Hydrological Summary for the United Kingdom

General

March was characterised both by large temporal variations in temperature and substantial spatial variations in rainfall - but most regions of the UK registered significantly below average rainfall totals and drought conditions intensified in many areas. Provisionally, the Nov-March rainfall total for England and Wales is the third lowest since the very severe drought of 1933/34. Large 5-month rainfall deficiencies now extend across most regions of E\&W; the most notable in the English Lowlands (extending into Yorkshire) and the South-West. Fortunately, most reservoir stocks remain relatively healthy - marginally above the early April average for $\mathrm{E} \& \mathrm{~W}$ as a whole but, importantly, well below average in parts of southern England (and in Yorkshire also). River flows in early March were notably depressed over wide areas and March runoff totals were among the lowest on record for a number of southern catchments. Aquifer recharge totals for March, and the winter half year, were notably low also. Correspondingly, groundwater levels are well below average (in the south particularly) but in most areas considerably above the minima of the early- and mid1990s. Accumulated rainfall deficiencies are the equivalent of more than two months average rainfall over wide areas - evidence of a severe but not extreme drought. With evaporation rates set to increase briskly, some drought stress is inevitable through the coming summer. Its extent and magnitude will be heavily dependant on rainfall over the next 46 weeks.

Rainfall

As with much of the preceding winter, anticyclonic conditions again dominated synoptic patterns during March. Rain-bearing Atlantic frontal systems were infrequent although a particularly slow-moving system generated very useful rainfall totals ($15-30 \mathrm{~mm}$) across southern England on the $29 / 30^{\text {th }}$. This constituted $>60 \%$ of the monthly total in some areas and, remarkably, was the first major storm (rainfall $>10 \mathrm{~mm}$) since mid-October in some central catchments. Above average March rainfall totals were largely confined to the coastal fringe of eastern Britain (including parts of Kent) where snowfall was significant - and a zone from Shropshire-Wiltshire. More typically, March totals fell below 70% of average and some localities (including parts of southern Pennines) reported $<35 \%$. For the majority of E\&W, March was the fifth successive month with below average rainfall. The area suffering severe rainfall deficiencies has extended, most notably in Yorkshire which registered its lowest Nov-Mar rainfall on record (in a series from 1961). The SevernTrent region also eclipsed its previous minima and accumulated deficiencies in this timeframe exceed 40% across much of southern England. In the recent past only in 1976 and 1992 have 'winter' droughts of a similar magnitude been experienced.

River Flow

March was a month of seasonally low flows across much of the UK. Four exceptionally dry weeks (and frozen headwaters) resulted in very depressed mid-March flows in much of Scotland (parts of Northern Ireland also). The protracted recessions were smartly reversed around the $17^{\text {th }}$ (rapid snowmelt contributing to the spates in many upland catchments). Welcome, but short-lived, recoveries were also widespread across southern England over the last few days of the month. March runoff totals exceeded the average in a number of responsive eastern catchments (from the Ness to the Gt Stour) but, to the west, most were substantially below average - with low flows triggering artificial flow augmentation in some areas (e.g. Dorset). Runoff was most depressed in southern England: the Otter and Coln reported their $2^{\text {nd }}$ lowest March runoff in records
of >40 years. More significantly accumulated runoff totals since last October are depressed across much of southern Britain - in Hampshire, the River Wallington reported its $3{ }^{\text {rd }}$ lowest Nov-Mar runoff (after 1976 and 1973) in a 51year series; outflows from Northern Ireland have also been very moderate in this timeframe. The lack of a normal winter recovery is exemplified by the River Mimram where monthly mean flows have been sensibly identical over the last 5 months. In the absence of a very wet late spring, the seasonal recessions will gather momentum heralding depressed flows in the drought affected regions during the coming summer.

Groundwater

Across most major outcrop areas soil moisture deficits increased briskly through mid-month but were reversed in the final week. This provided some scope for further infiltration; nonetheless, recharge to the major aquifers was again less than half the March average over wide areas; a similar deficiency applies to recharge over the full winter-half year. Correspondingly, the groundwater resources outlook has deteriorated substantially since the very early onset of recharge in the autumn of 2004. However, only in limited parts of the Chalk, Permo-Triassic sandstones and Oolitic Limestone outcrops of southern England have resources declined to the levels reported during the most recent groundwater drought episodes (those of the early- and mid-1990s); at Ampney Crucis in the Cotswolds, March groundwater levels were the lowest, apart from 1976, in a 46 -year series. In eastern England, groundwater levels are mostly below average but remain largely in the normal range as do levels in most major limestone and sandstone aquifers across the Midlands and northern England. Nonetheless, the moderating influence of groundwater resources on drought impact across the English Lowlands (which was well demonstrated in 2003) will be much less influential this year and with outflows from springs commonly at their lowest (for the time of year) since 1997, baseflow contributions to river flow are likely to be very modest throughout the summer.

British

NATURAL ENVIRONMENT RESEARCH COUNCIL Geological Survey

Rainfall accumulations and return period estimates

Area	Rainfall	Mar 2005	$\text { Jan } 05$	$\begin{gathered} \text { Mar } 05 \\ R P \end{gathered}$	Nov	$\text { 4-Mar } 05$	$\text { Oct } 04$	$\begin{gathered} \text { Mar } 05 \\ R P \end{gathered}$	Apr	$\begin{array}{r} \text { Mar } 05 \\ R P \end{array}$
England \& Wales	$\underset{\%}{\text { mm }}$	$\begin{aligned} & 56 \\ & 75 \end{aligned}$	$\begin{array}{r} 165 \\ 72 \end{array}$	5-10	$\begin{array}{r} 285 \\ 68 \end{array}$	15-25	$\begin{array}{r} 440 \\ 87 \end{array}$	2-5	$\begin{aligned} & 919 \\ & 100 \end{aligned}$	<2
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 54 \\ & 56 \end{aligned}$	$\begin{array}{r} 258 \\ 87 \end{array}$	2-5	$\begin{array}{r} 455 \\ 83 \end{array}$	2-5	$\begin{array}{r} 620 \\ 92 \end{array}$	2-5	$\begin{array}{r} 1275 \\ 105 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 66 \\ & 92 \end{aligned}$	$\begin{aligned} & 222 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 311 \\ 81 \end{array}$	5-10	$\begin{aligned} & 463 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 975 \\ & 112 \end{aligned}$	$5-10$
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 51 \\ & 83 \end{aligned}$	$\begin{array}{r} 134 \\ 72 \end{array}$	$5-10$	$\begin{array}{r} 218 \\ 65 \end{array}$	20-30	$\begin{array}{r} 340 \\ 84 \end{array}$	2-5	$\begin{aligned} & 793 \\ & 103 \end{aligned}$	2-5
Yorkshire	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 44 \\ & 64 \end{aligned}$	$\begin{array}{r} 162 \\ 79 \end{array}$	2-5	$\begin{array}{r} 240 \\ 65 \end{array}$	20-30	$\begin{array}{r} 368 \\ 83 \end{array}$	$5-10$	$\begin{aligned} & 862 \\ & 103 \end{aligned}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 31 \\ & 67 \end{aligned}$	$\begin{aligned} & 97 \\ & 72 \end{aligned}$	$5-10$	$\begin{array}{r} 168 \\ 67 \end{array}$	10-20	$\begin{array}{r} 260 \\ 86 \end{array}$	2-5	$\begin{aligned} & 643 \\ & 106 \end{aligned}$	2-5
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 47 \\ & 84 \end{aligned}$	$\begin{array}{r} 101 \\ 60 \end{array}$	$5-15$	$\begin{array}{r} 189 \\ 62 \end{array}$	20-30	$\begin{array}{r} 309 \\ 83 \end{array}$	2-5	$\begin{array}{r} 660 \\ 94 \end{array}$	2-5
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 53 \\ & 84 \end{aligned}$	$\begin{array}{r} 117 \\ 59 \end{array}$	10-20	$\begin{array}{r} 216 \\ 59 \end{array}$	30-40	$\begin{array}{r} 343 \\ 77 \end{array}$	$5-10$	$\begin{array}{r} 698 \\ 89 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 58 \\ & 83 \end{aligned}$	$\begin{array}{r} 134 \\ 59 \end{array}$	10-20	$\begin{array}{r} 239 \\ 59 \end{array}$	30-40	$\begin{array}{r} 392 \\ 80 \end{array}$	$5-10$	$\begin{array}{r} 762 \\ 89 \end{array}$	2-5
SouthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 57 \\ & 56 \end{aligned}$	$\begin{array}{r} 191 \\ 56 \end{array}$	15-25	$\begin{array}{r} 359 \\ 59 \end{array}$	30-50	$\begin{array}{r} 561 \\ 77 \end{array}$	$5-10$	$\begin{array}{r} 1037 \\ 87 \end{array}$	$5-10$
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 81 \\ & 74 \end{aligned}$	$\begin{array}{r} 269 \\ 76 \end{array}$	$5-10$	$\begin{array}{r} 496 \\ 76 \end{array}$	5-10	$\begin{array}{r} 744 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1329 \\ 99 \end{array}$	2-5
Scotland	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 112 \\ 88 \end{array}$	$\begin{aligned} & 472 \\ & 121 \end{aligned}$	5-10	$\begin{aligned} & 784 \\ & 112 \end{aligned}$	2-5	$\begin{aligned} & 988 \\ & 115 \end{aligned}$	5-10	$\begin{array}{r} 1742 \\ 118 \end{array}$	20-30
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 150 \\ 95 \end{array}$	$\begin{aligned} & 661 \\ & 142 \end{aligned}$	5-15	$\begin{array}{r} 1133 \\ 132 \end{array}$	10-15	$\begin{array}{r} 1345 \\ 128 \end{array}$	10-15	$\begin{array}{r} 2204 \\ 127 \end{array}$	40-60
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 71 \\ & 86 \end{aligned}$	$\begin{aligned} & 297 \\ & 117 \end{aligned}$	2-5	$\begin{array}{r} 451 \\ 99 \end{array}$	2-5	$\begin{aligned} & 632 \\ & 113 \end{aligned}$	2-5	$\begin{array}{r} 1205 \\ 117 \end{array}$	10-20
Tay	mm	$\begin{aligned} & 94 \\ & 83 \end{aligned}$	$\begin{array}{r} 410 \\ 114 \end{array}$	2-5	$\begin{array}{r} 593 \\ 96 \end{array}$	2-5	$\begin{aligned} & 817 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1550 \\ 120 \end{array}$	10-20
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 93 \\ & 95 \end{aligned}$	$\begin{aligned} & 362 \\ & 121 \end{aligned}$	$5-10$	$\begin{aligned} & 532 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 726 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1368 \\ 119 \end{array}$	10-20
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 76 \\ & 93 \end{aligned}$	$\begin{aligned} & 270 \\ & 107 \end{aligned}$	2-5	$\begin{array}{r} 380 \\ 85 \end{array}$	2-5	$\begin{array}{r} 574 \\ 105 \end{array}$	2-5	$\begin{array}{r} 1142 \\ 114 \end{array}$	5-10
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 78 \\ & 66 \end{aligned}$	$\begin{array}{r} 359 \\ 96 \end{array}$	2-5	$\begin{array}{r} 602 \\ 90 \end{array}$	2-5	$\begin{array}{r} 804 \\ 97 \end{array}$	2-5	$\begin{array}{r} 1530 \\ 107 \end{array}$	2-5
Clyde	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 124 \\ 87 \end{array}$	$\begin{aligned} & 502 \\ & 108 \end{aligned}$	2-5	$\begin{aligned} & 886 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 1107 \\ 107 \end{array}$	2-5	$\begin{array}{r} 2020 \\ 115 \end{array}$	5-15
Northern Ireland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 69 \\ & 76 \end{aligned}$	$\begin{array}{r} 248 \\ 86 \end{array}$	2-5	$\begin{array}{r} 402 \\ 80 \end{array}$	5-10	$\begin{array}{r} 535 \\ 86 \end{array}$	2-5	$\begin{array}{r} 1054 \\ 96 \end{array}$	2-5

\% = percentage of 1961-90 average $\quad R P=$ Return period
The monthly rainfall figures* provided by the Met Office are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since November 2004 are provisional (see page 12). Revised Met Office totals for 19612003 have been recently incorporated. The figures for England \& Wales are derived by the Hadley Centre and are updates of the homogenised series developed by the Climate Research Unit; the other national figures are derived from different raingauge networks to those used to derive the CRU data series. Most of the return period estimates are based on tables provided by the Met Office (see Tabony, R. C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England and those for the Highland region take account of ranking positions. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past. *See page 12 .

Rainfall . . . Rainfall . .

Key

00\%	Percentage of 1961-90 average	Normal range
	Very wet	Below average
	Substantially above average	Substantially below average
	Above average	Exceptionally low rainfall

November 2004 - March 2005
April 2004 - March 2005

Rainfall accumulation maps

The November-March rainfall total for the UK as a whole is, provisionally, the 2nd lowest (after 1995/95) since 1975/76. The regions with 5 -month totals below 70% of average broadly define the area where drought conditions are most severe - generally, this corresponds to what are, on average, the driest parts of the country. Regional rainfall totals for the last 12 months reflect the preferred tracks of most rain-bearing frontal systems - with the Highland region registering its highest April-March rainfall total in a 46-year series.

River flows - March 2005

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to April 2004 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. The 'national' hydrographs are based on representative networks of gauging stations commanding relatively large catchments.

River flow . . . River flow

(a) November 2004 - March 2005, (b) April 2004 - March 2005

a)	River	\%lta
Soar	Rank	
Mole	47	$4 / 34$
Medway	37	$2 / 30$
Ouse (Gold Bridge)	37	$3 / 45$
Wallington	38	$3 / 42$
Exe	64	$3 / 52$
Otter	46	$2 / 43$
	Dart	62

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater Ievels March/April 2005

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Little Bucket Farm 67.12 31/03 West Woodyates

Level Date Mar.av.
16.72 10/03 19.51 $46.12 \quad 05 / 04 \quad 45.00$ 68.75 01/04 77.11 25.54 23/03 25.60
134.40 01/04 138.45
$83.31 \quad 31 / 03 \quad 90.76$

Borehole Chilgrove House Killyglen New Red Lion Ampney Crucis Newbridge Skirwith Brick House Farm 15.66 15/03 $15.66 \quad 15 / 03$ 100.87 30/03 $\begin{array}{rrr}10.19 & 31 / 03 & 10.95\end{array}$ $130.87 \quad 18 / 03 \quad 130.66$ $11.60 \quad 14 / 03$

Borehole Llanfair DC Morris Dancers Heathlanes Nuttalls Farm Bussels No.7a Alstonfield

Groundwater. . . Groundwater

Groundwater levels - March 2005

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{array}{r} 2004 \\ \text { Dec } \end{array}$	$\begin{gathered} 2005 \\ \text { Jan } \end{gathered}$	Feb	Mar	Apr	Avg. Apr	Min. Apr	Year* of min
NorthWest	N Command Zone	- 124929	85	91	100	91	90	93	77	1993
	Vyrnwy	55146	85	100	99	97	97	95	64	1996
Northumbrian	Teesdale	- 87936	94	90	93	89	95	92	77	2003
	Kielder	(199175)	(86)	(98)	(91)	(90)	(91)	(92)	(81)	1993
Severn Trent	Clywedog	44922	78	83	79	89	94	94	86	1996
	DerwentValley	- 39525	100	100	99	95	99	94	54	1996
Yorkshire	Washburn	- 22035	89	90	86	83	80	93	70	1996
	Bradford supply	- 41407	98	99	99	94	98	93	59	1996
Anglian	Grafham	(55490)	(86)	(92)	(92)	(94)	(96)	(90)	(77)	1997
	Rutland	(116580)	(86)	(93)	(95)	(94)	(94)	(90)	(74)	1992
Thames	London	- 202340	83	87	91	95	96	93	88	1990
	Farmoor	- 13830	92	98	99	98	97	95	84	1992
Southern	Bewl	28170	63	60	70	75	86	90	58	1989
	Ardingly	4685	60	69	79	83	93	100	93	2005
Wessex	Clatworthy	5364	89	100	100	100	94	97	82	1992
	BristolWW	- (38666)	(58)	(64)	(77)	(83)	(82)	(94)	(71)	1992
SouthWest	Colliford	28540	62	66	70	71	70	87	58	1997
	Roadford	34500	58	69	71	73	72	85	37	1996
	Wimbleball	21320	76	79	86	90	96	95	78	1996
	Stithians	5205	61	60	68	75	78	94	52	1992
Welsh	Celyn and Brenig	- 131155	95	97	97	98	100	97	72	1996
	Brianne	62140	93	98	94	96	97	98	90	1993
	Big Five	- 69762	92	97	98	96	97	95	78	1993
	Elan Valley	- 99106	99	100	99	98	99	98	89	1993
Scotland(E)	Edinburgh/Mid Lothian	- 97639	88	87	98	99	99	93	71	1998
	East Lothian	- 10206	100	100	100	100	100	99	95	1990
Scotland(W)	Loch Katrine	- 111363	94	100	89	86	91	95	88	2001
	Daer	22412	100	100	100	97	95	98	93	2001
	Loch Thom	- 11840	100	100	100	100	100	98	93	2001
Northern	Total ${ }^{+}$	- 67270	88	88	86	83	84	89	83	2002
Ireland	Silent Valley	- 20634	72	69	78	73	73	82	57	2000

() figures in parentheses relate to gross storage - denotes reservoir groups +excludes Lough Neagh *last occurrence - see footnote

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national ans regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded
as a guide only.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office
FitzRoy Road
Exeter
Devon
EX13PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries

National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB

Tel.: 01491838800
Fax:01491 692424
E-mail: nwamail@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.
Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

