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ABSTRACT

A complex pattern of zonal currents below the thermocline has been observed in the equatorial Pacific and

Atlantic Oceans. The currents have typical speeds from 10 to 15 cm s21 and extend as deep as 2500 m. Their

structure can be divided into two overlapping parts: the equatorial deep jets (EDJs), centered on the equator

and alternating in the vertical with a wavelength of several hundred meters, and the Equatorial Intermediate

Current system (EICS), composed of currents with large vertical scale and alternating with latitude over

several degrees on either side of the equator. The strongest EICS current is a westward flow on the equator

flanked by eastward currents at 28N and 28S.

In the present study, the authors use idealized numerical simulations and analytical solutions to demon-

strate that the EICS currents within 2.58 from the equator could result from the self-advection with dissipation

of a downward-propagating beam of monthly periodic Yanai (Rossby gravity) waves. The zonally restricted

beam is generated in the eastern part of the basin by instabilities of the swift near-surface equatorial currents.

For a weak Yanai wave amplitude and no dissipation, mean Eulerian currents resembling the three strongest

EICS currents are obtained but only within the beam; in this case, the Eulerian flow is balanced by the wave-

induced Stokes drift, yielding a zero-mean Lagrangian flow, and the water parcels conserve their potential

vorticity (PV) and are stationary over a wave cycle. For larger amplitudes, the Yanai waves break, losing their

energy to small vertical scales where it is dissipated. This dissipation changes the mean (wave averaged) PV of

a water parcel within the beam, allowing the parcel to have a persistent equatorward drift across PV contours.

This can be viewed as a wave-induced Sverdrup transport; by continuity and by virtue of the westward group

velocity of long Rossby waves, this Lagrangian-mean meridional flow requires a Lagrangian-mean zonal

flow within and to the west of the beam, with a meridional structure consistent with the three strongest

EICS currents. This mechanism of EICS formation is active in some ocean general circulation models; its

importance in the ocean remains to be evaluated.

1. Introduction

The mean zonal currents below the thermocline down

to about 2500 m in the Pacific and Atlantic oceans have

a complex meridional and vertical structure (Fig. 1a;

Firing 1987; Firing et al. 1998; Schott et al. 1995; Gouriou

et al. 1999, 2001; Bourlès et al. 2002, 2003; Schott et al.

2003; Ollitrault et al. 2006). The currents may be divided

into two sets. The first set, named the equatorial deep
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jets (EDJs), is composed of currents centered near the

equator and alternating in the vertical with a wavelength

of several hundred meters. The second set is composed

of currents with large vertical scale, alternating every

18–28 in latitude. Although Gouriou et al. (2001) called

them extra-equatorial jets, we prefer the alternative

Equatorial Intermediate Current system (EICS) to ex-

plicitly include the predominantly westward flow on the

equator and to give a sense that these currents form

a closed circulation, as we demonstrate in the present

paper.

The EICS currents have a mean speed of 10–15 cm s21,

with a mean transport of 5–10 Sv (Firing 1987; Schott

et al. 2003; Ollitrault et al. 2006; Brandt et al. 2008).

They have been observed in synoptic sections across

the Pacific and Atlantic Oceans (Firing et al. 1998;

Gouriou et al. 2001). Recently, they have also been

revealed in the mean zonal flow derived from various

float programs (Ollitrault et al. 2006; Lebedev et al.

2007; Figs. 2, 3a). At 1000 m, they are some of the

strongest features of the deep ocean, second only to the

deep subsurface flows found in the Southern Ocean and

along midlatitude western boundaries. They appear as

a set of eastward and westward currents within 108 from

the equator, zonally coherent over a large portion of

each basin. In the Atlantic, the currents are found mainly

in the western basin with the current axes in the North-

ern Hemisphere tilted equatorward to the east. In the

Pacific, the amplitude and meridional positions of the

currents stay remarkably constant over much of the basin

width.

An EICS is present in high-resolution ocean general

circulation models (OGCMs), such as the Ishida et al.

(1998, hereafter I98) model and the OGCM for Earth

FIG. 1. Mean zonal velocity u at 1598W from

(a) observations taken during the Line Island Pro-

filing Project (LIPP; Firing 1987), (b) years 20–22

of the I98 model, and (c) years 41–51 of the OFES

model. The two runs are forced by climatological

winds. The I98 model has 1/48 resolution in the

horizontal and 55 levels, whereas OFES has 1/108

resolution in the horizontal and 54 levels. Details

of the runs can be found in I98 for their model and

Masumoto et al. (2004) for OFES.
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Simulator (OFES; Masumoto et al. 2004), but with sub-

stantial differences between these models, and between

models and observations. Although the meridional struc-

ture of the modeled currents resembles the observations

(Fig. 3), their amplitude and vertical extent are sys-

tematically smaller than in the observations (Figs. 1, 3);

in the Atlantic, only a hint of the currents appears.

Furthermore, although in the Atlantic the EICS is found

in both models west of about 208W in accord with the

observations (Fig. 3), in the Pacific it is found across

almost the entire basin in the I98 model, as in the ob-

servations, but only west of the Gilbert Islands, near

1758E, in OFES. The confinement of the currents to the

western Pacific in OFES puts into question their rele-

vance to the observed EICS.

To our knowledge, no theory involving direct forcing

by the mean wind can explain the EICS. Recently,

d’Orgeville et al. (2007, hereafter D07) and Hua et al.

(2008, hereafter H08) used a highly resolved OGCM to

suggest that both the Atlantic EDJs and EICS result

from the instability of an intraseasonal (about 60-day

period) Yanai (Rossby gravity) wave. The wave was

forced at the western boundary of the basin and had the

vertical structure of a second baroclinic mode. When it

had a sufficiently small zonal wavelength (about 38), it

became unstable, resulting in small-vertical-scale mo-

tions resembling the EDJs and large-vertical-scale mo-

tions resembling the EICS. A limitation of the solution,

however, is that the model EICS is confined within a few

degrees from the western boundary, inconsistent with

the observations. To address this problem, Ménesguen

et al. (2009; hereafter M09) extended the D07 and H08

studies by using a forcing confined to the upper 2500 m

that excited baroclinic Yanai waves and barotropic short

Rossby waves. The former generated the EDJs and the

latter generated the EICS; in this simulation, the baro-

tropic waves propagated fast enough to extend tens of

degrees eastward before becoming unstable, thereby

extending the zonal extent of the EICS. One limitation

of these studies is the artificial nature of the forcing, for

which there is no clear observational basis. Another

limitation is that they do not address the quasi-steady

dynamical balance that maintains the EICS.

In this paper, we propose an alternative way to gen-

erate the EICS using a wave forcing motivated by ob-

servations and OGCMs, and we address the question of

the dynamical balance. The key mechanism that gen-

erates and maintains the EICS is self-advection com-

bined with dissipation of the wave field, typically by

wave breaking. Specifically, in the absence of closed

PV contours, Lagrangian-mean circulation requires

that water parcels change their potential vorticity (PV).

Away from the surface, PV can change irreversibly only

via dissipative processes. In the interior, away from the

western boundary, a dissipating eddy or wave field can

provide the necessary PV change to close the circulation

in that area.

The preceding paragraph is linked to a main result of

the wave–mean-flow interaction theory, the so-called

nonacceleration theorem. Originally developed for the

atmosphere, the theorem states that a zonally averaged

flow can be generated by waves only if the waves are

breaking, a process that involves, in particular, wave

dissipation (Andrews and McIntyre 1976; Boyd 1976;

Dunkerton 1980; McIntyre and Palmer 1983, 1984, 1985;

McIntyre and Norton 1990). A variation of the theorem

FIG. 2. Mean u at 1000 m deduced from Argo floats (Lebedev et al. 2007). The map has been

constructed by bin averaging over a 18 3 18 grid. The average number of estimates per bin is

about 10. White bins have no observations. Estimated errors reach ,0.5 cm s21 near the

equator.
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relevant to oceanography applies to time-mean flows, in

which case, the theorem states that no steady Lagrangian

flow in a rotating basin with no closed PV contours is

possible if the waves are conservative (Moore 1970; see

also section 4). A corollary is that, if there is no dissi-

pation, the Eulerian-mean flow is exactly cancelled by

the wave-induced Stokes drift, so the net displacements

of water parcels are zero over a wave cycle. Hence, we

use the decomposition of the Lagrangian-mean flow

UL into the Eulerian-mean flow UE and the Stokes

drift US,

U
L

5 U
E

1 U
S
, (1)

to show explicitly the role of dissipation in controlling the

Lagrangian circulation. The Eulerian-mean flow, which is

often the quantity measured, is then obtained by sub-

tracting the Stokes drift from the Lagrangian-mean flow.

In this study, we use idealized numerical and analytical

ocean models to study the response forced by a beam of

monthly periodic Yanai waves, which is generated near

the surface by instabilities of surface currents and then

radiates into the deep ocean. The beam is restricted in

longitude and decays as it descends eastward, changing

the PV of water parcels and hence enabling the genera-

tion of mean, equatorward flows on either side of the

equator (Fig. 3b). These flows, in turn, generate mean

zonal flows (the model EICS), which extend westward

from the beam to the western boundary via the propa-

gation of long Rossby waves during spinup. There, the PV

changes are reversed in viscid, western boundary currents,

where the water parcels return to their original latitudes.

FIG. 3. Mean u from (a) Argo floats at 1000 m and (b) the I98 model and (c) OFES averaged

between 500 and 1000 m. Time means are the same as in Figs. 1 and 2. An illustration of the

mechanism suggested to trigger the EICS currents is superimposed in (b): the currents are part

of a circulation (arrows) that is generated westward from and recirculates within a beam of

dissipated Yanai waves in the eastern basin (shaded disk).
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The paper is organized as follows: Section 2 reviews

evidence for monthly periodic Yanai beams in both

observations and models of the Pacific and Atlantic

Oceans. Model results from previous works as well as

from a new analysis of the I98 and OFES models are

reported. Section 3 describes our numerical model and

then reports solutions in which a beam of Yanai waves

generates mean flows that resemble the EICS; the dis-

sipation of the Yanai beam in these simulations is shown

to result from its breaking via a complex cascade of

energy toward the model grid scale. Section 4 explains

the dynamics by presenting an approximate analytical

solution for the EICS as a result of a Yanai beam dis-

sipated by Rayleigh friction and compares it to the nu-

merical solutions. To conclude, section 5 discusses the

strengths and weaknesses of the theory and its relation

to other theories.

2. Monthly periodic Yanai waves

Intraseasonal Yanai waves are hypothesized to modify

water parcel PV so as to drive the EICS. These waves are

found in the central–eastern Pacific and western–central

Atlantic, where they form beams propagating downward

to the east. Here, we review their characteristics in ob-

servations and numerical models, first in the literature

(section 2a) and then in our new analyses of the I98 and

OFES solutions (section 2b). Because self-advection and

dissipation of the waves play an important role in the

formation of the EICS, we also discuss in section 2b

the amplitude, level of nonlinearity, and dissipation of

the Yanai beams in the I98 and OFES models.

a. Previous results

1) OBSERVATIONS

Observations of deep intraseasonal variability near

the equator are sparse. They are limited to about a half-

dozen moored measurements of velocity in the Pacific

and Atlantic Oceans.

In the eastern Pacific, Harvey and Patzert (1976) re-

ported an intraseasonal motion near the ocean bottom

near 958W. Although their time series was only two

months long, they identified an oscillation with a 25-day

period, 1000-km zonal wavelength, and amplitude of

4 cm s21, with phase propagating westward at 50 cm s21.

They interpreted it as a first-meridional-mode equato-

rial Rossby wave, but Cox (1980) later suggested that

their data are also consistent with the signal being

a Yanai wave. Farther west, Eriksen (1985) and Eriksen

and Richman (1988; Fig. 4a) analyzed 2-yr time series

near 1458W at depths of 1500 and 3000 m, finding that

energy was distributed over a broad band in frequency

but a narrow band in zonal wavenumber. Although their

error bars are large, they estimated that the motion was

consistent with first-meridional-mode Rossby waves for

periods of 45 days and longer and with Yanai waves for

periods of 30 days and shorter, both with a zonal

wavelength longer than 1000 km. They suggested that

both waves originated from instabilities of the upper

equatorial currents in the central–eastern Pacific, par-

ticularly from tropical instability waves (TIWs). Ob-

servations of intraseasonal meridional motions at depth

in the eastern Pacific near 1108W were also made as part

of the Equatorial Pacific Ocean Climate Studies (EPOCS)

program but to our knowledge were never reported in

the literature.1 The spectrum, presented in Fig. 4b, shows

a peak near the monthly period.

In the eastern Atlantic near 38W, Weisberg et al.

(1979) and Weisberg and Horigan (1981; Fig. 4c) re-

ported a monthly periodic Yanai wave between 500 and

2000 m in a 1.5-yr time series, with upward-propagating

phase, zonal wavelength of about 1200 km, and zonal

phase speed of about 50 cm s21. They inferred that the

wave originated from the upper-ocean instabilities.

Farther west, at 238 and 108W, motions in the 20–45-day

period band dominated the meridional velocity y, espe-

cially near 1500-m depth (Bunge et al. 2006, 2008; von

Schuckmann et al. 2008).

2) MODELS

In numerical models of the tropical Pacific, Cox (1980)

and Masina and Philander (1999) reported deep motions

radiating from the upper-ocean instabilities, consistent

with first-meridional-mode Rossby and Yanai waves.

Cox (1980) fit the deep signal with 1.1-month period and

1000-km zonal wavelength waves, with the Rossby waves

being nearly barotropic and the Yanai waves having a

vertical wavelength of about 1800 m. In Masina and

Philander (1999), the Rossby and Yanai waves were found

to have zonal wavelengths of about 1200 and 900 km,

respectively.

In the Atlantic, Li and Chang (1999) described the full

spectrum of equatorial waves present in their OGCM.

Near 2000-m depth, they found the dominant signal west

of 108W to be a monthly periodic Yanai wave with

a zonal wavelength of 800–1000 km.

b. I98 and OFES solutions

1) YANAI BEAM

In the I98 and OFES solutions, monthly periodic Yanai

waves form well-defined beams in both the central-eastern

1 Tang et al. (1988) introduced the data, but only the motions

with a period longer than 36 days were analyzed.
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Pacific and western–central Atlantic (Figs. 4, 5). In the

Pacific, the Yanai waves have a period of 30 days and

a zonal wavelength of 1000 km; in the Atlantic, a period

of 35 days and a zonal wavelength of 750 km. These are

within the range of previous estimates from observa-

tions and models. The beams are modulated annually,

as in the observations, because of the annual cycle of

the upper-ocean instabilities that generate them (e.g.,

Menkes et al. 2002; Lyman et al. 2007). Because few

observations are available, however, we do not know if

the beams in these models have a realistic structure.

2) AMPLITUDE

The amplitude of the monthly periodic Yanai waves in

the observations and models is estimated by the depth–

time mean amplitude of y at the equator between 400

and 1000 m in the 22–49-day band obtained from com-

plex demodulation of the time series at each depth. In

the Atlantic, the amplitude observed east of the beam

near 38W is about 4 cm s21, whereas the I98 and OFES

models yield about 5 cm s21. From 408–208W, the wave

amplitude is about 9 cm s21 in the two models, consis-

tent with the observations at 238W of Bunge et al.

(2008). In the Pacific, the observed amplitude is about

6 cm s21 near 1428W and 7 cm s21 near 1108W, whereas

the corresponding amplitudes are 1–1.3 times larger in

OFES and 2–3 times larger in the I98 model. The high

amplitude in the I98 model presumably results from the

unrealistically strong equatorial wind field used to force

it (Harrison 1989). On the other hand, the observations

may be biased low by the weaker than normal upper-

ocean instabilities and waves caused by the 1982/83

El Niño being included in the periods of observation

(Yu and Liu 2003). Hence, the OFES Yanai wave am-

plitude may be realistic as a long-term mean.

3) NONLINEARITY

Two characteristics of the Yanai waves are essential to

the present theory: 1) finite amplitude and 2) dissipation.

A measure of nonlinearity for waves is the ratio M of the

amplitude of the wave velocity in the direction of phase

propagation to its phase velocity (Gill 1974). For a Yanai

wave,

M 5
U

jv
A

/k
A
j 5
jk

A
jVffiffiffiffiffiffiffiffi

bc
A

p , (2)

where vA is the frequency of the Yanai wave; kA is its

zonal wavenumber, U and V are the amplitude of u and

FIG. 4. Averaged power spectrum density (PSD) in equatorial y from the I98 model (red) and OFES (magenta)

compared to observed ones (blue), where cycles per day (cpd) are used as a unit. The locations of the moorings are

shown in Fig. 5. The model PSD are obtained from years 20–22 in the I98 model and year 46 in OFES. They are

averaged between 400- and 1000-m depth and over (a) 1488–1388W, (b) 1118–1108W, and (c) 48–38W. Observations

are (a) near 1458W from the Pacific Equatorial Ocean Dynamics (PEQUOD) program during 1980–83 (Eriksen and

Richman 1988), (b) near 1108W from EPOCS during 1980–82 (Tang et al. 1988), and (c) near 48W from Weisberg and

Horigan (1981) during 1977–78, with selected moorings between 400 and 1000 m and within 0.18 from the equator.

The 22–49-day-period band is limited by the dashed lines.
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y, respectively; b is the planetary vorticity gradient; and

cA is the gravity wave speed. The second equality in (2) is

obtained using the relative scaling of u and y for a Yanai

wave (see appendix). For a 30-day and 1000-km Yanai

wave, cA is about 53 cm s21 and M within the Pacific

beam is about 0.1–0.15 in the observations, 0.1–0.2 in

OFES, and 0.1–0.4 in the I98 model. Within the Atlantic

beam, it is about 0.1–0.3 in both models. The waves are

thus weakly to moderately nonlinear.

4) DISSIPATION

Dissipation of the beam is needed to obtain the EICS.

A discussion of the cause of that dissipation based on the

present numerical simulations is given in section 3d.

Here, we only note that the Yanai waves in the obser-

vations and models decay downward and eastward along

the beam axis. As in the analytical solutions (section 4),

the effective dissipation is parameterized by Rayleigh

friction, with a coefficient r that can be calculated ap-

proximately from the vertical decay of the Yanai beam.

After removing the effect of the depth-variable stratifi-

cation via stretching and scaling (Gill 1982), the decay is

computed from the profile of the Yanai wave amplitude.

One obtains r/vA of about 0.01–0.03 for the beam in

the Pacific and Atlantic in the I98 model; with a time

scale of 6–18 months, the dissipation is weak.

3. Numerical solutions

In this section, numerical simulations are used to test

the hypothesis that an intraseasonal Yanai beam can

generate the EICS. We first introduce the model, its

configuration and the set of experiments (section 3a).

We then present results from two solutions, which il-

lustrate the importance of dissipation to obtain an EICS

that extends across the basin: one with weak forcing and

negligible beam decay and the other with standard forc-

ing and substantial beam decay (section 3b). The sensi-

tivity of the solution to the amplitude of the forcing is

studied further with additional experiments (section 3c).

We conclude by discussing the breaking of the Yanai

beam and the cascade of energy toward small scales re-

sponsible for the beam decay (section 3d).

a. Model configuration and experiments

In this section, idealized numerical simulations are

performed to study the formation of the EICS from

a dissipated beam of monthly periodic Yanai waves. The

Parallel Ocean Program (POP) model (e.g., Maltrud

and McClean 2005) is used. In all experiments, it is

configured with 100 levels uniformly spaced over the

5000-m water column for a vertical grid spacing of Dz 5

50 m. The horizontal grid spacing Dx is 1/48 in both lon-

gitude and latitude as in the I98 model.

FIG. 5. Standard deviation (STD) of equatorial y in (a) the I98 model during years 20–22 and

(b) OFES during year 46. White squares show the location of the moorings used in Fig. 4.
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The basin is rectangular, extending from 208S to 208N

and 728 in longitude. It has vertical walls and an irregu-

lar bottom topography, designed to reduce the reflection

of inertia–gravity waves generated by the self-advection

of the Yanai beam. Bottom friction is included using

a quadratic bottom drag formula with a dimensionless

coefficient of 2 3 1023. Biharmonic horizontal mixing

is used with coefficients for momentum and tracers

of 22 3 1014 m4 s21. The vertical mixing scheme of

Pacanowski and Philander (1981) is adopted with a back-

ground diffusivity of 1025 m2 s21 for both momentum

and tracers.

Each simulation starts with the ocean at rest and a

horizontally uniform linear profile of background potential

density r̂(z) 5 r̂zz. The background buoyancy frequency

is N̂ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gr̂z/r0

p
5 2 3 10�3 s�1, where g is the gravi-

tational acceleration and r0 is a constant potential density.

With temperature restored at the surface on a time scale of

a month, salinity uniform and constant at 35 psu, and weak

tracer diffusion, the instantaneous stratification deviates

little from the background stratification. All time averages

are performed in isopycnal coordinates for consistency

with the analytical development in section 4. For plotting,

r is mapped back to z using the background field.

FIG. 6. Snapshot of y along the equator in the standard case: (a) numerical solution (N0.5)

and (b) analytical solution. The slanted dashed lines show the ray slope expected by theory and

the edges of the beam within which zonal averages are taken. The horizontal lines show the

depth range (from zmax 5 21000 m to zmin 5 22250 m) over which averages along the beam

are performed.
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All simulations are run for 10 yr, and annual or

monthly averages are archived for the entire run. The

initial transients are evident only within the first 3 yr.

Analyses are performed during the last 3 yr of the runs

(years 7–9), for which 5-day averages (called ‘‘snap-

shots’’) have been archived. One experiment (N0.25)

was run for an additional 11 yr to explore low-frequency

variability and the cause of beam decay (section 3d).

For simplicity, we do not force the model with realistic

winds that can generate unstable surface currents. In-

stead, to mimic the generation of a beam of monthly

Yanai waves by upper-ocean instabilities, we force the

ocean with a patch of meridional wind stress located in

the center of the basin:

tY 5 tX(x)Y(y) sin(k
A

x� v
A

t). (3)

To form a beam, the zonal profile X(x) extends only 208

in longitude with a 58 taper to zero on each side. The

meridional profile Y(y) is a 68-wide Blackman window

centered on the equator.

With one exception, the spectrum of the surface stress

is narrow band (NB) in both frequency and zonal wave-

number,withvA 5 2p/33 day21 and kA 5 22p/1000 km21.

The forcing is thus a westward-propagating wind that

excites a Yanai wave with a vertical wavelength of about

1700 m and a gravity wave speed cA of about 53 cm s21.

The exception is one experiment (N0.5_BB) where the

spectrum of the forcing is broad band (BB), to mimic

the modulation of the Yanai waves by the annual cycle

and interannual variability. The BB forcing is the sum

of randomly phased waves with periods varying from 27

to 43 days and zonal wavelengths varying from 770 to

1430 km, consistent with observations (section 2).

Figure 6a shows a snapshot of y at the equator in one

typical experiment (N0.5): the forcing excites a beam that

propagates downward and to the east, consistent with ray

theory. The beam reaches the 5000-m ocean bottom within

a year. It then ultimately reaches the eastern boundary,

either directly or after reflection at the bottom into an

eastward and upward beam. At the eastern boundary, the

beam reflects into coastal Kelvin waves (McCreary 1984)

that propagate the energy poleward, where it is dissipated

along the basin boundaries (Fig. 6a). In N0.5_BB, the re-

sulting beam broadens only slightly with depth and is

otherwise similar to the beam shown in Fig. 6a.

Six experiments that differ in their surface stress have

been performed (Table 1). Experiment N0.5 is central;

the stress has a ‘‘standard’’ amplitude of t 5 t0 5 0.5 dyn

cm22 and forces a beam with an amplitude of about 15–

20 cm s21 between 500- and 1500-m depth, similar to that

in the Pacific in the I98 model. Experiments N0.05,

N0.125, N0.25, and N1 explore the sensitivity of the nu-

merical solution to the amplitude of the forcing. They are

forced with weak (t0/10 and t0/4), moderate (t0/2), and

strong (2t0) forcings, respectively. Experiment N0.5_BB is

identical to N0.5 except that the forcing is BB.

b. Weak and standard forcings: N0.05 and N0.5

Results from the weak (N0.05) and standard (N0.5)

experiments are described in parallel to illustrate the

key role of dissipation. Although the amplitude of the

Yanai beam is relatively depth independent in the first

case, it decays in the second (Fig. 7). The decay is due to

TABLE 1. List of the six experiments with their name, the STD

t of the surface stress, and their type. The number appearing in

each experiment name equals the t value used. All experiments are

run with 100 levels and 1/48 resolution in the horizontal. Properties

that differ from their standard value in N0.5 are shown in bold.

Name t (dyn cm22) Type

N0.5 t0 (0.5) NB

N0.05 t0/10 (0.05) NB

N0.125 t0/4 (0.125) NB

N0.25 t0/2 (0.25) NB

N1 2t0 (1) NB

N0.5_BB t0 (0.5) BB

FIG. 7. Vertical profiles of the beam amplitude in the runs with

varying forcing amplitude constructed from the amplitude of equa-

torial y at the 1.1-month period and averaged between the two edges

of the beam shown in Fig. 6. The amplitude is plotted as the mea-

sure M of wave nonlinearity, M 5 kj jV/
ffiffiffiffiffiffiffiffiffi
bc

A

p
, where k 5 kA 5

22p/1000 km21, cA ’ 53 cm s21, and V is the amplitude of the

meridional velocity. The dashed lines are exponential fits (see text).
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the breaking of the Yanai beam, which drains its energy

down to the model’s grid scale where it is dissipated.

This cascade of energy is discussed further in section 3d,

but for now we simply note that the beam can be con-

sidered inviscid in the weak case, whereas it is effectively

dissipated with depth in the standard case.

In both cases, within the beam and below 1000 m,

there appears a set of large-vertical-scale Eulerian-mean

zonal currents forming a structure resembling the EICS

within 2.58 from the equator: a westward current on the

equator and eastward currents near 28 from the equator

as seen in Figs. 8a,b, (and Fig. 9). In the standard case, an

additional pair of westward currents is found near 38

from the equator, consistent with the EICS. The velocity

extrema are similar to those obtained in the Pacific in the

I98 model, but they are weaker than in the observations

of Firing (1987), especially with respect to the eastward

current at 28S.

Apart from amplitude, the largest difference between

the two experiments is the zonal extent of the currents as

shown in Figs. 10a,b. In the weak case, the currents are

constrained to lie within the beam, whereas in the

standard case they extend westward to the boundary,

with the same large-vertical-scale structure as within the

beam. This difference, together with the difference in

the vertical decay of the beam, suggests that dissipation

of the Yanai waves is the key to obtaining currents over

a large portion of the basin.

FIG. 8. Mean Eulerian zonal velocity UE at x 5 5000 km over model years 7–9 from the (a) weak

(N0.05) and (b) standard (N0.5) numerical experiments and over a wave cycle from the (c) weak and

(d) standard analytical solutions. Here and in all subsequent figures, time averaging is performed along

isopycnals and plotted against z (see section 3.1).
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c. Sensitivity to forcing

To quantify how the amplitude and the decay scale

vary with the forcing amplitude, each Yanai beam pro-

file of Fig. 7 is fit by an exponentially decaying profile

between 1000- and 3000-m depth:

V(r) ’ c
A
�

A
(r) 5 c

A
�

A,0
e�mi

A
(r/r̂

z
), (4)

where �A,0 is the dimensionless amplitude of the expo-

nential profile at r 5 0 (z 5 0) and mA
i is its decay rate

(unit of m21) with depth. The resulting profiles are

plotted as dashed curves in Fig. 7. As we shall see in

section 4, these profiles correspond approximately to

the analytical solution for a Yanai beam dissipated by

Rayleigh friction, for which mA
i is the imaginary part

of the vertical wavenumber mA and is related to the

Rayleigh friction coefficient r. In the present regime of

weak dissipation (r/vA� 1), mA
i is nearly proportional to r.

As expected, the amplitude of the Yanai beam itself

varies linearly with the amplitude of the forcing (not

shown). Except in the two weak experiments (N0.05 and

N0.125) where they are virtually zero, the decay rate

mA
i and the effective dissipation r also increase with the

forcing amplitude (N0.25, N0.5, and N1; Fig. 7); hence,

they also increase with the beam amplitude (Fig. 11,

black line). This relationship is consistent with the idea

that the dissipation arises from the cascade of energy

toward the model’s grid scale via the breaking of the

Yanai waves (see section 3d). The fact that there is

virtually no dissipation in the two weak experiments

suggests that either 1) the cascade of energy has not yet

developed in these two experiments or 2) there is a

threshold in amplitude below which the cascade does

not occur.

As in the weak and standard cases, the EICS currents

within 2.58 from the equator are obtained within the

beam in all experiments and to the west of the beam only

when the beam is dissipated with depth. The amplitude

of the EICS currents within the beam varies quasi qua-

dratically with the beam amplitude (Fig. 11, red and blue

lines), suggesting that the EICS is generated by the self-

advection of the beam. For the strongest beam, how-

ever, the EICS currents are weaker than expected from

FIG. 9. Mean Eulerian zonal velocity UE at 1598W averaged

between 400 and 1500 m from LIPP observations and years 20–22

of the I98 model, and west of the beam (at x 5 3000 km) and along-

beam averaged between zmax and zmin (see Fig. 6) over years 7–9 of

N0.5 and N0.5_BB.

FIG. 10. As in Fig. 8, but for top view of the mean Eulerian zonal velocity. The flow is averaged along the

beam between zmax and zmin (see Fig. 6) and plotted vs x of zmax.
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a quadratic relationship. The analytical solution (section 4)

suggests that this discrepancy arises because the dissi-

pation is also increasing with the beam amplitude; with

constant dissipation, the relation is exactly quadratic.

The EICS currents west of the beam also strengthen

with forcing amplitude, and the relation is quadratic as

long as the beam is dissipated (Fig. 11, magenta and cyan

lines). Because there is virtually no dissipation for the

cases with weak forcing (N0.05 and N0.125), we do not

expect the nonzero mean currents obtained west of the

beam in these experiments to correspond to EICS cur-

rents; indeed, once the difference in beam amplitude is

corrected, these currents are much weaker and have

a different meridional structure than in the cases with

dissipation (Fig. 12a). These currents are likely the result

of nonlinear processes involving other high-frequency

variability that may be a residual of the spinup or of the

beam energy that has not been entirely dissipated along

the basin boundaries.

Because the dissipation and the EICS both increase

with the forcing, it is not clear how the EICS relates to

the dissipation independently of the forcing. Based on

results from our analytical model (section 4), we have

found that a useful measure is to compare the ampli-

tude ratio of the flows (west of/within) the beam against

dissipation, a plot of which is shown in Fig. 13. The ratio

is roughly constant provided the beam is dissipated; the

westward equatorial current and eastward currents at

28N–28S to the west of the beam are about 20%–40%

and 60%–80% weaker than those within the beam, re-

spectively. This property suggests that, as long as dissipa-

tion occurs, the amplitude of the currents is independent

of the level of dissipation. We will see in section 4 that this

result is one inconsistency between the numerical and

analytical solutions.

The meridional structure of the EICS within the beam

is insensitive to the forcing amplitude (Fig. 12b); the

main qualitative difference is that off-equatorial west-

ward currents appear only in the experiments with

standard and strong forcing (N0.5 and N1). West of the

beam, however, the meridional structure of the EICS

differs much more among the experiments (Fig. 12a).

FIG. 11. Amplitude (cm s21; colors) of the EICS currents and dimensionless dissipation (r/vA;

black) vs the beam amplitude �A,0 (cm s21) at z 5 0 in the experiments varying with forcing

amplitude. The amplitude is defined as the maximum speed of the current averaged as in Fig. 10

and subsequently averaged between x 5 1000 and 3000 km for the region to the west of the

beam and between the two edges of the beam for the region within the beam: blue and cyan

correspond to the westward current within 18 from the equator and red and magenta correspond

to the eastward current north of 18N. The dashed lines show a linear and quadratic law.
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With moderate (N0.25), standard (N0.5), and strong

(N1) forcing, the structure is similar to that within the

beam.

The beam and the EICS obtained in the experiment

with BB forcing are similar to those in the standard run

(Fig. 9). The main difference is that the off-equatorial

currents are a bit stronger and shifted equatorward by

½8. Thus, the mechanism responsible for the EICS in the

experiments with NB forcing is not sensitive to a realistic

modulation of the forcing.

d. Cause of the beam decay

The increase of dissipation with beam amplitude is

consistent with the nonlinear transfer of the Yanai wave

FIG. 12. Mean Eulerian zonal velocity UE in the numerical experiments varying in forcing amplitude. The velocity is along-beam

averaged between zmax and zmin (see Fig. 6) over model years 7–9: (a) west of the beam (zonally averaged between x 5 1000 and 3000 km)

and (b) within the beam (zonally averaged between the beam edges). The velocity has been normalized by [�A,0(N0.5)/�A,0(Ni)]2 where

�A,0(Ni) is �A,0 calculated for experiment Ni. If the amplitude of the currents would vary exactly as a quadratic law with the beam

amplitude, all profiles would collapse onto one.

FIG. 13. Ratio of the amplitude of the EICs currents (west of/within) the beam vs r/vA: in the

numerical experiments varying in forcing amplitude (solid lines) and the analytical solutions

(dashed lines). The definition of the amplitude of the EICs currents is the same as in Fig. 11.
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energy to other frequencies and spatial scales. In the two

weak experiments (N0.05 and N0.125), the beam is

weakly nonlinear (M ’ 0.05–0.15). Less than 2% of the

total kinetic energy is found outside the forcing fre-

quency band (32–34 days) and the profile of equatorial V

within the beam is sinusoidal (Fig. 14). In going from the

moderate (N0.25) to standard (N0.5) to strong (N1)

experiments, the beam becomes more and more non-

linear, with M increasing from about 0.2 to 0.5, energy

outside the forcing frequency band rising from 17% to

30%, and small-vertical-scale motions appearing super-

imposed on the Yanai beam (Fig. 14).

Although the energy is distributed continuously over

frequency and wavenumber space in experiments with

standard and strong forcing, it appears as a set of dis-

crete peaks with moderate forcing (N0.25; Fig. 15), ex-

posing the multiple nonlinear interactions responsible

for the spread of energy over time and space. As de-

scribed in section 4, the first energy transfer is from the

directly forced Yanai wave (of frequency vA and wave-

number kA; A in Fig. 15) to the mean flow (D in Fig. 15).

The self-advection of the wave also transfers some of

its energy to a 2vA and 2kA inertia-gravity wave (E in

Fig. 15); this is observed as a free wave radiating away

from the beam (not shown).

The second energy transfer involves the near-

simultaneous appearance of two types of motion con-

fined to the beam: a 36-day wave (B in Fig. 15) and a

near-annual motion (C in Fig. 15). The 36-day wave has

little zonal variation within the beam, a 550-m wave-

length in the vertical, and the meridional structure of a

Yanai wave. The near-annual motion has the same zonal

wavelength as the directly forced Yanai wave, half its

vertical wavelength, and a meridional structure that re-

sembles that of a first-meridional-mode, short-wavelength

Rossby wave. Its energy, however, is confined to the

beam rather than radiating out along the Rossby wave

ray path, suggesting that the near-annual motion is not

a free wave of the system. Furthermore, the spectral peaks

corresponding to motions B and C are related by the

simple relationship

u
A

5 u
B

1 u
C

, (5)

where ui 5 (vi, ki, mi) is the wave vector of wave i and

vi, ki, and mi are its frequency, zonal, and vertical wave-

numbers, respectively. Thus, the system has developed

a second independent wave (degree of freedom), with

the third wave then determined from the two indepen-

dent ones.

Suppose that the second independent motion is wave

C. Then, in further interactions, the wave vector u of

each subsequent wave is determined by

u 5 nu
A

6 pu
C

, (6)

where n and p are integers. These interactions result in

the energy being distributed over bands that are parallel

in the frequency–wavenumber space to the wave vector

of the near-annual motion (dashed white line in Fig. 15).

An example of the chronology of these nonlinear in-

teractions is shown in Fig. 16. After year 4, the near-

annual motion and the 36-day wave (blue and magenta

in Fig. 16a) start to grow on the energy of the directly

forced Yanai wave (red in Fig. 16a). These and further

interactions result in an increase in energy at small ver-

tical scales and in the effective dissipation of the beam,

mainly via vertical friction of horizontal momentum

(Fig. 16b). This process is generally known as wave

breaking and is qualitatively similar to the breaking of

internal gravity waves (McEwan 1971). The dissipating

waves generate EICS currents to the west of the beam

after year 7 (Fig. 16c). The amplitude of the EICS stays

constant up to year 14 and then increases again following

an increase in the explicit dissipation (Fig. 16b). The

increase in explicit dissipation may be associated with

motions in the 50–100-day band that appear at that time.

In this experiment, the EICS takes about 7–10 yr to

appear in the west (Fig. 16c), whereas it takes less than

FIG. 14. Vertical profiles of equatorial y on Jan 1 of model year 8

near x 5 6500 km (within the beam) and normalized by t0/t in the

weak (N0.05) and standard (N0.5) cases.
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3 yr to appear in the experiments with standard and

strong forcing, which is consistent with the idea that the

beam breaks more rapidly with larger amplitude. There-

fore, it is possible that, if the experiments with weak forcing

were run longer, the breaking would eventually occur,

causing dissipation of the Yanai beam. Unfortunately, we

have no explanation of why the breaking of the beam starts

with the near-annual motion and the 36-day wave.

As noted earlier, in the experiments with stronger

forcing, the spectrum looks very much like that of the

moderate case, except that energy is distributed con-

tinuously within each energy band. Such behavior, from

discrete peaks at moderate amplitude to continuous

energy distribution at larger amplitude, is typical of the

quasi-periodic route to turbulence (Bergé et al. 1984).

See McCreary and Yu (1992) for an example of a sim-

ilar route to turbulence in a numerical model of the

equatorial ocean.

4. Analytical solution

In this section, we construct an analytical solution

for the Eulerian-mean flow obtained in the numerical

simulations. We assume that the Yanai beam has a weak

amplitude O(�), where � is a small parameter; it is weakly

dissipated by Rayleigh friction while its energy is prop-

agating downward and to the east, but it is persistently

forced at the surface so that the amplitude � is a function

of depth but not of time. We assume also that there is no

motion at O(1) and that the Yanai beam is the only

motion at O(�), and we look for the time-independent

solution at O(�2) that results from self-advection com-

bined with dissipation of the Yanai beam.

We used two different approaches. One approach

computes the Eulerian-mean flow directly. First, the

Eulerian means of the advective terms resulting from

the dissipated Yanai beam are calculated, and then they

are used to force the Eulerian-mean solution at O(�2)

(for details, see Ascani 2008). In this case, however, the

role of dissipation in forming Eulerian-mean flow to the

west of the beam is difficult to interpret physically be-

cause it depends on the changes in relative phase be-

tween wave quantities.

The second approach computes the Eulerian-mean

flow UE from the difference between the Lagrangian-

mean flow UL and the Stokes drift US; that is,

FIG. 15. Power spectrum in k–v space averaged between 1000 and 3000 m of equatorial

horizontal velocity over years 7–9 in the moderate case (N0.25). The spectrum is obtained by

summing the spectra of u and y. The circles indicate some of the waves that take part in the

transfer of energy throughout the frequency–wavenumber space: directly forced vA Yanai

wave (A), 36-day Yanai wave (B), near-annual motion (C), mean flow (D), and 2vA wave (E).

The dashed white line is a parallel to the wave vector of the near-annual motion.
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U
E

5 U
L
�U

S
. (7)

The Lagrangian-mean flow is computed from the PV

equation using the kinematic properties of a Lagrangian

mean (defined later) as described by the generalized

Lagrangian-mean (GLM) theory of Andrews and McIntyre

(1978), whereas the Stokes drift is a purely kinematic

quantity and is deduced directly from the wave field alone.

This approach enables us to show explicitly the role of

dissipation in the Lagrangian circulation. Furthermore, it

enables us to reformulate the nonacceleration theorem

for the case of time-mean flow in a rotating basin lacking

closed PV contours, a version that has not been empha-

sized in literature. For these reasons, only the second

approach is presented.

In the following, we first introduce the Eulerian-mean,

Lagrangian-mean, and Stokes operators, as well as the

expansion in � [section 4a(1)]. We derive the solution

for the Stokes drift and Lagrangian-mean flow [sections

4a(2) and 4a(3)]. We then discuss our analytical re-

sults, comparing them to two of our numerical solutions

[section 4b(1)] and exploring their sensitivity to the central

FIG. 16. Chronology of the energy cascade in the moderate case (N0.25): (a) amplitude of the

equatorial horizontal velocity (square root of the sum of squared amplitude of zonal and

meridional velocity) for waves A, B, and C (see Fig. 15), calculated from Fourier decom-

position; (b) effective dissipation of the beam via r/vA and explicit dissipation via the work lost

by vertical friction; and (c) ratio of the amplitude of the westward equatorial current (west of/

within) the beam. In all cases, the quantities are computed over 3-yr-long segments translated

by a year. The work is computed at the equator and averaged along the beam between zmax and

zmin (see Fig. 6) and between the beam edges.

MAY 2010 A S C A N I E T A L . 1133



period and zonal wavelength of the Yanai beam [sec-

tion 4b(2)].

a. Derivation

1) EULERIAN-MEAN, LAGRANGIAN-MEAN,
AND STOKES OPERATORS

We define the Eulerian-mean operator () for any

quantity q(x, t) as

q(x, t) 5
1

T

ðT

0

q(x, t) dt, (8)

where x is the position vector, t is time, and T corre-

sponds to one wave cycle. With no diapycnal mixing,

water parcels are restricted to isopycnal surfaces. For

this reason, we use isopycnal coordinates: The position

vector is defined as x 5 (x, y, r), where x and y are the

zonal and meridional coordinates, respectively, and r is

the potential density. The Eulerian-mean flow is thus

U
E

5 (U
E

, V
E

) 5 (u, y), (9)

where u and y are the zonal and meridional velocity

along isopycnal surfaces, respectively. In the following,

the actual position of a parcel is xj; its Eulerian-mean

position between 0 and T is x; and its displacement

anomaly j 5 xj 2 x which assures that �j 5 0. With no

diapycnal mixing, the r component of j is zero.

The Lagrangian-mean operator ()
L

is defined as

qL 5 qj, (10)

where qj 5 q(x 1 j, t) is the value of q following a parcel

that has an Eulerian-mean position x (Andrews and

McIntyre 1978; Bühler 2009). Because qL is associated with

the fixed Eulerian position x, it is not a purely Lagrangian

quantity in the classic sense but is rather a hybrid Eulerian–

Lagrangian quantity. The Lagrangian-mean velocity is

defined as

U
L

5 (U
L

, V
L

) 5 (uL, yL). (11)

The key kinematical property of the Lagrangian-

mean operator is

Dq

Dt

L

5
D

Dt

L

qL, (12)

where

D

Dt
5 ›

t
1 u›

x
1 y›

y
(13)

is the derivative following the motion and

D
L

Dt
5 ›

t
1 U

L
›

x
1 V

L
›

y
. (14)

Equation (12) is the central result of the GLM theory,

and we refer to Andrews and McIntyre (1978) for its

derivation (see also McIntyre 1980).

The Stokes operator ()
S

is defined as

qS 5 qL � q(x, t), (15)

and the Stokes drift is defined as

U
s
5 (U

S
, V

S
) 5 (uS, yS). (16)

However, we can calculate qS directly from the wave

field without calculating first qL and q(x, t), if we expand

q in powers of �:

q(x, t) 5 q
0

1 q
1

1 q
2

1 O(�3), (17)

where qn is O(�n) and is evaluated at (x, t). In (17), q0 5 0

for most quantities, because we are considering an os-

cillatory Yanai beam. The exceptions are for PV and the

background stratification, which do have a contribution

at lowest order.

Using this expansion, the Stokes operator takes the

following explicit form for any quantity that has no ze-

roth order (q0 5 0). We start with a Taylor expansion of

qj (Andrews and McIntyre 1978):

qj 5 q(x, t) 1 j � $q(x, t) 1 O(�3). (18)

Applying the Eulerian-mean operator to (18) and using

(10), (15), and the expansion (17) gives the leading order

O(�2) of the Stokes operator in terms of wave quantities

alone,

qS 5 j
1
� $q

1
1 O(�3), (19)

where j1 is the first-order displacement anomaly and is

calculated by integrating the wave velocity field with time,

j
1

5

ðt

0

(u
1
, y

1
)(x, t9) dt9. (20)

2) STOKES DRIFT

According to (16) and (19),

U
S

5 j
1
� $u

1
1 O(�3) and (21)

V
S

5 j
1
� $y

1
1 O(�3). (22)

The Stokes drift is the net displacement of water parcels

over a wave cycle based on the wave field alone; it is
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purely kinematic. It is given by the correlation between

the position of the water parcel and the local gradient of

the wave velocity field. For an inviscid Yanai wave, this

correlation is nonzero: j1 is in phase with $u1 and 908 out

of phase with $y1 so that the Stokes drift is purely zonal.

Thus, when the dissipation is weak, the changes that

appear in the relative phase between wave quantities

can be ignored and the Stokes drift can then be ap-

proximated by the viscid wave solution that takes into

account only the decay of amplitude with depth. We

have checked numerically that this is indeed true. This

wave solution and the method for applying (21) and (22)

to a Yanai beam are presented in the appendix.

3) LAGRANGIAN-MEAN VELOCITY

The Lagrangian-mean velocity is computed from the

Lagrangian-mean PV and continuity equations. Rayleigh

friction, with coefficient r, provides a simple model of

dissipation. The momentum equations in isopycnal co-

ordinates are then (Kasahara 1974)

Du

Dt
� f y 5� 1

r
0

›
x
P� ru and (23)

Dy

Dt
1 fu 5� 1

r
0

›
y
P� ry, (24)

where f is the planetary vorticity and P is the Mont-

gomery potential

P 5 p 1 rgz, (25)

with p the pressure anomaly. The hydrostatic equation is

›
r
P 5 gz, (26)

and the continuity equation is

›
t
z

r
1 ›

x
(uz

r
) 1 ›

y
(yz

r
) 5 0, (27)

where zr 5 ›rz.

The PV equation is obtained by taking the curl of (23)

and (24) and using (27) to get

D

Dt

f 1 z

z
r

 !
5�r

z

z
r

, (28)

where z 5 ›xy 2 ›yu is the relative vorticity. Using (12),

its Lagrangian mean is simply

D
L

Dt

f 1 z

z
r

" #L

5�r
z

z
r

" #L

. (29)

In the following, we are looking for the lowest-order

version of (29) from which we deduce the Lagrangian-

mean flow.

First, we approximate the lhs of (29). In the case of

a uniform and constant background stratification given

by its buoyancy frequency N̂, the zeroth order of zr is

ẑ
r

5 �g/(r0N̂
2
). With no O(1) and O(�) mean flow,

then, the lowest order of the Lagrangian-mean PV re-

duces to the background PV: that is,

f 1 z

z
r

L

5
f

ẑ
r

1 O(�). (30)

With constant uniform stratification, anticipating that

UL is O(�2) and using definition (14),

D
L

Dt

f 1 z

z
r

" #L

5
b

ẑ
r

V
L

1 O(�3), (31)

where b 5 df/dy is the meridional gradient of planetary

vorticity.

We now approximate the rhs of (29). The expansion of

the perturbation PV is

z

z
r

5
1

ẑ
r

z
1

1 z
2
�

z
1

z
r1

ẑ
r

 !
1 O(�3). (32)

Separating the Stokes and Eulerian-mean components,

the Lagrangian mean of (32) is

z

z
r

" #L

5
1

ẑ
r

z
1

1 z
1

S
1 z

2
1 z

2

S �
z

1
z

r1

ẑ
r

�
z

1
z

r1

ẑ
r

S
2
4

3
5

1 O(�3). (33)

The first term on the rhs is zero because the Eulerian

mean of any wave quantity q1 is zero. The fourth and

sixth terms are O(�3) according to (19). Defining z
S

5 z
1

S

as the Stokes relative vorticity (i.e., the relative vorticity

of a water parcel averaged over a wave cycle result-

ing from the presence of the wave field alone), noting

that z2 5 ›xVE 2 ›yUE is the relative vorticity of the

O(�2) Eulerian-mean flow, and using (31), the PV Eq.

(29) at O(�2) can be written

b

ẑ
r

V
L

5�rQ
L

, (34)

where

Q
L

5
1

ẑ
r

z
S

1 (›
x
V

E
2 ›

y
U

E
)�

z
1
z

r1

ẑ
r

2
4

3
5 (35)
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is the perturbation PV of a water parcel averaged over

a wave cycle. Hence, the meridional component of the

Lagrangian-mean flow is proportional to the dissipation

coefficient times the perturbation PV.

With no diapycnal mixing and with uniform back-

ground stratification and time-independent wave am-

plitude �, the Lagrangian-mean continuity equation (Moore

1970) at O(�2) is

›
x
U

L
1 ›

y
V

L
5 0. (36)

It then follows from (34) that the zonal Lagrangian-

mean flow is

U
L

(x, t) 5

ðxEB

x

›
y
V

L
(x9, t) dx9, (37)

where we apply the condition that UL 5 0 at an eastern

boundary, x 5 xEB.

According to (34) and (37), without dissipation, there

is no Lagrangian-mean flow so that the Eulerian-mean

flow exactly cancels the Stokes drift (Moore 1970): that is,

U
E

5�U
S
. (38)

With dissipation, there is necessarily a net meridional

displacement of water parcels over each wave cycle,

allowing a zonal Lagrangian-mean circulation in the

presence of meridional barriers. It follows that only with

dissipation can the mean flow appear west of the forcing

region (Yanai beam). This property is consistent with

our numerical solutions.

The principle behind the nonacceleration theorem

valid for zonally averaged flows in a zonal channel can

then be reformulated for the case of time-mean flows in

a rotating basin lacking closed PV contours: no steady

Lagrangian flow is possible if the waves are conservative.

Notice that, in contrast to the nonacceleration theorem,

the statement is about the existence of the flow, not its

acceleration.

At this point, the Lagrangian-mean flow is not yet

known because of the presence of UE in (35). The first

step is to replace UE by UL 2 US. The second step is to

notice that US is of order zero in ~r 5 r/v� 1 (with v

being the wave frequency) and UL is of order one ac-

cording to (34) and (37). Thus, in (35), the contribution

to VL by US is of order one in ~r, whereas the contribution

by UL is of second order. We can thus ignore the con-

tribution by UL so that

Q
L

’
1

ẑ
r

z
S
� (›

x
V

S
2 ›

y
U

S
)�

z
1

z
r1

ẑ
r

 !
, (39)

where all the terms on the rhs are calculated using the

same wave solution used to compute the Stokes drift (for

details, see the appendix). Once UL has been estimated,

we subtract US from it to obtain UE.

b. Results

1) COMPARISON TO NUMERICAL EXPERIMENTS

In this section, the analytical solution is compared to

the solution obtained in the experiment with weak

forcing and no beam dissipation (N0.05) and the ex-

periment with standard forcing and weak beam dissi-

pation (N0.5). In both cases, the amplitude of the beam

and the dissipative coefficient used in the analytical so-

lution are adjusted to fit the beam solution in the nu-

merical experiment as explained in the appendix.

(i) Case without dissipation (solution N0.05)

The Eulerian-mean flow obtained analytically com-

pares well to the numerical one, not only in meridional,

vertical, and zonal structure but also in amplitude (Figs.

8a,c, 10a,c). As explained in section 4a(3), because there

is no dissipation and therefore no Lagrangian-mean

flow, the Eulerian-mean flow is simply minus the Stokes

drift induced by the Yanai wave. As a result, the EICS

structure, with westward flow on the equator and east-

ward off the equator, is constrained to the beam (Figs.

10a,c). Furthermore, because the Stokes drift is uniform

with distance along the beam, so are the analytical EICS

currents and so are the numerical EICS currents over

the depth range that is not influenced by boundary ef-

fects (Figs. 8a,c).

(ii) Case with dissipation (solution N0.5)

With dissipation, the Eulerian-mean flow extends west

of the forcing region (Fig. 10b), an indication that the

Lagrangian-mean flow is nonzero. In (34) and (39), the

Yanai wave produces equatorward contributions

from zS and�z1 zr1
that are only partially compensated by

2(›xVS 2 ›yUS). This equatorward flow within the beam

is supplied by off-equatorial eastward flows from the

western boundary and in turn feeds an equatorial west-

ward flow that extends from the beam to the western

boundary. The meridional structure of UL is similar to

that of 2US, so they add constructively within the

beam, where UE is strongest.

The analytical EICS currents resemble the numerical

ones in vertical scale (Figs. 8b,d) and in zonal and me-

ridional structure (Figs. 10b,d). Although they are as

strong as the numerical EICS currents west of the beam,

they are weaker within the beam: 25% weaker for the

westward equatorial jet and 50% weaker for the east-

ward ones. Furthermore, the analytical solution does not
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predict the off-equatorial westward flows found in the

numerical experiment. In the analytical solution with con-

stant dissipation, the amplitude of the EICS increases

quadratically with the beam amplitude. The numerical

solutions display roughly this behavior within the beam,

but for the EICS amplitude west of the beam (Fig. 11)

there seems to be a Yanai wave amplitude threshold

below which the Lagrangian flow is very weak.

In the analytical solution, the ratio of the amplitude

of the EICS currents west of the beam to the ampli-

tude in the beam depends on the dissipation but not on

the beam amplitude: the stronger the dissipation, the

stronger the flows west of the beam relative to those

within the beam (Fig. 13). However, the fit between the

numerical solutions and the analytic prediction of this

ratio is not good: in the numerical solutions the ratio

stays roughly constant as dissipation is increased by

a factor of 3.

2) SENSITIVITY TO PERIOD AND ZONAL

WAVELENGTH

The amplitude and meridional profile of the Lagrangian-

mean zonal flow vary with the Yanai wave period and

wavenumber (Fig. 17). The amplitude of the EICS cur-

rents increases with the nonlinearity M, defined in (2),

of the Yanai wave. When the period increases for con-

stant wavelength and V amplitude, the Yanai wave be-

comes more nonlinear and the EICS is stronger. On the

other hand, the EICS will decay more rapidly with depth

(not shown), because the vertical group velocity of the

beam decreases with increasing period. For constant

frequency and V amplitude, there is a zonal wavelength

at which M is a maximum, hence the maximum EICS

currents for intermediate wavelengths in Fig. 17b. In

both cases (holding either the zonal wavelength or the

period constant and increasing the other), the meridi-

onal scale of the EICS currents decreases along with

the meridional and vertical scales of the Yanai beam

[see (A7)].

5. Discussion and conclusions

Synoptic meridional sections of velocity measure-

ments, together with averaged zonal velocity at 1000 m

from ARGO floats (Fig. 2), show that the EICS is a basin-

scale feature in the Atlantic and Pacific Oceans. Given

their large vertical scale and their temporal persistence,

the EICS currents must be the zonal limbs of meridio-

nally narrow recirculation cells; hence, they must be

generated by slow meridional flow across mean PV

isolines in the interior or eastern portions of the basins.

The central question addressed in this paper is, what is

responsible for systematically changing the PV of water

parcels over O(2000 m) depth range below the ther-

mocline in the equatorial Atlantic and Pacific? Inspired

by the large body of work on mean-flow generation by

waves (e.g., Moore 1970; Andrews and McIntyre 1976;

McIntyre and Norton 1990; Bühler 2009), we hypothe-

size that the agent of PV modification is the dissipation

of waves propagating through the region. We explore this

hypothesis by studying a type of wave that is prominent

in the spectra of the few available moored current meter

measurements and numerical simulations, namely monthly

periodic Yanai waves, generated by instability of the

upper-ocean circulation, that form a beam of energy

radiating down and to the east.

Idealized numerical simulations and an even more

idealized analytic model show that such a Yanai wave

beam does indeed produce a mean velocity structure re-

sembling that of the EICS within and—more importantly—

to the west of the beam. The Eulerian-mean flow in

the beam is the sum of the Lagrangian-mean flow and

a component canceling the Stokes drift; however, to the

west of the beam, the Eulerian and Lagrangian means

are identical. The Lagrangian-mean meridional flow

within the beam can cross the mean PV isolines, because

the perturbation PV of a water parcel averaged over

a wave cycle is nonzero; any dissipation that is pro-

portional to this yields a net change in PV over the cycle.

In the analytic model the dissipation is Rayleigh friction;

in the numerical simulation, for sufficient amplitude, the

Yanai waves break, moving energy to higher vertical

wavenumbers and lower frequencies until it is removed

by explicit friction, primarily vertical. In spite of this

difference in the dissipation mechanism, the analytic

model and the numerical simulations produce similar

mean flows.

The present theory complements the recent works of

D07, H08, and M09. In those studies, the EICS currents

are seen as long Rossby waves resulting from inviscid

nonlinear interactions. Those works thus focus on the

initial formation of the EICS. The present study focuses

rather on the final stage of the EICS where they are part

of a steady circulation. For this circulation to exist in

a basin, irreversible changes of PV are necessary. Hence,

dissipation must be an essential element of any mean

recirculations generated by the numerical simulations of

D07, H08, and M09. Their work and our work are similar

in focusing on intraseasonal Yanai waves but differ in

the source and characteristics of the Yanai waves and in

the relation between the Yanai wave structure and the

meridional structure of the resulting mean currents. In

their model, the structure of the mean currents is that of

a long Rossby wave growing from an instability; in our

model, it is a direct consequence of the structure of the

primary Yanai wave itself.
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Although the present model generates meridionally

alternating mean zonal flows with some resemblance to

the EICS currents and provides a possible explanation

for the large zonal extent of the EICS in the Pacific, it

has shortcomings. First, it does not address the EDJs.

Second, the mechanism seems to be too weak; in our

idealized simulations as in OGCMs, to approach re-

alistic amplitudes of the EICS the model must have a

stronger Yanai beam amplitude than the sparse obser-

vations indicate. Third, the model produces little struc-

ture poleward of the eastward currents on either side of

the equator; in contrast, the observations show strong

westward flows poleward of these eastward currents and

perhaps a continuation of the alternating pattern to even

higher latitudes as in Fig. 2. We speculate that the basic

mechanism in our model—systematic PV modification

as a side effect of the dissipation of equatorially trapped

waves—may be correct but may involve a broader spec-

trum of waves than we have considered so far.

The atmospheric quasi-biennial oscillation (QBO; for

a review, see Baldwin et al. 2001) provides an interesting

point of comparison: it consists of eastward and westward

zonal flows in the equatorial stratosphere, alternating

in time, propagating downward with a period slightly

longer than 2 yr, and driven by upward-propagating high-

frequency equatorially trapped waves. The mechanism

FIG. 17. Sensitivity of the Lagrangian-mean zonal flow at x 5 0 (west of beam) and r 5 0 to

(a) the central period and (b) central zonal wavelength of the Yanai beam. All other values are

those used for the analytical solution with dissipation [section 4b(1)(ii); shown by the black

dashed lines], except that the value of �0 is adjusted to keep the absolute amplitude c�0 constant.
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by which these waves drive the QBO is also wave dissi-

pation (Holton and Lindzen 1972). The QBO mecha-

nism is based on two-way wave–mean-flow interaction,

whereas our interaction is a one-way interaction; the

decaying waves drive the mean flow without being greatly

modified by it. Nevertheless, we find an interesting par-

allel between studies of the QBO and those of the EICS

(and EDJs): in both cases, realistic numerical simulations

have been difficult to achieve. Baldwin et al. (2001) sum-

marize this in the following:

The most important factor in reproducing the QBO is
probably the use of a fine vertical resolution to resolve
equatorial gravity waves. The horizontal diffusion should
be weak enough not to prevent the evolution of the mean
flow oscillation and not to be the primary damping mech-
anism for the waves. Transient characteristics of tropical
cumulus convection are also important since they de-
termine the excitation of the waves. Despite the recent
success, those models that reproduced the QBO might
have overly active cumulus convection and hence ex-
cessively large amplitude of gravity waves with resolved
scales.

In the case of the EICS and the EDJs as well, it seems

that better results are obtained when the model is driven

with stronger than realistic winds, as in the Pacific basin

of the I98 model (Figs. 3, 4). We conclude that a too-

strong large-scale forcing is needed to overcome as yet

unidentified deficiencies in model physics and/or forc-

ing. Resolution alone is not the key; simulations with up

to 400 levels and 1/88 resolution (not shown here) did not

substantially strengthen the EICS. Other factors could

be the numerical code itself, especially the advective

scheme that may not conserve PV, or small-scale phe-

nomena such as inertia-gravity waves that are neglected

in OGCM simulations but may contribute to the PV dis-

sipation (Muench and Kunze 2000).

Another shortcoming of the present study is that the

processes by which the Yanai waves break, in particular

the formation of the near-annual motion and the 36-day

wave, have not been elucidated. Such near-annual mo-

tion is not observed in the simulations of D07, H08, and

M09, suggesting that the present instability is inherently

different from that obtained in these previous studies.

Interestingly, the near-annual motion also appears in

another set of simulations, not presented here, in which

off-equatorial forcing is used to generate barotropic and

monthly periodic Yanai waves such as those produced by

the instabilities of the North Equatorial Countercurrent.

In addition to modeling and theoretical issues, the

present work raises questions that can only be addressed

with additional observations. We need to know more

about the spatial structure and temporal variability of

Yanai and other waves in the subthermocline Pacific and

Atlantic. We would also benefit from long-term Lagrangian

measurements of the EICS, showing where and when net

meridional displacements occur.
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APPENDIX

Beam Solution

In this appendix, we show how we construct the Yanai

wave beam that is used in section 4. We first write down

the solution for a single wave, and then we form a beam

from a packet of individual waves. Finally, we discuss

how the Stokes drift US and the terms in (39) required to

calculate QL and ultimately UL are computed in practice.

a. Waves for an individual k

The individual wave solution of (23)–(27) for a single

period v and real zonal wavenumber k is

y
1

5 c�(r)<(ŷu), (A1)

u
1

5 c�(r)<[(i/c) v(yŷu)], (A2)

P
1
/r

0
5 c�(r)<[i v(yŷu)], and (A3)

z
1
/r

0
5 c�(r)< � mr

g r̂
z

v(yŷu)

" #
, (A4)
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where

ŷu 5 e�
b
2c y2

ei[kx1mr(r/r̂
z
)�vt1u], (A5)

�(r) 5 �
0
e�mi(r/r̂

z
), (A6)

and u is the phase of the wave at (x, r, t) 5 (0, 0, 0). The

vertical wavenumber, m 5 mr 1 imi, determined from

the dispersion relation is

m 5 6N̂
k 1

b

v 1 irffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(v 1 ir)

p . (A7)

In this solution, only the effect of dissipation on the

local wave amplitude �(r), through mi, is kept. The effect

of dissipation on the relative phase between wave quan-

tities has not been included. We have checked numeri-

cally that, for weak dissipation, this additional effect is

indeed not necessary to illustrate the dynamics of the

EICS. This is one of the several advantages of obtaining

the Eulerian-mean flow indirectly by calculating the

Stokes drift and the Lagrangian-mean flow.

The sign in (A7) determines whether the wave phase

propagates upward or downward. With r=r̂
z

increasing

upward (z positive up), the phase of the wave propa-

gates upward for mr , 0. In the following, only waves

with upward phase propagation (downward energy prop-

agation) are considered and the 1 sign is taken. For those

waves, c 5 N̂/mr is the gravity wave speed of the inviscid

case, and according to (A5) the meridional profile of y is

a Gaussian centered on the equator.

b. Construction of a beam

To form a beam, a sum of wave solutions of the form

(A1)–(A4) is used. The sum is performed over a finite

number of waves with frequency, wavenumbers, and

phase un 5 (vA, kn, mn, un); vertical profile �
n
(r) 5

�
0,n

e�mi
n(r/r̂z); and velocity scale cn, with n being the

index of each wave and vA being the beam central fre-

quency. For each kn, the vertical wavenumber mn is

computed using (A7). The beam solution used in sec-

tion 4 is then

y
1

5 �
n

y
n,1

5 �
n

c
n
�

n
(r)<(ŷu

n
), (A8)

and similarly u
1

5 �n u
n,1

, etc. The relative magnitude

of each wave, (cn�0,n)/(cA�A,0), and the wave properties

(kn, un) are obtained from the Fourier decomposition in

x of the zonal profile X(x) of the surface forcing used to

generate the Yanai beam in the numerical experiments

(section 3a).

To estimate the last two parameters, the overall nor-

malized amplitude �A,0, and the Rayleigh friction co-

efficient r, the wave field within the beam is approximated

by a single wave with uA 5 (vA, kA, mA, uA), velocity

scale cA ’ 53 cm s21, and a vertical profile �A(r) so

that

y
1

’ c
A
�

A
(r)<(ŷuA

), (A9)

where �A(r) 5 �A,0e�mi
A

(r/r̂
z
); �A,0 and mA

i are deduced

by fitting cA�A(r) to the profile V of the meridional ve-

locity at the equator obtained within the beam in each

numerical simulation as explained in section 3c. An es-

timate of r is then obtained numerically from mA
i , vA,

and kA using the dispersion relation (A7).

An example of the analytical beam solution con-

structed to fit the numerical beam solution in the stan-

dard case (N0.5) is shown in Fig. 6b. Depths below about

2250 m are not shown, because they correspond to the

portion of the water column where the beam reaches

the eastern boundary and the analytical solution is

incomplete.

c. Calculation of US and QL

To compute the Stokes drift US as well as the terms in

(39) to deduce QL and the Lagrangian-mean flow, we

need to calculate various correlations between wave

quantities for all possible pairs of waves forming the

beam. For instance, for the zonal Stokes drift,

U
S

5�
n,p

j
n,1
� $u

p,1
, (A10)

where the sum is performed over all pairs (n, p) of waves.

Individual terms in (A10) are calculated analytically, but

the sum is computed numerically. This procedure is ap-

plied to deduce VS and all terms in (39).
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