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Abstract. Noise burst events observed at Sodankylä, Finland, in the frequency 
range 20-25 kHz during January-April 2005 last up to four seconds, occur more 
often at midnight, are associated with high geomagnetic activity, and exhibit a 
quasi-constant amplitude perturbation ~15 dB above the background noise 
levels. We considered the possibility that the events could be caused by 
lightning noise breakthrough. The association of the noise burst events with 
local midnight and high geomagnetic activity argues against a lightning link, as 
well as the lack of close thunderstorm location relative to Sodankylä during 
noise periods. While energetic electron precipitation is also associated with high 
geomagnetic activity we showed that they occur at different times, and exhibit 
significantly different amplitude characteristics. Finally, we compared in detail 
the geomagnetic induced current (GIC) in the Scottish power system in southern 
Scotland, during a storm event that occurred on 15 May 2005, with the noise 
burst event rate at Sodankylä. We found that the onset time and variability of the 
Scottish GIC activity was well matched by the variability in the noise burst 
event rate, particularly the high frequency component of the GIC fluctuations. 
The technique used in our study of observing at a narrow-band of frequencies 
allows GIC measurements to be made in built-up areas where mains interference 
is a problem for other experiments, such as magnetometers.  
 
 



1.  Introduction  

 Very low frequency (VLF) observing systems have been used at high latitudes 

for many years [Barr et al., 2000] particularly to monitor waves that have 

propagated to the ground from space, such as whistlers, chorus waves, triggered 

emissions [Helliwell, 1965], waves from lightning discharges [e.g., Dowden et 

al., 2008], and also to monitor energetic particle precipitation through effects on 

radio wave subionospheric propagation [e.g., Clilverd et al., 2009]. In this study 

we analyze radio signals recorded at 20-25 kHz in the high latitude northern 

hemisphere using an experiment intended to monitor man-made radio wave 

transmissions. We show that on occasions when strong man-made radio 

transmissions are not present, large noise spikes can be observed, which are 

associated with high geomagnetic activity. We discuss the mechanism that 

produces these features, particularly in terms of either lightning generated noise, 

energetic electron precipitation, or local electro-magnetically induced currents. 

 

 Short duration waves like chorus and triggered emissions can be strong, but 

are typically restricted to frequencies <15 kHz [Helliwell, 1965] and are thus not 

considered as a significant noise source in the 20-25 kHz range investigated 

here. Auroral hiss bursts can produce strong emissions in the 20-25 kHz 

frequency range, but these have not been observed to be intense enough, nor of 

short enough duration, to be categorized as large noise spikes as we define them 

later in this study [Tauno Turunen, personal communication]. However, 

lightning generated noise bursts known as ‘atmospherics’ or ‘sferics’ [Rakov 



and Uman, 2006] are a significant noise source in the 20-25 kHz range. While 

lightning tends to occur more often at low latitudes than at high latitudes 

[Christian et al., 2003], the signals can propagate long distances in the 

subionospheric waveguide and so we consider their effect further in this paper as 

a potential mechanism to explain large noise spikes observed in our narrow-band 

receivers.  

 

 The precipitation of energetic electrons into the D-region can occur in bursts 

and be observed from balloon-borne experiments, as well as through their effect 

on subionospheric propagation. Relativistic Electron Precipitation (REP) into the 

atmosphere has been observed to take several forms. Relativistic microbursts 

observed from the SAMPEX satellite last less than one second, occur at about 

L=4-6, are observed predominantly in the morning sector, and have been 

associated with VLF chorus waves [Nakamura et al., 2000; Lorentzen et al., 

2001]. Precipitation events lasting minutes to hours have been observed from the 

MAXIS balloon. They occur at about L=4-7, are observed in the late 

afternoon/dusk sector, and may be produced by EMIC waves [Millan et al., 

2002; Rodger et al., 2008]. Both of these types of precipitation can occur at the 

same time during geomagnetic storms, as observed by Clilverd et al., [2006] and 

Rodger et al. [2007] during the large electron flux decrease event of January 21, 

2005.  

 



 During geomagnetic storms the modification of ionospheric currents can 

produce telluric currents that are correlated with sudden changes in 

magnetometer recordings. Geomagnetic storms cause large currents to flow in 

the ionosphere, which in turn induce geomagnetically induced currents (GICs) in 

electric power systems [Thomson et al., 2005]. The GICs result in severe half-

cycle saturation and increased demands on transformers through increased 

leakage fluxes. GICs have caused unusual noises and heating in transformers, 

real and reactive power swings, voltage fluctuations, the operation or non-

operation of protective relays, and other similar effects [Pulkkinen et al., 2005; 

Pirjola, 2007]. The effects can be long lasting (hours) but changeable over only a 

few seconds depending on the variability of the ionospheric currents. GIC 

effects on VLF system have been observed in the form of increases in the 

intensity of power line harmonics in the frequency range 180-720 Hz [Hayashi 

et al., 1978]. The cause was attributed to induced currents over loading a power 

supply near to the VLF observation site, during a sudden storm commencement. 

Hayashi et al. suggested that suitably distributed VLF receivers would be 

expected to be useful for monitoring GIC in power systems. 

 

 In this study we report for the first time unusual noise events observed on 

narrow-band VLF recordings in the frequency range 20-25 kHz. We analyze 

data from Sodankylä, Finland, from 1 January to 30 April 2005 in order to 

compare the noise events with other features in the radio wave data, such as 

lightning noise, and perturbations due to the precipitation of energetic electrons. 



We also compare the response of the VLF receivers to geomagnetically induced 

currents observed in a power system in Scotland during a large geomagnetic 

storm. Wideband spectrograms (1-30 kHz) would have helped distinguish 

between these mechanisms, particularly as they show broadband noise well, and 

electron precipitation effects poorly. However, wideband recordings were not 

available during the period studied here. Even so, we show that geomagnetically 

induced currents are the most likely explanation for the observed noise events, 

and that they could be induced in the VLF receiver itself or in nearby power 

systems; making the instrument a simple, real-time, cheap, and portable monitor 

of these potentially disruptive ionospheric currents. 

 

2.  Experimental setup 

 We use high-time resolution, narrow band subionospheric VLF data spanning 

20-25 kHz received at two sites: Sodankylä, Finland (67ºN, 23ºE, L=5.2); and 

Ny Ålesund, Svalbard (79ºN, 11ºE, L=18.3). These sites are part of the 

Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric 

Research Konsortia: AARDDVARK [Clilverd et al., 2009]. The data shown in 

this study are taken from 01 January-30 April 2005, which includes several 

periods of high geomagnetic activity and good quality data from both sites. 

Figure 1 shows the location of the receiver sites (diamonds), and the transmitter-

receiver paths that are under study (transmitter locations are given by the 

circles).  

 



 The receiver at Sodankylä (SGO) records data at 0.1 s resolution, while the 

receiver at Ny Ålesund records at 1.25 s resolution. Most of the data used in this 

study is from SGO because of the high time resolution required to study burst 

events. The aerials used in both cases are magnetic loops and thus directional. 

We study data from the transmitter frequencies logged when the signals from the 

transmitters are either off or nulled by the directionality of the aerial to very low 

amplitudes.  

 

 Supporting data from Kilpisjärvi, Finland, (69.02ºN, 20.86ºE, L=6.1) are taken 

from the central beam (beam 25) of the Imaging Riometer for Ionospheric 

Studies (IRIS) [Browne et al., 1995], which operates at 38.2 MHz. The riometer 

measures the relative opacity of the atmosphere, and generates a dataset of the 

variation of the absorption of 38.2 MHz radio waves, which can be interpreted 

as a measure of the additional ionization produced by precipitating energetic 

particles, such as 30-200 keV electrons. 

3.  Results 

 The experimental setup at SGO means that the great circle path of the 

transmitter in Hawaii (NPM, 21.4 kHz) passes through the high latitude region 

of the northern hemisphere (Figure 1). However, the magnetic loop aerial 

orientation used at SGO has been optimized to monitor the nearer transmitters in 

Europe, such that the Hawaii signal is very weak. Figure 2 shows the amplitude 

of NPM during January 21, 2005. The amplitude of NPM is typically close to 

the natural noise levels defined by lightning atmospherics i.e., about 30-35 dB in 



the plot, and shows some slowly varying behavior associated with the diurnal 

variation in lightning activity. During this day recovery is occurring from the 

solar proton event that began at 07 UT on January 20, 2005 but this does not 

influence the data shown in this plot. At 17:10 UT a coronal mass ejection hit 

the Earth [Clilverd et al., 2006] and at this time large noise burst events (NBEs) 

can be observed on the NPM signal. The noise bursts are typically >15 dB 

higher than the background levels, i.e., with quasi-constant peak amplitudes 

~50 dB, and continue until the end of the day. During this period, Kp>8. Some 

other periods of burst events are also observed before 17:10 UT, especially at the 

beginning of the day just after 00 UT, although they are relatively few in 

number. 

 

 Figure 3 is a close up of one of the NBEs that occurred just after 17:15 UT. 

The panels show the amplitude and phase changes during the burst event. 

Vertical dotted lines indicate the start and end of the event, which has a total 

duration of 4.5 s. Some structure can be seen in the event, although it is 

primarily one of a sudden increase in amplitude, followed by a gradual recovery. 

These characteristics are typical of the noise burst events seen in the Sodankylä 

data, e.g., sudden large positive increases in amplitude with an accompanying 

advance in phase.  

 Due to the quasi-constant peak amplitude of NBEs we are able to use a simple 

threshold detection algorithm to determine the number of NBEs for each hour 

during the period 01 January to 31 April 2005. The threshold was set at 50 dB. 



Figure 4 shows the time variation of the number of NBEs per hour averaged 

over 3 hours during the period of study, and shows a comparison with the 3-

hourly geomagnetic ap index. Vertical dashed lines are plotted on both panels to 

indicate the start of periods of high geomagnetic activity. A data gap occurred 

from 5-11 January 2005 in the VLF recordings, which explains why a period of 

high geomagnetic activity on 07 January 2005 does not appear to correlate with 

high NBE occurrence. For the rest of the study period there is a high correlation 

between the occurrence of NBEs and increased geomagnetic activity. 

 

 The diurnal variation of the occurrence of NBEs per hour from 01 January to 

31 April 2005 is shown in Figure 5. The occurrence of NBEs varies reasonably 

smoothly throughout the day. The occurrence rate is near zero during the 

daytime (10-16 UT, 12-18 LT), and peaks at 22 UT (00 LT). Magnetic midnight 

at Sodankylä is at 21 UT. The plot shows that NBEs are most often observed 

close to magnetic midnight. We discuss the possible significance of the diurnal 

variation of NBE’s in section 3.3.  

 

3.1 Comparison with lightning noise bursts 

 As the power spectral density of lightning peaks in the VLF spectral band 

[Pierce, 1977], it may be possible for lightning to interfere with Sodankylä’s 

VLF data by "breaking through" into the narrowband observations. When 

comparing data from the World Wide Lightning Location Network (WWLLN, 

[Dowden et al., 2008; Rodger et al., 2009]) for January to July 2005 inclusive, to 



search for periods of lightning activity near Sodankylä, it was found that only 

two lightning storms coincided with periods of VLF signal perturbation, and 

both were later in the year than April 2005. WWLLN locations used in the 

present study were produced by the original lighting location algorithm [Rodger 

et al., 2006]. The WWLLN has low lightning stroke detection efficiency, 

detecting only a few percent of global lightning activity [Rodger et al., 2009], 

however an investigation by Jacobson et al. has shown that the WWLLN 

supplies spatially accurate and representative detection of lightning storms as a 

whole [Jacobson et al., 2006], meaning that the accuracy is sufficient for this 

comparison.  

 

 Lightning breakthrough perturbations, when present, were seen on all VLF 

channels received at SGO, in the form of 0.5-1.0 s increases and decreases in 

amplitude. Many perturbations were coincident in time across multiple channels. 

For the five VLF transmitter signals recorded at below 30 kHz at Sodankylä, the 

absolute amplitude of the peak perturbations were approximately the same for 

each event, but also varied from event to event, which is consistent with the 

perturbations being caused by lightning pulses of differing strengths (i.e., 

discharges with differing currents and orientations). These characteristics differ 

from the NBEs that we are studying here, in that the NBEs associated with high 

geomagnetic activity typically last longer by a factor of 3-4 when compared with 

the lightning effects, and unlike the lightning effects the geomagnetic NBEs are 

observed to have a near-constant amplitude from event to event. Only WWLLN-



detected lightning strokes within 500 km of SGO were observed to produce 

interference on strong VLF signals, although that distance depends on the 

amplitude of the transmitter signals at the time. Weaker transmitter signals can 

be influenced by a relatively weak lightning signal, whereas stronger transmitter 

signals would remain unaffected.  

 

 Figure 6 shows a lightning breakthrough perturbation on 1428 UT, 24 May 

2005, which was co-incident with a strong lightning strike within 100 km of 

Sodankylä, observed on many of the transmitter signals at the same time. All of 

the transmitter signals shown respond to the lightning noise with an increase in 

amplitude, and reach the same amplitude level, which is independent of their 

initial amplitude. The timescale of the lightning breakthrough is ~1 second for 

the Hawaii signal. The lower panel shows an extended period of data when an 

approaching thunderstorm generated lightning perturbations with a similar 

amplitude compared with the observed geomagnetic NBEs, i.e., ~50 dB. The 

difference in the slow gradual rise of the noise level caused by the thunderstorm 

on 27 May 2005 should be contrasted with the onset of geomagnetic NBEs 

shown in Figure 2. The thunderstorm that generated the ~50 dB signals observed 

in Figure 6 was located in Russia, ~500 km south east of the receiver at 

Sodankylä as determined using WWLLN data.  

 

3.2. Comparison with electron precipitation events 



 Rodger et al. [2007] reported short-lived perturbations on transmitter signals 

received at Sodankylä during high geomagnetic activity, including the period in 

21 January 2005 that we show in Figure 2. The perturbations were discussed in 

terms of the precipitation of relativistic electrons (~1 MeV) into the atmosphere 

and were termed "FAST events". In this case the precipitation generated 

additional ionization at ~60-70 km altitudes which resulted in a sudden change 

in propagation conditions for the VLF transmitter signals, and a subsequent 

change in received phase and amplitude. The FAST events reported typically 

had a rapid onset, and lasted ~1 second. In this section we investigate if it is 

likely that the FAST events reported by Rodger et al. [2007] could be the cause 

of the NBEs reported here. The close association with periods of high 

geomagnetic activity certainly suggests that we should look more closely at the 

two.  

 

 In Figure 7 we show the amplitude of the NPM Hawaii, NAA Maine, and 

NDK North Dakota transmitters at ~19 UT, 21 January 2005. The data shown 

are from a period just after the onset of high geomagnetic activity when FAST 

events were reported by Rodger et al. [2007]. The FAST events occurring on 

NAA and NDK are highlighted on the plot. The amplitude variation of the 

FAST events is both positive and negative, and sometime both. This is 

consistent with the idea that they are produced by small regions of ionization 

caused by energetic electron precipitation. The type of NBE studied here can be 

seen on NPM Hawaii at the start of the period shown. It is clear that when FAST 



events occur there is no co-incident event on NPM Hawaii, suggesting that 

geomagnetic NBEs and FAST events are not linked even though they both occur 

during high geomagnetic activity. 

 

 At high geomagnetic latitudes geomagnetic substorms can be observed as 

increases in the absorption levels of riometers as a result of energetic electron 

precipitation in the 30-200 keV range [Kavanagh et al., 2007]. As we have 

previously shown (Figure 5) that the NBE occurrence frequency peaks at 

midnight in the same way that substorm signatures do, we might anticipate an 

association between riometer observations and the NBEs. Figure 8 shows NBE 

data from 16-24 UT on 13 January 2005 recorded at Sodankylä and at Ny 

Ålesund, Svalbard. The AARDDVARK receiver at Ny Älesund was tuned to 

24.8 kHz in order to monitor the NLK transmitter located in Seattle, USA, 

however during this period the transmitter was off-air and the receiver was 

logging the noise levels until about 2330 UT when NLK began transmitting 

again. The lowest panel shows the Kilpisjärvi (L~6.1) riometer absorption data 

from the central beam (beam 25). Vertical dotted lines indicate the onset times 

of three substorm periods. 

 

 Figure 8 shows that NBEs can be closely associated with substorm events. 

There appears to be some causal link between the short-lived periods of high 

absorption in the riometer data, particularly at the start of each substorm, and the 

occurrence of NBEs. At Sodankylä the NBEs tend to last for the whole period 



that the riometer absorption is elevated, while at Ny Ålesund only the first 

substorm shows a rate of NBE occurrence that is similar to that observed at 

Sodankylä. The NBE data from Ny Ålesund shows that NBEs can be observed 

at receiver sites other than Sodankylä, although there are clearly temporal 

differences in the timing of NBEs between the two sites shown in the figure. The 

Ny Ålesund NBE observations also strongly suggest that these events are due to 

broadband noise emissions, and not caused by changes in subionospheric 

propagation, given the NLK transmitter was not broadcasting at this time and 

also because of the different frequency being monitored compared with 

Sodankylä (24.8 kHz c.f. 21.4 kHz). Lubchich et al. [2006] discussed the 

generation of broad band emissions associated with 10-100 keV electron 

precipitation during substorms. Using broadband observations from Finland they 

showed that substorm-associated chorus in the frequency range 0.3-1 kHz was 

observed in the region of Sodankylä, Finland, close to the location where our 

NBE observations were made. However, these broad band emissions are not in 

the right frequency range to explain the observations of NBEs during substorms. 

 

 Analysis of WWLLN lighting data during this period shows that the 

nearest thunderstorm activity was in the Mediterranean Sea, just off the coast 

of Libya. The distance from the thunderstorm location to Sodankylä is 

~6000 km, and to Ny Ålesund is ~8000 km, strongly suggesting that these 

NBEs are not associated with lightning noise. 

 



3.3 Comparison with geomagnetically induced currents 

 Geomagnetically induced currents occur during high geomagnetic activity and 

can be detected at high- and mid-latitudes. Currents flowing in the ionosphere 

map down to ground level and can induce effects in electrical systems. Viljanen 

et al. [2001] studied GICs in Scandinavia from 1999 to 2000. They showed that 

the diurnal variation of GICs in central and southern Finland peaked between 

00-02 MLT (21-23 UT) with a relatively smooth decrease of occurrence towards 

the middle of the day. In the same study Viljanen et al. also showed that the rate 

of change of the horizontal component of the geomagnetic field (a proxy for 

GICs) showed a similar diurnal variation for sub-auroral latitudes, but peaked at 

07 MLT (04 UT) in the higher latitude auroral zone in Finland. The diurnal 

variation of NBEs shown in Figure 5 is consistent with the time variation of 

GICs in the sub-auroral zone and strongly suggestive of GIC as a cause of the 

NBE phenomenon.  

 

 In Figure 9 we compare the effect of geomagnetic activity on the induced 

currents measured in the Scottish Power system transformers in southern 

Scotland (Strathaven, L~2.8) during 15 May 2005. The temporal resolution of 

the GIC observations was 1 s. Panel (a) shows the temporal variation of the 

system current, while panel (b) shows the induced current after being high-pass 

filtered (removing >60 s fluctuations). Panels (c) and (d) show the NBEs seen at 

Sodankylä at the same time. The Sodankylä NBE rate (panel c) was calculated 

by using a simple threshold test, triggering on the upward slope of the NBE, and 



discounting any further triggers until four seconds later in order to reduce the 

effects of temporal structure in the NBE signature. Rapid changes in the Scottish 

power current begins at the same time as the occurrence of Sodankylä NBEs, 

starting at 0230 UT as shown by the vertical dot-dashed lines, and shows very 

similar behavior over the next few hours. The peak of the Strathaven short-

period currents occurs from 06-07 UT, which is also noticeable as a period of 

high Sodankylä NBE rate. There is also close co-incidence during a period of 

reduced GIC activity starting at 07 UT and lasting until 0730 UT. The NBEs are 

similarly reduced during the same period.  

 

 An analysis of the data presented in Figure 9 indicates that there is little 

evidence of a one-to-one correspondence between the GICs and NBEs. The 

majority of the spectral power in GICs is in periods >~10 s, so it is unlikely that 

there would be a clear one to one relation with NBEs. 

 

 Although no observations of GIC activity were made in Finland for 15 May 

2005 we are able to make an estimate using the magnetometer located in 

Sodankylä. Panel (e) of Figure 9 shows the time derivative of the X component 

of the SGO magnetometer (-dX/dt), which is located at the same site as that 

where the NBE observations were made. The parameter –dX/dt corresponds to 

the eastward component of the geoelectric field and is representative of GIC 

activity levels. There is a close correspondence between the time derivative of 



the magnetometer data and the NBE occurrence rate, although the NBE rate 

does not provide any sign information and is in effect proportional to (-dX/dt)2. 

 

 Figure 9 also indicates that the number of NBEs increased again after 19 UT 

along with probable GIC activity in Finland suggested by the SGO 

magnetometer data, while the GIC level in Scotland remained close to zero. The 

NBEs/GICs observed at the high latitude Sodankylä site are likely to have been 

generated by substorm activity at this time of day, close to magnetic midnight. 

However, the Scottish power grid at mid-latitudes was primarily responding to a 

large geomagnetic storm (Kp=9) during the early part of 15 May 2005, and not 

the more poleward current systems of the substorms that followed. 

 

6.  Discussion and Summary 

 In this study we have reported the characteristics of noise burst events (NBEs) 

observed at Sodankylä, Finland, during January-April 2005 in the frequency 

range 20-25 kHz. The NBEs tend to last up to four seconds, occur more often at 

midnight, are associated with high geomagnetic activity, and exhibit a quasi-

constant amplitude perturbation. The NBEs have typical amplitudes that are 

>15 dB above the background noise levels. 

 

 We have considered the possibility that the NBEs could be caused by 

lightning noise break through. The association of the NBEs with local midnight 

and high geomagnetic activity argues against a lightning link, although a similar 



sudden enhancement of ‘atmospherics’ caused by changing radio wave 

propagation conditions as a result of solar flares (SEA, Sao et al., [1970]) is well 

known. It is reasonable to consider that the occurrence of NBE periods might be 

the result of enhanced lightning ‘atmospheric’ amplitudes caused by improved 

radio wave propagation conditions during geomagnetic substorms. However, 

using the WWLLN data we have been able to show that a thunderstorm 

generating lightning ‘atmospherics’ that exhibited noise levels 15 dB above the 

normal background noise levels needed to be ~500 km from the receiver at 

Sodankylä. Analysis of NBE periods have shown that, particularly during the 

winter months, thunderstorm activity is typically more than an order of 

magnitude more than that distance from Sodankylä - well towards the equator 

and away from the high latitude region of substorm-induced changes in radio 

wave propagation. 

 

 We also considered the possibility that energetic electron precipitation could 

cause short-lived enhancements in ionization, which would perturb radio wave 

signal propagation. While energetic electron precipitation is also associated with 

high geomagnetic activity we have presented observations from Sodankylä that 

have both NBEs and FAST precipitation events [Rodger et al., 2007] occurring, 

but that they occur at different times, and exhibit significantly different 

amplitude characteristics. The observation of NBE at Sodankylä, Finland, and 

Ny Ålesund, Svalbard, at the same time during a series of substorms also argues 

against energetic electron precipitation as a result of radiation belt processes, as 



one of the transmitters was not broadcasting at the time and therefore no 

scattering of the transmitter signal could have occurred. 

 

 Finally we considered the possibility that NBEs were caused by 

geomagnetically induced currents (GIC) driven by high geomagnetic activity 

and substorms. We compared in detail the GICs induced in the Scottish power 

system in southern Scotland, during a storm event the occurred on 15 May 2005, 

with the NBE rate at Sodankylä. We found that the onset time and variability of 

the Scottish GIC activity was well matched by the variability in the Sodankylä 

NBE rate. Induced voltages in the receiver aerials or nearby electrical systems 

could be expected to produce electrical noise that was quasi-constant in 

amplitude which is consistent with the observed amplitude behavior of NBEs. A 

simple test of adjusting the Sodankylä aerial earthing configuration produced 

changes in the amplitude of NBEs during high geomagnetic activity, although 

they were always present during periods of high geomagnetic activity and could 

not be removed completely. Even though this is consistent with the idea that the 

NBEs are induced in the aerial system itself it does not exclude the possibility 

that GICs cause the saturation of high-voltage transformers in the vicinity of the 

VLF receivers, giving rise to strong impulsive noise which is affected by 

overvoltage protection in the aerial system. The observation of NBEs at Ny 

Ålesund, as well as Sodankylä, indicates that different types of VLF aerial 

system configurations are susceptible to geomagnetically induced NBEs, and 



reduces the chances that NBEs are due to lightning breakthough or electron 

precipitation events. We conclude that GICs are the most-likely source of NBEs. 

 

 Our study leads to the conclusion that it is possible to use rate of occurrence of 

NBEs as an indicator of GIC events, particularly the high frequency component 

of the fluctuations. VLF receiver systems are simple, low cost, portable, and 

easy to install, and as such can be used to provide measurements of GICs in 

remote areas, or on a campaign basis. The technique used here of observing at a 

narrow-band of frequencies allows measurements to be made in built-up areas 

where mains interference is a problem for other experiments, such as 

magnetometers. Further work is planned to compare the co-incident NBEs 

observed at Sodankylä and Ny Ålesund. 
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FIGURES 
 
Figure 1.  The location of subionospheric propagation paths to the AARDDVARK 
receiver sites at Sodankylä and Ny Ålesund. The L=4 contour is shown to indicate the 
high latitude region of substorm activity and potential energetic particle precipitation. 
 
 
Figure 2.  The amplitude of the Hawaii (NPM) transmitter signal received at Sodankylä, 
Finland, on 21 January 2005. 
 
Figure 3.  High time resolution plot of the amplitude and phase of a noise burst event. 
The length of time between the vertical dashed lines is 4.5 s.  
 
Figure 4.  The occurrence frequency of noise bursts on NPM received at Sodankylä 
during 2005. Vertical dashed lines indicate times of increased geomagnetic activity as 
shown in the lower panel depicting the variation of 3-hr Ap.  
 
Figure 5.  The diurnal variation of the occurrence frequency of noise bursts at Sodankylä 
during the first 4 months of 2005.  
 
Figure 6.  The effect of lightning NBEs on the AARDDVARK data during May 2005. 
(top panel) Close lightning breaks through even the strongest transmitter signals, 
producing effects lasting ~1 s. (lower panel) Nearby thunderstorm activity produces 
NBEs for several hours, producing elevated noise levels from 09-14 UT on 27 May 2005. 
 
Figure 7.  Showing the comparison between NBEs observed on NPM, Hawaii with 
FAST events observed on NAA, Maine, and NDK, North Dakota on 21 January 2005. 
 
Figure 8.  The timing of VLF noise bursts at Sodankylä and Ny Ålesund in comparison 
with substorm signatures observed on the Kilpisjärvi riometer, Finland on 13 January 
2005. 
 
Figure 9.  Showing the impact of geomagnetically induced currents in the Scottish power 
grid in Scotland on 15 May 2005. Panel (a) shows the current variations, panel (b) shows 
the short period fluctuations in the same dataset. Panel (c) shows the Sodankylä NBE 
occurrence rate, while panel (d) shows the actual NBEs seen on NPM at Sodankylä. The 
time derivative of the SGO magnetometer data (-dX/dt) is shown in panel (e). The start 
time of a geomagnetic disturbance is indicated by the dot-dashed vertical line.  
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