Hydrological Summary for the United Kingdom

General

August was a remarkably unsettled month - provisionally, the wettest August for the UK since 1956. Many new local and catchment rainfall records were established, particularly for high intensity events. Much of the precipitation was convective and downpours of tropical intensity affected many parts of the country. Near-saturated soil conditions damaged crops and/or delayed harvesting in some regions. Drainage systems were (briefly) overwhelmed in many urban areas and flood warnings widespread after the first week. A major rescue operation was needed to prevent a significant death toll at Boscastle in Cornwall on the $16^{\text {th }}$. More extensive floodplain inundations were also common, in north-eastern Britain particularly - a very unusual occurrence in August. Counter to the usual seasonal trend, most reservoir stocks increased appreciably through August; a few reservoirs (e.g. Loch Thom) reached capacity and overall stocks for England \& Wales stood around 9% above average entering September. However, some gathering grounds missed the more intense storms and reservoir levels fell considerably in some areas - the South West especially. Some aquifer outcrop areas reported dramatic declines in soil moisture deficits but, generally, infiltration in August was modest leaving groundwater resources well within the normal late summer range - but displaying substantial spatial variability. Entering the autumn the water resources outlook was healthy.

Rainfall

A combination of humid sub-tropical air masses, slow-moving frontal systems and several hurricane remnants made for exceptional precipitation conditions in August. Many remarkably intense downpours were reported (their impact exacerbated in some cases by hail - a 45 mm diameter hailstone was reported at Bracknell on the $5^{\text {th }}$). Notable precipitation totals include: 42 mm in 38 minutes at High Wycombe ($3^{\text {rd }}$), a possible 67 mm in 45 minutes near Huddersfield (12 ${ }^{\text {th }}$); 24-hr totals of 73 mm (Wheatley, Oxen), 77 mm (Sheffield) and 91 mm (Wittering, Cambs) during the $9 / 10^{\text {th }}$. Over this 2-day period a slow-moving front generated rainfall totals $>50 \mathrm{~mm}$ in many areas; Skipton (Yorks) registered 96 mm in 36 hrs . The most outstanding August event was a 200 mm storm total in around 4 hours at Otterham, north Cornwall on the $16^{\text {th }}$ (return period $>5000 \mathrm{yrs}$). Rainfall accumulations were also exceptional over much longer timespans - In Dumfries and Galloway, Boreland recorded a 16-day total of 248 mm (RP: > 200 yrs) and many localities reported record August totals (e.g. Wittering in an 80year series). For the UK, August rainfall was around 180% of average but a few areas reported $<70 \%$ (e.g. the north-eastern tip of Scotland, parts of Fermanagh). By contrast, much of eastern Britain especially exceeded twice the average and rainfall totals for many gauged catchments were amongst the three highest on record for any month. The abundant rainfall ensured that summer (Jun-Aug) rainfall totals were well above average in all regions and longer term deficiencies (e.g. from Feb 2003) were substantially reduced.

River flow

Following sustained July recessions, flows in most rivers were considerably below the monthly average at the beginning of August. Widespread thundery activity produced many locally intense runoff events on the $2-4^{\text {th }}-$ triggering severe urban flooding and generating massive transport disruption (e.g. in north-west London on the $3^{\text {rd }}$). Storm runoff and sewage overflows also depleted river oxygen levels; a large fish kill occurred on the Thames Tideway on the $3 / 4^{\text {th }}$. Notable urban flooding continued throughout the month (e.g. in Wycombe, Redruth, Sheffield, Londonderry). Widespread fluvial flooding is rare in August (some parallels can be drawn with 1961 and 1931) but, with rainfall intensities exceeding infiltration capacities and headwater areas becoming saturated, flood risk increased rapidly. Bankfull flows were exceeded in many rivers in eastern

Scotland and northern England during the second week. On the $11^{\text {th }}$, the Tay reported its highest August flow ($>1000 \mathrm{~m} 3 \mathrm{~s}-1$) in a 52-yr record; other rivers establishing new August maxima included the Earn, Trent and Ribble. On the $16^{\text {th }}$ (the $52^{\text {nd }}$ anniversary of the Lynmouth disaster), extreme runoff in the Valency and Jordan resulted in severe structural damage at Boscastle (where there is a history of significant flooding - its location and topography make it particularly vulnerable to highintensity storms). Many flood warnings (and Flood Watches) were in operation in mid-month and surface runoff, landslips and mudslides were widely reported; a pair of major landslips trapped many travelers on the A85 near Lochearnhead. Despite very modest flows at the beginning of the month, gauging stations closely approaching, or exceeding, August runoff maxima showed a wide distribution - from the Midlands to northern Scotland. Summer runoff totals are mostly in the normal range but 12-month accumulations remain well below average for many rivers across the UK.

Groundwater

August rainfall totals were 130-200\% of average over most (but not all) major aquifer outcrop areas but local variability was large. In marked contrast to the normal seasonal pattern, soil moisture deficits declined in August - dramatically in some outcrop areas (e.g. parts of Cambridgeshire). Generally however, substantial deficits remained at month end; in parts of the southwestern Chalk they remained above the late summer average. Infiltration rates were high relative to the August average (which is negligible for most outcrops) but very modest in absolute terms. Many reporting dates were too early to capture any impact of the August rainfall but groundwater hydrographs for some of the more responsive aquifer units provide evidence of a very early seasonal upturn in groundwater levels e.g. at Ampney Crucis, Killyglen, Newbridge and Alstonfield where a new maximum August level was reported (in the second week). Elsewhere, the August levels confirm the continuation of a typical summer recession in the Chalk. Late summer levels are close to average for the Lincs Limestone also and remain within the normal range for most index wells in the Permo-Triassic Triassic sandstones (albeit with significant geographical variations). The main benefit of the abundant August rainfall (given normal autumn rainfall) is likely to be an earlier than usual onset of the seasonal recovery of recharge rates.

Rainfall accumulations and return period estimates

Area	Rainfall	Aug 2004	$\text { Jun } 04$	$\underset{R P}{A u g} 04$	$\text { Jan } 04$	$- \text { Aug } 04$	$\text { Sep } 03$	$\operatorname{lig}_{R P} 04$	Feb	$\begin{gathered} \text { Aug } 04 \\ R P \end{gathered}$
England \& Wales	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 151 \\ & 196 \end{aligned}$	$\begin{aligned} & 283 \\ & 138 \end{aligned}$	10-20	$\begin{aligned} & 644 \\ & 115 \end{aligned}$	5-10	$\begin{aligned} & 963 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1314 \\ 95 \end{array}$	2-5
NorthWest	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 251 \\ & 229 \end{aligned}$	$\begin{aligned} & 423 \\ & 152 \end{aligned}$	30-40	$\begin{aligned} & 871 \\ & 121 \end{aligned}$	5-15	$\begin{array}{r} 1282 \\ 105 \end{array}$	2-5	$\begin{array}{r} 1775 \\ 98 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 186 \\ & 225 \end{aligned}$	$\begin{aligned} & 341 \\ & 161 \end{aligned}$	35-40	$\begin{aligned} & 681 \\ & 125 \end{aligned}$	10-20	$\begin{aligned} & 942 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 1261 \\ 95 \end{array}$	2-5
SevernTrent	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 141 \\ & 205 \end{aligned}$	$\begin{aligned} & 251 \\ & 136 \end{aligned}$	$5-15$	$\begin{aligned} & 564 \\ & 116 \end{aligned}$	$5-10$	$\begin{aligned} & 794 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 1120 \\ 95 \end{array}$	2-5
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 169 \\ & 223 \end{aligned}$	$\begin{aligned} & 317 \\ & 159 \end{aligned}$	30-50	$\begin{aligned} & 670 \\ & 127 \end{aligned}$	10-20	$\begin{aligned} & 910 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 1261 \\ 98 \end{array}$	2-5
Anglian	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 132 \\ & 238 \end{aligned}$	$\begin{aligned} & 262 \\ & 166 \end{aligned}$	50-80	$\begin{aligned} & 525 \\ & 135 \end{aligned}$	30-40	$\begin{aligned} & 725 \\ & 120 \end{aligned}$	5-15	$\begin{aligned} & 969 \\ & 103 \end{aligned}$	2-5
Thames	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 124 \\ & 210 \end{aligned}$	$\begin{aligned} & 211 \\ & 129 \end{aligned}$	$5-10$	$\begin{aligned} & 506 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 751 \\ & 107 \end{aligned}$	2-5	$\begin{array}{r} 991 \\ 92 \end{array}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 101 \\ & 173 \end{aligned}$	$\begin{aligned} & 183 \\ & 114 \end{aligned}$	2-5	$\begin{aligned} & 492 \\ & 105 \end{aligned}$	2-5	$\begin{aligned} & 810 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 1072 \\ 92 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 97 \\ 143 \end{array}$	$\begin{aligned} & 201 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 536 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 834 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1165 \\ 91 \end{array}$	2-5
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 164 \\ & 190 \end{aligned}$	$\begin{aligned} & 302 \\ & 133 \end{aligned}$	$5-10$	$\begin{aligned} & 756 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1118 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1590 \\ 90 \end{array}$	2-5
Welsh	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{aligned} & 164 \\ & 155 \end{aligned}$	$\begin{aligned} & 301 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 835 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1272 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1813 \\ 91 \end{array}$	2-5
Scotland	$\begin{aligned} & \text { mm } \\ & \% \end{aligned}$	$\begin{aligned} & 190 \\ & 163 \end{aligned}$	$\begin{aligned} & 391 \\ & 131 \end{aligned}$	10-20	$\begin{aligned} & 988 \\ & 116 \end{aligned}$	5-15	$\begin{array}{r} 1480 \\ 101 \end{array}$	2-5	$\begin{array}{r} 2025 \\ 93 \end{array}$	2-5
Highland	mm	$\begin{aligned} & 174 \\ & 134 \end{aligned}$	$\begin{aligned} & 407 \\ & 121 \end{aligned}$	$5-10$	$\begin{array}{r} 1171 \\ 118 \end{array}$	$5-15$	$\begin{array}{r} 1768 \\ 102 \end{array}$	2-5	$\begin{array}{r} 2408 \\ 95 \end{array}$	2-5
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 155 \\ & 171 \end{aligned}$	$\begin{aligned} & 329 \\ & 139 \end{aligned}$	10-20	$\begin{aligned} & 744 \\ & 118 \end{aligned}$	10-20	$\begin{array}{r} 1065 \\ 103 \end{array}$	2-5	$\begin{array}{r} 1402 \\ 90 \end{array}$	5-10
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 253 \\ 254 \end{array}$	$\begin{aligned} & 426 \\ & 165 \end{aligned}$	60-90	$\begin{aligned} & 895 \\ & 116 \end{aligned}$	5-10	$\begin{array}{r} 1259 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1745 \\ 91 \end{array}$	2-5
Forth	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 182 \\ & 186 \end{aligned}$	$\begin{aligned} & 360 \\ & 146 \end{aligned}$	20-35	$\begin{aligned} & 779 \\ & 114 \end{aligned}$	$5-10$	$\begin{array}{r} 1119 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1559 \\ 91 \end{array}$	5-10
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 199 \\ & 222 \end{aligned}$	$\begin{aligned} & 372 \\ & 160 \end{aligned}$	50-80	$\begin{aligned} & 771 \\ & 125 \end{aligned}$	10-20	$\begin{array}{r} 1088 \\ 108 \end{array}$	2-5	$\begin{array}{r} 1446 \\ 95 \end{array}$	2-5
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 229 \\ & 188 \end{aligned}$	$\begin{aligned} & 400 \\ & 134 \end{aligned}$	$5-15$	$\begin{aligned} & 955 \\ & 114 \end{aligned}$	$5-10$	$\begin{array}{r} 1444 \\ 101 \end{array}$	2-5	$\begin{array}{r} 2004 \\ 94 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 223 \\ & 157 \end{aligned}$	$\begin{aligned} & 458 \\ & 130 \end{aligned}$	5-15	$\begin{array}{r} 1147 \\ 115 \end{array}$	$5-10$	$\begin{array}{r} 1752 \\ 100 \end{array}$	<2	$\begin{array}{r} 2426 \\ 95 \end{array}$	2-5
Northern Ireland	$\begin{aligned} & \text { mm } \\ & \% \end{aligned}$	$\begin{aligned} & 105 \\ & 110 \end{aligned}$	$\begin{aligned} & 276 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 670 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 1000 \\ 91 \end{array}$	2-5	$\begin{array}{r} 1499 \\ 91 \end{array}$	2-5

\% = percentage of 196I-90 average \quad RP = Return period
The monthly rainfall figures* provided by the Met Office are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since March 2004 are provisional (see page 12). Revised Met Office totals for 1961-2003 have been recently incorporated. The figures for England \& Wales are derived by the Hadley Centre and are updates of the homogenised series developed by the Climate Research Unit; the other national figures are derived from different raingauge networks to those used to derive the CRU data series. The return period estimates are based on tables provided by the Met Office (see Tabony, R. C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past. "See page 12.

Rainfall . . . Rainfall . .

Key

00\%	Percentage of 1961-90 average	Normal range
	Very wet	Below average
	Substantially above average	Substantially below average
	Above average	Exceptionally low rainfall

June 2004 - August 2004

Rainfall accumulation maps

Regional rainfall totals for the summer were notably high in most regions - contributing to the second wettest June-August period since 1958 for the UK as a whole. Rainfall totals over the last 12 months are much closer to normal with modest rainfall deficiencies characterising a few regions.

River flows - August 2004

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2001 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations

River	\%lta	Rank
a)	Dee (Park)	150
Tay	165	$50 / 32$
Derwent (Yorks)	170	$43 / 52$
	193	$30 / 30$
Dover Beck	193	
Witham	246	$45 / 46$
Eden	174	$35 / 37$
	Naver	207
	$27 / 27$	

(a) June 2004 - August 2004,
(b) September 2003 - August 2004, (c) February 2003- August 2004

b)	River
Dee (Park)	
Earn	
Forth	
Soar	
Taw	
Mourne	
Faughan	

\%lta
Ita
79 nk

6/56
6/56
5/33
3/45
1/22
1/28

River	\%lta	Rank	
c)	Dee (Woodend)	79	$5 / 74$
Tweed (Norham)	80	$4 / 44$	
	Medway	57	$3 / 39$
	Exe	73	$2 / 47$
Wye	72	$4 / 67$	
	Luss	77	$1 / 24$
	Annacloy	72	$1 / 24$

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels August / September 2004

Borehole

 Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm $65.82 \quad 31 / 08$ West WoodyatesLevel Date Aug. av.
16.64 16/08 44.89 04/09 71.56 01/09 25.75 04/08 131.61 01/09 $71.85 \quad 31 / 08$ 71.85 31/08
16.25 16.25 44.48 76.32 25.59 32.02 73.96

Borehole
Chilgrove House Killyglen New Red Lion
Ampney Crucis
Newbridge
Skirwith
Yew Tree Farm

L
115.8

Le

Groundwater. . . Groundwater

Groundwater levels - August 2004

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{gathered} 2004 \\ \text { May } \end{gathered}$	Jun	Jul	Aug	Sep	Avg. Sep	Min. Sep	$\begin{aligned} & \text { Year* } \\ & \text { of min. } \end{aligned}$
NorthWest	N Command Zone	- 124929	89	76	63	55	73	53	24	1995
	Vyrnwy	55146	95	88	73	68	67	69	36	1995
Northumbrian	Teesdale	- 87936	95	83	79	68	97	61	38	1995
	Kielder	(199175)	(92)	(91)	(94)	(89)	(94)	(86)	(66)	1989
Severn Trent	Clywedog	44922	100	100	97	94	92	74	38	1989
	DerwentValley	- 39525	100	92	91	83	98	63	34	1995
Yorkshire	Washburn	- 22035	95	89	84	79	95	64	34	1995
	Bradford supply	- 41407	93	85	75	67	90	61	21	1995
Anglian	Grafham	(55490)	(98)	(95)	(95)	(84)	(76)	(85)	(59)	1997
	Rutland	(116580)	(97)	(95)	(91)	(90)	(87)	(81)	(66)	1995
Thames	London	- 202340	97	94	89	84	84	79	62	1995
	Farmoor	- 13830	100	99	97	99	98	91	64	1995
Southern	Bewl	28170	100	99	92	87	81	69	38	1990
	Ardingly	4685	100	100	89	82	71	72	47	1996
Wessex	Clatworthy	5364	100	96	86	77	64	60	31	1995
	BristolWW	- (38666)	(92)	(89)	(81)	(75)	(66)	(65)	(43)	1990
SouthWest	Colliford	28540	75	73	67	60	55	72	43	1997
	Roadford	34500	68	67	62	56	51	74	40	1995
	Wimbleball	21320	100	97	87	79	69	67	40	1995
	Stithians	5205	94	88	78	68	57	59	30	1990
Welsh	Celyn and Brenig	- 131155	99	97	88	83	82	79	49	1989
	Brianne	62140	99	96	88	81	85	84	55	1995
	Big Five	- 69762	99	93	82	68	71	67	29	1995
	Elan Valley	- 99106	95	93	87	79	81	75	46	1995
Scotland(E)	Edinburgh/Mid Lothian	- 97639	81	78	74	69	80	75	45	1998
	East Lothian	- 10206	100	98	100	97	100	80	63	1989
Scotland(W)	Loch Katrine	- 111363	93	84	74	66	74	67	50	2000
	Daer	22412	97	89	75	65	90	67	41	1995
	Loch Thom	- 11840	97	92	88	93	100	73	58	1997
Northern	Total ${ }^{+}$	-	84	74	72	62	72	72	40	1995
Ireland	Silent Valley	- 20634	64	58	56	48	58	62	33	2000

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national ans regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded
as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries

National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB

Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

