligned}$
NorthWest	N Command Zone	- 124929	76	63	55	73	86	50	13	1995
	Vyrnwy	55146	88	73	68	67	78	66	26	1995
Northumbrian	Teesdale	- 87936	83	79	68	97	97	60	31	1995
	Kielder	(199175)	(91)	(94)	(89)	(94)	(93)	(83)	(59)	1989
Severn Trent	Clywedog	44922	100	97	94	92	80	67	24	1989
	DerwentValley	- 39525	92	91	83	98	93	59	24	1989
Yorkshire	Washburn	- 22035	89	84	79	95	85	60	24	1995
	Bradford supply	- 41407	85	75	67	90	91	61	15	1995
Anglian	Grafham	(55490)	(95)	(95)	(84)	(76)	(74)	(81)	(46)	1997
	Rutland	(116580)	(95)	(91)	(90)	(87)	(81)	(78)	(61)	1995
Thames	London	- 202340	94	89	84	84	76	74	53	1997
	Farmoor	- 13830	99	97	99	98	99	87	54	2003
Southern	Bewl	28170	99	92	87	81	74	63	32	1990
	Ardingly	4685	100	89	82	71	60	65	32	2003
Wessex	Clatworthy	5364	96	86	77	64	56	52	25	2003
	BristolWW	- (38666)	(89)	(81)	(75)	(66)	(57)	(60)	(31)	1990
South West	Colliford	28540	73	67	60	55	50	69	43	1997
	Roadford	34500	67	62	56	51	55	71	26	1995
	Wimbleball	21320	97	87	79	69	63	61	30	1995
	Stithians	5205	88	78	68	57	50	54	22	1990
Welsh	Celyn and Brenig	-131155	97	88	83	82	92	77	39	1989
	Brianne	62140	96	88	81	85	100	81	48	1995
	Big Five	- 69762	93	82	68	71	82	63	19	1995
	Elan Valley	- 99106	93	87	79	81	100	73	34	1995
Scotland(E)	Edinburgh/Mid Lothian	- 97639	78	74	69	80	94	73	43	1998
	East Lothian	- 10206	98	100	97	100	100	77	52	1989
Scotland(W)	Loch Katrine	- 111363	84	74	66	74	94	69	43	1995
	Daer	22412	89	75	65	90	100	67	32	1995
	Loch Thom	- 11840	92	88	93	100	100	74	56	1995
Northern	Total ${ }^{+}$	-	74	72	62	72	73	68	29	1995
Ireland	Silent Valley	- 20634	58	56	48	58	64	59	27	1995

() figures in parentheses relate to gross storage - denotes reservoir groups ${ }^{+}$excludes Lough Neagh *last occurrence - see footnote

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national ans regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded
as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries

National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB

Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^0]: \% = percentage of 196|-90 average
 $R P=$ Return period

