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EXECUTIVE SUMMARY 

 

1. The meres in the North-West Midlands of England are a regional cluster of lakes of high 

conservation importance, yet impacted by high nutrient concentrations from surrounding 

land-use and population settlements.  Despite their long-history of being in a eutrophic 

state, the most rapid enrichment and consequent changes to aquatic flora have occurred 

over the last 50-100 years.  In many lowland temperate lakes, these changes have largely 

resulted from phosphorus enrichment and national legislation has set target 

concentrations for this element to prevent or reduce nutrient enrichment. However other 

nutrients, such as nitrogen, can also limit or co-limit productivity and is probably of 

more widespread importance than generally recognised, but currently no target 

concentrations exist for this nutrient. 

2. The purpose of this review, therefore, was to: 

• review existing phosphorus target concentrations for 26 meres with SSSI status 

• assess the applicability of nitrogen target concentrations for these meres 

• recommend P and N target concentrations for the 26 SSSI meres 

• recommend further research to address data gaps and improve understanding and 

management of the meres. 

3. The review considered key published and unpublished literature and recent work in 

setting P and chlorophyll standards for the Water Framework Directive.  It also analysed 

data on current concentrations of nitrogen & phosphorus provided by the Environment 

Agency and macrophyte species provided by Natural England. 

4. There is not a single way to assess nutrient-limitation so eight approaches were used: i) 

N:P ratios, ii) comparison of Chla: total phosphorus (TP) versus European average 

response, iii) comparison of Chla: total nitrogen (TN) versus European average response, 

iv) Chla:TP ratios, v) Chla:TN ratios, vi) seasonal minima of phosphate and nitrate, vii) 

modelling using a stoichiometric model „Metabolake and viii) direct bioassays. 

5. Although nitrogen-limitation is becoming recognised as being more widespread then 

hitherto thought, in the case of the meres, the frequently high concentrations of TP 

caused by input from glacial deposits, low rates of TP loss caused by low flushing rates 

or lack of a distinct outflow coupled with potential loss of nitrogen to the atmosphere via 

denitrification will tend to favour nitrogen-limitation and this was reflected in the 

analysis. 
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6. The analyses indicated that at the 22 sites where data were available, 7 sites were mainly 

phosphorus-limited (32%), 8 sites were mainly nitrogen-limited (36%) and 7 sites were 

either mainly co-limited or not limited by nutrients (32%). Direct bioassay data showed 

that nutrient-limitation can vary over a year. 

7. Nutrient targets are needed to manage water quality or achieve conservation objectives. 

They are not something essential of themselves. 

8. Macrophyte diversity, a possible conservation objective, does not appear to relate to 

nutrient availability in the meres, possibly because most of the meres have relatively 

high nutrient concentrations and possibly because the macrophyte populations have 

adapted to these concentrations over many decades. Total number of species vs nitrate in 

the meres is not markedly different from the UK data-set used to establish the 

relationship between macrophyte diversity and nitrogen so this is unlikely to be the cause 

of the lack of a relationship. 

9. In terms of setting targets, many of the meres have high alkalinities so high-baseline 

targets for TP would be expected. Site-specific Water Framework Directive TP targets 

for the meres at the High/ Good boundary range from 14 µg L
-1

 for Oak Mere (low 

alkalinity) to 46 µg L
-1

 for Quoisley Little Mere. The Good/ Moderate boundary targets 

range from 21 to 57 µg L
-1

. These concentrations are generally below the inferred TP 

concentrations from around 1850 which range between 31 and 50 µg L
-1 

at the five sites 

where cores have been analysed. Consequently, even Good/ Moderate Water Framework 

Directive targets may not be achievable.  

10. The presence of nitrogen limitation or co-limitation in the meres means that nitrogen 

targets are also appropriate at some of the sites. Total nitrogen targets were derived from 

European datasets relating concentrations of chlorophyll a to total nitrogen for different 

types of lakes. In turn, the chlorophyll a target was derived from Water Framework 

Directive standards for different lake types. The Good/ Moderate total nitrogen target 

varied between 0.4 mg to 1.4 mg L
-1

.  

11. Where possible, mere-specific targets are preferable to general targets, but these require 

better data to implement. A range of different future projects addressing data gaps and 

uncertainty over the functioning of the meres are suggested. In particular, the role of 

trophic-interactions, for example grazing of phytoplankton by zooplankton and control of 

zooplankton by fish, in moderating water quality needs to be assessed and managed. 
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1. INTRODUCTION 

 

1.1 Purpose of the review 

Over the last 100 years or so, human activity has caused many lakes to have become 

enriched with nutrients. This has resulted in a range of symptoms associated with 

eutrophication including increased algal biomass, deoxygenation at depth during 

stratification, changed species composition and loss of submerged macrophytes. In many 

deep, lowland, temperate lakes, recent changes have largely resulted from phosphorus 

enrichment and national legislation has set target concentrations for this element to prevent 

or reduce nutrient enrichment. However other nutrients, such as nitrogen, can also limit or 

co-limit productivity and is probably of more widespread importance than generally 

recognised. Currently however, no target concentrations exist for this nutrient. The meres in 

the North-West Midlands of Britain are systems where there is evidence that nitrogen may 

be the key nutrient limiting productivity at some sites. The purpose of this review, therefore, 

is to: 

undertake a detailed review of the existing phosphorus target concentrations for twenty-three 

plus associated meres, giving a total of twenty-six, with SSSI status in the context of 

paleolimnological evidence of change: 

 assess the applicability of nitrogen target concentrations for some or all of the meres, 

 recommend P and N target concentrations for the twenty-six SSSI meres, 

 recommend future work that is needed to improve understanding and management of 

the meres. 

 

1.2 Data sources for the review 

Data were compiled from the published literature and unpublished reports and from data and 

reports provided by Natural England and the Environment Agency. In total about 1100 files 

in different formats were received to inform the report. Dr Geneveive Madgwick (NE) and 

Dr Sian Davies (EA) provided additional information on macrophyte species composition 

and recent water quality respectively. 
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2. BACKGROUND ON THE FUNCTIONING OF LAKES 

 

2.1 Lake connectivity and global biogeochemical cycles 

The gravitational flow of water falling as precipitation on land makes most lakes highly 

connected to their catchment. Dissolved and particulate material from the vegetation, soil 

and rock within the catchment are transported to a lake where it can be used as a resource by 

the biota of the lake, sedimented at the bottom of the lake, exchanged with the atmosphere as 

a gas, often after biological transformation of the original material, or washed out 

downstream, ultimately to the sea. Consequently, lakes, although comprising only about 3% 

of the global land surface area (Downing et al. 2006), are important in the global 

biogeochemical cycling of elements, particularly carbon (Cole et al. 2007; Downing et al. 

2008; Downing 2009). It follows, therefore, that lakes are strongly influenced by changes in 

the supply of resources, such as nutrients, from within the catchment. However, they are also 

influenced by the atmosphere at local (such as weather), regional (such as atmospheric 

deposition) or global (such as climate change) scales. As a result, lakes are extremely 

sensitive to environmental perturbation and no lakes in the UK have been unaffected by 

Man‟s activities. 

 

Lakes are part of the global water cycle and receive water as direct precipitation on the lake 

surface, inflow of surface water from the catchment and inflow of water from groundwater, 

which potentially derives from a greater area than the catchment alone. Lakes lose water by 

the same routes: evapo-transpiration to the atmosphere, surface water outflow via streams 

and recharge of groundwater. The rate of water exchange is highly variable with time as 

precipitation varies, but as a long-term average the rate of exchange can be as short as a few 

days for lakes with a small volume relative to the supply of water to over a thousand years 

for very large lakes with relatively low rates of inflow such as Lake Titicaca in South 

America or Lake Tanganyika in Africa. The retention time is important in controlling the 

input and loss of resources such as nutrients but also the loss of biological material, such as 

phytoplankton, produced within a lake. 
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2.2 Supply of resources for primary production 

Nutrients in lake water derive from dissolved and particulate material brought in by 

inflowing water, deposited on the lake surface from the atmosphere, exchanged with the 

atmosphere or recycled within the water or sediment within the lake. Especially in lakes with 

retention times of less than around a year, external nutrient sources, of which inflowing 

nutrients is usually the main component, provide the major source of nutrients. These 

inflowing nutrients can be conveniently separated into „diffuse sources‟ that enter the 

freshwater system over a large area of the catchment and „point sources‟ where the input to 

the freshwater system is localised to one or a few places. Typically, diffuse sources can be 

natural (e.g. input of material eroded from the catchment) or man-made (e.g. inflowing of 

nutrients applied as fertilizer to fields) while point sources are usually man-made (e.g. input 

of material from a wastewater treatment works or a factory). 

 

Resources needed by biota within a lake 

Although many lakes receive a subsidy of energy and materials from organic carbon fixed 

within the terrestrial catchments as inflowing dissolved and particulate material (and a minor 

component from riparian vegetation and animals falling directly into the water), 

photoautotrophs: the phytoplankton, the phytobenthos and macrophytes, form the base of the 

food chain in most lakes. These organisms require light energy (photosynthetically active 

radiation, PAR, 400 to 700 nm) for photosynthesis and elements such as (in rough 

descending order of requirement): C, N, P, Si (mainly for diatoms), K, Ca, Mg, S, Fe, Mn, 

Cu, Zn, Cl, Mo and Co (Raven & Maberly 2005). In addition, H and O are required but 

derive directly from water and so are never a resource-constraint. During balanced growth, a 

typical algal molar ratio (the Redfield ratio, Redfield 1958) for the three major elements, C, 

N and P is 106C:16N:1P. 

 

Rates of net production and sustainable biomass on an area basis have an absolute upper 

limitation imposed by light-energy availability (Talling 1971) and light can limit 

productivity in lakes which are optically-deep because the high concentration of coloured 

dissolved organic carbon causes rapid light attenuation (Jones 1996; Karlsson et al. 2009). In 

many lakes, however, light never limits productivity because one of the other resources, such 

as phosphorus or nitrogen, becomes limiting first. 
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Carbon is an essential component of carbohydrates, proteins, lipids and nucleic acids and can 

form upto 45% of the ash-free dry weight of freshwater organisms. The total concentration 

of inorganic carbon in a lake is largely determined by the geology of the catchment. Soft-

waters in catchments with little limestone or base-material have low alkalinity and low 

concentrations of inorganic carbon. Hard-waters in catchments with a lot of limestone or 

base-material have high alkalinity and high concentrations of inorganic carbon with an upper 

limit often set by the solubility product of calcium carbonate. Inorganic carbon can be 

temporally depleted from lake surface waters when rapid photosynthesis removes CO2 and 

HCO3
-
 faster than it can be resupplied from the atmosphere, inflows or the sediment, leading 

to elevated pH (Maberly 1996). Although this carbon depletion probably has consequences 

for species composition of phytoplankton and macrophytes, over a year most lakes have 

excess CO2, relative to atmospheric equilibrium concentrations (Cole et al. 1994) and carbon 

availability probably rarely controls productivity. 

 

Nitrogen is an essential component of proteins and nucleic acids and typically comprises 

about 1.5% of the ash-free dry weight during balanced growth. Available sources include 

dissolved inorganic ions such as nitrate and ammonium, organic nitrogen in the form of 

simple molecules such as amino acids and, for certain cyanobacteria that can convert 

dinitrogen gas into ionic forms of nitrogen via „nitrogen-fixation‟, dissolved nitrogen gas. 

The dissolved inorganic nitrogen derives mainly from point and diffuse sources within the 

catchment but can also derive from atmospheric deposition directly on the lake surface or 

indirectly on the catchment (Bergstrom & Jansson 2006). 

 

Phosphorus is an essential component of nucleic acids and many biochemical intermediates 

within a cell, including ATP, and typically comprises about 0.2% of the ash-free dry weight 

during balanced growth. Phosphorus is mainly available as dissolved orthophosphate 

although certain organisms can produce external phosphatase enzymes that cleave phosphate 

from phosphorus-containing molecules. Phosphorus mainly enters a lake from the catchment 

although there can be a small direct input as atmospheric deposition. 

 

In-lake nutrient sources and in-lake processes 

In some lakes, especially those with very long-retention times, or in productive lakes with 

dense microbial populations or anoxic sediments, the internal supply of nutrients can be 
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important in driving primary productivity. This results from a number of different processes. 

Firstly, nutrients can be effectively recycled by a „microbial-loop‟ (Azam et al. 1983) 

whereby consumption of phytoplankton by protozoa, rotifers or crustacea, or decomposition 

by fungi, bacteria or viruses leads to regeneration of dissolved nutrients that can be utilized 

again by phytoplankton. Secondly, in shallow lakes mixing of surface sediments by wind 

and wave can release nutrients from the interstitial water in the sediment which is often 

enriched in nutrients because of decomposition processes. Thirdly, in productive lakes that 

stratify, restriction of oxygen supply to the sediment surface coupled with a high demand for 

oxygen by microbial decomposition of organic material can cause the sediment surface to 

become anoxic, leading to low (negative) redox potential. This causes ferric iron (Fe
3+

) that 

can bind phosphate to be reduced to ferrous iron (Fe
2+

) that does not bind phosphate, leading 

to release of phosphate to the overlying water (Mortimer 1941, 1942). Other nutrients such 

as ammonium and silica can also be released from the sediment to the water during anoxia. 

 

Phytoplankton biomass is not-only controlled by rates of production but also by rates of loss. 

Firstly, hydraulic losses are especially important in rapidly-flushed lakes, approaching the 

retention time of a slow-moving river, and these can be great enough to prevent the build up 

a large phytoplankton populations (Reynolds & Lund 1988; Elliott et al. 2009). Secondly, 

loss of algae to the sediment can also be significant. Many phytoplankton perennate on the 

sediment as part of their life history (Karlsson-Elfgren & Brunberg 2004; Head et al. 1999) 

but for others the loss to the sediment results in reduction in population density. Because of 

Stoke‟s law, which relates rates of sinking to excess density and the size of a particle 

(Reynolds 1984), sinking rates, and hence losses, are greatest in diatoms because of their 

dense silica cell wall and in large non-vaculate colonies such as the cyanobacterium 

Tychonema bourrelyi. Thirdly, phytoplankton can be consumed by other organisms 

including viruses (Middleboe et al. 2008), chytrid fungi (Ibelings et al. 2004) and especially 

zooplankton. The latter, particularly the larger filter-feeding Daphnia, can remove a 

substantial amount of phytoplankton, especially the smaller species that are more readily 

filtered and processed. 

 

2.3 Relationships between nutrient availability and productivity 

There are, perhaps, four main reasons why there has been a strong focus on phosphorus as 

the main limiting nutrient in freshwaters. Firstly, large-scale comparisons across temperate 
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lakes have found broad relationships between phytoplankton biomass (commonly expressed 

as the concentration of the ubiquitous photosynthetic pigment chlorophyll a) and phosphorus 

expressed as total phosphorus (e.g. Dillon & Rigler 1974; Vollenweider & Kerekes 1980; 

Vollenweider 1989, Phillips et al. 2008). Part of this association is correlative as 

phytoplankton will contribute both to chlorophyll a and to total phosphorus. Secondly, the 

history of eutrophication of lakes such as Lake Washington in the USA (e.g. Edmondsen & 

Lehman 1981); and in the UK lakes such as Windermere (Talling & Heaney 1988; Pickering 

2001), Lough Neagh (Wood & Smith 1993) and Loch Leven (Carvalho & Kirika 2003) is 

related to an increase in the availability of phosphorus rather than nitrogen. Thirdly, the 

seminal whole-lake experiments on Canadian shield lakes (Schindler 1977; Schindler et al. 

1978) demonstrated that in these lakes, phosphorus was the prime limiting nutrient. Fourthly, 

the management of P-loading is more practicable than that of N-loading, because much 

anthropogenic phosphorus loading arises as point source discharges (Reckhow & Simpson 

1980). In contrast, nitrogen is highly mobile in the environment, transported to water bodies 

in surface or ground water, and even in precipitation and consequently its supply is more 

difficult to control than is phosphorus. Such powerful evidence has guided the management 

of eutrophication towards a focus on P control, through legislation acting on point sources 

and diffuse sources (Rast & Lee 1983; Janus & Vollenweider 1981). 

 

Despite this evidence for the pre-eminence of phosphorus-limitation, from an early stage 

other nutrients were known to be limiting, including nitrogen (Sakamoto 1966), silicon 

(Reynolds 1984) or minor trace elements such as molybdenum, iron and cobalt (Goldman 

1965).  Nitrogen is the primary or co-limiting nutrient for phytoplankton production in some 

lakes in North America (Elser Marzolf & Goldman 1990), South America (Diaz & Pedrozo 

1996), northern Sweden (Jansson et al. 1996), acidified lakes in central Sweden (Blomqvist 

et al. 1993) and some lowland German (Sommer 1989) and Dutch lakes (van der Molen et al. 

1998). Nitrogen-limitation may be more widespread in tropical lakes (Vincent et al. 1984; 

Talling & Lemoalle 1998). Within the UK, nitrogen-limitation has been found in some 

Cheshire meres (Moss et al. 1992, 1994; James et al. 2003), other shallow eutrophic and 

mesotrophic lowland lakes around the UK (James et al. 2003) and upland UK lakes 

(Maberly et al. 2002). N-limitation does not appear to be confined to eutrophic lakes, and 

has been reported in mesotrophic lakes (Hough & Thompson 1996) and in oligotrophic lakes 

for periods during the late summer (Chang & Petersen 1995; Matthews et al. 2002) in North 
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America. Even where lakes are not predominately N-limited, the N-limitation of 

phytoplankton can occur even for short periods (Sommer 1989). For example, the 

phytoplankton of Lough Neagh is P-limited for much of the year but becomes N-limited in 

the late summer (DOE-DARD 2002). Periods of possibly limiting N concentrations have 

also been reported from Lough Erne and from a number of shallow lakes in the UK (DOE-

DARD 2002; Maberly et al. 2002; Fisher 2003). 

 

A recent meta-analysis of nutrient enrichment experiments from over 500 freshwater studies 

(Elser et al. 2007) showed that, on average, freshwater phytoplankton are as commonly 

nitrogen-limited as phosphorus-limited and addition of both nutrients typically produced the 

strongest response. A similar conclusion was reached by Lewis & Wurtsbaugh (2008) based 

on a review of the available literature. An intriguing possibility was raised by Bergstrom & 

Jansen (2006), namely that in the northern hemisphere atmospheric nitrogen deposition has 

driven some lakes from their natural N-limited state towards P-limitation: in other words, 

before Man‟s increase in N-supply via atmospheric deposition, most lakes in the northern 

hemisphere would have been nitrogen-limited. This has been supported by more recent work 

work (Elser et al. 2009a,b). 

 

There has been a recent controversy about the role of N and P-limitation in lakes and 

estuaries and the effectiveness of reducing only one of these nutrients (Schindler et al. 2008; 

Howarth & Pearl 2008; Schindler & Heckey 2008). In a Policy Forum Review in Science, 

Conley et al. (2009) rehearsed the various arguments and concluded that effective control of 

the negative impacts of nutrient enrichment should be made by control and reduction of both 

nitrogen and phosphorus. 

 

2.4 Role of climate change 

As noted above, in addition to nutrient enrichment lakes are sensitive to other environmental 

perturbation of which the most pervasive is climate change. A recent book is devoted to the 

effects of climate change on lakes (George 2010). Most effects of climate change are likely 

to be negative for water quality and conservation. For example, forecasts for northern Britain 

(UKCP09: http://www.ukcip.org.uk/index.php?option=com_content&task=view&id=163) 

suggest that: 

http://www.ukcip.org.uk/index.php?option=com_content&task=view&id=163
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 winters will be wetter- which will potentially increase the input of nutrients from the 

catchment 

 summers will be drier- which will reduce hydraulic losses that reduce phytoplankton 

biomass in some lakes 

 summers will be warmer- this will strengthen stratification 

 

Drier, warmer summers are likely to promote the growth of cyanobacteria (Paerl & Huisman 

2008) which can be toxic, disrupt linkages to higher trophic levels and on decomposition 

lead to anoxic conditions. In addition warmer waters may have an indirect effect by opening 

niches for non-native species that are introduced into the area, wittingly or unwittingly, by 

human transport. 
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3. THE ECOLOGY OF THE MERES 

 

3.1 Introduction 

In some ways the meres are not typical of the general lakes discussed in section 2. They are 

believed to be chronically nutrient-rich (Fisher et al. 2009), they have a complicated 

hydrology that is often dominated more by groundwater rather than by surface water 

(Reynolds 1979) and, like many shallow lakes, biological interactions are believed to be very 

important in controlling water quality (Moss et al. 1994).  Reynolds (1979) recorded 63 open 

water meres and a further 41 mires or mosses without open water in the region. The meres 

range in area from around 0.2 ha (Sweat Mere in 1975) to 72.5 ha (Aqualate Mere) and in 

maximum depth (where known) from less than 1 m (Norbury Big Mere) to 27.5 m 

(Rostherne Mere). Mean depths (Fisher et al. 2009, again where known) range from 0.7 m 

(Little Mere) to 13.6 m (Rostherne Mere). The meres have been the subject of intensive and 

extensive study over many years, particularly recently by teams from Liverpool University. 

Early reviews include those of Sinker (1962), Reynolds (1979) and the major systematic 

seasonal surveys of Moss et al. (1992). Natural England (then English Nature) and the 

Environment Agency commissioned a series of conservation plans for 44 sites from 

Environmental Consultants, Sheffield University (ECUS) which draws together useful 

information on the geology, soils, hydrology, landuse, conservation objectives, management 

and limnology. More recently, Fisher et al. (2009) reviewed the water quality in the meres.  

 

Given the available reviews noted above, this section will outline briefly what is known 

about the general ecology of the meres. The specific features of the catchment, hydrology, 

geology and basic limnology of each mere will be described in section 4.  

 

3.2 Geography, geology and history 

The meres of the North-West Midlands in the UK lie on the Shropshire-Cheshire Plain 

between the Mersey to the north, the South Shropshire hills to the south, the Pennines to the 

east and the Welsh Massif to the west (Reynolds 1979). Geologically, the plain comprises 

Carboniferous limestones, grits and shales around the perimeter and Triassic sandstones and 

marls in the centre. However, most of the underlying rocks lie beneath glacial drift deposited 
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during the Pleistocene glaciation comprising boulder clay and sands and gravels. Based on a 

review of the early literature, Reynolds (1979) judged that meres started to be formed after 

the Late Devensian glaciation around 16 - 18, 000 years ago as the ice-sheets started to 

retreat. A number of processes linked to the glaciation probably led to the formation of the 

meres including kettle holes (e.g. the central part of Ellesmere Mere), moraine-damned 

hollows (e.g. „Crose Mere complex‟) and possible periglacial pingoes (e.g. Oakhanger and 

White Moss). Other meres are likely to have formed from post-glacial subsidence hollows 

resulting from „wet-head‟ solution of buried salt deposits (e.g. Budworth Mere). 

3.3 Control of phytoplankton populations 

A major change in our understanding of how the meres function came about with the 

publication of a paper by Moss et al. (1994). Based on a detailed seasonal survey of twenty-

four meres, they showed that the shallower meres (< 3 m maximum depth) and the deeper 

meres (>3 m maximum depth) were controlled by different environmental variables. In the 

shallower meres there was a strong inverse relationship between the growing season 

phytoplankton chlorophyll a concentrations and the density of Daphnia zooplankton and 

total filter-feeding zooplankton (Fig. 3.1). This strongly indicates that in these shallow lakes 

loss processes caused by zooplankton grazing controls phytoplankton populations, probably 

because in shallow lakes a large proportion of the lake area can be colonised by macrophytes 

that provide a refuge for zooplankton from grazing by fish. In contrast, in the deeper lakes 

the availability of inorganic nitrogen was strongly positively linked to phytoplankton 

chlorophyll a concentrations while no clear relationship was found for total phosphorus, the 

„commonly assumed‟ limiting nutrient (Fig. 3.2). The importance of nitrogen as a limiting 

nutrient was later confirmed in the studies of James et al. (2003) and Fisher et al. (2009). 
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Figure 3.1. Effect of zooplankton populations on growing season phytoplankton chlorophyll 

a in shallow and deep meres based on maximum depth. Original in Moss et al. (1994), 

American Society of Limnology & Oceanography.  

 

Figure 3.2. Effect of inorganic nutrients on growing season phytoplankton chlorophyll a in 

shallow and deep meres based on maximum depth. Original in Moss et al. (1994), American 

Society of Limnology & Oceanography.  
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4. LIMNOLOGY AND INFORMATION ON INDIVIDUAL MERES 

 

The following brief descriptions give an overview of the most important features of the 

meres and mosses discussed in this report. This provides the context for the setting of 

nutrient targets for each site. The information is derived mainly from the series of reports 

produced by ECUS between 2001 and 2003 and a limnological survey of most of these sites 

carried out by Moss et al. (1992) between July 1991 and July 1992 provides the baseline 

chemical background, supplemented where necessary with information in Fisher et al. 

(2009). Where available, recent data from the Environment Agency (mainly from 2005 to 

2009) are also given for concentration of total phosphorus (TP), dissolved inorganic nitrogen 

(DIN, the sum of nitrate, nitrite and ammonium) and phytoplankton chlorophyll a.  

 

Hydrological source of water is classified into either drainage where water-level is strongly 

influenced by surface flows and seepage where water-level is maintained by atmospheric 

exchange and groundwater (Saunders et al. 2000). 

 

The final row for each lake gives the Water Framework Directive (2000/60/EC) lake 

typology based on alkalinity and mean depth. For alkalinity (mequiv L
-1

): High (HA) > 1; 

Moderate (MA) 0.2 - 1.0; Low (LA) <0.20. For mean depth (m): Deep (D) >15.0, Shallow 

(S) 3.0 – 15.0, Very Shallow (VS) <3.0. 

 

The salient features are given in a table for each mere but also compiled into a single table at 

the end of this section. 
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4.1 Aqualate Mere 

Aqualate Mere (NGR, SJ770 205) is the largest of the meres in the Shropshire-Cheshire 

Plain with a surface area of about 75 ha (Table 4.1) but a more recent estimate is only 59 ha 

(ESI 2009; Fig. 4.1) that excludes fringing reedbeds. It is also one of the shallowest, a survey 

in 2009 recorded a maximum depth of about 1 m (ESI 2009). The catchment area (Fig. 4.1) 

is estimated to be 58 km
2
. The surface geology is dominated by Quarternary deposits of peat, 

gravel and sand. Land use is mainly pastoral with small areas of woodland and wet-grassland. 

The mere receives surface water from three main streams: The Coley Brook (68% catchment 

area), Wood Brook and Humesford Brook. During high-water levels, inflow to Wood Brook 

may be supplemented by storm overflow from the adjacent Shropshire Union Canal (ESI 

2009). The sediment in the mere comprises a clayey-silt layer up to 1.3 m thick that is 

deposited on more organic-rich post-glacial sediments (ECUS 2003). The mere is probably 

connected to groundwater with minor superficial aquifers and with the regional Sherwood 

Sandstone aquifer (ECUS 2001a, 2003) and groundwater is likely to make a contribution to 

hydraulic input in Aqualate Mere. The land use in the catchment is mainly arable and semi-

improved grassland, but numerous woodlands and villages are present in the large catchment. 

 

Table 4.1. Characteristics of Aqualate Mere.  

Characteristic Value Unit Reference and notes 

Altitude 67 m  

Area 59 ha ESI (2009); 75ha in Reynolds (1979) 

Catchment area 58 km
2
 ESI (2009) 

Max water depth 1 m Survey in 2009 

Mean water depth - m  

Mean retention time - y  

Main source of water* D & S - ECUS (2001a) 

Annual conductivity 610 μS cm
-1

 Fisher et al. (2009) 

Annual alkalinity 0.88 mequiv L
-1

 Fisher et al. (2009) 

Annual TP 469 (250) μg L
-1

 Fisher et al. (2009) (Recent EA data) 

Annual DIN 870 (6820) μg L
-1

 Fisher et al. (2009) (Recent EA data) 

Annual Chlorophyll a 68 (25) μg L
-1

 Fisher et al. (2009) (Recent EA data) 

WFD Lake type MA, VS -  

*D = Drainage; S = Seepage 
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Figure 4.1 Map of Aqualate Mere showing surface water catchment (ECUS 2001a). 
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4.2 Berrington Pool 

Berrington Pool (NGR, SJ526 073) is a small, alluvium-lined kettlehole mere 2.5 ha in area 

but around 12 m deep with a mean depth of about 6.7 m (Table 4.2). It lies in a cup-shaped 

basin. It has a very small catchment area (Fig. 4.2), the surface geology of which is glacial 

till and glaciofluvial drift, although it is possible that the catchment is slightly larger than 

currently thought. The catchment includes the small water body Top Pool but connexions to 

Berrington Pool are unclear. There are no major stream inputs (ECUS 2001b; Fig. 4.2), and 

Moss et al. (1992) concluded that the mere was largely fed by groundwater. However, there 

is also no evidence that the mere is linked to the regional aquifer and the water level appears 

to be substantially above the groundwater level. It is possible that water is derived by lateral 

transport from saturated soils and overland flow during high rainfall. The hydrology of the 

mere is therefore unclear and a retention time has not been calculated. 

 

Table 4.2. Characteristics of Berrington Pool. 

Characteristic Value Unit Reference and notes 

Altitude 78 m  

Area 2.5 ha Reynolds (1979) 

Catchment area 0.36 km
2
 ECUS (2001b) 

Max water depth 12.2 m Reynolds (1979) 

Mean water depth 6.7 m Unpub survey in 1982 held by NE 

Mean retention time - y - 

Main source of water* S - ECUS (2001b); Moss et al. (1992) 

Annual conductivity 392 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 1.8 mequiv L
-1

 Moss et al. (1992) 

Annual TP 113 (180) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 384 (1020) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 16.6 (20.3) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.2 Map of Berrington Pool showing surface water catchment (ECUS 2001b). 
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4.3 Betley Mere 

Betley Mere (NGR, SJ747 482) occupies a shallow valley in glacial deposits overlying 

Triassic strata and is bounded on three sides by extensive peat deposits (ECUS 2001c). It is 

shallow with a maximum water depth of about 1.8 m and an area of about 9.3 ha (Table 4.3). 

The catchment area (Fig. 4.3) is 8.3 km
2
 and comprises arable and semi-improved pasture 

for cattle with pockets of neutral grassland and woodland. Betley Mere receives water 

mainly from two inflowing streams and has one outflow (Moss et al. 1992). There is 

believed to be a small contribution of groundwater to the hydraulic input. The estimated 

inflow exceeded the outflow suggesting substantial loss of water to the groundwater or 

adjacent wetland areas. The estimated flushing rate is high with a mean retention time of 

0.07 y but this declines markedly in the summer to 0.97 y (Moss et al. 1992).  

 

Table 4.3. Characteristics of Betley Mere 

Characteristic Value Unit Reference and notes 

Altitude 58 m  

Area 9.3 ha Reynolds (1979) 

Catchment area 8.31 km
2
 ECUS (2001c) 

Max water depth 1.8 m Reynolds (1979) 

Mean water depth - m  

Mean retention time 0.07 y Moss et al. (1992) 

Main source of water* D (S) - ECUS (2001c); Moss et al. (1992) 

Annual conductivity 659 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 3.93 mequiv L
-1

 Moss et al. (1992) 

Annual TP 506 (480) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 1060 (2180) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 63 (74) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.3 Map of Betley Mere showing surface water catchment (ECUS 2001c). 
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4.4 Black Firs and Cranberry Bog: Black Mere 

Black Firs and Cranberry Bog (NGR, SJ748 503) are a drained wetland with a valley-

woodland and a small well-preserved schwingmoor basin mire respectively (ECUS 2001d; 

Fig. 4.4). Cranberry Bog has an adjoining dystrophic lake, Black Mere, which is the focus of 

this report. The solid geology of Triassic siltstones and mudstones (Keuper marls) is overlain 

by drift of peat and deposits of glacial sands and gravels. The surface water catchment (Fig. 

4.4) lies to the east and north of Black Mere and is agricultural land with improved grazing 

pasture and arable. The small hamlet of Gorstyhill lies in the catchment. There is one 

inflowing stream to Black Mere but it has been suggested that the water is connected to the 

water beneath the schwingmoor at Cranberry Bog and may also be in connection with 

groundwater (Natural England note, mentioned by ECUS 2001d). There are few data on 

Black Mere but there is a noted concern about organic pollution at the mere. 

 

Table 4.4. Characteristics of Black Mere 

Characteristic Value Unit Reference and notes 

Altitude 75 m  

Area 1.5 ha Natural England unpublished 

Catchment area 1.49 km
2
 ECUS (2001d) 

Max water depth - m  

Mean water depth - m  

Mean retention time - y  

Main source of water* D & S - ECUS (2001d) 

Annual conductivity - μS cm
-1

  

Annual alkalinity - mequiv L
-1

  

Annual TP 1300 μg L
-1

 Natural England unpublished 

Annual DIN 560 μg L
-1

 Natural England unpublished 

Annual Chlorophyll a - μg L
-1

  

WFD Lake type -   

*D = Drainage; S = Seepage 
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Figure 4.4 Map of Black Mere within the Black Firs and Cranberry Bog system showing 

surface water catchment (ECUS 2001d). 
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4.5 Bomere, Shomere and Betton Pools 

Bomere Pool, Shomere Pool and Betton Pool (NGR, SJ500 080) are three adjacent meres 

(Fig. 4.5) that lie in mounded morainic material in the south of the region. Bomere is 

underlain by alluvium over glacial till, Shomere by peat over glacial till and Betton Pool 

directly by glacial till (ECUS 2001e). For all three meres, the glacial till is thought to be 

sufficiently thick to prevent major hydraulic connection with the solid geology of 

Carboniferous Keele beds. All three meres are believed to have perched water tables as there 

are no inflowing streams and only one outflow although Moss et al. (1992) suggested that 

there may be groundwater inputs. Bomere and Shomere are surrounded by deciduous 

woodland, and the rest of the catchment comprises arable land and a small amount of 

improved pasture, a farm and a few houses. Betton Pool is fringed by a narrow strip of 

deciduous trees and immediately surrounded by arable fields. Bomere has a low alkalinity 

for the meres (Table 4.5). All three meres have high conservation value, particularly for their 

macrophyte flora. 

 

Table 4.5. Characteristics of Bomere (B), Shomere (S) and Betton Pool (P).  

Characteristic Value 

B/ S/ P 

Unit Reference and notes 

Altitude 75.3  m  

Area 10.3/ 1.3/ 6.4 ha Reynolds (1979) 

Catchment area 1.32 (total for all ) km
2
 ECUS (2001e) 

Max water depth 15.2 / 4.3/ 10.9 m ECUS (2001e) 

Mean water depth 5.1/ - /3.6 m Fisher et al. (2009) 

Mean retention time 4.5/ - /1.85 y James et al. (2003) 

Main source of water* D & S - ECUS (2001e), Moss et al. (1992) 

Annual conductivity 120/ 129 /231 μS cm
-1

 Fisher et al. (2009), Reynolds (1979) 

Annual alkalinity 0.56/ 0.27 / 2.14 mequiv 

L
-1

 

Fisher et al. (2009), Reynolds (1979) 

Annual TP 49 (40)/ - /97 μg L
-1

 Fisher et al. (2009) (Recent EA data) 

Annual DIN 44 (220)/ - /126 μg L
-1

 Fisher et al. (2009) (Recent EA data) 

Annual Chlorophyll a 11 (11)/ - /27 μg L
-1

 Fisher et al. (2009) (Recent EA data) 

WFD Lake type MA S/ - / HA S  Fisher et al. (2009) 

*D = Drainage; S = Seepage 
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Figure 4.5 Map of Bomere, Shomere and Betton Pool showing surface water catchment 

(ECUS 2001e). 
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4.6 Brown Moss 

Brown Moss (NGR SJ562 395) comprises a series of about five pools set in a heathland. The 

pools lie on poorly-draining peaty soils on glacial sands and gravels that overlie Lower 

Liassic mudstones, limestones, siltstones and sandstones. The largest pool (which will be 

dealt with here) is about 3.3 ha in area. Each pool has been reported to have different and 

fluctuating water quality so the limited data available may only be applicable to the largest 

pool. The small catchment (Fig. 4.6) comprises improved or semi-improved grassland and a 

few arable fields. The largest (and one other) pool was dredged in 1976 to increase water 

depth (ECUS 2001f). There are no natural direct surface inflows to the pools although inflow 

may occur during high rainfall from drains and a culvert. Water levels in the pools can 

fluctuate greatly suggesting input from rainfall and overland flow but there is also likely to 

be input from groundwater. As this report was being completed a detailed nutrient budget 

was published „early-online‟ but too late to incorporate fully into this report (Chaichana et al. 

2010). 

 

Table 4.6. Characteristics of the major pool on Brown Moss 

Characteristic Value Unit Reference and notes 

Altitude 104 m ECUS (2001f) 

Area 3.3 ha Fisher et al. (2009) 

Catchment area 1.28 km
2
 ECUS (2001f) 

Max water depth 1 m Fisher et al. (2009) 

Mean water depth - m  

Mean retention time - y  

Main source of water* S (D) - ECUS (2001f) 

Annual conductivity 150 μS cm
-1

 Fisher et al. (2009) 

Annual alkalinity 0.78 mequiv L
-1

 Fisher et al. (2009) 

Annual TP 775 (389) μg L
-1

 Fisher et al. (2009) Chaichana et al. (2010) 

Annual DIN - μg L
-1

  

Annual Chlorophyll a 2 μg L
-1

 Fisher et al. (2009) 

WFD Lake type MA VS   

*D = Drainage; S = Seepage 
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Figure 4.6 Map of Brown Moss showing surface water catchment (ECUS 2001f). 
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4.7 Chapel Mere 

Chapel Mere (NGR, SJ540 519) is a small (6.5 ha) relatively shallow (maximum depth 2.4 

m) mere in the south of Cheshire (Table 4.7). The solid geology is Triassic but it is mainly 

covered by boulder clay with small areas of alluvium and terrace deposits (ECUS 2001g). It 

has two major surface-water inflows and a single outflow (Fig. 4.7) and the hydrological 

balance suggests a minimal input of water from groundwater (ECUS 2001g; Moss et al. 

1992). The immediate catchment is in parkland with some improved pasture and arable. 

 

Table 4.7. Characteristics of Chapel Mere. 

Characteristic Value Unit Reference and notes 

Altitude 88 m  

Area 6.5 ha Reynolds (1979) 

Catchment area 2.38 km
2
 ECUS (2001g) 

Max water depth 2.4 m Reynolds (1979) 

Mean water depth - m  

Mean retention time 0.15 y Moss et al. (1992) 

Main source of water* S - ECUS (2001g), Moss et al. (1992) 

Annual conductivity 721 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 4.68 mequiv L
-1

 Moss et al. (1992) 

Annual TP 1267 (300) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 600 (1030) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 12 (26) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.7 Map of Chapel Mere showing surface water catchment (ECUS 2001g). 
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4.8 Cole Mere 

Cole Mere (NGR SJ433 332) is a relatively large and deep mere with a surface area of 28 ha 

and a maximum depth of 11.5 m (Table 4.8). Cole Mere is situated in a hollow within glacial 

drift (ECUS 2001h). The surface water catchment, largely to the south of the mere (Fig. 4.8) 

is only about 1.72 km
2 

and is predominantly arable and semi-improved pasture but also 

includes the village of Cole Mere. There is a small inflow stream to the north-west and an 

outflow to the east that can also act as an inflow under some hydrological conditions. It 

probably also receives overflow from the nearby Shropshire Union Canal. However, 

between 61 to 82% of the water supplied to the mere is believed to derive from groundwater 

(ECUS 2001h). 

 

Table 4.8. Characteristics of Cole Mere. 

Characteristic Value Unit Reference and notes 

Altitude 88 m  

Area 28 ha Reynolds (1979) 

Catchment area 1.72 km
2
 ECUS (2001h) 

Max water depth 11.5 m Reynolds (1979) 

Mean water depth 3.3 m Fisher et al. 2009 

Mean retention time 1.25 y Moss et al. (1992) 

Main source of water* S (D) - ECUS (2001h) 

Annual conductivity 239 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 1.49 mequiv L
-1

 Moss et al. (1992) 

Annual TP 400 (130) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 740 (330) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 22 (25) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.8 Map of Cole Mere showing surface water catchment (ECUS 2001h). 
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4.9 Comber Mere 

Comber Mere (NGR, SJ587 455) is one of the largest West Midland meres with a surface 

area of 51.5 ha and a maximum depth of 11.8 m (Table 4.9). Comber Mere is situated in an 

agricultural catchment of about 8.1 km
2
 on Triassic mudstones overlain by boulder clay with 

a ridge of glacial sand and gravel along the northern margin (ECUS 2001i). The hydrology 

of the mere is probably dominated by surface water and several small streams flow into the 

mere from the south-west (Fig. 4.9). Direct precipitation on the mere surface may also 

contribute to the water budget and the average retention time is long at 1.66 year (Moss et al. 

1992). The large catchment to the south and west of the mere is primarily agricultural land 

(ECUS 2001i). 

 

Table 4.9. Characteristics of Comber Mere 

Characteristic Value Unit Reference and notes 

Altitude 78 m  

Area 51.5 ha Reynolds (1979) 

Catchment area 8.1 km
2
 ECUS (2001i) 

Max water depth 11.8 m Reynolds (1979) 

Mean water depth - m  

Mean retention time 1.66 y Moss et al. (1992) 

Main source of water* D - Moss et al. (1992) 

Annual conductivity 513 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 3.0 mequiv L
-1

 Moss et al. (1992) 

Annual TP 362 (190) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 860 (980) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 14.7 (31) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.9 Map of Comber Mere showing surface water catchment (ECUS 2001i). 
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4.10 Cop Mere 

Cop Mere (NGR, SJ800 298) is a shallow (maximum depth 2.7 m) moderately sized (16.8 

ha) mere (Table 4.10). Its catchment is relatively large and lies in a complicated geological 

area of Triassic strata comprising sandstones, conglomerates, marl and mudstones. In 

contrast to many of the other meres, glacial drift is sparse (ECUS 2001j). The catchment 

comprises arable and pasture with many pockets of broad-leaved woodland and scrub. Many 

farms and small villages are also present. The main input to the mere is the River Sow (Fig. 

4.10) and surface flows dominate the hydrological input, although groundwater probably 

enters the inflowing river as baseflow. As a consequence of the major river inflow, the 

average retention time is very short, only about 4 weeks (Moss et al. 1993). 

 

Table 4.10. Characteristics of Cop Mere 

Characteristic Value Unit Reference and notes 

Altitude 88 m  

Area 16.8 ha Reynolds (1979) 

Catchment area 13.64 km
2
 ECUS (2001j) 

Max water depth 2.7 m Reynolds (1979) 

Mean water depth 1 m Fisher et al. 2009 

Mean retention time 0.08 y Moss et al. (1992) 

Main source of water* D - ECUS (2001j) 

Annual conductivity 457 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 2.95 mequiv L
-1

 Moss et al. (1992) 

Annual TP 315  μg L
-1

 Moss et al. (1992) 

Annual DIN 1800 (3490) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 59.6 (9.4) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.10 Map of Cop Mere showing surface water catchment (ECUS 2001j). 
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4.11 Fenemere 

Fenemere (NGR, SJ445 228) is a moderate sized (9.4 ha) shallow (maximum depth 2.2 m) 

mere that is part of a hydrologically complex system that comprises two other water bodies, 

Marton Pool and Birchgrove Pool, that flow into Fenemere (Fig. 4.11) and may once have 

been part of the same water body as they are at a similar elevation (ESI 2002a; Table 4.11). 

Fenemere itself lies in a peaty hollow, but the catchment lies on glacial sands and gravels 

that overlie glacial till and a solid geology of mudstones. The catchment is arable or 

improved grassland with small pockets of woodland. Only 5% of the outflow from Fenemere 

can be supported by the measured surface inflow, the remainder is believed to derive from 

groundwater.  

 

Table 4.11. Characteristics of Fenemere 

Characteristic Value Unit Reference and notes 

Altitude 78 m  

Area 9.4 ha Reynolds (1979) 

Catchment area 11.2 km
2
 ESI (2002a) 

Max water depth 2.2 m Reynolds (1979) 

Mean water depth - m  

Mean retention time 0.21 y Moss et al. (1992) 

Main source of water* S (D) - ECUS (2001k) 

Annual conductivity 756 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 4.76 mequiv L
-1

 Moss et al. (1992) 

Annual TP 487 μg L
-1

 Moss et al. (1992) 

Annual DIN 1230 (5979) μg L
-1

 Moss et al. (1992) (EA data 2000-02) 

Annual Chlorophyll a 56.1 μg L
-1

 Moss et al. (1992) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.11 Map of Fenemere showing surface water catchment (ECUS 2001k). 
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4.12 Hatch Mere 

Hatch Mere (NGR, SJ552 723) is a small (4.7 ha) relatively shallow (maximum depth 3.8 m) 

mere that is close to the basin mire of Flaxmere (Table 4.12). The surface water catchment of 

2.2 km
2
 lies on a varied geology including Lower Keuper marl and Keuper waterstones but 

is mainly covered with drift deposits of glacial sand and gravel with some peat, alluvium and 

boulder clay (ECUS 2001l). The land is largely arable and improved grassland with a 

western fringe of coniferous woodland and contains numerous farms and the village of 

Hatchmere on the southern boundary. There are a number of small field drains and ditches 

and an outflow stream from the mere (Fig. 4.12) but the mere is believed to be largely fed 

from groundwater with an estimated retention times of 0.4 year but there is less flow in the 

summer with an estimated retention time of 0.94 y (Moss et al. 1992). 

 

Table 4.12. Characteristics of Hatch Mere 

Characteristic Value Unit Reference and notes 

Altitude 76 m  

Area 4.7 ha Reynolds (1979) 

Catchment area 2.2 km
2
 ECUS (2001 l) 

Max water depth 3.8 m Reynolds (1979) 

Mean water depth - m  

Mean retention time 0.4 y Moss et al. (1992) 

Main source of water* S - ECUS (2001 l), Moss et al. (1992) 

Annual conductivity 484 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 2.36 mequiv L
-1

 Moss et al. (1992) 

Annual TP 85 (70) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 1610 (3180) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 29.5 (29.0) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.12 Map of Hatch Mere showing surface water catchment (ECUS 2001 l). 
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4.13 Maer Pool 

Maer Pool (NGR, Sj789 384) is a small (surface area 5.5 ha) shallow (maximum depth 1.7 

m) mere immediately north-west of the village of Maer (Table 4.13). It has the greatest 

altitude of any of the meres (118 m) and is the headwater of the River Tern. The surface 

water catchment is 1.82 km
2
. Unlike most of the meres, the catchment is largely drift free, 

but there is peat in the vicinity of the mere and small areas of glaciofluvial deposits. The 

solid geology is Permo-Triassic sandstone with outcrops of mudstones. Most of the landuse 

in the catchment is agricultural but also includes the small village of Maer. There are two 

small inflows (Fig. 4.13), but water is mainly derived from the Sherwood Sandstone aquifer 

(ECUS 2001m). There is relatively little water chemistry available for this site. 

 

Table 4.13. Characteristics of Maer Pool 

Characteristic Value Unit Reference and notes 

Altitude 118 m  

Area 5.5 ha Reynolds (1979) 

Catchment area 1.82 km
2
 ESI (2002b) 

Max water depth 1.7 m Reynolds (1979) 

Mean water depth - m  

Mean retention time - y  

Main source of water* S (D) - ECUS (2001m), Moss et al. (1992) 

Annual conductivity 585 μS cm
-1

 Reynolds (1979) 

Annual alkalinity 4.27 mequiv L
-1

 Reynolds (1979) 

Annual TP - μg L
-1

  

Annual DIN - mg L
-1

  

Annual Chlorophyll a 15.5 μg L
-1

 Moss et al. (1992) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.13 Map of Maer Pool showing surface water catchment (ECUS 2001m). 
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4.14 Marton Pool (Chirbury) 

Marton Pool (NGR, SJ296 025) is of moderate area (13.7 ha) and depth (maximum depth 8 

m) and is believed to lie in a kettle-hole within a former valley of the River Severn (ECUS 

2001n; Table 4.14). It is one of the few meres lying at an altitude of more than 100 m. The 

solid geology comprises Silurian shales and mudstones with small patches of alluvium and 

glacial sands and gravels within the catchment which has an area of 5.01 km
2
. The 

catchment is largely arable and improved pasture but there are also large areas of 

broadleaved woodland and coniferous plantation. The main inflow is Lowerfield Brook and 

there is one outflow (Fig. 4.14). Most of the water input is believed to be surface water.  

There appears to be limited water chemistry available for this site. 

 

Table 4.14. Characteristics of Marton Pool (Chirbury) 

Characteristic Value Unit Reference and notes 

Altitude 105 m  

Area 13.7 ha Reynolds (1979) 

Catchment area 5.01 km
2
 ECUS (2001n) 

Max water depth 8 m ECUS (2001n) 

Mean water depth - m  

Mean retention time - y  

Main source of water* S - ECUS (2001n) 

Annual conductivity - μS cm
-1

  

Annual alkalinity 4.40 mequiv L
-1

 Reynolds (1979) 

Annual TP - μg L
-1

  

Annual DIN - mg L
-1

  

Annual Chlorophyll a - μg L
-1

  

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.14 Map of Marton Pool (Chirbury) showing surface water catchment (ECUS 

2001n). 
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4.15 Oak Mere 

Oak Mere (NGR, SJ574 679) is moderately sized (18.3 ha) but relatively shallow (maximum 

depth 5.6 m; Table 4.15). It lies in a sandy basin with peat underlying its north-western end. 

The catchment of 3.5 km
2
 (ECUS 2001o) is mixed with agricultural land, forestry 

plantations, flooded lagoons and numerous farms and houses. The surface geology is 

principally glacial sandy drift and peat overlying Triassic mudstones that are exposed at the 

western edge of the catchment. Oak Mere lacks direct inflows or outflows (Fig. 4.15) and is 

believed to be a surface manifestation of the water table (Carvalho & Moss, 1999). Its 

hydrology is believed to be supported entirely from direct rainfall and by subsurface flow 

within the soils. Oak Mere is notable within the meres because its water has low alkalinity 

and relatively low conductivity (Moss et al. 1992). Carvalho (1993) considers a number of 

hypotheses for the low alkalinity and conductivity and provides strong evidence that it is 

because Oak Mere lies at the top-end of a hydrological landscape and so is largely rain-fed, 

with only a relatively minor influence of catchment soils and geology on the water quality. 

 

Table 4.15. Characteristics of Oak Mere. 

Characteristic Value Unit Reference and notes 

Altitude 73 m Savage et al. (1992) 

Area 22.9 ha Savage et al. (1992) 

Catchment area 3.50 km
2
 ECUS (2001o) 

Max water depth 5.6 m Reynolds (1979) 

Mean water depth 2.0 m Savage et al. (1992) 

Mean retention time 0.81 y Calculated from values in Savage et al. (1992) 

Main source of water* S - ECUS (2001o); Carvalho (1993) 

Annual conductivity 187 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 0.028 mequiv L
-1

 Moss et al. (1992) 

Annual TP 61 (80) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 230 (200) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 7.4 (29)  μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type LA, VS   

*D = Drainage; S = Seepage 
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Figure 4.15 Map of Oak Mere showing surface water catchment (ECUS 2001o). 
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4.16 Oss Mere 

Oss Mere (NGR, SJ565 438) is a small (area 9.5 ha) and shallow (maximum depth 3 m) 

mere bordered by reedswamp, alder carr and dry woodland (Table 4.16). It is one of the few 

meres lying at an altitude of more than 100 m. Its catchment of 1.8 km
2
 overlies Upper 

Keuper saliferous beds overlain by a thick layer of boulder clay with an outcrop of morainic 

sands. The catchment land use comprises semi-improved pasture with a few arable fields and 

patches of broad-leaved woodland (ECUS 2001p). Although there as some minor inflowing 

streams (Fig. 4.16) the water is believed to be supplied from groundwater and there is no 

outflow stream. Because of this, there is no information on retention time. 

 

Table 4.16. Characteristics of Oss Mere. 

Characteristic Value Unit Reference and notes 

Altitude 105 m  

Area 9.5 ha Reynolds (1979) 

Catchment area 1.80 km
2
 ECUS (2001p) 

Max water depth 3.0 m ECUS (2001p) 

Mean water depth - m  

Mean retention time - y  

Main source of water* S - ECUS (2001p) 

Annual conductivity 491 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 3.02 mequiv L
-1

 Moss et al. (1992) 

Annual TP 296 (155) μg L
-1

 Moss et al. (1992) (EA data 2005 – 08) 

Annual DIN 230 (1273) μg L
-1

 Moss et al. (1992) (EA data 2007 – 08) 

Annual Chlorophyll a 35.4 (21) μg L
-1

 Moss et al. (1992) (EA data 2005 – 08) 

WFD Lake type HA, VS   

D = Drainage; S = Seepage 

 



44 

 

 

Figure 4.16 Map of Oss Mere showing surface water catchment (ECUS 2001p). 
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4.17 Quoisley Meres 

There are two meres at Quoisley (NGR, SSJ548 455). Quoisley Little Mere has an area of 

2.2 ha and maximum depth of 1.8 m and normally flows into Quoisley Big Mere which has 

an area of 4.0 ha and a maximum depth of 2.4 m (Table 4.17). Each mere is surrounded by 

well-developed reedswamp and alder carr. The catchment for both meres is 1.73 km
2
 and the 

solid geology is Triassic mudstones including Upper Keuper saliferous beds overlain by 

thick layers of drift. The drift is largely made up of boulder clay with glaciofluvial deposits 

of boulder clay and peat, sands and gravels. The land use in the catchment is intensively 

managed farmland with improved pasture and arable. (ECUS 2001q). The hydrology is 

largely via surface inflow from streams (Fig. 4.17) and surface runoff but there could be 

some contribution from groundwater from the nearby sandy-drift deposits.  

 

Table 4.17. Characteristics of the Quoisley Meres. 

Characteristic Value 

(Little/ Big) 

Unit Reference and notes 

Altitude 78 m  

Area 2.2 / 4.0 ha Reynolds (1979) 

Catchment area
a
 1.73  km

2
 ECUS (2001q) 

Max water depth 1.8 / 2.4 m Reynolds (1979) 

Mean water depth - /  m  

Mean retention time 0.27
a
 y Moss et al. (1992) 

Main source of water* S - ECUS (2001q) 

Annual conductivity 639 / 611 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 5.02 / 4.69 mequiv L
-1

 Moss et al. (1992) 

Annual TP 264 / 404 μg L
-1

 Moss et al. (1992) 

Annual DIN 1350 / 640 μg L
-1

 Moss et al. (1992) 

Annual Chlorophyll a 8.4 / 14.2 μg L
-1

 Moss et al. (1992) 

WFD Lake type HA, VS (both)   

a 
average for both meres. 

*D = Drainage; S = Seepage 
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Figure 4.17 Map of Quoisley Meres showing surface water catchment (ECUS 2001q). 
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4.18 Rostherne Mere 

Rostherne Mere (NGR, SJ745 842) is one of the best-studied, largest (surface area 48.7 ha) 

and deepest (maximum depth 31 m) of the meres and also has the lowest altitude of the ones 

studied here (Table 4.18). It lies in a deep hollow in glacial drift and is fringed by a 

reedswamp for much of its perimeter. The catchment of 10.28 km
2
 has a solid geology of 

Lower Keuper saliferous beds overlain by alluvium and glaciofluvial deposits of boulder 

clay, ands and gravels. The landuse in the catchment is mainly arable or improved pasture 

for cattle with a few pockets of woodland. Rostherne Mere receives water from several 

inflowing streams and has one outflow (Fig. 4.18). The main inflowing stream is ultimately 

derived from Little Mere and The Mere Mere. Surface water is likely to be the main source 

of water but a small input from groundwater is possible (ECUS 2001r). The retention time is 

long at between 1.1 and 3.4 years (Carvalho 1993), although this was measured over two 

exceptionally dry years (1990 & 1991). 

 

Table 4.18. Characteristics of Rostherne Mere 

Characteristic Value Unit Reference and notes 

Altitude 27 m  

Area 48.7 ha Reynolds (1979) 

Catchment area 10.3 km
2
 ECUS (2001r) 

Max water depth 31 m Woof & Wall (1984) 

Mean water depth 13.6 m Woof & Wall (1984) 

Mean retention time 1.1 – 3.4 y Carvalho (1993) 

Main source of water* D - ECUS (2001r); Carvalho (1993) 

Annual conductivity 382 μS cm
-1

 Reynolds (1979) 

Annual alkalinity 2.65 mequiv L
-1

 Moss et al. (1992) 

Annual TP 419 (180) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 840 (960) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 16.3 (30) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.18 Map of Rostherne Mere showing surface water catchment (ECUS 2001r). 
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4.19 Sweat Mere & Crose Mere 

Sweat Mere and Crose Mere (NGR, SJ434 304) are two linked meres of which Crose Mere 

is the larger (surface area 15.2 ha) and deeper (maximum depth 9.3 m; Table 4.19). 

Currently, there is little open water at Sweat Mere (ECUS 1998) and this review will 

therefore concentrate on the water quality in Crose Mere. The mere lies in a kettlehole with 

an underlying geology of Keuper marls overlain by glacial sands and gravels. Crose Mere is 

mainly groundwater-fed with no inflowing streams (Fig. 4.19) but overland flows may occur 

during heavy rain. The land use in the catchment is mainly arable, improved grassland and 

permanent pasture with a small amount of woodland and some farms and hamlets. 

 

Table 4.19. Characteristics of Crose Mere 

Characteristic Value Unit Reference and notes 

Altitude 88 m  

Area 15.2 ha Reynolds (1979) 

Catchment area 3.6 km
2
 ECUS (1998) 

Max water depth 9.3 m Reynolds (1979) 

Mean water depth 4.8 m Fisher et al. (2009) 

Mean retention time 5.6; 

(2.25) 

y Moss et al. (1992); Reynolds (1979) 

Main source of water* S (D) - ECUS (1998); Reynolds (1979) 

Annual conductivity 474 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 3.05 mequiv L
-1

 Moss et al. (1992) 

Annual TP 214 (110) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 350 (610) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 9.8 (24.9) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.19 Map of Sweat & Crose Mere showing surface water catchment (ECUS 1998). 
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4.20 Tabley Mere 

Tabley Mere (NGR, SJ723 769) is about 19.4 ha in area with a maximum depth of 4.4 m and 

linked to a smaller mere, Moat Mere, that is about 2 ha (Table 4.20). Both are at a lower 

altitude (32 m) than the other meres apart from Rostherne Mere. Both meres were enlarged 

in the 1760s when Tabley House was built (ECUS 2001s). Tabley Mere formed in a hollow 

in saliferous beds but these are overlain by thick boulder clay and some alluvium and glacial 

sands and gravel. The land use in the catchment is mainly pasture and arable fields although 

the village of Knutsford extends into the eastern side of the catchment and there is some 

semi-improved grassland and woodland. Tabley Mere is mainly fed by surface water and has 

two main inflows, one of which drains from the vicinity of the M6 motorway which runs 

through the catchment and two outflows, of which one feeds into Tabley Moat (Fig. 4.20). 

The conductivity is high and also high relative to its alkalinity, probably reflecting its 

geology but roadsalt from the motorway may also have contributed to this. 

 

Table 4.20. Characteristics of Tabley Mere 

Characteristic Value Unit Reference and notes 

Altitude 32 m  

Area 19.4 ha Reynolds (1979) 

Catchment area 8.05 km
2
 ECUS (2001s) 

Max water depth 4.4 m Reynolds (1979) 

Mean water depth - m  

Mean retention time 0.33 y Moss et al. (1992) 

Main source of water* D - ECUS (2001s); Moss et al. (1992) 

Annual conductivity 701 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 2.45 mequiv L
-1

 Moss et al. (1992) 

Annual TP 323 (350) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 2460 

(1950) 

μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 17.6 (92) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.20 Map of Tabley Mere showing surface water catchment (ECUS 2001s). 
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4.21 Tatton Mere 

Tatton Mere (NGR, SJ755 800) is moderate in area (31.7 ha) and moderately deep (11 m; 

Table 4.21) and is associated with a smaller mere, Melchett Mere (8 ha).The two meres lie in 

a natural hollow caused by subsidence of Keuper saliferous beds and their area might be 

increasing as subsidence continues (ECUS 2001t). This geology is overlain by glacial sands 

and gravels with some boulder clay and alluvium. There is one main inflow from the south 

in the vicinity of Knutsford and one main ouflow to the north (Fig. 4.21) and Tatton mere is 

probably mainly fed by surface water while Melchett Mere is probably mainly groundwater 

fed. The catchment comprises the town of Knutsford and the grounds of Tatton Park which 

is mainly semi-acid natural grassland with numerous stands of woodland.  

 

Table 4.21. Characteristics of Tatton Mere 

Characteristic Value Unit Reference and notes 

Altitude 46 m  

Area 31.7 ha Reynolds (1979) 

Catchment area 5.51 km
2
 ECUS (2001t) 

Max water depth 11 m Fisher et al. (2009) 

Mean water depth - m  

Mean retention time 0.88 y Moss et al. (1992) 

Main source of water* D - ECUS (2001t); Moss et al. (1992) 

Annual conductivity 518 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 2.6 mequiv L
-1

 Moss et al. (1992) 

Annual TP 233 (160) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 455 (410) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 12.1 (17.4) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.21 Map of Tatton Mere showing surface water catchment (ECUS 2001t). 
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4.22 The Mere Mere 

The Mere Mere (NGR, SJ733 819) is of moderate area (15.8 ha) and maximum depth (8.0 

m; Table 4.22). It lies in a natural basin formed by dissolution of salt in underlying Keuper 

saliferous beds that are overlain by thick glacial deposits of sand, gravel and boulder clay 

(ECUS 2001u). The Mere Mere receives water from the catchment to the south via 

Rostherne Brook (Fig. 4.22) and discharges to Little Mere to the north and subsequently to 

Rostherne Mere. It has a relatively high salinity for its alkalinity, which probably reflects its 

geology. The Mere Mere is bordered to the south and west by a golf course and to the east 

by houses with gardens abutting the shore. Elsewhere in the catchment there is a mixed 

planted-woodland plus arable and improved pasture with some houses and farms. The Mere 

Mere is mainly fed by surface water. 

 

Table 4.22. Characteristics of The Mere Mere 

Characteristic Value Unit Reference and notes 

Altitude 52 m  

Area 15.8 ha Reynolds (1979) 

Catchment area 3.82 km
2
 ECUS (2001u) 

Max water depth 8.1 m Reynolds (1979) 

Mean water depth 2.8 m Carvalho (1993) 

Mean retention time 0.8 – 9.5 y Carvalho (1993) 

Main source of water* D - ECUS (2001u); Moss et al. (1992) 

Annual conductivity 523 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 1.51 mequiv L
-1

 Moss et al. (1992) 

Annual TP 53.5 (70) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 910 (1090) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 15.5 (28) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, VS   

*D = Drainage; S = Seepage 
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Figure 4.22 Map of The Mere Mere showing surface water catchment (ECUS 2001u). 
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4.23 White Mere 

White Mere (NGR, SJ414 300) is of moderate area (25.5 ha) and moderately deep (13.8 m; 

Table 4.23). The Mere lies within a kettlehole in a drift of glacial sands and gravels lined by 

boulder clay. The catchment is also largely boulder clay and glacial sand and gravel with 

some peat, all overlying Keuper waterstones (sandstones, siltstones and mudstones; ECUS 

2001v). The catchment area is small and there are no obvious inflowing streams (Fig. 4.23) 

and it is assumed that the mere is largely fed from groundwater. The land use in the 

catchment is primarily agricultural: arable with improved pasture grazed by sheep and cattle. 

The Mere has extremely high concentration of phosphorus (Table 4.23). 

 

Table 4.23. Characteristics of White Mere 

Characteristic Value Unit Reference and notes 

Altitude 96 m  

Area 25.5 ha Reynolds (1979) 

Catchment area 0.93 km
2
 ECUS (2001v) 

Max water depth 13.8 m Reynolds (1979) 

Mean water depth 4.4 m Fisher et al. (2009) 

Mean retention time - y Moss et al. (1992) 

Main source of water* S - ECUS (2001v); Moss et al. (1992) 

Annual conductivity 309 μS cm
-1

 Moss et al. (1992) 

Annual alkalinity 1.88 mequiv L
-1

 Moss et al. (1992) 

Annual TP 1456 (470) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual DIN 522 (360) μg L
-1

 Moss et al. (1992) (Recent EA data) 

Annual Chlorophyll a 15.3 (32) μg L
-1

 Moss et al. (1992) (Recent EA data) 

WFD Lake type HA, S   

*D = Drainage; S = Seepage 
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Figure 4.23 Map of White Mere showing surface water catchment (ECUS 2001v). 
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4.24 Summary 

The twenty six meres studied here (Table 4.24) are largely lowland (median altitude 78 m), 

small (median area 9.9 ha) and relatively shallow (median maximum depth 4.4 m) standing 

waters. Although the annual median conductivity (491 µS cm
-1

) and alkalinity (2.6 mequiv 

L
-1

) is high, at several sites it is relatively low such as Oak Mere and Shomere. The annual 

median concentration of total phosphorus is high (323 µg L
-1

) while the concentration of 

phytoplankton chlorophyll a is moderate (15 µg L
-1

). Out of all the relevant information 

compiled in Table 4.24, information on mean depth (11 sites) and retention time (12 sites) is 

least available. These two statistics are linked since mean depth allows the calculation of 

lake volume and hence retention time. Mean depth can be ascertained relatively easily by 

soundings or echo-sounding. Retention time estimates are more complicated in systems such 

as the meres with suspected or known substantial input from groundwater. However, this 

information is crucial if robust nutrient loads are to be calculated. In section 5, statistical 

relationships are used to estimate mean depth and retention time where these are unknown.  
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Table 4.24. Summary characteristics for the twenty six meres in this study taken from Tables 4.1 to 4.23. We have used chemical data from the 

survey of Moss et al. (1992) where it is available to maximise comparability across sites. 

Characteristic Altitude Area 
Catchment 

area 

Max. 

depth 

Mean 

depth 

Mean 

retention 

Main 

water 

source 

Annual 

conductivity 

Annual 

alkalinity 

Annual 

TP 

Annual 

DIN 

Annual 

Chl a 

WFD 

category 

Unit m ha km2 m m y - μS cm-1 mequiv L-1 μg L-1 μg L-1 μg L-1 - 

Aqualate 67 59 58 1 - - D & S 610 0.88 469 870 68 MA, VS 

Berrington Pool 78 2.5 0.36 12.2 6.7 - S 392 1.8 113 384 16.6 HA, S 
Betley Mere 58 9.3 8.31 1.8 - 0.07 D (S) 659 3.93 506 1060 62.9 HA, VS 
Betton Pool 75 6.4 1.3a 10.9 3.6 1.85 D & S 231 2.14 97 126 27 HA, S 
Black Mere 75 1.5 1.49 - - - D & S - - 1300 - - - 
Bomere 75 10.3 1.3a 15.2 5.1 4.5 D & S 120 0.56 49 44 11 MA, S 
Brown Moss 104 3.3 1.28 1.0 - - S 150 0.78 775 - 2 MA, VS 
Chapel Mere 88 6.5 2.38 2.4 - 0.15 S 721 4.68 1267 600 12 HA, VS 
Cole Mere 88 28 1.72 11.5 3.3 1.25 S (D) 239 1.49 400 740 21.7 HA, S 
Comber Mere 78 51.5 8.1 11.8 - 1.66 D 513 3 362 860 14.7 HA, S 
Cop Mere 88 16.8 13.64 2.7 1 0.08 D 457 2.95 315 1800 59.6 HA, VS 
Fenemere 78 9.4 11.2 2.2 - 0.21 S (D) 756 4.76 487 1230 56.1 HA, VS 
Hatch Mere 76 4.7 2.2 3.8 - 0.4 S 484 2.36 85 1610 29.5 HA, VS 
Maer Pool 118 5.5 1.82 1.7 - - S (D) 585 4.27 - - 15.5 HA, VS 
Marton Pool 105 13.7 5.01 8.0 - - S - 4.40 - - - HA, S 
Oak Mere 73 22.9 3.50 5.6 2.0 0.81 S 187 0.028 61 230 7.4 LA, VS 
Oss Mere 105 9.5 1.8 3.0 - - S 491 3.02 296 230 35.4 HA, VS 
Quoisley Big Mere 78 4 1.73b 2.4 - 0.27 c S 611 4.69 404 640 14.2 HA, VS 
Quoisley Little Mere 78 2.2 1.73b 1.8 - 0.27c S 639 5.02 264 1350 8.4 HA, VS 
Rostherne Mere 27 48.7 10.3 27.5 13.6 1.1 – 3.4 D  2.65 419 840 16.3 HA, S 
Crose Mere 88 15.2 3.6 9.3 4.8 5.6 (2.25) S (D) 474 3.05 214 350 9.8 HA, S 
Shomere 75 1.3 1.3a 4.3 - - D & S 129 0.27 - - - MA, VS 
Tabley Mere 32 19.4 8.05 4.4 - 0.33 D 701 2.45 323 2460 17.6 HA, VS 

Tatton Mere 46 31.7 5.51 11 - 0.88 D 518 2.6 233 455 12.1 HA, S 
The Mere Mere 42 15.8 3.82 8.1 2.8 0.8-9.5 D 523 1.51 53.5 910 15.5 HA, VS 
White Mere 96 25.5 0.93 13.8 4.4 - S 309 1.88 1456 522 15.3 HA, S 

a, Total catchment for Bowmere, Shomere and Betton Pool; b, Total catchment for both Quoisley Meres; c, Retention time for both Quoisley 

Meres. Main water sources are designated: D = Drainage, S = Seepage. 
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5. IDENTIFICATION OF SITES WITH DIFFERENT TYPES OF NUTRIENT 

LIMITATION 

 

5.1 Identifying processes that control phytoplankton populations 

Many processes control the rates of growth and loss of phytoplankton and in turn the 

biomass or standing stock of an individual species or the community as a whole. The 

schematic of Nõges et al. (2010) gives an overview of the main gain and loss processes (Fig. 

5.1) and these have been discussed in section 2. Because of this complexity, no one approach 

is likely to be completely successful in diagnosing the environmental factors that limit 

phytoplankton: as a corollary, several approaches are needed to identify factors controlling 

phytoplankton. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Schematic of the main mechanisms controlling phytoplanktion populations. Loss 

processes are designated as: F, flushing; P, parasitism including viruses; S, Sedimentation; 

and G, grazing (Nõges et al. 2010). 

5.2 Ratios of inorganic nutrients 

Redfield (1958) showed that, on average, marine algae require nitrogen and phosphorus in a 

ratio of about 16:1 by atom (7:2 by weight). If concentration is related to nutrient availability, 

then an increase in the ratio of total N: total P in the water column above the Redfield ratio 

may tend to make phosphorus the nutrient limiting growth. Conversely, a decrease in the 
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total N: total P ratio to below the Redfield ratio may tend to make nitrogen limiting. The 

OECD (1982) considered growth rate limitation due to N deficiency to occur at molar 

dissolved inorganic N: soluble reactive phosphorus ratios of <16:1 and P deficiency at ratios 

>33:1. However, the validity of using these ratios, and in fact of referring to nutrient ratios at 

all, in order to identify nutrient limitation is debatable. A number of fairly obvious problems 

with this approach can be recognised. For example, if the concentrations of both nutrients 

are present in excess then the nutrient ratio is uncoupled from nutrient limitation (Reynolds, 

1999) and concentrations below a threshold may give a better indication of limitation.  

Secondly, although the Redfield ratio is normally defined in terms of total N and total P or 

dissolved inorganic N and soluble reactive P, not all of the „total element‟ may be available 

(Axler et al. 1994). Thirdly, although the Redfield ratio reflects the average nutrient 

requirement of algae, different species may have different nutritional requirements 

(Klausmeier et al. 2004; Quigg et al 2003). Fourthly, a nutrient ratio does not take „luxury 

consumption‟ (uptake and storage of a nutrient in excess of current requirements) into 

account nor the ability of some species to fix nitrogen and so grow after nutrient depletion 

has occurred.  

 

Nevertheless, studies have generally found a broad relationship between nutrient ratios and 

nutrient limitation, although the ratios that delimit N- or P- limitation are understandably, 

given the above, rather variable. For example, in lakes and oceans, N limitation has been 

found at total N: total P molar ratio of less than 20 (Guildford & Hecky 2000) or less than 24 

(Levine, 1983). In a study of UK upland lakes Maberly et al. (2002) found N limitation to 

occur at ratios of dissolved inorganic nitrogen to total dissolved phosphorus of <53. Maberly 

et al. (2002) argued that N-limitation may still prevail, even at these higher N:P ratios, as N-

fixing cyanobacteria are inhibited by the low nutrient concentrations and pH in such 

environments. Similarly, the dissolved inorganic N: soluble reactive phosphorus ratio has 

been used to assess the nutrient limitation potential in rivers. Dodds et al. (1997) concluded, 

however, that strategies to control external nutrient loading and manage stream 

eutrophication should not be based on in-stream dissolved inorganic N or soluble reactive P 

levels, because in-stream dissolved inorganic nutrient concentrations are poorly related to 

benthic algal biomass. Wold & Hershey (1999) also stated that dissolved inorganic N: 

soluble reactive phosphorus ratios were not useful in predicting nutrient limitation. This 

study highlighted the differences in results by using a variety of analysis methods. The 
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dissolved inorganic N: soluble reactive phosphorus ratios (<10) were indicative of N 

limitation for most of the season, but the bioassay experiments indicated co-limitation. They 

concluded that dissolved inorganic N: soluble reactive phosphorus ratios were not useful in 

predicting the limiting nutrient(s). An earlier study by Axler et al. (1994) came to a similar 

conclusion but suggested that absolute N-concentration may be more useful. They found that 

in a study of phytoplankton in acid-sensitive lakes in Minnesota, that N-limitation could be 

predicted with 79% accuracy by a concentration of dissolved inorganic nitrogen < 25 µg L
-1

, 

and with 87% accuracy when the concentration of nitrate was < 5 µg L
-1

. It is unclear how 

relevant these concentrations are to UK lakes: Maberly et al. (2002), in a study of 30 

unproductive upland lakes on three occasions in a year, only found such low values in mid-

summer at 46% of the sites for dissolved inorganic nitrogen and 40% of the sites for nitrate. 

They found that concentrations of dissolved inorganic nitrogen at N-limited sites were below 

91 µg L
-1

: this is about 3.6 times higher than the values in Axler et al. (1994). 

 

Despite all these caveats, if used with caution N:P ratios can give a give a preliminary 

assessment of which lakes could be limited by phosphorus or nitrogen, especially where the 

conclusions can be complemented with other approaches. 

 

In this report, the N:P ratio was used to give some indication of the relative availability of 

nitrogen and phosphorus for the whole year and for each season (Table 5.1).  Winter ratios 

best represent the balance in supply of nutrients to the mere when uptake by phytoplankton 

and macrophytes, or loss processes such as denitrification, are at a minimum. Summer ratios 

are a better representation of potential limitation. As an approximate indication, N-limitation 

may be considered more probable where N:P is <10:1, and P-limitation where N:P is >10:1. 

Nutrient datasets for 17 meres where data were adequate, were analysed. In summary, the 

winter ratios indicated nitrogen was supplied in excess requirements of phosphorus in 9 

meres (winter N:P >20), phosphorus was supplied in excess of nitrogen in 5 meres (winter 

N:P <10) and their supply in relation to demand was relatively balanced in 3 meres (winter 

N:P 10-20) (Table 5.1). In terms of the summer ratios, there is a strong indication that 

nitrogen is used up relatively quickly compared with the demand for phosphorus, as many of 

the summer N:P ratios are <10.  This may be associated with both denitrification and internal 

release of P from sediments during summer.  There are three meres where P appears to be 

the more likely limiting nutrient (Mere Mere, Aqualate Mere, Hatch Mere; Table 5.1). 
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Table 5.1. Annual and seasonal N:P ratios, ordered by winter N:P. Values indicating 

potential N-limitation are coloured in orange and P-limitation are coloured in blue. 

Unclassified values (i.e. on the boundary) are not coloured. 

Site DIN:SRP 

Annual 

DIN:SRP 

Winter 

DIN:SRP 

Spring 

DIN:SRP 

Summer 

DIN:SRP 

Autumn 

White Mere 1 2 1 0 1 

Tatton Mere 4 7 5 1 2 

Rostherne 7 7 8 9 6 

Cole Mere 5 8 5 3 3 

Comber Mere 9 8 16 6 4 

Oak Mere 8 11 11 6 4 

Berrington Pool 10 15 5 8 9 

Betton Pool 22 18 50 13 5 

Chapel Mere 27 21 85 1 2 

Bomere Pool 20 22 34 17 6 

Crose Mere 62 25 177 34 11 

Tabley Mere 35 35 93 2 9 

Cop Mere 54 50 136 13 18 

Betley Mere 29 50 55 2 10 

The Mere 87 51 170 105 20 

Aqualate Mere 77 61 96 127 26 

Hatch Mere 281 91 676 249 108 

 

 

5.3 Ratios of chlorophyll a to potentially limiting nutrient 

The amount of chlorophyll a produced per unit nutrient is a more direct way of assessing 

whether or not a particular nutrient is limiting phytoplankton, especially if other factors 

linked to lake type (for example depth and so light availability) can be removed from the 

analysis. A recent large-scale analysis of data from over 1000 European lakes has produced a 

new analysis of the average relationship between Chla and total phosphorus during the 

growing season for different types of lakes where depth is one of the lake characteristics 

(Phillips et al. 2008). Figure 5.2. shows the responses for two lake types (high alkalinity 

either shallow or very shallow and low or moderate alkalinity either shallow or very 

shallow). The response of 36 meres using summary data in Fisher et al. (2009) is shown for 

comparison. The data show that some meres convert phosphorus to chlorophyll in a similar 

stoichiometry to that of an average European lake of its type, while one was slightly more 

efficient than the average while others produce substantially less chlorophyll a per unit of 

phosphorus (Table 5.2). Figure 5.2 also shows that many of the meres have higher 
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concentrations of TP than in any of the over 1000 European lakes used to produce the 

correlation. 
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Figure 5.2. Growing season chlorophyll a (Chla) vs total phosphorus (TP) for: a) high 

alkalinity shallow or very shallow lakes and b) low and moderate alkalinity shallow and 

very shallow lakes. The symbols show the meres using data from Fisher et al. (2009). The 

lines show the equations in Phillips et al. (2008) for a) model 6 and b) model 5. The heavy 

line is the average response and the upper and lower dotted lines represent 90% confidence 

limits. The boxes at the lower left-had corner of each graph show the range of values used in 

the original calibration. 

 

This provides circumstantial evidence that lakes with high or average conversion of 

phosphorus into chlorophyll a could be phosphorus limited while lakes with lower than 

average conversion of phosphorus to chlorophyll a are limited by another environmental 

factor such as nitrogen or light or one of the loss processes mentioned in section 5.1. 
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Table 5.2. Comparison of conversion of total phosphorus to chlorophyll a using type-specific 

regressions in Phillips et al. (2008) and growing season data compiled in Fisher et al. 

(2009). „Low‟ represents chlorophyll a concentrations less than then 90% boundary, „high‟ 

represents chlorophyll a concentrations more than the 90% boundary and „Average‟ 

represents chlorophyll a concentrations between these two boundaries. Meres shown in bold 

form the subject of this report. 

Low Average High 

Aqualate Mere Alkmund Park Pool The Mere Mere 

Bar Mere Berrington Mere  

Betley Mere Betton Pool  

Brown Moss Blake Mere  

Budworth Mere Bomere  

Chapel Mere Cole Mere  

Comber Mere Crose Mere  

Cop Mere Fenemere  

Ellesmere Hatch Mere  

Hanmer Mere Martbury Big Mere  

Little Mere Oss Mere  

Maer Pool Petty Pool  

Newton Mere Pick Mere  

Norbury Big Mere Quoisley Mere  

Norbury Little Mere Redes Mere  

Oak Mere Rostherne Mere  

Tabley Mere   

Tatton Mere   

White Mere   

 

The analysis of the large European dataset also investigated the relationship between 

phytoplankton and concentration of total nitrogen. Statistically significant and strong 

relationships were produced again, although with slightly less predictive power than for 

phosphorus. Using the same approach for nitrogen (Fig. 5.3), again many lakes fall within 
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the 95% confidence limits while some fall above and others below the confidence limits. 

Table 5.3. lists the lakes that produce less than, more than or the average concentration of 

chlorophyll a forecast from the concentration of total nitrogen in the growing season. A few 

of the meres have higher concentrations of total nitrogen than the over 1000 European lakes 

used to produce the correlation, but the excess is much less marked than for total phosphorus. 
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Figure 5.3. Growing season chlorophyll a (Chla) vs total nitrogen (TN) for all lake types. 

The symbols show the meres using data from Fisher et al. (2009). The lines show the 

equations in Phillips et al. (2008). The heavy line is the average response and the upper and 

lower dotted lines represent 95% confidence limits. The box at the lower left-had corner of 

the graph shows the range of values used in the original calibration. 
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Table 5.3. Comparison of conversion of total nitrogen to chlorophyll a using type-specific 

regressions in Phillips et al. (2008) and growing season data compiled in Fisher et al. 

(2009). „Low‟ represents chlorophyll a concentrations less than then 90% boundary, „high‟ 

represents chlorophyll a concentrations more than the 90% boundary and „Average‟ 

represents chlorophyll a concentrations between these two boundaries. Meres shown in bold 

form the subject of this report. 

Low Average High 

Crose Mere White Mere Hanmer Mere 

Little Mere Cole Mere Quoisley Mere 

Cop Mere Ellesmere The Mere Mere 

Redes Mere Betton Pool Aqualate Mere 

Brown Moss Rostherne Mere  

 Pick Mere  

 Martbury Big Mere  

 Hatch Mere  

 Alkmund Park Pool  

 Betley Mere  

 Budworth Mere  

 Tabley Mere  

 Bomere  

 Blake Mere  

 Newton Mere  

 

A related way of assessing nutrient limitation is to look directly at the Chla:TP and Chla:TN 

ratios of the meres. In Figure 5.4, the annual average chlorophyll a concentrations from the 

recent data from the Environment Agency are plotted against annual mean TP or annual 

mean TN in the upper row. This shows a declining ratio with increasing nutrient 

concentration. There is an element of circularity here because the phytoplankton chlorophyll 

a will also contribute to TP and TN although in the case of the meres, the circularity will be 

less severe than in many other lakes because a relatively large proportion of the nutrient is 

soluble rather than particulate. However to test if this is a large problem, the annual mean 
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chlorophyll a was also plotted against the winter (Jan-Feb) concentrations of soluble 

nutrient: SRP or DIN (Fig. 5.4 lower row). Both ways of plotting the data show a similar 

pattern lending some credence to the approach. There is not a precise cut-off that can be set 

to distinguish P- and N-limitation, but for the purpose of this report, a value of >0.3 Chla:TP 

was used to define sites with potential P-limitation and >0.02 Chla:TN to define sites with 

potential N-limitation. 
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Figure 5.4. Relationship between annual mean Chl:TP or Chl:TN mass ratios and annual 

mean total phosphorus or total nitrogen (Upper row) or winter availability(lower row) of 

SRP (soluble reactive phosphorus) or DIN (dissolved inorganic nitrogen).  

 

Using the criteria defined above, the sites are divided into P-limitation and N-limitation in 

Table 5.4. Note that Oak Mere is highlighted as potential P- and N-limited site, although it 

could just mean that relative to the other meres it is efficient at converting nutrients into 

phytoplankton chlorophyll a. 
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Table 5.4. Sites with potential P-limitation (Chla: TP>0.3) or N-limitation (Chla:TN>0.02) 

based on mass ratios. 

P-limitation N-limitation 

Hatch Mere Oak Mere 

Oak Mere Tabley Mere 

The Mere White Mere 

Bomere Cole Mere 

 Tatton Mere 

 

5.4 Seasonal nutrient minima 

Ratios outlined in sections 5.2 & 5.3 do not necessarily indicate limitation, especially in 

lakes, like the meres, where TP concentrations can be extremely high.  A more reliable 

picture of potential limitation can be obtained by examining the seasonality in available 

nutrients (SRP and DIN or NOx-N).  P-limitation is possible in months where SRP <10 µg 

L
-1

.  N-limitation is possible in months where DIN <0.1 mg L
-1

 (Maberly et al. 2002).  Not 

all meres had NH4-N data and so DIN is sometimes an underestimate based only on NOx-N. 

 

Note: in Jan 2008 the TP detection limit of UK environment agencies improved to 3 µg L
-1

, 

but prior to Jan 2008 the detection limit was often around 100 µg L
-1

.  For this reason only 

TP data from Jan 2008 were used.  The agency detection limit for NOx-N was usually 0.2 

mg L
-1

, for NH4-N it was 0.03 mg L
-1

.  If values were below the detection limit, the detection 

limit was halved in order to estimate monthly means. 
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Figure 5.5. Average seasonal patterns for seventeen meres (see Table 5.1) with recent data 

available (mainly 2005 to 2009) collected by the Environment Agency. Solid line shows the 

mean, and upper and lower dotted lines show the monthly minima and maxima respectively.  

 

0

50

100

150

200

250

300

0 4 8 12

C
h

l a
 (

µ
g

 L
-1

)

Month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12

SR
P

 (µ
g 

L-1
)

Month

0

2

4

6

8

10

12

14

0 4 8 12

TN
 (m

g 
L-1

)

Month

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 4 8 12

TP
 (

µ
g 

L-1
)

Month

0

2

4

6

8

10

12

0 4 8 12

D
IN

 (m
g 

L-1
)

Month
 

Chla 

SRP TP 

DIN TN 



72 

 

Average seasonal patterns for meres with new data collected by the Environment Agency are 

shown in Figure 5.5. The data show that there is a large dynamic range of concentrations for 

all the values presented. The average seasonality for chlorophyll a is for a spring bloom, a 

slight early-summer decline and then a recovery in late summer. The average seasonal 

pattern for SRP is very unusual with lowest concentrations in spring and a steady increase 

during summer. This is consistent with a large internal loading of phosphorus into the lake 

from the sediment coupled with a low demand for phosphorus. The pattern for total 

phosphorus was more conservative but the data show that SRP comprises an extremely large 

part of the total phosphorus (overall average of 64%). DIN and TN followed similar seasonal 

patterns with a decline during the growing season to a minimum in July or August, probably 

as a result of uptake and microbial denitrification. DIN was about 68% of TN suggesting a 

potentially substantial amount of organic or particulate nitrogen.  

 

Seasonal patterns of individual meres were analysed to determine whether or not nutrients 

fell to potentially limiting concentrations (Table 5.5). The seasonal plots can also be used to 

infer whether internal (summer and autumn increases) or external (winter increase) nutrient 

sources need targeting. There are four possible groups of response: 

1. Only DIN falls below threshold: N-limitation indicated – N targets most beneficial 

2. Only SRP fall below threshold: P-limitation indicated – P targets most beneficial 

3. Both DIN and SRP fall below threshold: Co-limitation by N & P indicated – N & P 

targets beneficial 

4. Neither DIN nor SRP fall below threshold: both nutrients in excess throughout year – 

N & P targets beneficial but no immediate effect likely 
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Table 5.5. Number of months where NOx, DIN and SRP are potentially limiting nutrients, 

ordered by #Months of low DIN concentrations. Occasions where concentrations fell below 

the stated thresholds are shaded. [Based on 2005-2009 data provided by the Environment 

Agency]. 

Site #Months NOx-N     

<=0.1 mg L
-1 

#Months DIN       

<=0.1 mg L
-1

 

#Months SRP    

<=0.01 mg L
-1

 

Bomere Pool 8 5 6 

Betton Pool 4 4 5 

Berrington Pool 4 4 0 

Cole Mere 6 3 0 

Oak Mere 6 3 0 

White Mere 6 2 0 

Tatton Mere 4 2 0 

The Mere 2 1 6 

Crose Mere 2 1 5 

Chapel Mere 1 1 1 

Hatch Mere 0 0 4 

Tabley Mere 4 0 0 

Comber Mere 2 0 0 

Aqualate Mere 0 0 0 

Betley Mere 0 0 0 

Cop Mere 0 0 0 

Rostherne 0 0 0 

 

Table 5.5 indicates that: 

 nitrogen may be the sole limitation in 5 meres (Berrington Pool, Cole Mere, Oak 

Mere, White Mere, Tatton Mere) 

 nitrogen and phosphorus may be co-limiting in 5 meres (Betton Pool, Bomere, The 

Mere Mere, Crose Mere, Chapel Mere) 

 phosphorus may be the sole limitation in 1 mere (Hatch Mere) 

 neither nutrient is likely to limit phytoplankton biomass in 6 meres (Tabley Mere, 

Comber Mere, Aqualate Mere, Betley Mere, Cop Mere, Rostherne Mere) 

 In 9 meres, summer (internal) sources of NH4 reduced the months of N-limitation (i.e. 

the difference in number of months below a threshold for NOx and DIN). 

 

 

Group 1: Only N-limitation indicated – N targets most beneficial 

Berrington Pool, Cole Mere, Oak Mere, White Mere and Tatton Mere all show at least 2 

months where DIN concentrations remain below 0.1 mg L
-1

.  In all cases this occurs between 
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June and September and is probably related to uptake by phytoplankton and macrophytes 

and denitrification by microbes. 

 

Example 1: Cole Mere (Fig. 5.6) 

 There is evidence of strong N-limitation in summer (Jul-Sep) as DIN below the 

threshold. 

 Chlorophyll a is very variable – no clear seasonal pattern or response to N-limitation.  

 P may rise through summer from both external load (if supply is greater than 

demand) and internal release from sediments 

 Benefit most from N loading reductions and so a N target is most relevant 
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Figure 5.6. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in Cole Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 
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Example 2: White Mere (Fig. 5.7) 

 N-limitation is evident in summer (Jul-Aug), but DIN remains low throughout the 

year. 

 P is very high throughout year, the rise in summer is probably caused by internal 

release from the sediments. 

 Chlorophyll a is highly variable – with no clear seasonal pattern or response to N-

limitation 

 White Mere would benefit most from N loading reductions and so a N target is most 

relevant. 
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Figure 5.7. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in White Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 



76 

 

Example 3: Oak Mere (Fig. 5.8) 

 Nutrients concentrations are generally much lower concentrations than in other meres, 

although chlorophyll a is relatively high. 

 Evidence of N-limitation (Aug-Oct) that may be the cause of the late summer decline 

in chlorophyll a. 

 SRP concentrations were quite low, but never declined to limiting concentrations 

 Oak Mere would benefit most from N loading reductions – N target most relevant 
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Figure 5.8. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in Oak Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 



77 

 

Group 2: N- and P-limitation indicated – N & P targets beneficial 

Bomere Pool, Betton Pool, Chapel Mere, Crose Mere and The Mere have summer minima of 

both SRP and DIN below the threshold. 

 

Example 4: Bomere Pool (Fig. 5.9) 

 External (winter) sources of N & P are both relatively low for the meres (low 

alkalinity like Oak Mere suggests Bomere is largely rain-fed). 

 N & P are mostly below potentially limiting concentrations from May to October, 

although chlorophyll a does not show any evidence of limitation from June to August. 

 Bomere may benefit from reducing both nutrients further, so N & P targets 

applicable. 
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Figure 5.9. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in Bomere Pool. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA.
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Example 5: Betton Pool (Fig. 5.10) 

 Both N & P decline to potentially limiting concentrations by June and this may the 

cause of declining chlorophyll a during summer. Limited NH4 data to estimate DIN. 

 N & P appear to be largely external (winter) sources and there is no evidence a 

summer increase indicating internal loading. 

 Betton Pool would almost certainly benefit from reducing N & P further, so N & P 

targets beneficial. 
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Figure 5.10. a) Seasonality in total oxidised nitrogen (NOx-N) and soluble reactive 

phosphorus (SRP) in Betton Pool. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 
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Example 6: The Mere, Mere (Fig. 5.11) 

 There are potentially limiting levels of P from May-Sep and N in Aug-Sep. 

 Chlorophyll a concentrations are relatively high (high Chl:TP), suggesting that P is 

being well utilised and possibly grazer population may be low. 

 Internal process of denitrification may be important in summer as there is a sharp 

decline in concentration of DIN. 

 The Mere Mere could benefit from both N & P loading reductions –P target most 

relevant, N target could be beneficial too. 
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Figure 5.11. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in The Mere, Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 
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Group 3: - P-limitation indicated – P targets beneficial 

Hatch Mere only. 

 

Example 7: Hatch Mere (Fig. 5.12) 

 SRP is low all year and below the threshold indication P-limitation Apr-Sep. 

 DIN is relatively high throughout the year and never fell to limiting concentrations 

despite a summer decline. 

 Chlorophyll a peaked in summer – but there was no clear response to P-limitation. 

 Hatch Mere would benefit most from P loading reductions and so a P target is most 

relevant. 
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Figure. 5.12. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in Hatch Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 
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Group 4: Both nutrients in excess – N & P targets beneficial but no immediate effect likely 

Aqualate Mere, Betley Mere, Cop Mere and Rostherne Mere. 

 

Example 8:  Aqualate Mere (Fig. 5.13) 

 DIN & SRP show contrasting seasonal cycles.  SRP peaked in summer – indicating 

internal release, N-peaked in winter – indicating high external catchment loadings. 

 Neither nutrient declined below limiting concentrations, although summer 

chlorophyll a is very low. Light limitation (suspended sediment) may be a possible 

reason. 

 Aqualate Mere could benefit from tackling summer sources of P – probably from 

sediment release.  
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Figure 5.13. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in Oak Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 
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Example 9: Rostherne Mere (Fig. 5.14) 

 DIN & SRP show similar seasonal cycle: peak winter concentrations and summer 

minima, although never declining low enough to limit phytoplankton biomass. 

Phytoplankton thought to be light-limited (Reynolds & Bellinger 1992; Carvalho & 

Moss, 1995). 

 External loading appears to be the main driver of nutrients although autumn overturn 

may replenish water column with nutrients released from sediments (SRP and NH4). 

 Rostherne Mere could benefit from further N & P catchment loading reductions – N 

& P targets both relevant 
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Figure 5.14. a) Seasonality in dissolved inorganic nitrogen (DIN) and soluble reactive 

phosphorus (SRP) in Rostherne Mere. Red dashed line indicates potentially-limiting 

concentrations. b) Seasonality in chlorophyll a.  Based on 2005-2009 data from the EA. 
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5.5 Stoichiometric modelling: Metabolake 

Rationale and Approach 

This stoichiometric approach was outlined by Reynolds & Maberly (2002) and is based on 

the relative availability of energy and different material resources needed to produce new 

algal biomass. The supportive capacity of each potentially-limiting resource is defined by the 

theoretical biomass yield in terms of phytoplankton carbon or chlorophyll a, assuming 

standard stoichiometric compositional ratios of healthy algal cells. Working through these in 

turn, the smallest yield is produced by the resource most likely to control local maxima of 

the phytoplankton. It is, therefore, an application of „Liebig‟s Law of the Minimum„. 

 

Nitrogen 

The theoretical stoichiometric yield of phytoplankton cell carbon for nitrogen, supposing an 

ideal molecular ratio of 6.6:1, is close to 5.6 g C (g N)
–1

 where total assimilable nitrogen is 

taken to be dissolved inorganic nitrogen (DIN = NO3-N + NO2-N +NH4-N). Making the 

further supposition of a typical ratio of chlorophyll a to cell carbon (1:50 by mass), we 

deduce a maximum standing-crop yield of 0.11 g chlorophyll a (g N)
–1

.  

 

Phosphorus 

Following similar logic, the yield against bioavailable phosphorus (BAP), mostly, but not 

entirely the molybdate-reactive fraction in the water plus the intrabiotic fraction of the 

particulate phosphorus: Reynolds & Davies (2001) is close to 41 g C (g P)
–1

. In terms of 

chlorophyll a, the theoretical yield is 0.82 g chlorophyll a (g P)
–1

. However, more detailed 

investigation of the maximum chlorophyll yields observed in lakes and experimental 

enclosures have been found consistently to conform to the first-order equation of Reynolds 

(1992): 

 Chlorophyll a  = 6.32 [BAP] 
0.585

  (Equn 1) 

 

where [BAP] is the concentration of bioavailable phosphorus in µg L
-1

 and this is the 

equation used here.  

 

Silicon 

Against the availability of soluble reactive silicon (expressed in terms of SiO2), the synthesis 

of the 10
9
 cells of the diatom Asterionella formosa requires the supply of 140 mg SiO2  
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(Lund 1965) for a typical chlorophyll yield of 85 mg cell C and 1.7 mg chlorophyll a.  We 

propose a maximum standing-crop yield of 0.61 g C (g SiO2)
–1

 and 0.012 g chlorophyll a (g 

SiO2)
–1

. Noting the variability in the ratio of frustule silicon to protoplast carbon encountered 

among the diatoms (Reynolds 1984), it could be appropriate to use alternative values in 

locations where diatoms other than Asterionella are typically dominant.    

 

Light 

Analogous calculations are available for the supportive capacity of underwater light, the 

derived equation of Reynolds (1992) states: 

 

[chlorophyll a] = (1/εs ) [0.75 P/R . Г/24 . 1/H . ln (0.7 I max/0.5 Ik ) - (εw + εp)] (Equn 2) 

 

Assuming constant values for P/R, the ratio of maximum photosynthetic rate to basal 

respiration rate at the same temperature is set at 15, and Ik, the onset of light limitation of 

photosynthesis, is set, somewhat generously, at 20 μmol photon m
-2

 s
-1

 

extinction coefficient due to algal chlorophyll at 0.01 m
2
 (mg chlorophyll a)

-1
, and 

attributing a realistic background extinction due to particulates and colour in the source 

water, (εw + εp), the equation can be solved for representative conditions in the water body 

in question. H is the depth of the lake or of its trophogenic layer(s). The maximum attainable 

at 50ºN is under a cloudy sky at the summer solstice (daylength, Г, = 16 h, mean daytime I 

max = 1000 μmol photon m
-2

 s
-1

). In winter, the values fall (Г = 8 h, mean daytime I max = 

400 μmol photon m
-2

 s
-1

). It is useful to derive some intermediate, ambient annual value: we 

make a calculation for the equinox, with 50% cloud (Г = 12 h, mean daytime I max = 450 

μmol photon m
-2

 s
-1

). These quantities may be adjusted according to latitude. 

 

To simplify calculations a loading table may be prepared. The entries may be calculated or, 

if the equations are first entered into an appropriate spreadsheet, completed automatically. 

Analogous calculations can be undertaken in respect of the other resources and the light 

received in the water column. If loads are not known accurately, it may be sufficient to use 

the highest measured concentrations in the lake as a surrogate for calculated mean 

availability. 
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The data in Table 4.24 were used to start to construct the loading table needed for the 

calculations. Mean depth was often missing and so at these sites it was estimated from the 

regression equation calculated from known maximum and mean depths in Table 4.24 (Fig. 

5.15) which explained about 90% of the variation. Similarly, retention time was frequently 

not known: this was estimated from a regression between known retention time and the ratio 

of lake volume (m
3
) and catchment area (m

2
) shown in Figure 5.16. Since the annual DIN 

load was not known for most sites, availability of biologically available nitrogen (BAN) was 

calculated from the average concentration of DIN in January and February plus the average 

concentration of phytoplankton chlorophyll a in those months divided by 0.11 to convert to 

nitrogen.  A similar approach was taken for phosphorus: biologically available phosphorus 

(BAP) was computed from the average concentration of soluble reactive phosphorus in 

January and February plus the concentration of phytoplankton chlorophyll a converted to 

phosphorus using equation 1 
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Figure 5.15. Relationship between mean and maximum depth for the meres in Table 4.24. 

The line shows a power-regression between mean and maximum depth. 
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Figure 5.16. Relationship between annual mean retention time and the ratio of lake volume 

(m
3
) to catchment area (m

2
). Note that both axes are plotted on a logarithmic scale. The line 

shows a power-regression between retention time and the ratio. 
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Table 5.6. Calculated amount of phytoplankton chlorophyll a (µg L
-1

) than can be produced for available amounts of phosphorus, nitrogen, 

silicon and light. The final four columns show the minimum predicted amount of chlorophyll a, the first and second limiting factor and the ratio 

of the amount of chlorophyll a produced per available P: amount of chlorophyll a produced per available N. 

    

Maximum Chla for light-

supportive capacity 

   

Predicted 

Mere BAP N 

Silicon for 

diatoms 

Summer 

light 

Winter 

light 

Ambient 

light Minimum 

First 

limitation 

Second 

limitation P:N 

Crose Mere 69 518 39 450 47 191 39 Silicon Light 0.13 

Hatch Mere 72 503 28 2281 849 1360 28 Silicon P 0.14 

Bomere 41 268 12 524 145 280 12 Silicon P 0.15 

Fenemere 170 837 

 

3772 1200 2118 170 P 

 

0.20 

Comber Mere 136 622 44 542 116 268 44 Silicon Light 0.22 

Oak Mere 48 213 7 1451 483 828 7 Silicon P 0.23 

Berrington Pool 133 560 

 

349 59 163 59 Light P 0.24 

Rostherne Mere 150 513 38 104 -39 12 -39 Light Silicon 0.29 

Aqualate Mere 120 403 66 9642 3657 5792 66 Silicon P 0.30 

Cole Mere 87 266 23 619 32 241 23 Silicon Light 0.33 

Oss Mere 109 261 91 2948 1103 1762 91 Silicon P 0.42 

Tatton Mere 111 250 58 531 72 236 58 Silicon Light 0.44 

White Mere 208 330 16 563 123 280 16 Silicon Light 0.63 

Tabley Mere 95 140 41 1763 539 976 41 Silicon P 0.68 

Mere Mere 47 68 29 921 230 476 29 Silicon P 0.70 

Betton Pool 66 54 8 757 219 411 8 Silicon N 1.22 

Chapel Mere 100 76 98 3785 1442 2278 76 N Silicon 1.32 

 



88 

 

5.6 Direct bioassays 

A number of direct bioassays have been undertaken to assess the nutrient limitation of the 

meres. These involved taking a water sample with natural phytoplankton, removal of large 

zooplankton, addition of no nutrients (control), or phosphate or nitrate or both and 

incubation outside under ambient conditions and measuring the chlorophyll a concentration 

after 6 days (James et al. 2003).  

 

Table 5.7 Results of phytoplankton nutrient bioassays from eighteen meres. 0 = no nutrient 

limitation, P = phosphorus limitation, N = nitrogen limitation, Co = co-limitation. Meres 

shown in bold form the subject of this report. From James et al. (2003). 

 

The bioassays on eighteen meres in July and October 2000 produced the results in Table 5.7. 

The results from July showed that seven of the eighteen meres were nitrogen-limited, two 

Mere July 2000 October 2000 

Alkmund Park Pool N 0 

Betton Pool Co 0 

Blake Mere Co 0 

Bomere Co 0 

Budworth Mere N 0 

Cole Mere N 0 

Crose Mere P 0 

Ellesmere N 0 

Hanmer Mere N 0 

Isle Pool 0 0 

Marbury Big Mere 0 0 

Newton Mere N 0 

Pick Mere Co 0 

Radnor Mere N 0 

Redes Mere P 0 

Rostherne Mere Co 0 

The Mere Mere Co 0 

White Mere N 0 
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were phosphorus limited, six were co-limited (i.e. required both N and P to elicit an increase 

in phytoplankton) and two meres showed no response to either N or P suggesting that some 

other factor could be limiting. In October, none of the meres were nutrient-limited (Table 

5.7). This highlights the fact that nutrient-limitation varies seasonally as has been found 

before (e.g. Maberly et al. 2002; Maberly unpublished) reflecting the fact that nutrient-

availability, other environmental conditions and phytoplankton species composition also 

vary seasonally. 

 

5.7 Summary and final diagnosis of nutrient limitation at the study sites 

The different approaches used above produced a variety of different results. They are 

brought together in Table 5.8. 

 

Seven of the meres appear to be largely P-limited: The Mere Mere, Bomere Pool, Cop Mere, 

Crose Mere, Hatch Mere plus Fenemere and Oss Mere, but the assessment for the latter two 

meres is based on a single measure. Of these sites, The Mere Mere and Bomere Pool and 

Crose Mere and Hatch Mere showed no indication of solely N-limitation, although both 

seasonal minima and direct bioassay suggests that they could be Co-limited in the summer. 

Cop Mere had two measures indicating P-limitation and one indicating N-limitation (Chl:TP 

greater than the WFD 90percentile).  

 

Eight of the meres appeared to be largely N-limited: Tatton Mere, Chapel Mere, Cole Mere, 

Quoisley Mere, Comber Mere, Betley Mere, White Mere plus Maer Pool (although this latter 

mere is based on only one assessment). None of these sites showed any indication of P-

limitation. 

 

The remaining sites had a mixture of responses 
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Table 5.8. Summary of nutrient-limitation of phytoplankton in the different meres using different approaches. Phosphorus-limited sites are 

coloured in blue, nitrogen limited sites are coloured in orange and co-limited or „neither-limited‟ sites are coloured in lilac. 

Note (No. sites) A (17) B (20) C (13) D (4) E (5) F (17 G (17) H (7) 

 

            

Mere N:P 

Chla:TP 

vs WFD 

Chla:TN 

vs WFD 

Chla:TP 

>0.3 

Chla:TN 

>0.02 

Seasonal 

minima 

Metabo-

lake 

Direct 

Bioassay 
Count #P #N #Co #None P% N% 

Fenemere             P   1 1 0 0 0 100 0 

Oss Mere             P   1 1 0 0 0 100 0 

The Mere Mere P P   P   Co P Co 6 4 0 2 0 67 0 

Bomere Pool P None   P   Co P Co 6 3 0 2 1 50 0 

Cop Mere P N P     None     4 2 1 0 1 50 25 

Crose Mere P None P     Co None P 6 3 0 1 2 50 0 

Hatch Mere P None None P   P N   6 3 1 0 2 50 17 

Brown Moss   N P           2 1 1 0 0 50 50 

Aqualate Mere P N N     None P   5 2 2 0 1 40 40 

Berrington Pool N None       N P   4 1 2 0 1 25 50 

Oak Mere N N   P N N P   6 1 4 1 0 17 67 

Betton Pool P None None     Co N Co 6 1 1 2 2 17 17 

Tabley Mere N N None   N None P   6 1 3 0 2 17 50 

Rostherne N None None     None None Co 6 0 1 1 4 0 17 

White Mere N  None None   N N None N 7 0 3 0 3 0 43 

Betley Mere N N None     None     4 0 2 0 2 0 50 

Comber Mere N N       None None   4 0 2 0 2 0 50 

Quoisley   None N           2 0 1 0 1 0 50 

Cole Mere N None None   N N None N 7 0 4 0 3 0 57 

Chapel Mere N N       Co N   4 0 3 1 0 0 75 

Tatton Mere N N N   N N None   6 0 5 0 1 0 83 

Maer Pool   N             1 0 1 0 0 0 100 

Notes: A, Table 5.1;  B Table 5.2;  C, Table 5.3;  D & E Table 5.4;  F, Table 5.5;  G, Table 5.6;  H, Table 5.7;  Count is number of assessments.  
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6. NUTRIENT TARGETS 

 

Nutrient targets are largely a means to an end to manage water quality or achieve 

conservation objectives for a particular site. Here we examine: (1) existing TP standards for 

the meres, and possible future nutrient targets based on (2) palaeolimnology, (3) macrophyte 

diversity and (4) phytoplankton chlorophyll a. 

6.1 Existing phosphorus targets 

Table 6.1 presents TP targets outlined in Common Standards Monitoring guidance (JNCC 

2005).  The targets were largely derived from draft proposals for WFD boundaries for high-

good ecological status and some expert judgement (see JNCC 2005). 

 

Table 6.1  Total phosphorus targets for SSSI lake types (JNCC 2005). 

Lake Type Approximate 

Feature Type 

Depth 

Category 

TP target / 

limit 

Peat dystrophic Deep 10 

  Shallow 10 

Low alkalinity oligotrophic Deep 10 

  Shallow 10 

Medium alkalinity mesotrophic Deep 15 

  Shallow 20 

High alkalinity eutrophic Deep 35 

  Shallow 50 (35 – 100) 
1
TP targets are annual means (µg L

-1
). 

2
Lake types and depth categories followed the draft UK WFD typology in 2005.  In this respect 

“Shallow” includes all lakes with a mean depth of 3 m or less (i.e. “Very Shallow” in finalised WFD 

typology) and “Deep” includes lakes with a mean depth >3 m (i.e. “Shallow” and “Deep” in finalised 

WFD typology). 

 

More recently, TP targets for UK lakes were agreed as UK Environmental Standards and the 

above JNCC targets were modified slightly (UK TAG 2008) (Table 6.2).  This shows that 

the high-good boundary was retained more or less as the target for high and low alkalinity 

very shallow lakes, but that the good-moderate boundary was adopted for the other lake 

types.  These targets are applicable to SAC sites and SSSIs.  The choice of whether the 

high/good or good/moderate boundary should be applicable to the meres is largely academic, 

as the current status of many meres is generally well above these targets.  Palaeolimnology 
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may, however, be helpful for deciding whether either of these targets is applicable to the 

meres (see following Section 6.2). 

 

Table 6.2 Total phosphorus targets for WFD lake types (UK TAG 2008). 

  UK TAG                  

Env. Standards 

Habitats Directive 

target 

Lake Type No. of 

Meres 

H/G G/M Favourable Condition 

Low Alk VShallow 1 9 14 10 

15 

20 

35 

35 

Mod Alk Shallow 1 11 16 

Mod Alk VShallow 1 15 22 

High Alk Shallow 8 25 35 

High Alk Vshallow  13 35 49 
1
TP targets are annual means (µg L

-1
). 

 

In fact, UK TAG (2008) recommend adopting site-specific TP standards as these take 

account of an individual lake‟s characteristics (alkalinity and mean depth) to derive a 

reference value for a lake.  This is based on the Morpho-Edaphic Index (MEI) modelling 

approach outlined by Cardoso et al. (2007).  From this reference value, factors are used to 

identify TP class boundaries representing increasing degrees of change from reference.  

These factors are ecologically-based and include the response of phytoplankton chlorophyll 

a to TP, the growing depth of aquatic macrophytes and evidence from palaeolimnology on 

diatom community responses to TP (UK TAG 2008).  The site-specific standards for the 

meres are outlined in Table 6.3.  If alkalinity and mean depth data are unavailable for a lake 

(as for Maer Pool and Marton Pool), UK TAG (2008) recommends applying the type-

specific standards outlined in Table 6.2, although for Black Mere, Brown Moss and Sweat 

Mere insufficient information was available to assign the water body to an appropriate type. 
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Table 6.3 Site-specific TP targets for the meres (based on Cardoso et al. 2007). 

  Altitude Alkalinity Mean 

depth 

Lake 

Type 

Site-specific TP 

targets 

WBID Lake Name (m 

a.s.l.) 

(mequiv. L
-

1
) 

(m)  H/G G/M 

35724 Aqualate Mere 67 3.78 2.5 HAVS 44 57 

36634 Berrington Pool 78 1.84 6.7 HAS 25 35 

34330 Betley Mere 58 3.74 0.6 HAVS 44 57 

NA Black Mere       

36544 Bomere Pool 78 0.56 5.1 MAS 18 27 

36578 Shomere Pool 78 0.27 1.5 MAV

S 

13 20 

36566 Betton Pool 87 2.14 3.6 HAS 27 37 

34791 Unnamed pool 105 No data No data    

34162 Chapel Mere 88 4.36 0.8 HAVS 44 56 

35079 Cole Mere 88 2.38 3.3 HAS 27 37 

34480 Comber Mere 78 3.41 4.6 HAS 29 38 

35238 Cop Mere 88 2.92 1.1 HAVS 39 52 

35620 Fenemere 78 4.43 0.8 HAVS 45 57 

33210 Hatch Mere 76 2.23 1.4 HAVS 35 48 

34859 Maer Pool 118 No data No data    

36881 Marton Pool, Chirbury 105 No data No data    

33474 Oak Mere 77 0.06 1.7 LAVS 14 21 

34545 Oss Mere 105 3.12 1.0 HAVS 39 51 

34438 Quoisley Big Mere 78 4.49 0.8 HAVS 45 57 

34441 Quoisley Little Mere 78 5.02 0.6 HAVS 46 56 

32650 Rostherne Mere 27 2.41 13.6 HAS 23 33 

35212 Sweat Mere  No data No data    

35211 Crose Mere 88 2.93 4.8 HAS 30 40 

32960 Tabley Mere 32 2.66 1.2 HAVS 41 56 

32804 Tatton Mere 46 2.76 4.2 HAS 30 40 

32744 The Mere, Mere 52 1.80 2.8 HAVS 30 41 

35091 White Mere 96 2.10 4.4 HAS 25 34 

Mean depths in italics and grey shading were estimated from maximum depths using the regression 

in Figure 5.15. 

 

 

The site-specific TP standards outlined in Table 6.3 are generally higher than the type-

specific standards for the lake type.  This is because, in general, many of the meres have 

particularly high alkalinities, and subsequently higher reference TP concentrations. 

 

6.2 Phosphorus targets from palaeolimnology 

Remains of algae and chironomids in lake sediments have been used to reconstruct past 

environmental change over the Holocene in individual meres (Nelms 1984; O‟Sullivan 

unpublished) and more recently baseline TP concentrations from around 1850 (McGowan 

1996; Brooks et al 2001; Bennion pers. comm.).  The palaeolimnological evidence suggests 
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that baseline TP concentrations lie between 30-50 µg L
-1

, higher than reference TP 

concentrations derived from the MEI model.  The latter was used in part to set UK TAG 

(2008) TP standards and suggests that the UK TAG standards may be very difficult to 

achieve.  In many cases, the palaeolimnological baselines may also be uncertain and are best 

used to give a broad indication of trophic status. What is clear is that all the 

palaeolimnological studies show that there is clear evidence of nutrient impacts in the meres 

since 1850. 

 

Table 6.4 Reference TP targets (µg L
-1

) for 5 meres based on the MEI-model (Cardoso 

et al. 2007) and palaeolimnology. 

Site 

MEI  

Reference TP 

Palaeo-inferred 

Reference TP Source 

Bomere Pool 14 50 Bennion, pers. comm. 

White Mere 19 40 Bennion, pers. comm. 

Hanmer Mere 21 34 Bennion, pers. comm. 

Betton Pool 21 51 Brooks et al. (2001) 

Crose mere 22 31 McGowan (1996) 

 

 

6.3 Nitrogen levels and macrophyte species richness 

Aquatic macrophytes are often a key feature mentioned in the reasons for notification of the 

sites as SSSIs (and are central to the designation of Oak Mere as a SAC site, protected under  

the Habitats Directive).  In a wider, ecological context, aquatic macrophytes play a key 

physical structuring role in lakes and provide habitat for many associated invertebrate, fish 

and bird communities. Macrophyte depth limits and species composition are impacted by 

nutrient pollution, particularly through effects on light climate as large phytoplankton 

populations develop with enrichment.  Recently, James et al. (2005) analysed the species 

richness of submerged and floating-leaved macrophyte communities from 60 shallow lakes 

in Poland and the UK including several from the Shropshire and Cheshire meres. They 

established a correlation between declining macrophyte species richness and winter 

concentrations of nitrate and total nitrogen. Overall, the concentration of winter nitrate, a 

measure of nitrogen availability during the growing season, was the best predictor of species 

richness and including the concentration of phosphorus did not add significantly to the 

statistical correlation. The authors suggest that the mechanism behind the relationship is 

based on abundant nitrogen promoting rapid growth and leading only to a few competitive 
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species such as Ceratophyllum demersum, Potamogeton pectinatus, Lemna minor and 

Lemna trisulca and the loss of slower-growing species. While this suggestion is largely 

speculative, it has received some experimental support from experiments carried out by 

Barker et al. (2008) who found a greater reduction in species richness in mesocosms where 

the concentration of nitrate-nitrogen exceeded about 1.5 mg L
-1

. 

 

If this relationship can be established in the meres then it would provide a response to 

nutrient availability and means to set a nutrient target. To determine this, macrophyte data 

from 26 meres from 1975 to 2006 supplied by Dr Genevieve Madgwick of Natural England 

were analysed. The data were sorted into submerged species and floating-leaved and 

amphibious species. The data on macrophyte species richness were combined with annual 

average and winter (January and February samples- using the same time-period as James et 

al. 2005) concentrations of total phosphorus and NOx-N leading to 16 (total phosphorus) and 

17 (NOx-N) meres with data from both macrophyte composition and water chemistry. Each 

species of macrophyte was allocated to a trophic ranking score (TRS) which is an indication 

of the type of water the species is typically found in. A score of 1 indicates a species 

restricted to dystrophic sites, while a score of 10 represents a species restricted to highly 

eutrophic water. The scoring system of Palmer et al. (1992) and a revised scoring system 

produced by Dr Nigel Willby from Stirling University (N.J. Willby pers comm.) that 

includes more species, were used. 

 

There were no significant correlations between species richness of submerged macrophytes 

and annual or winter concentrations of total phosphorus or NOx-N (Fig. 6.1.). A similar 

analysis based on the floating-leaved species (Fig. 6.2) also failed to find any significant 

relationships, although there were weak but not statistically significant decreases in floating 

species richness with annual (P = 0.07) and winter (P = 0.07) concentrations of NOx-N. The 

response of total number of species also failed to show any statistically significant 

relationships.  

 

The analyses were re-run adding in annual mean values for water chemistry data from Table 

4.24 where they were not already available. This increased the number of sites that could be 

analysed from 16 for total phosphorus and 17 for NOx-N to 20 and 22 respectively. This 

produced a significant negative correlation (P<0.05) for both floating and total species 
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richness vs concentration of total phosphorus but this was caused largely by the low species 

number and high total phosphorus concentration for Quoisley Little Mere and when this site 

was removed from the dataset the correlation was not significant. The lack of a significant 

response did not appear to be caused by an already depleted species composition in the 

meres since total species numbers were similar to the UK sites analysed by James et al 

(2005). 

 

 

Figure 6.1 Relationship between submerged macrophyte species richness and water 

chemistry in 21 meres. a) species richness vs annual average concentration of NOx-N; b) 

species richness vs annual average concentration of TP; c) species richness vs winter 

average concentration of NOx-N; d) species richness vs winter average concentration of TP. 
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Figure 6.2 Relationship between floating macrophyte species richness and water chemistry 

in 21 meres. a) species richness vs annual average concentration of NOx-N; b) species 

richness vs annual average concentration of TP; c) species richness vs winter average 

concentration of NOx-N; d) species richness vs winter average concentration of TP. 

 

To try to understand the weak/lack of response in the meres of macrophyte species richness 

versus water chemistry, the macrophyte species were converted to trophic ranking scores 

using the systems of Palmer et al. (1992) and Willby (pers comm.). The two TRS systems 

were strongly correlated and had a slope of 1.0 but the Palmer et al. (1992) system produced 

scores that were greater than the Willby system by 1.5. (Fig. 6.3).   
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Relationships between the two Trophic Ranking Scores, based on the average for all the 

species present at a site, and winter concentrations of NOx-N or total phosphorus were not 

significant (Fig. 6.4). The data suggest, however, that above winter concentrations of about 

0.5 mg NOx-N L
-1

 and about 0.08 mg TP L
-1

, there was not a major increase in Trophic 

Ranking Score. This may possibly explain the lack of response in the meres: most of the 

meres had concentrations of nitrogen and phosphorus that were characteristic of eutrophic 

water bodies.  This lack of sites at lower nutrient concentrations truncates the macrophyte 

response to the higher, more insensitive end of the nutrient gradient. This result suggests that 

macrophyte species-richness in the meres cannot be used as a response to set nutrient targets, 

although the values obtained from the combined study of UK and Polish lakes (James et al. 

2005; Barker et al. 2008) could still be applicable, suggesting targets of around 1.5 mg L
-1

 

NO3-N. 

 

Figure 6.3 Comparison of TRS 

scores from 23 meres with 

more than 3 species using the 

system of Palmer et al. (1992) 

and updated system of Willby 

(pers comm.).  
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Figure 6.4. Relationship between Trophic Ranking Score according to Palmer et al. (1992), 

closed symbols and Willby (open symbols) against: a) concentration of winter NOx-N and b) 

concentration of winter total phosphorus. 

 

6.4 N and P targets derived from WFD chlorophyll targets 

Phytoplankton chlorophyll a is arguably the most sensitive and directly responding 

biological element to changing nutrient levels and influences the functioning of lake 

ecosystems, including light climate, deoxygenation at depth during stratification, and 

nutrient cycling and transfer of energy up the food-web to higher levels such as zooplankton 

and fish. The phytoplankton also interact with macrophytes and very shallow systems have a 

tendency to exist in either a turbid phytoplankton-dominated system or a clear-water 

macrophyte-dominated system.  The Water Framework Directive (EC, 2000) prescribes the 

use of phytoplankton abundance as a key element of the ecological status assessment of 

European lakes. As part of WFD implementation a number of classification schemes for 

chlorophyll concentrations have been developed as a measure of phytoplankton abundance 

(e.g. Søndergaard et al. 2005; Carvalho et al. 2008; 2009) and status class boundaries have 

been agreed at an European level through the “Intercalibration” process (Table 6.5). 
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Table 6.5 WFD chlorophyll standards (µg L
-1

) for lake types present in the meres (Modified 

from Carvalho et al. 2006.) 

Lake Type 

H/G  Chla 

target 

G/M  Chla 

target 

Low Alk VShallow 4.1 7.9 

Mod Alk Shallow 4.7 7.2 

Mod Alk VShallow 8.3 15.3 

High Alk Shallow 4.6 7.5 

High Alk Vshallow  8.6 16.5 

 

The meres are no exception to this: chlorophyll a concentrations are widely seen as an 

important measure of nutrient enrichment which has major impacts on aquatic plant and 

invertebrate communities, and, therefore, the conservation status of the meres.  For this 

reason, the WFD chlorophyll targets can be used as an ecological target for setting N & P 

targets.  This can be carried out by inverting European regression equations relating total 

phosphorus or total nitrogen concentrations to chlorophyll a (Phillips et al. 2008) (Table 6.6 

& 6.7) 

 

Table 6.6 Regression equations relating chlorophyll a to total nitrogen concentrations (µg L
-

1
) for European lake types represented in the meres (Modified from Phillips et al. 2008). 

Lake Type Chl-TN Equation 

LAVS Log10 Chl = -3.904(±0.36) + 1.812(±0.13) Log10 TN 

MAS Log10 Chl = -2.158(±0.19) + 1.091(±0.07) Log10 TN 

MAVS Log10 Chl = -3.189(±0.40) + 1.538(±0.14) Log10 TN 

HAS Log10 Chl = -2.177(±0.35) + 1.096(±0.12) Log10 TN 

HAVS Log10 Chl = -2.575(±0.87) + 1.205(±0.30) Log10 TN 

 

Table 6.7 Regression equations relating chlorophyll a to total phosphorus concentrations 

(µg L
-1

) for European lake types represented in the meres (Modified from Phillips et al. 

2008). 

Lake Type Chl-TP Equation 

LAS 

Log10 Chl = -0.528 + 1.108 Log10TP 
LAVS 

MAS 

MAVS 

HAS 
Log10 Chl = -0.306 + 0.868 Log10TP 

HAVS 

 

The resultant N and P targets (Table 6.8) can be compared with the current status of the 

meres and the distance to target calculated (Table 6.8).  This indicates that the meres are 
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failing chlorophyll and nutrient targets, with only one exception to this – the chlorophyll 

target at Cop Mere.  On a more positive note, many sites are not too far from the N target 

and may even pass if site-specific chlorophyll targets were applied, as recommended by 

Carvalho et al. (2009).  In terms of TP targets, many of the meres fail by a long distance and 

would generally be classified as bad status. Although these high TP concentrations may be 

partly natural, derived from apatite deposits (Reynolds 1979) they probably mainly result 

from phosphorus inputs that have accumulated over many years (Kilinc & Moss 2002) and 

so to get these sites to meet the good status TP target may be almost impossible to achieve in 

the short-term. 

 

An important point to note is that passing the N target and failing the P target should not 

mean that management of N sources to the mere should be ignored, almost counter-

intuitively it means that N control could lead to more immediate benefits in reducing 

chlorophyll a concentrations further. 

 

Table 6.8 A comparison of current status of the meres with site-specific WFD targets (Chl 

and TP µg L
-1

; TN mg L
-1

).  The “difference” representing distance to target. Green 

highlighting indicates current status is below target (i.e. site is at least good status), amber 

is relatively close to target (“moderate-poor” status) and red is far from target (>100 µg L
-1 

TP, >2.0 mg L
-1

 TN difference). 

 Current 

Status 

 WFD G/M target Difference  

Lake Chl TP TN Chl TP TN Chl TP TN 

Aqualate Mere 25 245 7.6 16.5 57 1.4 9 188 6.2 

Berrington Pool 20 182 1.7 7.5 35 0.6 13 147 1.1 

Betley Mere 74 479  16.5 57 1.4 58 422  

Betton Pool 11 56 1.3 7.5 37 0.6 4 19 0.7 

Bomere Pool 23 42 1.8 7.2 27 0.6 15 15 1.2 

Chapel Mere 25 305  16.5 56 1.4 9 249  

Cole Mere 25 127 1.1 7.5 37 0.6 18 90 0.5 

Comber Mere 31 186 1.8 7.5 38 0.6 24 148 1.2 

Cop Mere 9   16.5 52 1.4 -7   

Crose Mere 25 108 3.2 7.5 40 0.6 17 68 2.6 

Hatch Mere 44 70  16.5 48 1.4 27 22  

Oak Mere 29 76 0.9 7.9 21 0.4 21 55 0.5 

Rostherne Mere 30 181 1.6 7.5 33 0.6 23 148 0.9 

Tabley Mere 92 355 3.4 16.5 56 1.4 75 299 2.0 

Tatton Mere 17 155 0.8 7.5 40 0.6 10 115 0.2 

The Mere, Mere 28 73 1.9 16.5 41 1.4 11 32 0.5 

White Mere 32 471 1.2 7.5 34 0.6 25 437 0.6 
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This approach deriving N & P targets from WFD chlorophyll targets assumes that both the 

chlorophyll targets and the regression equations are appropriate for the meres.  As has been 

shown earlier (section 5.3) many of the meres do not conform to the European regressions 

relating nutrients to chlorophyll, and so the latter is certainly not true.  Regression equations 

specific to the meres, or at least to the type of low-flushing lake present in the meres, should 

be developed.  In particular meres with limited flushing (i.e. no outflow) may be expected to 

have higher chlorophyll concentrations as loss rates through the outflow will be non-existent.  

Similarly Moss et al. (1994) has shown that in many of the very shallow meres, grazing 

appears to be the most significant driving variable of chlorophyll concentrations and 

zooplanktivorous fish communities may be very important in this respect. 

 

6.5 Conclusions 

Table 6.9 provides a summary of all the targets outlined in this report.  Except for the 

palaeolimnological targets, the approaches outlined above represent a “lake population” 

approach and are not ideal for representing the individuality of many of the meres and the 

complexity of the multitude of factors that affect macrophyte and phytoplankton 

communities.  Where possible we would recommend meres-specific or site-specific 

approaches. The final suggested targets for TP are based on the UK TAG (2008) site-specific 

G/M boundary where this can be calculated and the Phillips et al. (2008) type-specific 

targets for a few sites where they cannot be calculated. The final suggested targets for TN 

are based on Phillips et al. (2008). Where a site has been identified as co-limited by N and P, 

both TN and TP targets are recommended to be set. While it is probably not true that all the 

meres are naturally rich in phosphorus, they have had a long-history of nutrient enrichment 

and, as Table 6.4 demonstrates, achieving these targets in order to reduce phytoplankton 

chlorophyll a will require careful management of nutrient sources within the catchment. 
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Table 6.9  Summary of nutrient targets for the meres. Grey areas show sites where data is not available, „-„ indicates not applicable. 

  TP Targets (µg L
-1

)     NO3-N (mg L
-1

) TN (mg L
-1

)   

   UK TAG 
(2008) Type-

specific 

UK TAG 
(2008) Site-

specific 

Phillips et 
al. (2008) 
Chl-TP 

Palaeo-
limnology 

James et al 
(2005) 

Phillips et al. 
(2008) Chl-

TN Final targets 

Lake 
Target 
nutrient 

JNCC 
(2005) H/G G/M H/G G/M G/M   G/M TP (µg L

-1
) TN (mg L

-1
) 

Aqualate Mere N&P 50 35 49 44 57 57  1.5 1.4 57 1.4 

Berrington Pool N&P 35 25 35 25 35 35  1.5 0.6 35 0.6 

Betley Mere N&P 50 35 49 44 57 57  1.5 1.4 57 1.4 

Black Mere             

Bomere Pool N&P 15 11 16 18 27 18 50  0.6 27 0.6 

Shomere Pool N&P 20 15 22 13 20 35   0.7 20 0.7 

Betton Pool N&P 35 25 35 27 37 35 51 1.5 0.6 37 0.6 

Brown Moss             

Chapel Mere N&P 50 35 49 44 56 57  1.5 1.4 56 1.4 

Cole Mere N 35 25 35 27 37 35  1.5 0.6 - 0.6 

Comber Mere N 35 25 35 29 38 35  1.5 0.6 - 0.6 

Cop Mere P 50 35 49 39 52 57  1.5 1.4 52 - 

Fenemere P 50 35 49 45 57 57  1.5 1.4 57 - 

Hatch Mere P 50 35 49 35 48 57  1.5 1.4 48 - 

Maer Pool N 50 35 49   57  1.5 1.4 - 1.4 

Marton Pool, Chirbury N&P 50 35 49   57  1.5 1.4 57 1.4 

Oak Mere N&P 10 9 14 14 21 19   0.4 21 0.4 

Oss Mere P 50 35 49 39 51 57  1.5 1.4 51 - 

Quoisley Big Mere N 50 35 49 45 57 57  1.5 1.4 - 1.4 

Quoisley Little Mere N 50 35 49 46 56 57  1.5 1.4 - 1.4 

Rostherne Mere N&P 35 25 35 23 33 35  1.5 0.6 33 0.6 

Sweat Mere             

Crose Mere N&P 35 25 35 30 40 35 31 1.5 0.6 40 0.6 

Tabley Mere N&P 50 35 49 41 56 57  1.5 1.4 56 1.4 

Tatton Mere N 35 25 35 30 40 35  1.5 0.6 - 0.6 

The Mere, Mere P 50 35 49 30 41 57  1.5 1.4 41 - 

White Mere N 35 25 35 25 34 35 40 1.5 0.6 - 0.6 
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7. ASSESSMENT OF GAPS IN DATA AND UNDERSTANDING & 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This section considers the gaps in data, understanding and future research needed to manage 

the conservation and water quality of the meres more effectively. 

 

Data gaps and survey 

 There are gaps in basic data for some of the meres, some of which were reviewed in this 

report. Table 4.24 summarises the key features for the meres reviewed here which 

highlights these gaps: mean depth and retention time are not known for many of the 

meres. Mean depth could be measured by survey- possibly using hydroacoustics and this 

would also be a prerequisite for estimating retention time. Some sites, such as Black 

Mere, Marton Pool and Shomere have very little water chemistry. Information on key 

nutrients are also not complete for other meres such as Brown Moss and Maer Pool 

although in the case of the former a paper on early online giving a detailed nutrient 

budget (Chaichana et al. 2010) became available as this report was being completed. For 

these sites, a monthly survey extending over a year would provide this minimal data 

needed to manage these meres effectively by allowing mere-specific targets to be 

produced. 

 More widespread measurements of groundwater chemistry are needed to establish the 

likelihood of achieving N & P targets. 

 More accurate hydrological budgets are needed to assess the likely lags in response to 

catchment nutrient reductions. 

 Greater knowledge on nutrient inputs from small non-sewered settlements (e.g. Cop 

Mere, Black Mere). 

 Internal loading of phosphorus was indicated by the analysis of seasonal changes in 

concentration of phosphorus. It is probably important to be able to estimate the 

magnitude of this, otherwise, unaccounted for phosphorus-load. 

 

Understanding and future research 

 A key issue is to determine the „baseline‟ concentration of phytoplankton chlorophyll a. 

This could be tackled using modelling approaches. For example: 
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1) Use estimates of baseline nutrient concentrations and develop meres-specific TP-chla 

or TN-chla relationships that reflect low flushing rates and a balanced fish 

community (healthy zooplankton community).  Similar low flushing reference-

condition sites could be sought across Europe (e.g. Polish kettle lakes) to validate 

chlorophyll targets. 

2) Use historical macrophyte records (and macrophyte species responses in relation to 

light climate) to model target chlorophyll a concentrations (Maberly unpublished) 

3) Use analogue sites across Europe where macrophytes from meres‟ historical past are 

still present – examine what chlorophyll and nutrient concentrations „support‟ them. 

 Where it is important to determine the prime nutrient limiting productivity, direct 

bioassays could be undertaken. As a minimum these should be undertaken on several 

occasions during the growing season as nutrient-limitation varies seasonally. More 

modern approaches based on physiological status or molecular methods might also be 

beneficial. 

 It is unclear exactly why there is not a clear relationship between macrophyte species 

richness and nutrient availability. Future research could include experimental studies, for 

example in mesocosms, to investigate macrophyte survival and diversity and nutrient 

concentration. 

 Examine whether cyanobacterial blooms are enhanced by N-limitation or whether just a 

response to high alkalinities – requires increased sampling of summer phytoplankton 

community across N- and P-limitation gradients in meres. 

 Greater knowledge of fish community biomass, particularly benthivorous fish which are 

known to be highly damaging to submerged macrophyte communities. 

 Better understanding of trophic webs in meres – is high fish biomass linked to elevated 

nutrient status, regular stocking, or unbalanced food-webs (e.g. lack of piscivorous fish, 

toxic cyanobacteria) 

 Greater clarity on what value meres provide.  Is it simply conservation interest? What is 

their value to fisheries? Can the fishery value be enhanced alongside conservation 

interests? What is their wider role in ecological services such as denitirification and C 

storage?  Other roles? Tourism and recreation? 
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