Hydrological Summary for the United Kingdom

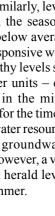
General

February was mild and very wet initially but colder and much drier conditions dominated after the first week. The exceptional rate of reservoir replenishment in the early winter continued into February but stalled after the first week. Overall reservoir stocks for England and Wales have declined modestly in recent weeks but in early March still stood very close to the average for the beginning of spring. Flood risk was high over wide areas early in February and an extreme rainfall event triggered severe flooding in North Wales. Generally, river flows were in steep recession thereafter, and most runoff totals were close to the February average. Groundwater hydrographs mostly reflect the response to heavy January infiltration and the belated seasonal recovery gathered momentum in early February. However, a lengthy dry spell, extending into March, has raised concern that the recharge season may again terminate very early (as in 2003). As in many years, the water resources outlook – though generally healthy – will be heavily influenced by rainfall over the next 6-10 weeks. Above average March/April rainfall would be particularly useful in delaying the onset of the seasonal recession in runoff and recharge rates.

Rainfall

A sequence of vigorous frontal systems brought substantial rainfall to most regions in early February but a decisive change in synoptic patterns heralded colder and mostly dry conditions over the ensuing four weeks. In the context of the recent past, snowfall constituted a substantial proportion of total precipitation, in Scotland especially but blizzard conditions were also experienced in coastal areas of England (e.g. at Bournemouth on the 27th). A slow-moving frontal system produced a remarkable 260 mm rainfall total over 48 hours (4/5th Feb) at Capel Curig in North Wales - the corresponding return period exceeds 100 years. Substantial rainfall occurred across much of the UK on the 5th but, subsequently, some localities in central southern England reported only 2 mm over the three weeks up to March 2nd. Monthly precipitation totals for February exhibited wide spatial variability; North Wales was exceptionally wet and parts of northern Scotland reported >150% of the monthly average also. By contrast, parts of southern England (coastal areas particularly) registered <30%. Last year excepted, February was the driest since 1993 for the UK as a whole; provisionally Northern Ireland recorded its 2nd lowest February rainfall in 20 years. Notwithstanding the recent dry spell, winter (Dec-Feb) rainfall totals were close to, or above, average in all regions but long term deficiencies remain significant, particularly in the 13-month timeframe; the Feb-Feb total for the UK is the lowest since 1975/76.

Flows


With catchments saturated and snowmelt an exacerbating factor in the north, February began with many catchments very vulnerable to further rainfall. Flood warnings were very common during the first week. Moderate floodplain inundations characterised many river basins and several index rivers in western Britain (including the Wye and Severn) approached or exceeded previous maximum February peak flows. Flooding was severe in North Wales - particularly in the Conwy Valley (e.g. at Llanwrst and Trefriw). Thereafter, river flow recessions were

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL exceptionally steep in many impermeable catchments; in some catchments period-of-record February minima were approached around month-end (e.g. on the Nith and Forth). The counterbalancing effect of these contrasting flow episodes resulted in monthly runoff totals that were well within the normal range (80-120% of average) throughout most of the UK. This was true of most winter (Dec-Feb) runoff totals also, but longer term runoff deficiencies remain large in many areas - eastern Scotland especially. The belated seasonal recovery of flows in groundwater-fed streams continued in February, but will stall if March rainfall is appreciably below average.

Groundwater

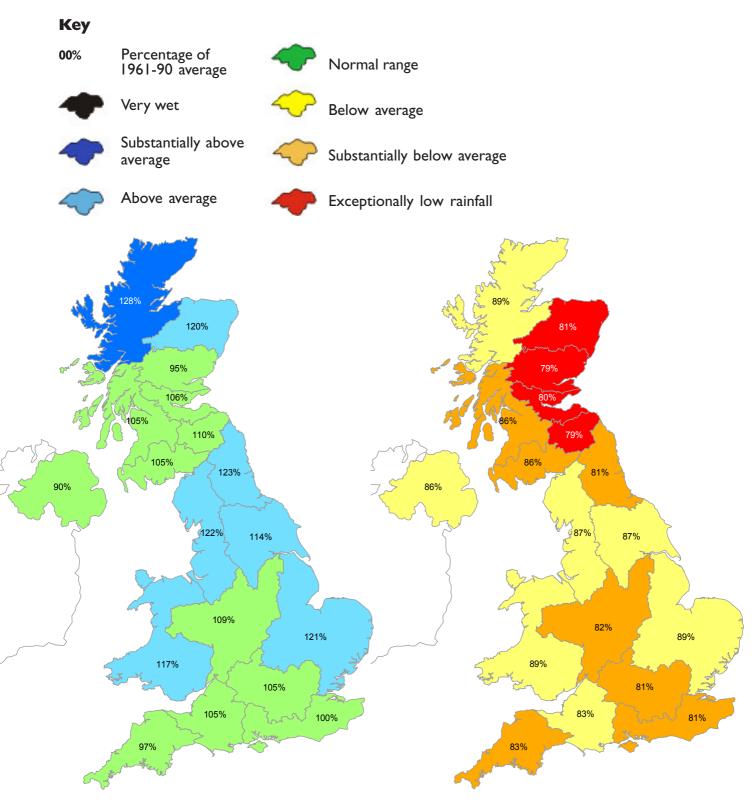
The February rainfall distribution was unfavourable for groundwater replenishment, in both spatial and temporal terms. Most aquifer outcrop areas reported significantly below average monthly totals and, although infiltration rates were high until early Feb, the subsequent dry spell saw modest soil moisture deficits develop in southern England - where a dry and warm March could signal the end of the recharge season. Groundwater levels for index boreholes reporting in early Feb reflect the heavy antecedent recharge but some reporting around month end show a late-winter recession (e.g. at Ampney Crucis and Chilgrove). Nonetheless, levels across almost the entirety of the Chalk aquifer (Killyglen is an exception) were within the normal late winter range. Similarly, levels in most index limestone wells are around the seasonal norm. In the Permo-Triassic sandstones, below average February levels typified most of the more responsive wells (Llanfair DC in N. Wales excepted) but healthy levels still characterise the slowest responding aquifer units - e.g. most outcrops in the Midlands. Levels in the minor aquifers of eastern England are also typical for the time of year. This is reassuring and overall groundwater resources are much healthier than early in many groundwater drought years (e.g. 1992, 1996 and 1997). However, a very early onset of the seasonal recession could herald levels substantially below average by the late summer.

British

Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall . . . Rainfall . . .

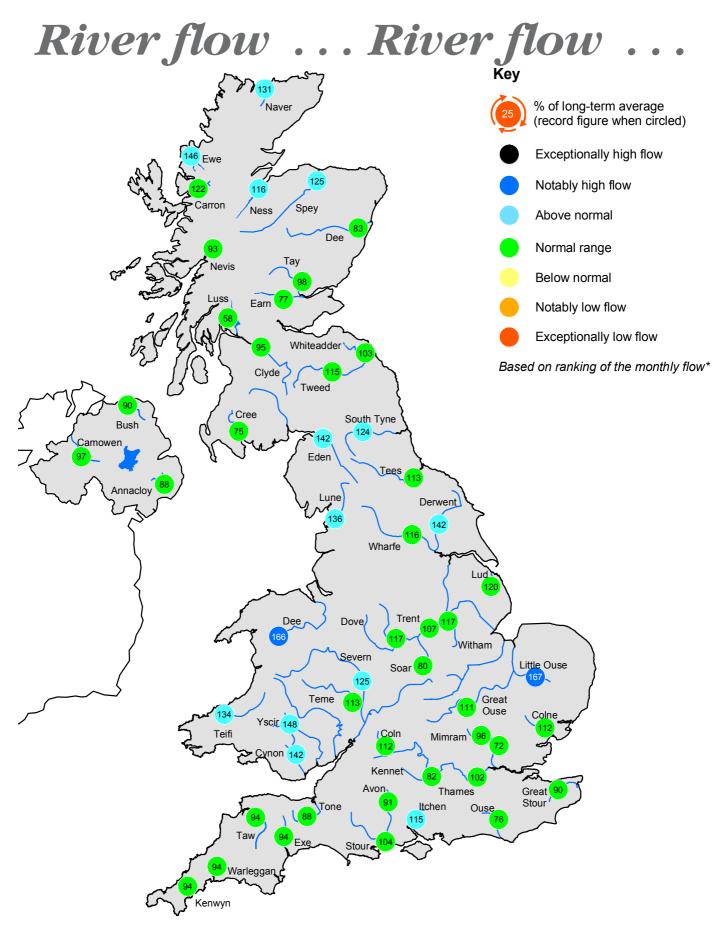


Rainfall accumulations and return period estimates

Area	Rainfall	Feb 2004	Dec 03	-Feb 04 RP	Aug 03-Feb 04 RP		May 03-Feb 04 <i>RP</i>		Feb 03-Feb 0 <i>R</i>	
England & Wales	mm %	50 77	275 110	2-5	516 88	2-5	727 93	2-5	845 86	5-10
North West	mm %	86 110	394 122	2-5	659 83	5-10	933 90	2-5	2 87	5-10
Northumbrian	mm %	57 96	275 123	5-10	452 84	5-10	646 89	2-5	736 81	10-20
Severn Trent	mm %	40 73	219 109	2-5	369 79	5-10	561 88	2-5	662 82	5-15
Yorkshire	mm %	53 91	251 114	2-5	436 85	2-5	656 95	2-5	763 87	5-10
Anglian	mm %	33 90	72 2	2-5	316 89	2-5	501 100	<2	566 89	2-5
Thames	mm %	30 66	87 05	2-5	366 86	2-5	513 88	2-5	597 81	5-15
Southern	mm %	27 50	217 100	<2	444 88	2-5	584 88	2-5	675 81	5-15
Wessex	mm %	44 68	258 105	2-5	454 83	2-5	634 89	2-5	749 83	5-10
South West	mm %	66 65	365 97	2-5	619 78	5-10	880 87	2-5	1064 83	5-10
Welsh	mm %	 4	459 7	2-5	762 86	2-5	1055 94	2-5	1257 89	2-5
Scotland	mm %	109 106	475 8	5-10	837 86	5-10	1132 92	2-5	1331 86	5-15
Highland	mm %	72 36	654 128	5-15	0 9	2-5	1441 96	2-5	1687 89	5-10
North East	mm %	67 104	308 120	5-10	540 86	5-10	714 86	5-10	836 81	20-30
Тау	mm %	68 71	348 95	2-5	609 74	10-20	866 82	5-15	1045 79	15-25
Forth	mm %	67 85	324 106	2-5	568 77	10-20	810 85	5-10	954 80	15-25
Tweed	mm %	6 9	285 110	2-5	486 78	5-15	707 85	5-10	822 79	20-30
Solway	mm %	87 86	424 105	2-5	779 80	5-10	1090 89	2-5	1304 86	5-10
Clyde	mm %	92 78	509 105	2-5	956 82	5-10	337 9	2-5	1564 86	5-15
Northern Ireland	mm %	46 59	263 90	2-5	525 75	10-20	820 90	2-5	983 86	5-10
RP = Return period										period

The monthly rainfall figures^{*} are copyright of The Met Office and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since December 1998 are provisional (see page 12). The figures for England & Wales are derived by the Hadley Centre and are updates of the homogenised series developed by the Climate Research Unit; the other national figures are derived from different raingauge networks to those used to derive the CRU data series. The return period estimates are based on tables provided by The Met Office (see Tabony, R. C., 1977, *The variability of long duration rainfall over Great Britain*, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past. *See page 12.

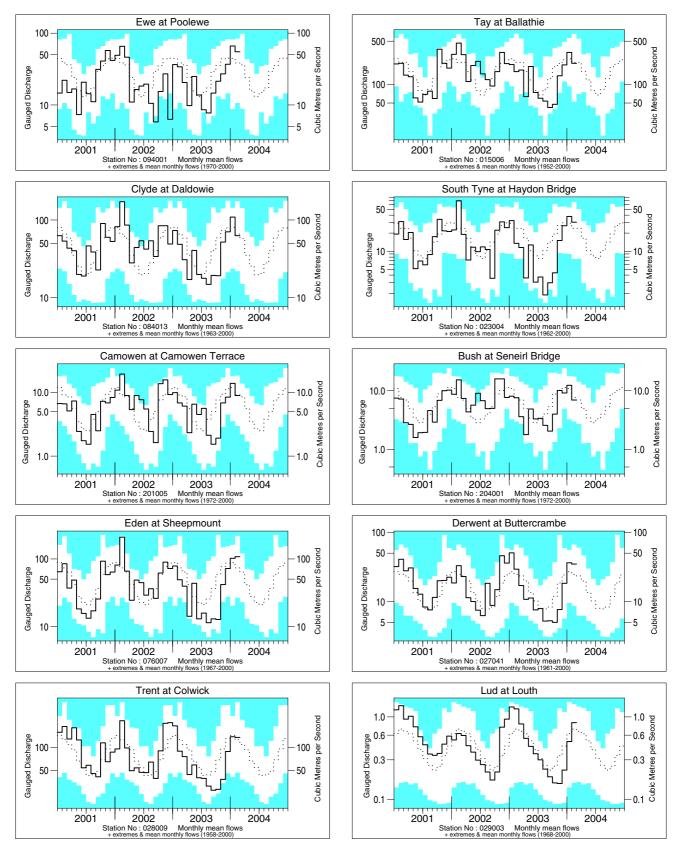
Rainfall . . . Rainfall . .



December 2003 - February 2004

February 2003 - February 2004

Rainfall accumulation maps


The Dec 2003 - Feb 2004 period added to a cluster recent wet winters for Great Britain as a whole; all but 2002/03 have been appreciably wetter than average. By contrast, regional rainfall deficiencies over the Feb 2003 - Feb 2004 period remain substantial (mostly in the 15-20% range). The largest percentage deficiencies are in eastern Scotland, but the most important in water resources terms are those across the aquifer outcrop areas of central and southern England.

River flows - February 2004

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow ... River flow ...

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 2001 (shown by the shaded areas). Monthly flows falling outside the maximum/ minimum range are indicated where the bold trace enters the shaded areas.

River flow ... River flow ...

Severn

Faughan

Dee (Manley Hall)

98

111

81

39/83

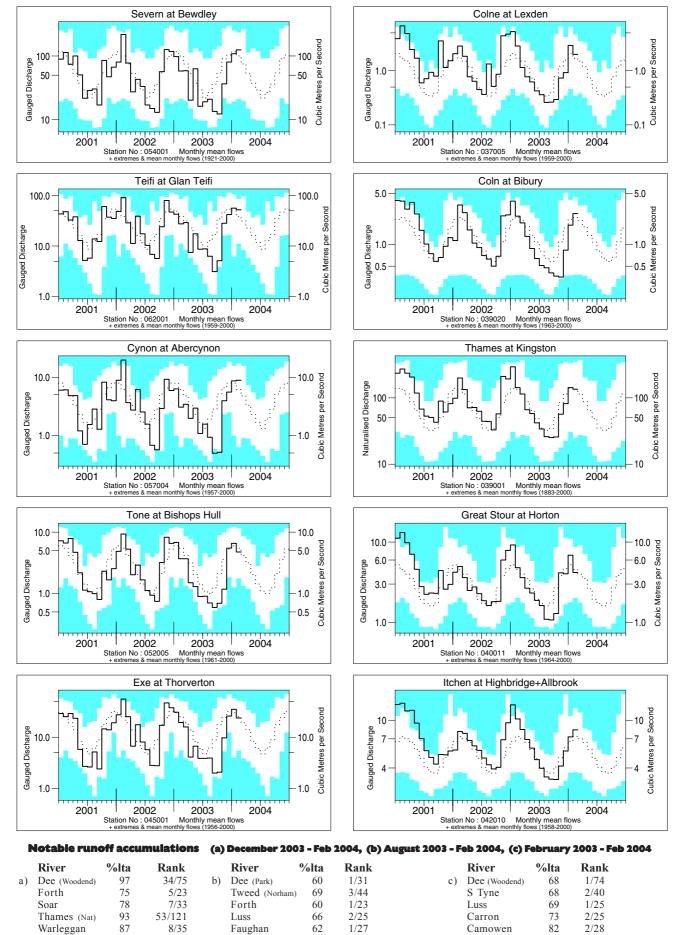
43/67

6/28

Lower Bann

Annacloy

70


57

2/24

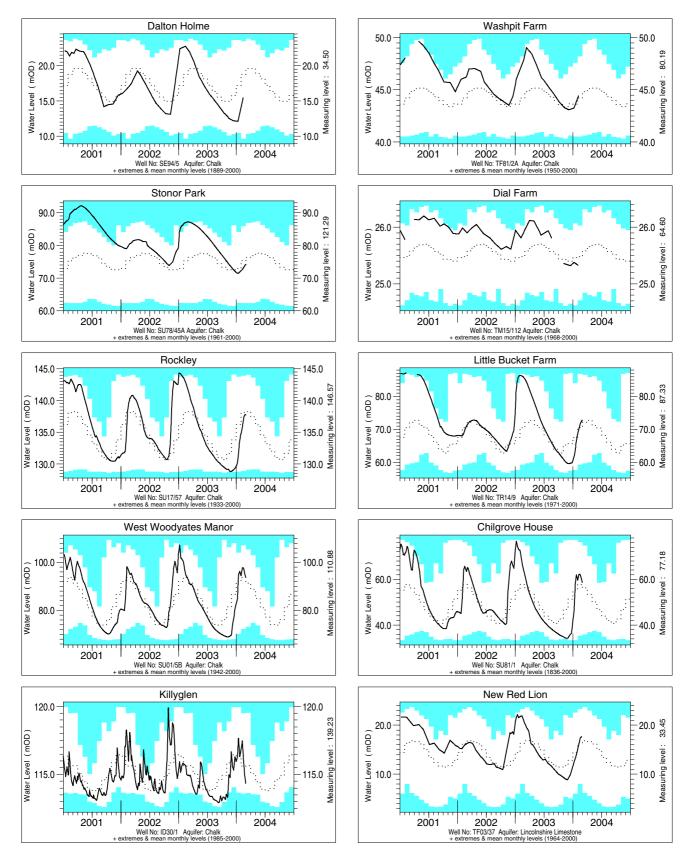
1/24

6

lta = *long term average Rank 1* = *lowest on record*

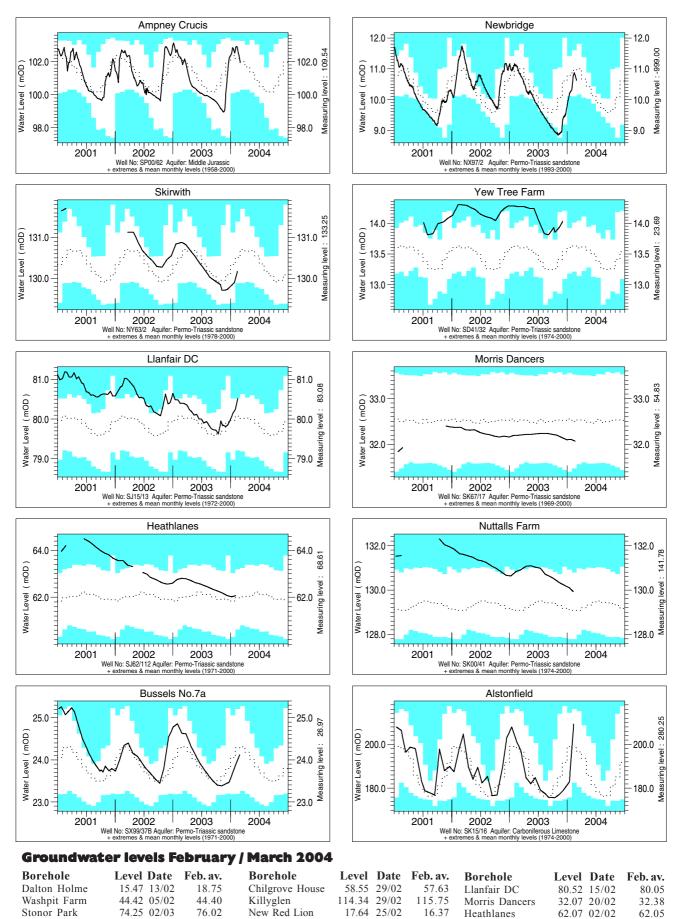
78

72


1/21

2/29

Mourne


Lagan

Groundwater... Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously – the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

101.93 02/03 Ampney Crucis 102.23 Nuttalls Farm 10.62 29/02 11.01 Bussels No.7a 130.17 13/02 130.62 Alstonfield Yew Tree Farm 14.03 03/12 13.73 Levels in metres above Ordnance Datum

129.92 09/02

24.12 27/02

209.33 11/02

129.46

24.33

198.72

8

Dial Farm

Little Bucket Farm

West Woodyates

Rockley

25.33 02/02

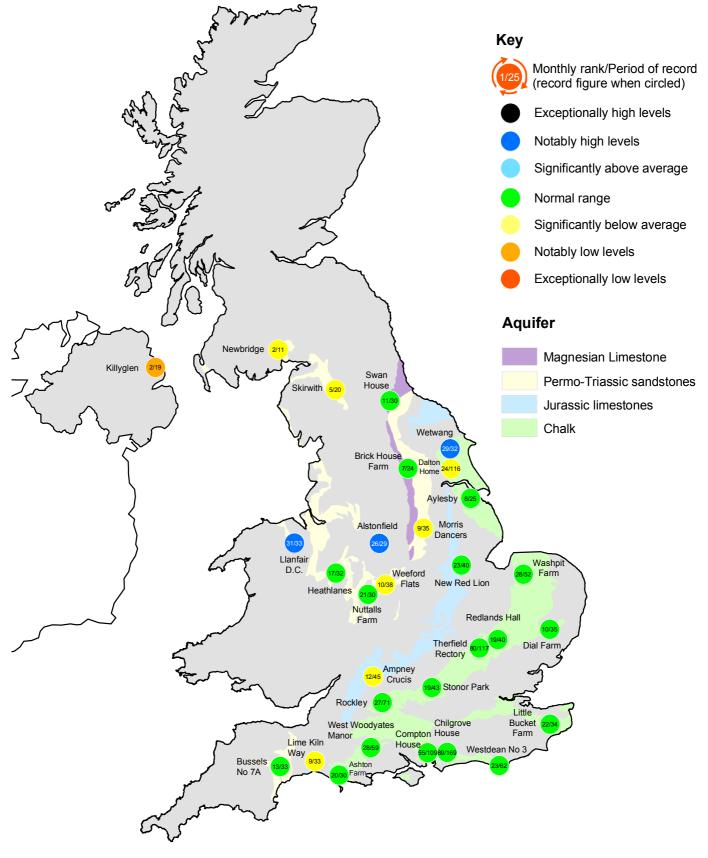
137.75 02/03

72.79 29/02

93.87 28/02

25 52

70.63


93.25

Newbridge

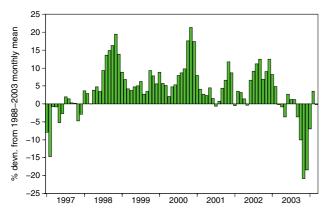
Skirwith

138.33

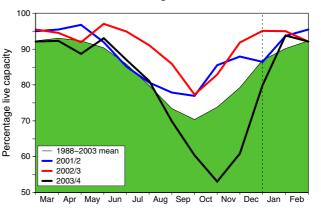
Groundwater...Groundwater

Groundwater levels - February 2004

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

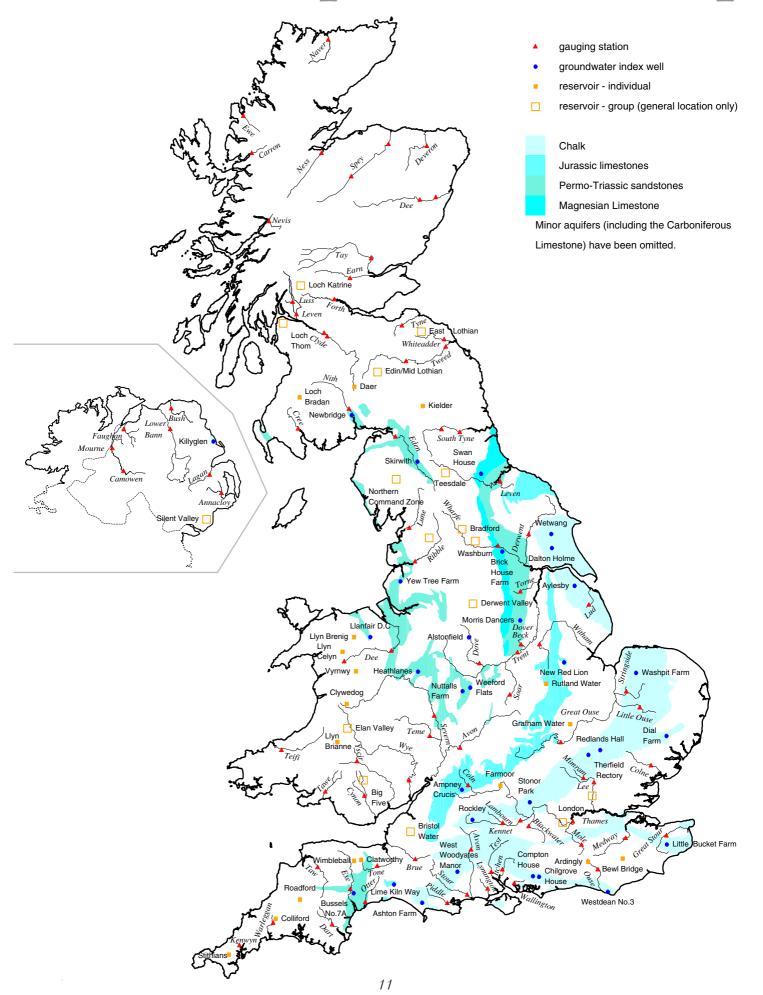

Notes:

i. The outcrop areas are coloured according to British Geological Survey conventions.
 ii. The Newbridge borehole supercedes Redbank (which was affected by groundwater abstraction). Yew Tree Farm levels are now received quarterly.


Reservoirs . .

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years


These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2003		2004				Min.	Year*
			Oct	Nov	Dec	Jan	Feb	Mar	Mar	of min.
North West	N Command Zone	• 124929	37	33	59	83	99	90	78	1996
	Vyrnwy	55146	59	60	64	86	99	92	59	1996
Northumbrian	Teesdale	• 87936	38	39	48	72	92	88	72	1996
	Kielder	(199175)	(76)	(66)	(64)	(78)	(96)	(90)	(81)	1993
Severn Trent	Clywedog	44922	69	61	73	90	96	90	77	1996
	Derwent Valley	• 39525	40	29	37	65	100	98	46	1996
Yorkshire	Washburn	• 22035	58	46	49	69	97	94	53	1996
	Bradford supply	• 41407	51	42	54	72	89	90	53	1996
Anglian	Grafham	(55490)	(72)	(64)	(67)	(74)	(82)	(88)	(72)	1997
-	Rutland	(116580)	(73)	(66)	(65)	(71)	(81)	(91)	(71)	1992
Thames	London	• 202340	58	49	62	91	97	97	83	1988
	Farmoor	 I 3830 	54	43	59	97	96	92	64	1991
Southern	Bewl	28170	55	48	51	63	96	98	50	1989
	Ardingly	4685	32	15	23	41	95	100	89	1992
Wessex	Clatworthy	5364	25	14	16	54	100	100	82	1992
	BristolWW	• (38666)	(79)	(48)	(44)	(64)	(83)	(91)	(65)	1992
South West	Colliford	28540	64	59	59	54	71	72	57	1997
	Roadford	34500	63	53	51	64	65	68	35	1996
	Wimbleball	21320	46	34	36	72	95	99	72	1996
	Stithians	5205	57	50	46	57	81	93	45	1992
Welsh	Celyn and Brenig	• 131155	77	75	81	91	100	99	69	1996
	Brianne	62140	76	71	81	96	100	92	92	2004
	Big Five	• 69762	48	38	53	76	97	96	85	1988
	Elan Valley	• 99106	48	41	56	88	100	94	88	1993
Scotland(E)	Edinburgh/Mid Lothia	n • 97639	56	48	45	65	77	79	73	1999
	East Lothian	• 10206	61	38	38	78	100	100	91	1990
Scotland(W)	Loch Katrine	• 363	54	40	66	80	98	88	88	2004
	Daer	22412	55	42	73	85	100	94	94	2004
	Loch Thom	• 11840	71	69	72	90	90	90	90	2004
Northern	Total ⁺	•	64	54	59	62	78	81	81	2004
Ireland	Silent Valley	• 20634	62	47	47	54	59	64	57	2002
() figures in paren				xcludes	• •		•••	rrence - see		

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The storage figures relate to the 1988-2004 period only (except for West of Scotland and Northern Ireland where data commence in the mid-1990's). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map... Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of The Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by The Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway with The Met Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by the Environment Agencies. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.

*MORECS is the generic name for The Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office FitzRoy Road Exeter Devon EX1 3PB

Tel.: 0870 900 0100 Fax: 0870 900 5050 E-mail: enquiries@metoffice.com

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs £48 per year. Orders should be addressed to:

Hydrological Summaries National Water Archive CEH Wallingford Maclean Building Crowmarsh Gifford Wallingford Oxfordshire OX108BB Tel.: 01491 838800 Fax: 01491 692424 E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution.

© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

