Hydrological Summary for the United Kingdom

General

June was a month of contrasting weather patterns: a very warm and dry spell brought an arid complexion to the landscape and generated some local concern for the water resources outlook (e.g. in parts of Northern Ireland); subsequently, much more unsettled weather conditions predominated with some significant and damaging storms; these autumnal conditions extended into July. Nationally, the June rainfall total was near-average but spatial variations were large; parts of the English Lowlands were again relatively dry. Reservoir stocks declined briskly through early June and a few impoundments were seasonally low at month end (e.g. Roadford and Silent Valley), but overall stocks for England and Wales were within 1% of the long term average entering July. River flows exhibited a substantial range with some notably high and notably low summer flows reported - but June runoff totals were mostly typical of the early summer, albeit generally below average. Groundwater level recessions are generally tracking below the seasonal average but - with a few local exceptions - well above drought minima. Medium and longer term rainfall deficiencies remain significant but the water resources outlook for the summer is generally good.

Rainfall

The unsettled weather of late May continued into June with significant rainfall in northern Britain (Tain Range Highland region- reported 38 mm on the $11^{\text {th }}$) but rainfall amounts were very modest in the South and, with high pressure dominating, some localities (e.g. in south Oxfordshire) reported $<1 \mathrm{~mm}$ of rainfall up to the $19^{\text {th }}$. The resulting stress for farmers, growers and gardeners was relieved locally by thunderstorms (e.g. Leconfield reported 23 mm on the $8^{\text {th }}$) and, more generally, on the $22 / 23^{\text {rd }}$ when an unusually vigorous summer depression generated rainfall of $15-25 \mathrm{~mm}$ across much of the UK - triggering local flooding and landslides (e.g. in Cornwall); Lough Fea (NI) reported 45 mm and Buxton 46 mm on the following day. The showery nature of much of the rainfall makes for imprecise areal assessments but a notable north-south contrast in June totals is clearly evident. A few localities near the Moray coast reached 300% of average and above average rainfall was particularly welcome in Northern Ireland. Much of the English Lowlands, however, reported $<50 \%$ with several coastal pockets being extremely dry (e.g. Portsmouth, Southend). In some regions this arid interlude appreciably increased medium term rainfall deficiencies. The February-June period was the $2^{\text {nd }}$ driest in the last 20 years in parts of the South-West, and, for a few southern catchments (e.g. in the Thames basin), above average rainfall has been registered in only 3 or 4 of the last 17 months.

River Flow

Exceptionally dry soil conditions greatly limited the effectiveness of the early June rainfall and flows in most rivers exhibited steep recessions - a new minimum June flow was recorded for the Ribble (on the $15^{\text {th }}$) and a number of flow augmentation schemes were activated (e.g. in south Wessex). By contrast, some localised - mostly urban flooding was reported and more notable flow recoveries characterised the final week of the month. The River Whiteadder eclipsed its previous maximum June flow on the $24^{\text {th }}$ having closely approached its minimum in the second week. South of the Moray Firth, a 48-hr rainfall
total of 80.4 mm (at Torwinny) triggered serious flooding in Elgin and Rothes on the $23 / 24^{\text {th }}-$ precautionary evacuations were organised and the main InvernessAberdeen railway was closed. The Isla at Grange reported its $3{ }^{\text {rd }}$ highest level in a $44-\mathrm{yr}$ record. Grampian Region suffered flash flooding as 14 mm of rain fell in 30 minutes at Kinloss (a 1 -hr total of 16 mm was recorded three days later). June runoff totals showed very wide regional and more local variations. In northern Scotland, the River Naver registered its highest June runoff in a $27-\mathrm{yr}$ record whilst notably low runoff characterised much of south-western Britain; in South Wales, the River Tawe reported its lowest June runoff since 1975. In the English Lowlands, geological control on flows rates was very evident; flows in many Chalk catchments were near-average whilst neighbouring streams draining impermeable catchments reported $<35 \%$ of the June average. Most June runoff totals were in the $50-85 \%$ range, but generally well above drought minima.

Groundwater

Soil moisture deficits increased rapidly in the first half of June and, notwithstanding the unsettled final week, end-of-month values remained considerably above average in southern Britain. Consequently, little or no infiltration occurred in the major aquifer outcrop areas. After modest late spring infiltration moderated the seasonal decline in the more responsive aquifers, groundwater level recessions re-established themselves in June. By monthend levels were in decline in all but the slowest-responding aquifer units. June levels in the Chalk show significant regional differences but, Killyglen apart, most index well levels remain within the normal early summer range. A similar generalisation applies to the major limestone and Permo-Triassic sandstones outcrops, but levels in the latter are relatively depressed in the Midlands (e.g. at Weeford Flats) and in the most northerly outcrops. Levels remain a little above average in the minor aquifers of eastern England. In the absence of an exceptionally dry late summer and early autumn (as occurred last year), a normal recession pattern is expected to continue.

Rainfall accumulations and return period estimates

Area	Rainfall	Jun 2004	May 04-Jun 04		Feb 04-Jun 04 RP		$\begin{array}{r} \text { Aug 03-Jun } 04 \\ R P \end{array}$		$\begin{array}{r} \text { Feb 03-Jun } 04 \\ R P \end{array}$	
England \& Wales	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 57 \\ & 88 \end{aligned}$	$\begin{array}{r} 105 \\ 80 \end{array}$	2-5	$\begin{array}{r} 294 \\ 89 \end{array}$	2-5	$\begin{array}{r} 760 \\ 89 \end{array}$	2-5	$\begin{array}{r} 1089 \\ 88 \end{array}$	5-10
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 92 \\ 113 \end{array}$	$\begin{array}{r} 138 \\ 88 \end{array}$	2-5	$\begin{array}{r} 363 \\ 90 \end{array}$	2-5	$\begin{array}{r} 964 \\ 85 \end{array}$	5-10	$\begin{array}{r} 1436 \\ 89 \end{array}$	$5-10$
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 88 \\ 142 \end{array}$	$\begin{array}{r} 118 \\ 94 \end{array}$	2-5	$\begin{array}{r} 301 \\ 96 \end{array}$	2-5	$\begin{array}{r} 707 \\ 88 \end{array}$	2-5	$\begin{array}{r} 1008 \\ 85 \end{array}$	$5-15$
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 51 \\ & 86 \end{aligned}$	$\begin{aligned} & 93 \\ & 78 \end{aligned}$	2-5	$\begin{array}{r} 265 \\ 91 \end{array}$	2-5	$\begin{array}{r} 608 \\ 85 \end{array}$	5-10	$\begin{array}{r} 916 \\ 86 \end{array}$	5-10
Yorkshire	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 73 \\ 118 \end{array}$	$\begin{array}{r} 106 \\ 87 \end{array}$	2-5	$\begin{array}{r} 302 \\ 98 \end{array}$	2-5	$\begin{array}{r} 683 \\ 88 \end{array}$	2-5	$\begin{array}{r} 1011 \\ 88 \end{array}$	5-10
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 45 \\ & 86 \end{aligned}$	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	2-5	$\begin{array}{r} 222 \\ 96 \end{array}$	2-5	$\begin{array}{r} 510 \\ 92 \end{array}$	2-5	$\begin{array}{r} 748 \\ 90 \end{array}$	5-10
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 35 \\ & 64 \end{aligned}$	$\begin{aligned} & 87 \\ & 78 \end{aligned}$	2-5	$\begin{array}{r} 241 \\ 91 \end{array}$	2-5	$\begin{array}{r} 585 \\ 90 \end{array}$	2-5	$\begin{array}{r} 814 \\ 84 \end{array}$	5-15
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 32 \\ & 58 \end{aligned}$	$\begin{aligned} & 82 \\ & 76 \end{aligned}$	2-5	$\begin{array}{r} 225 \\ 81 \end{array}$	2-5	$\begin{array}{r} 675 \\ 92 \end{array}$	2-5	$\begin{array}{r} 915 \\ 86 \end{array}$	5-10
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 42 \\ & 73 \end{aligned}$	$\begin{aligned} & 82 \\ & 69 \end{aligned}$	2-5	$\begin{array}{r} 260 \\ 84 \end{array}$	2-5	$\begin{array}{r} 691 \\ 86 \end{array}$	2-5	$\begin{array}{r} 1005 \\ 86 \end{array}$	5-10
SouthWest	mm	$\begin{aligned} & 65 \\ & 93 \end{aligned}$	$\begin{array}{r} 109 \\ 76 \end{array}$	2-5	$\begin{array}{r} 332 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 895 \\ 80 \end{array}$	5-15	$\begin{array}{r} 1342 \\ 83 \end{array}$	5-15
Welsh	mm	$\begin{aligned} & 66 \\ & 81 \end{aligned}$	$\begin{array}{r} 130 \\ 79 \end{array}$	2-5	$\begin{array}{r} 401 \\ 88 \end{array}$	2-5	$\begin{array}{r} 1046 \\ 83 \end{array}$	5-10	$\begin{array}{r} 1564 \\ 87 \end{array}$	5-10
Scotland	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 128 \\ & 149 \end{aligned}$	$\begin{aligned} & 190 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 515 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1261 \\ 92 \end{array}$	5-10	$\begin{array}{r} 1760 \\ 90 \end{array}$	5-10
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 154 \\ & 155 \end{aligned}$	$\begin{aligned} & 230 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 656 \\ & 115 \end{aligned}$	5-10	$\begin{array}{r} 1579 \\ 97 \end{array}$	2-5	$\begin{array}{r} 2157 \\ 93 \end{array}$	2-5
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 119 \\ & 172 \end{aligned}$	$\begin{aligned} & 159 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 401 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 882 \\ 93 \end{array}$	2-5	$\begin{array}{r} 1187 \\ 85 \end{array}$	10-20
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 117 \\ & 153 \end{aligned}$	$\begin{aligned} & 185 \\ & 114 \end{aligned}$	2-5	$\begin{aligned} & 442 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 982 \\ 81 \end{array}$	5-15	$\begin{array}{r} 1437 \\ 83 \end{array}$	10-20
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 119 \\ & 165 \end{aligned}$	$\begin{aligned} & 173 \\ & 117 \end{aligned}$	2-5	$\begin{aligned} & 401 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 907 \\ 85 \end{array}$	5-10	$\begin{array}{r} 1318 \\ 86 \end{array}$	5-15
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 105 \\ & 155 \end{aligned}$	$\begin{aligned} & 145 \\ & 103 \end{aligned}$	2-5	$\begin{aligned} & 365 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 827 \\ 89 \end{array}$	2-5	$\begin{array}{r} 1172 \\ 86 \end{array}$	5-15
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 101 \\ & 119 \end{aligned}$	$\begin{array}{r} 141 \\ 82 \end{array}$	2-5	$\begin{array}{r} 461 \\ 98 \end{array}$	2-5	$\begin{array}{r} 1167 \\ 87 \end{array}$	5-10	$\begin{array}{r} 1699 \\ 89 \end{array}$	5-10
Clyde	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 140 \\ 144 \end{array}$	$\begin{aligned} & 213 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 554 \\ 99 \end{array}$	2-5	$\begin{array}{r} 1490 \\ 91 \end{array}$	2-5	$\begin{array}{r} 2106 \\ 91 \end{array}$	5-10
Northern Ireland	mm $\%$	$\begin{aligned} & 105 \\ & 144 \end{aligned}$	$\begin{aligned} & 153 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 361 \\ 94 \end{array}$	2-5	$\begin{array}{r} 846 \\ 82 \end{array}$	5-15	$\begin{array}{r} 1322 \\ 89 \end{array}$	5-10
							RP $=$ Return period			

Rainfall . . . Rainfall . .

Key

00\%	Percentage of 1961-90 average	Normal range
	Very wet	Below average
	Substantially above average	Substantially below average
	Above average	Exceptionally low rainfall

February 2004 - June 2004
August 2003 - June 2004

Rainfall accumulation maps

Echoes of the 2003 drought are still evident in the longer term regional rainfall accumulations for most regions. The August 2003 - June 2004 rainfall is the second lowest (after 1996) since 1975/76 for the UK as a whole with the most notable deficiencies in parts of eastern Scotland, Northern Ireland, and the South-West. The latter region also has the highest percentage rainfall deficiency over the last five months.

River flows - June 2004

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2001 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) May 2004 - June 2004, (b) February 2003 - June 2004

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels June / July 2004

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm $691305 / 07$ West Woodyates

Level Date Jun. av.
19.03 21/06 18.13 $46.54 \quad 03 / 06 \quad 45.17$ 73.77 07/07 78.33 $25.60 \quad 02 / 06 \quad 25.71$
$134.41 \quad 07 / 07 \quad 134.59$ $\begin{array}{ll}80.24 & 30 / 06 \\ 80.94\end{array}$
Borehole

Level	Date	Jun. av.	Borehole	Level Date	Jun. av.
46.58	30/06	46.02	Llanfair DC	79.82 15/06	79.87
113.56	01/07	114.00	Morris Dance	31.98 14/06	32.36
14.46	23/06	14.67	Heathlanes	62.28 01/06	62.29
100.42	07/07	100.84	Nuttalls Farm	129.62 03/06	129.63
9.58	30/06	10.13	Bussels No.7a	23.55 17/06	23.88
129.91	11/06	130.53	Alstonfield	179.98 15/06	181.61
14.09	14/06	13.59	Levels in m	ove Ordna	atu

Groundwater. . . Groundwater

Groundwater levels - June 2004

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. The Newbridge borehole supercedes Redbank (which was affected by groundwater abstraction). Yew Tree Farm levels are now received quarterly.

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{gathered} 2004 \\ \text { Mar } \end{gathered}$	Apr	May	Jun	Jul	Avg. Jul	Min. Jul	$\begin{aligned} & \text { Year* } \\ & \text { of min. } \end{aligned}$
NorthWest	N Command Zone	- 124929	90	88	89	76	63	72	58	1995
	Vyrnwy	55146	92	99	95	88	73	83	65	1990
Northumbrian	Teesdale	- 87936	88	96	95	83	79	77	58	1989
	Kielder	(199175)	(90)	(91)	(92)	(91)	(94)	89	(71)	1989
SevernTrent	Clywedog	44922	90	99	100	100	97	92	72	1989
	DerwentValley	- 39525	98	96	100	92	91	78	53	1996
Yorkshire	Washburn	- 22035	94	92	95	89	84	80	63	1995
	Bradford supply	- 41407	90	92	93	85	75	77	54	1995
Anglian	Grafham	(55490)	(88)	(95)	(98)	(95)	(95)	92	(70)	1997
	Rutland	(116580)	(91)	(94)	(97)	(95)	(91)	88	(75)	1997
Thames	London	- 202340	97	97	97	94	89	91	85	1990
	Farmoor	- 13830	92	96	100	99	97	98	94	1995
Southern	Bewl	28170	98	100	100	99	92	82	52	1990
	Ardingly	4685	100	100	100	100	89	96	86	1996
Wessex	Clatworthy	5364	100	95	100	96	86	81	61	1995
	BristolWW	- (38666)	(91)	(92)	(92)	(89)	(81)	81	(64)	1990
South West	Colliford	28540	72	75	75	73	67	83	51	1997
	Roadford	34500	68	68	68	67	62	83	49	1996
	Wimbleball	21320	99	100	100	97	87	84	63	1992
	Stithians	5205	93	97	94	88	78	79	53	1990
Welsh	Celyn and Brenig	- 131155	99	100	99	97	88	94	77	1996
	Brianne	62140	92	98	99	96	88	92	76	1995
	Big Five	- 69762	96	98	99	93	82	84	61	1989
	Elan Valley	- 99106	94	99	95	93	87	89	75	1989
Scotland(E)	Edinburgh/Mid Lothian	- 97639	79	80	81	78	74	85	54	1998
	East Lothian	- 10206	100	100	100	98	100	92	81	1992
Scotland(W)	Loch Katrine	- 111363	88	91	93	84	74	82	61	2001
	Daer	22412	94	100	97	89	75	82	62	1994
	Loch Thom	- 11840	90	94	97	92	88	83	69	2000
Northern	Total ${ }^{+}$	-	81	85	84	74	72	85	65	1995
Ireland	Silent Valley	- 20634	64	66	64	58	56	78	54	1995

() figures in parentheses relate to gross storage - denotes reservoir groups ${ }^{+}$excludes Lough Neagh *last occurrence - see footnote

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for The Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB
Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

