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Abstract

We investigate spatial variations in the shape of the spectrum of sea
level variability, based on a homogeneously-sampled 12-year gridded
altimeter dataset. We present a method of plotting spectral infor-
mation as color, focusing on periods between 2 and 24 weeks, which
shows that significant spatial variations in the spectral shape exist,
and contain useful dynamical information. Using the Bayesian Infor-
mation Criterion, we determine that, typically, a 5th order autore-
gressive model is needed to capture the structure in the spectrum.
Using this model, we show that statistical errors in fitted local trends
range between less than 1 and more than 5 times what would be cal-
culated assuming “white” noise, and the time needed to detect a 1
mm/yr trend ranges between about 5 years and many decades. For
global-mean sea level, the statistical error reduces to 0.1 mm/yr over
12 years, with only 2 years needed to detect a 1 mm/yr trend. We
find significant regional differences in trend from the global mean. The
patterns of these regional differences are indicative of a sea level trend
dominated by dynamical ocean processes, over this period.
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1 Introduction

Sea level varies on time scales from seconds to millions of years as a result of
a wide variety of physical processes [Harrison, 2002]. The recent interest in
climate change and global sea level has led to a focus on trends in sea level
over time scales of a few years to centuries. The aim of this work has mainly
been to understand the causes and effects of global sea level rise, although
there is now increasing interest in the regional patterns of sea level change.
For example, loss of mass due to melting of ice from a particular region
results in a characteristic pattern of vertical land movement and change in the
gravitational field, which produces a sea level “fingerprint”, and there have
been several attempts to use these fingerprints to infer the size of meltwater
sources responsible for recent sea level rise [Mitrovica et al., 2001; Plag, 2006;
Marcos and Tsimplis, 2007]. Attribution of such patterns to climate change
assumes that they are not being swamped by dynamical variability in the
ocean. Even more fundamentally, it assumes that the fit of a linear trend to
the measured sea level curve is statistically significant.

At the same time, sea level and related variables (bottom pressure and
density) are the crucial quantities being measured in efforts to monitor the
large-scale ocean circulation, for example the flow through Drake Passage
[Woodworth et al., 2006] and the prototype monitoring systems for the North
Atlantic meridional overturning circulation (MOC) [Cunningham et al., 2007;
Bingham and Hughes, 2008; Bingham and Hughes, 2009] . While the primary
aim of such systems is to look for secular or step-like changes in the large-scale
ocean circulation, they are operating within a system which has variability
over a wide range of length and time scales, many of which may be unre-
lated to the slow, basin-scale variability which is the intended target of the
monitoring system. Detection of a meaningful change in the MOC, for exam-
ple, requires that the signal be distinguishable from the background natural
variability.

These are just two examples, but the point is quite generic: when fitting
a curve to any time series, assessment of the statistical error in the fit de-
pends on the spectrum of the time series. For this reason, it is important
to understand the shape of spectra of sea level. Such an understanding can
also be valuable in understanding the physics of the processes which lead to
those spectra.

So, we would like to have a model for the natural background spectrum
of sea level variability—ideally a wavenumber and frequency spectrum. This
is the subject discussed in detail by Wunsch [2009], who focuses on the mea-
surement of ocean transport variability in the North Pacific. Here, we focus
purely on the frequency spectrum of global sea level variability, and in par-
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ticular we address the question of whether there is a canonical spectral shape
which can be used in the assessment of whether fitted trends (or other func-
tions of time) are statistically significant given the background variability. In
doing this, we are in effect treating each time series in isolation, and therefore
not taking advantage of any possible correlations between time series, or of
the fact that, for example, some parts of the spectrum are likely to be due
to signals which are correlated (with or without lags) over large distances
whereas other parts will represent purely local variability. Our purpose is
first to find out over which scales the shape of the spectrum varies, before
worrying about the combination of information in time and space domains
(although we will consider as a special case the globally-averaged sea level
time series). From the nature of the satellite altimeter signal being consid-
ered, we expect that the variability will, in many places, be dominated by the
influence of oceanic mesoscale dynamics, although other processes are also
clearly present. The simplest, and most useful, result would be to find a par-
ticular function of frequency which could be used to represent the spectrum
at any point.

Past work has suggested that there might be such a function. Stammer
[1997], using sea level measurements from the TOPEX/POSEIDON altime-
ter, emphasized the similarity between spectra from different regions of the
ocean, while pointing out some differences in western boundary currents and
in the near-equatorial region, and Zang and Wunsch [2001; ZW hereafter]
built upon this work to suggest a canonical frequency-wavenumber spectrum
which, when scaled by a spatially-varying amplitude factor, was offered as a
first order description of the oceanic spectrum anywhere. On the other hand,
Le Traon [1991] showed from a regional analysis of Geosat data in the North
Atlantic that the energetic Gulf Stream region contained relatively more en-
ergy at high frequencies (periods less than about 80 days) than regions of
the eastern North Atlantic at similar latitudes. We now have much longer
time series of altimetry, and can look into these spectra in more detail.

In seeking to investigate the spatial variability of frequency spectra, we
run into the difficulty that it is impractical to display a spectrum for each
point in the ocean, and area-averaging requires the introduction of precon-
ceived ideas of areas over which the spectrum is assumed to be homogeneous.
We address this by introducing a novel method of displaying spectral infor-
mation in color, exploiting the way the eye is adapted to extracting useful
information from the spectrum of light.

We will show that there are significant spatial variations in the shape
of the spectrum, which cannot be adequately described by one or two pa-
rameters. In much of the tropics, Rossby wave theory gives a useful aid to
understanding the observed spectrum, as suggested by Lin et al. (2008), but
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at higher latitudes this interpretation breaks down and more complex spa-
tial variations are seen. In fact, in order to describe the spectral variation
globally, we find that a fifth order autoregressive model is required (i.e. 6
parameters are needed to describe the spectrum, 5 shape parameters and 1
amplitude). Having fitted such a model to each chosen time series of sea
level anomalies, we can then estimate the time required for a sea level trend
(we assume 1 mm/year as an example of a typical difference from the global
mean) to rise above the statistical background variability.

2 The sea level rainbow

We use the delayed-time, reference, merged sea-level anomaly, gridded prod-
uct from AVISO, which can be downloaded via http://www.aviso.oceanobs.com/
en/data/product-information/duacs/ssaltoduacs-products/index.html. Time
series at each grid point consist of 630 weekly values over the period 5 April
1995 to 25 April 2007, in order to avoid a gap in coverage by the ERS1 satel-
lite before this period, allowing for homogeneous sampling over the period
considered. This dataset is, at all times, derived from a combination of one
altimeter in the TOPEX/POSEIDON orbit and one in the ERS 35-day repeat
orbit. The data are provided on a 1/3 degree Mercator grid covering lati-
tudes between 82◦S and 82◦N, but the optimal interpolation used means that
signals at wavelengths shorter than about 100 km are suppressed (the effec-
tive cutoff wavelength is somewhat latitude dependent, being longer at lower
latitudes). As part of the AVISO processing, the data have been corrected
for tides and a barotropic model has been used to estimate and subtract the
barotropic response to atmospheric pressure and wind stress forcing. This
will reduce the signal mainly at the high frequencies which dominate such
barotropic motions. In high latitude coastal regions, where such variations
are the dominant signal, the model explains about 40–50% of the variance
remaining after application of the traditional Inverted Barometer response
[Carrère and Lyard, 2003], and similar accuracy can be inferred for this com-
ponent of the variability in deeper regions, although a smaller percentage
of variance is explained in deeper regions as a result of other processes be-
coming more important. For each time series, we have simultaneously fitted
and removed annual and semiannual sinusoids and a linear trend, following
which we have used linear interpolation to fill a maximum of 5 gaps of up to
5 weeks each (gaps are mainly due to seasonal sea ice, but also result from
occasional instrumental problems). Time series with more or longer gaps are
discarded. Periodograms have then been calculated from Fourier transforms
of the time series at each grid point. We perform no explicit spectral band
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averaging, as this is implicit in the conversion of spectrum to color.
In order to display the resulting spectra, we exploit the fact that the

canonical spectrum proposed by ZW is, with a rescaling of frequency, close
to the spectrum of white light. The ZW spectrum as a function of frequency
σ is proportional to σ−1/2 at periods longer than 100 days, and proportional
to σ−2 at shorter periods, so at high frequencies it is what is usually referred
to as “red” noise. It is a common misconception that the spectrum of visible
white light is equivalent to a “white” noise spectrum, in which the Power
Spectral Density (PSD) is constant as a function of frequency. In fact, the
visible spectrum is often plotted as a Spectral Power Distribution (SPD)
function, as a function of wavelength (which is inversely proportional to fre-
quency). There is a factor of σ−2 difference between these two representations
so, while the SPD of white light is almost flat across the visible part of the
spectrum, the corresponding PSD is proportional to σ−2. White light is “red”
noise. A spectrum of light which was truly “white” noise would actually ap-
pear to the eye as quite an intense blue. This unfortunate misunderstanding
leads to a problem of nomenclature. To be clear, colors mentioned here will
all be visually-perceived colors unless enclosed in inverted commas, in which
case the color referred to is that of the conventional definition for colored
noise.

Despite this problem, the true relationship between spectrum and color
turns out to be rather useful here. We are used to interpreting small differ-
ences from white light (“red” noise) as colors, so if the sea level spectrum was
exactly “red” noise, a translation into a light spectrum would render it as
a grey scale: low amplitude variability would be black, and high amplitude
white, with greys at intermediate values. With this translation, then, colors
indicate that the shape of the spectrum differs from the ZW shape.

This would not work if we were to map the spectrum of low frequency (say
interannual) sea level variability on to the visible spectrum, as (according to
ZW), this spectrum is much less steep than σ−2, so the resulting colors would
all be towards the blue end of the color range (though still on the “red” side of
“white” noise). Annual and semiannual signals are removed in our time series
analysis, which will produce a dip at the corresponding part of the spectrum,
so to avoid any effect of this removal we chose to map the range of periods
2–24 weeks onto the visible wavelength range of 380–760 nm. This mapping
means that low frequency variability (periods longer than semiannual) is not
represented in the plotted spectrum, as the mapping results in this variability
shifting to the invisible infrared part of the electromagnetic spectrum.

The picture which results from this remapping of the sea level spectrum
is shown in Fig. 1a. There is a lot of information in this figure, so it is
worthwhile to spend some time describing it in detail.
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Figure 1: The spectrum of sea level variability presented as the color and brightness of the
equivalent spectrum of light. The range of periods 2 weeks to 24 weeks is mapped to light
wavelengths 380 to 760 nm (see Appendix A for a detailed description of this mapping). a)
The spectrum based on 12 years of altimeter data. b) Brightness as above, but with color
derived from a simple spectral model in in which power is proportional to frequency to the
power 0 at low frequencies and to the power -4 at high frequencies. The dividing frequency
is 1.4 times the maximum allowed linear first baroclinic Rossby wave frequency, derived
from the Rossby radius taken from the atlas of Chelton et al. [1998]. The scale bars show
colors (at all brightnesses) corresponding to spectra which are gaussian, as a function of
period, with three different widths illustrated by the white curves, and the color of spectra
in which power spectral density (as a function of frequency) is proportional to frequency
raised to different powers.
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First, in order to interpret the plot, note that there is both brightness
and color information here. Brightness is related to the amplitude of sea
level variability over the range of frequencies mapped, while color relates to
the shape of the spectrum. We chose the scaling with the idea that the ZW
spectrum should be close to white or grey, and examples of the actual color
of the ZW spectrum are given by the two greys which represent land and
missing data (mainly due to sea ice). The fact that the ocean region has no
overall blue or red tint confirms that the ZW spectrum is a good first-order
appoximation. Other colors do not have a simple one-to-one relationship with
frequency, just as they do not in light. For example, orange can be sodium
orange light at a particular frequency, or it can be a mixture of red and
yellow light. There is thus no simple general interpretation of a given color,
and it is impossible to provide a scale for this figure which gives quantitative
information about amplitudes, or which covers the possible meanings of all
possible colors. Rather, the figure should be interpreted as a qualitative guide
to variations in amplitude (brightness) and shape (color) of the spectrum,
with some information about dominant periods of variability to be inferred
from the color.

Some more detailed guidance can be obtained by looking at the scale bars
plotted at the bottom. These show the colors (at all different brightnesses)
which would be produced by spectra of various different shapes. The first
three scales show the colors resulting from a Gaussian SPD (i.e. Gaussian
as a function of period, not the PSD as a function of frequency), with var-
ious widths as shown by the curves drawn over the scales, and with peaks
at various periods. The fourth scale shows the colors produced by different
power-law spectra. Thus, as anticipated, a PSD in which power is propor-
tional to σ−2 (“red” noise) appears as approximately white or grey, with
steeper power laws (e.g. σ−3 or σ−4) appearing as a kind of brick-red color,
and more gentle power laws (σ−1 or σ0, which is “white” noise) appearing
as quite a strong blue. This shows that simple power-law noise cannot be
responsible for many of the quite intense colors which appear in the figure,
which must therefore mean that these colors indicate the presence of a peak
in the SPD (though not necessarily in the PSD). More complicated spectra
can produce colors not in any of these scales. For example, a doubly-peaked
SPD, with peaks near both short and long period ends of the range, would
produce a mixture of red and blue colors which may be responsible for some
of the pink and purple regions seen in the figure.

The feature which immediately stands out in Figure 1a is the double
rainbow pattern, in which the color starts as blue at latitudes of a few degrees
north and south, and shifts through the colors of the rainbow to red at
latitudes of about 30◦ north and south. This is visible in all ocean basins,
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although less clearly in the Atlantic where variability is weaker, and is even
quite clear in miniature in the South China Sea. This is the feature which was
noted by Lin et al. [2008], who explained it in terms of first mode baroclinic
Rossby waves. Such waves have a maximum possible frequency σ = βRo/2
where β is the northward gradient of the Coriolis parameter f , and Ro = c1/f
is the first baroclinic Rossby radius (c1 is the speed of first mode baroclinic
gravity waves). Lin et al. [2008] find a close agreement between what they
call the peak in the sea level spectrum and this critical frequency as calculated
from observation-based estimates of the Rossby radius. However, because
they integrate the spectrum over bins which are equally-spaced in period, the
peaks they refer to are peaks in the SPD (plotted as a function of period), not
the PSD (a function of frequency). The PSD may simply display a change
of slope at the reference frequency, rather than a peak.

Lin et al. [2008] explain this rainbow as the accumulation of Rossby wave
energy at the Rossby wave turning latitudes. However, while the linear the-
ory is clearly an important factor and Rossby wave dynamics do help explain
the observations, it is also clear that much of what is seen here is not linear
waves. For example, as Stammer [1997] pointed out, the bright blue stripes
at about ±5◦ in the Pacific, corresponding to a period of about 30 days, are
the signature of Tropical Instability Waves [Legekis, 1977; Qiao and Weis-
berg, 1995]. Further south, the various brightly-colored stripes north of New
Zealand and east of Australia are the signature of eddies produced by insta-
bility (mainly barotropic instability) of zonal jets in the region, producing
periods in the region of 70 days [Qiu and Chen, 2004; Qiu et al., 2009].

To investigate this further, we have plotted the colors which would result
from this theory in Figure 1b. We calculated the shortest-permitted period
for first-mode baroclinic Rossby waves as T = 4π/(βRo), where we take
Ro from the atlas of Chelton et al. [1998]. We then assumed a PSD more
extreme than the ZW spectrum, with power proportional to σ0 at periods
longer than T , and proportional to σ−4 at shorter periods (plotted as an
SPD, this produces a symmetrically-peaked spectrum). The amplitude of
the spectrum was chosen so that the total power at periods shorter than 24
weeks was the same as that in the observed sea level signal. As a result, Fig.
1a shows colors given by the Rossby wave theory, but brightness from the
observations. In fact, we found that the predicted colors tended to be too red
using the pure theory, so the figure actually uses a reference period of T/1.4
rather than T . This is, to some degree, subjective, and different factors
appear to work better in different regions, but the best value to choose is
clearly somewhat smaller than T , but larger than T/1.5.

Equatorward of 30◦ north and south, there is broadly a good match be-
tween the figures, showing that Rossby wave theory is a useful first order
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description of what is seen. However, the reduction of the chosen shortest-
permitted period by a factor of 1.4, which is required to match the observa-
tions, means that the observed peak in the SPD is at periods shorter than
any allowed by the linear theory. This is consistent with the observation that
many of the regions of large variability are associated with instabilities. Both
barotropic and baroclinic instability processes, on a beta plane, are intimately
associated with Rossby wave dynamics, so it makes sense that Rossby waves
should play a role, but that nonlinear processes might permit the appearance
of energy at periods prohibited by the linear dispersion relation. The Rossby
wave model also leads to a rather smooth gradation of color in comparison
with the observations. This is also consistent with the idea that localized
instability processes are important over certain regions. However, some level
of smoothness is inevitable, since the Rossby radius information is only pro-
vided at a resolution of 1 degree. Overall, we have the impression (but can
be no more definite than that) that the required adjustment factor is larger
in the most energetic regions, and smaller in the quieter regions, consistent
with the quiet regions being closer to linear wave dynamics. Our choise of
1.4 for the adjustment factor is weighted towards being correct for the most
energetic regions, as these stand out most clearly (as they are brighter) in
the plot.

Equally clearly, the Rossby wave interpretation breaks down at higher
latitudes. This is understandable, as linear Rossby wave speeds drop be-
low 1 cm s−1 poleward of about 40◦[Chelton and Schlax, 1996]; , making
advective processes much more dominant at these latitudes and resulting in
much stronger interactions with bottom topography, especially in the South-
ern Ocean (e.g. Hughes et al., [1998]). A similar argument was made by Le
Traon [1991], who suggested that the increased high frequency energy in the
Gulf Stream region, which shows as the blue and white colors in our plot,
is the result of energetic mesoscale turbulence, whereas the low-frequency
dominated eastern North Atlantic (brown-orange-red in our plot) is closer
to a linear wave regime. More recently, Tulloch et al. [2009] also came to
the conclusion that linear Rossby wave theory ceases to be a useful descrip-
tion of the observations at latitudes polewards of about 30◦, based on a fit
of observations to Rossby wave dispersion relations and a scaling comparing
propagation speed with eddy velocities.

A particularly striking example of topographic influence occurs south of
the Antarctic Circumpolar Current at about 150◦W, where two large, dark
blocks of reddish and bluish color occur on the northern and southern flanks
respectively of the Pacific Antarctic Rise, the divide between red and blue
occuring exactly at the ridge crest. This can be seen more clearly in Fig-
ure 2, which shows a section of Figure 1a replotted at a brighter level, with

9



Figure 2: Enlarged section of Figure 1a, shown six times brighter and with topographic
contours superimposed. Contours are at depths of 1, 3 and 5 km. The 3 km contour near
to 150◦W, 60◦S represents the crest of the Pacific Antarctic Rise.

topographic contours overlaid for reference. Another high-latitude feature
which stands out is the pair of milky bluish clouds which occur in the east-
ern North and South Pacific. These are large-scale barotropic modes driven
by local wind stress [Fu, 2001], the bluish color being representative of the
greater high-frequency content in wind stress than is found in internally-
driven ocean processes at these latitudes; a third such region southwest of
Australia is masked by the high eddy variability found there. In principle,
these modes should be removed from the altimetry by the barotropic model
correction applied by AVISO, but in practice this will only reduce the vari-
ability, not completely remove it.

A similar signal is seen on the continental shelf regions, especially around
the UK and east of Argentina, but also on the New Zealand and Australian
shelves, and the Canadian Atlantic shelf region. Variability in these regions
has a characteristic blue color, reflecting the dominance of atmospheric forc-
ing. A similar spectral plot of atmospheric pressure fluctuations, taken as a
proxy for the vector wind stress (not shown) is uniformly blue with a latitude-
dependent brightness. It is notable that the blue of the shelf seas and the
(usually) redder color of the deep ocean are in many places separated by a
dark line of low variability. This dark line is particularly clear around most
of the Atlantic, but also around Australia, the South China Sea, and high
latitude Pacific regions. It invariably occurs near the steepest part of the
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continental slope, and represents a decoupling of the deep ocean and shelf
sea variability at these frequencies.

Concern has been expressed that this “decoupling” may be an artifact of
the altimeter data gridding process, especially as it often occurs close to land,
and the altimeters are known to be less reliable (or even produce no data)
close to land. In order to test this in more detail, we have taken 10 years
of TOPEX/POSEIDON along-track data (364 cycles of 9.916 days each,
starting in October 1992) from the AVISO along-track corrected sea level
anomaly dataset, downloaded from the same website as the gridded data. Ten
short sections of track have been identified which cross the continental slope
in the Grand Banks and Argentine Shelf regions (Figure 3). Each section
is approximately 480 km long (75 repeat-sampled points) and is centered on
the minimum variability in corrected sea level at periods shorter than 24
weeks (17 cycles). The right-hand panel of Figure 3 shows how the standard
deviation of this high frequency sea level varies along each track section,
together with the ocean depth (dashed lines). The minimum variability (at
the centre of each section) always occurs close to the continental shelf edge.

To see how the shape of the spectrum varies to either side of this mini-
mum, we divided each track into five sections of equal length: sections one
and two on the shelf, section three centred on the variability minimum, and
sections four and five in deeper water. Spectra were then calculated as av-
erages over all five tracks in each region, for each section (one to five) sepa-
rately. The resulting spectra are shown in the left hand panels of Figure 3,
with dotted lines for the two shelf section, a solid line for the central (mini-
mum variability) spectrum, and dashed lines for the two deep ocean sections.
In both regions it is clear that, in comparison with the central section, vari-
ability increases preferentially at high frequencies on the shelf, and at low
frequencies in deeper water, so the along-track analysis confirms the shift
in spectral slope from steep (corresponding to red or white colors in Figure
1a) in deep water, through a minimum of variability near the shelf edge, to
shallow (blue in Figure 1a) on the shelf.

There are many other features which could be investigated in more detail,
but we will point out just two more. Off the Pacific coast of Central America
there are green-blue streaks. As noted by Chelton et al. [2004], these are
regions of strong episodic wind stress and wind stress curl resulting from
winds blowing from the Gulf of Mexico and Caribbean Sea, being steered
through the mountains, and presumably driving unusual ocean variability,
although still close to the appropriate Rossby wave cut-off frequency. Finally,
along the Indian Ocean coast of southern Africa, and extending out to the
south of Africa, there is a green-blue region, suggesting a dominant period
of about 50–70 days. This pathway is consistent with the suggestion of
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Figure 3: Along-track analysis of TOPEX/POSEIDON altimeter data in the Grand Banks
and Argentine Shelf regions. Panels on the left show the five sections of track from each
region, and sea level frequency spectra as an average across all five sections, but divided
into five equal-length regions along the length of each track. The solid line is averaged
along the middle sections of the five tracks (where sea level variability is minimum), the
two dashed lines are spectra from the deep-ocean side of this minimum, and the two dotted
lines from the shelf sea side. The right-hand panel shows topography (dashed) along each
track section (tracks shown, top to bottom, in order from northeast to southwest), and
root-mean-square sea level variability (solid) at periods shorter than 24 weeks. The latter
has been normalized so that the largest value is the same for each section.
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Schouten et al. [2002] that the shedding of eddies at the Agulhas retroflection
is catalysed by the propagation of eddies down the African coast, producing
4–5 eddies per year (which would be a slightly longer period of 73–91 days).

It can be seen that this plot synthesizes a lot of information about ocean
dynamics, and initial tests (not shown) suggest that it would make a good
model diagnostic, making it possible to quickly recognize processes and fea-
tures which are being modeled well or badly. For our present purposes, how-
ever, the main point is that the color, and hence the shape of the spectrum,
varies significantly and in some cases over rather short distances. Latitude
(or Rossby wave cut-off frequency) is a good predictor of color in many of the
low-latitude deep-ocean regions, but outside these regions, and where par-
ticularly strong variability is encountered, there is no obvious way to choose
regions over which the frequency spectrum will be homogeneous. If we are
to build a model of the sea level spectrum, it must have quite a large degree
of flexibility to be able to cope with these variations.

3 Modeling the spectra

The one-parameter model (amplitude) of ZW certainly cannot fit the varia-
tion of color of the spectrum, because such a model can only vary in bright-
ness. What we need is a multiparameter model, but it is not clear a priori
how many parameters are optimal. A way to address this problem is to
use the Bayesian Information Criterion (BIC) of Schwarz [1978], which (un-
der certain, rather weak assumptions required to find an analytical solution)
gives a formula which balances the quality of fit against the number of fitted
parameters in a manner which gives a Bayesian-optimal solution. The BIC
differs from the related Akaike Information Criterion (AIC) [Akaike, 1974] in
that the BIC penalizes additional parameters more strongly as the amount of
available data increases, although the two criteria approach the problem of
model selection from quite different viewpoints. A useful discussion of these
and related criteria can be found in Liddle [2007], who finds the BIC to be
more reliable. We actually tried both AIC and BIC and found that the BIC
appeared to produce more stable estimates, with less spatial variability than
the AIC.

To vary the number of model parameters we use the family of autore-
gressive (AR) spectral models which are capable of describing ever more
complex spectra as the number of parameters increases. For example, the
order 1 function AR(1) is a two-parameter model with one shape parameter
and an amplitude, AR(2) has two shape parameters and an amplitude, etc.
One property of these models is that all tend towards a “white” spectrum
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Figure 4: The order of the autoregressive model which is recommended by the Bayesian
Information Criterion at each point. The inset is a cumulative distribution function (as
percentage of grid points) for the recommended order.

at the low frequency extreme, which is a sensible null hypothesis for parts of
the spectrum which are unconstrained by the data.

For each time series, we apply the BIC to estimate the optimal order of
AR model to fit. AR models are fitted to the time series using the least-
squares covariance method, which minimises the forward prediction error
[Kay, 1988; Stoica and Moses, 1997]. Figure 4 shows the order predicted by
this procedure as a map and as a cumulative distribution function. It is clear
from this that AR(1) and AR(2) are rarely sufficient (less than 7% of cases).
About 81% of points recommend AR(3), AR(4) or AR(5), so AR(5) or less
is sufficient for 88% of points. The spatial distribution of the optimal order
shows interesting structure, particularly in the tropics. We might speculate
that some of the tropical regions requiring higher order fits represent regions
in which multiple baroclinic modes play a significant role, but that remains
a question for future investigation.

Based on this distribution, we choose to fit the time series everywhere with
an AR(5) model. We do this rather than fit the optimal number of parameters
at each point, in order to avoid sharp jumps in color at boundaries between
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Figure 5: As for Figure 1a, but showing the colors resulting from a) AR(1) and b) AR(5)
fits to the time series.
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parameter numbers. This means that some spectra will be over-fitted, but
those will tend to be the smoother spectra for which over-fitting means that
the AR parameters themselves will be poorly constrained, while doing little
harm to the shape of the spectral model. We illustrate the colors which result
from both AR(1) and AR(5) fits in Figure 5.

It is clear that most of the color variation has been well captured by the
AR(5) fit. Some of the reds near to±30◦ are less intense than the raw spectral
plot, but most features are retained. There are suggestions of a decrease in
statistical noise in the colors, for example in the greater organization of colors
in the region to the west and northwest of Hawaii, and in the more uniform
blue-white color of the most energetic regions, although it is also possible
that some of these “noisy” features from the raw colors are real, and are
underfitted by the AR(5) model.

Figure 5a shows the spectra which result from an AR(1) fit to the time
series. This produces practically no color over most of the ocean, balancing
out the steeper and shallower parts of the spectrum to produce something
close to σ−2 behaviour, and showing that this 2-parameter model actually
produces colors similar to the 1-parameter ZW mode. An exception occurs
in the regions where very high frequencies are most important, where some
blue regions appear. Other AR models of order 2 to 4 produce more colorful
plots (not shown), but it is not until AR(5) is used that the full rainbow
effect is convincingly reproduced.

In order to illustrate the amount of structure in the actual and fitted spec-
tra, we have selected 10 regions (labelled boxes in Figure 5b), over which the
color suggests that it is meaningful to take a spatial average of the spectrum.
Figure 6 shows the spectra averaged over these regions, and the correspond-
ing average AR(5) fitted spectrum. For reference, the boundary between
shaded and unshaded regions in the figure represents the ZW spectrum at
arbitrary (constant) amplitude. The quality of fit is generally good, espe-
cially in the highest energy regions 6, 7 and 8. The AR(5) fit correctly
captures the shoulder in the spectra at periods shorter than 1 year, which is
responsible for much of the color seen in Figure 1, although in some cases
the raw spectra show a sharp local peak at that shoulder which the AR(5)
model cannot capture. The model also captures fairly well the second, long
period plateau and rise in boxes 1 and 2, which is a measure of the strong
interannual variability (including El Niño) in the tropical Pacific. The case
where the spectral structure is least well-fitted is box 10 on the Argentine
Shelf, which is a region where the BIC suggests almost half the points require
AR orders of 7–9.

The shapes of the spectra are interesting. In most cases there is a clear
shoulder, with the spectrum steeper than σ−2 at higher frequencies (in boxes
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Figure 6: Power spectral densities as a function of frequency, for spectra averaged over
the 10 boxes shown in Figure 5b. Dotted lines show the corresponding AR(5) fit to the
data. The shading covers the region above the line represented by the Zang and Wunsch
[2001] spectrum, at an arbitrary chosen amplitude.

3 and 4 it comes close to σ−5 while the Agulhas box gives σ−3), and flatter
than σ−1/2 at lower frequencies. This behaviour was behind our choice of
power laws used in the Rossby wave model illustrated in Figure 1b. In the
Gulf Stream and the East Pacific (boxes 8 and 5) there is more of a smooth
curve than a sharp shoulder. The steep slope at high frequencies may be
partly a result of the removal of some high-frequency barotropic variability,
and partly a result of filtering by the mapping procedure. This is particularly
likely in boxes 5, 9 and 10, each of which are blue regions in Figure 1a. The
shoulder in these regions occurs at frequencies higher than 10 cycles per year,
as it does in box 1. Elsewhere, however, the steep spectral slope extends over
too wide a frequency range to be entirely due to these effects.

Having settled on an AR(5) fit to the data, we now have model spectra
at each point, which can be used to calculate meaningful statistical errors on
sea level trends.

4 Implications of spectral shape for trend es-

timates

Least-squares fitting of a linear trend to a time series with no true trend, but
with a spectrum of variability, will not usually produce zero trend. Given
a model of the spectrum, it becomes possible to determine the size of the
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false trend estimate which can be expected to result from this estimation
procedure. This is an estimate of the statistical error in the fitted trend.

It is worth noting at this point a few limitations on what this estimate will
tell us. First, it is purely statistical error, with no account taken of systematic
error due to instrument drift, which can only be constrained by comparison
with tide gauges to an estimated level of 0.4 mm/yr globally [Leuliette et
al., 2004]. Second, even if a trend is shown to be significantly above the
statistical error, that is no proof that it is a true secular trend. It simply
shows that it is meaningful to interpret the trend as a significant component
of the time series over the period of observations. There is nothing to say the
trend will not reverse given longer time series. Third, conclusions concerning
significance of trends determined from longer time series are contingent on the
accuracy of the spectral model at longer periods than those constrained by the
observations. The AR sequence of models extrapolates the spectrum at long
periods using a “white” noise model. Often, this will tend to underestimate
statistical errors, as most geophysical time series tend to be somewhat redder
than “white” noise. However, if the longest measured periods correspond to
a peak in the spectrum (as might be expected where El Niño is the dominant
signal, since it typically shows peak variability at around 3–7 years), the
spectral model will overestimate errors in longer time series.

The statistical error in trends will depend on the amplitude of variability,
and also on the shape of the spectrum. If a single spectral shape were an
adequate description of the ocean spectrum everywhere, then only amplitude
would matter, and statistical errors would be a constant multiple of the errors
calculated assuming the spectrum was “white” (i.e. that each point in the
time series is independent). In Figure 7a, we take the statistical error for a
trend fitted to the 12-year time series, as estimated from the AR(5) model at
each point, and divide it by the error estimated using the equivalent “white”
noise model. This shows the importance of spatial variations in spectrum
shape for the accurate estimation of trend errors. The ratio varies from less
than 1 in a few regions, to more than 5 in the tropical Pacific. Thus, using
even the best compromise for the spectral shape will result in error estimates
which are wrong by more than a factor of 2. Accounting for spectral shape
variation is important.

It is interesting that the tracks of the TOPEX/POSEIDON and Jason
altimeters are clearly visible in Figure 7a as regions which have a lower error
ratio than the surrounding ocean, particularly clearly in the South Pacific
where they appear as green lines surrounding yellow diamonds. In our expe-
rience, this is unusual for diagnostics based on this mapped product, which
rarely show any evidence of “trackiness”. It demonstrates that, even after
the gridding procedure, there is more information, and therefore a tighter
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Figure 7: a) The ratio of statistical error in sea level trend over 12 years, estimated from
the AR(5) fit to the data, to the equivalent error assuming a white noise model. b) The
length of sea level time series which would be necessary for the statistical error in trend
to reduce to 1 mm/yr, based on the AR(5) fit to the time series at each point.
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constraint on trend estimates, along the more frequently sampled TOPEX
tracks (the satellite return period is just under 10 days along these tracks,
compared with 35 days along the ERS/Envisat tracks).

In Figure 7b we show the length of time series required for the statistical
error on trend to drop below 1 mm/yr, a typical accuracy requirement for
distinguishing causes of regional patterns in sea level trends. This drops
below 12 years only in the quietest regions of the ocean, including much of the
Atlantic continental slope. Elsewhere, the estimate relies on extrapolation
of the spectrum and is therefore more speculative. In many regions the time
required is several decades (reaching a maximum of 101 years at a point in the
Kuroshio extension). Around the southern North Sea and English Channel,
estimates vary between about 15 and 25 years, consistent with the 20–25
years implied by Figure 3 of Shennan and Woodworth [1992], who performed
an empirical analysis of the scatter in observed trends from tide gauges in
this region. As we note above, the time may well be an overestimate in the
El Niño region because the long period end of the spectrum may well be a
peak (the counterintuitive result that this region appears blue in Figure 1a
is because interannual periods are not reflected in this plot: they are not
mapped to visible colors but to the infrared). The results are also broadly
consistent with Douglas [1991], who recommended the use of tide gauge time
series at least 50 years long for the estimation of meaningful global trends,
and estimated a standard error of 0.1 mm/yr for the mean rate calculated
from an average of 21 tide gauge records with minimum length 60 years. We
clearly cannot assess this in detail from our short time series, but the number
appears to be of about the right size.

With a model for the spectrum at each grid point, we are now in a
position to calculate whether the observed trend at each point is statistically
significant. In Figure 8, we plot the observed trend (based on a joint least-
squares fit of annual and semiannual cycles plus linear trend) over the 12-
year analysis period, and the trend minus its (quasi-) global average (area
weighted), which is 3.0 mm/yr. Superimposed on these plots are contours
representing the lines where the observed trend is equal to plus or minus
two standard deviations of the estimated statistical error in trend. In other
words, values redder than the black contour are in the top 2.3% of the trends
which would be expected by chance from the observed spectrum with no true
trend, and values bluer than the red contour are in the bottom 2.3%. We
will use this as our definition of a significant trend.

We see from Figure 8a, that significant positive trends are common, but
significant negative trends are rare, the main exceptions being in the far
northern Pacific, and south of South Africa. Around much of the North
Atlantic coast the trend over this period is not significant. Put another way,
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Figure 8: a) The trend in sea level over the chosen 12-year period starting in April 1995,
calculated by joint least-squares fitting of a linear trend plus annual and semiannual cycles.
b) The sea level trend minus its global average. Each panel has contours superimposed
where the trend is twice (black) or minus twice (red) the standard error in trend estimated
from the AR(5) fit to the time series at each point.
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Figure 8b shows that the difference of the trend from the global average is
significantly negative around the north Atlantic coast, as well as a number
of other regions.

It is interesting to compare Figure 8a with the tropical Pacific and Indian
Ocean trends derived from altimetry and tide gauges by Church et al. [2006].
The latter were calculated for a different period: 1993–2001, and give a
completely different result, the main feature of which is a large sea level
rise (faster than 15 mm/yr) in the vicinity of Indonesia, and a fall along the
equator east of the date line. The fact that the pattern is completely different
in Figure 8a is consistent with the fact that none of the negative trends in this
region are identified as being statistically significant, and that the regional
difference pattern in Figure 8b is statistically significant over a rather small
part of the tropics. These regions are subject to large interannual variability
associated with El Niño and the Indian Ocean dipole, and the trends over
less than a decade are unlikely to be representative of the long term.

The patterns in Figure 8b, which show the regional variations in trends, do
not look like those which would be expected from sea level fingerprint analysis
to be associated with melting ice. For example, melting of Greenland ice
would produce a pattern of sea level rise which is negative over a region near
to Greenland, stretching as far south as Nova Scotia and Ireland [Mitrovica
et al., 2001], and positive further south. The observed trend, while negative
close to Greenland, remains negative close to the coast out about 20◦N, and
becomes positive far too quickly offshore. It seems clear that this signal is
better interpreted as an ocean dynamical process, for which the difference
between shallow and deep water is a much more natural boundary. Similarly,
the large, negative trend in the far northern Pacific is not a good spatial
match to the fingerprint of Alaskan glacier melt, and is far too large to
be attributed to this source. A case could be made for decreasing sea level
around Antarctica, with an increase elsewhere, but this is far from convincing.

Equally the North Atlantic pattern is not very suggestive of the pattern
associated with changes to the Meridional Overturning Circulation. The
pattern identified by Häkkinen [2002] in deep water on the western side of
the basin is not prominent, and while the (relative) decrease in sea level on
the continental shelf is consistent with what Bingham and Hughes [2009]
would predict for a weak slowing of the overturning, it seems as large on
the eastern shelf as on the western shelf, counter to their expectations for
such a mode. Although the patterns appear to be dynamical, they remain
consistent with the conclusion of Wunsch and Heimbach [2006] that there
are small fluctuations rather than any indication of a wholesale change in
the overturning.
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Figure 9: The time series and spectrum of the global-average sea level. The first 11 points
in the time series, marked with crosses, are from a period during which there is a known
error in the altimeter boresight pointing. The part of the time series used in this analysis,
and in the calculation of the spectrum, is marked by a thicker line. The spectrum is shown
as in Figure 3, except that there is a factor of 1000 difference in the ordinate amplitude
and shading.

5 Spatial average sea level

We have, in this analysis, been considering the time series independently of
each other. There is no simple way of taking the information thus gener-
ated to assess whether regional averages of sea level trends are statistically
significant, as this depends also on the spatial covariances of the time se-
ries. Instead, a time series of the chosen regional average must be considered
(with the region chosen on objective grounds, without reference to the ob-
served patterns), and that time series can then be subjected to the same
analysis as for any other single time series. An obvious example is the time
series of global-average sea level (actually averaged over the region for which
the time series is sufficiently complete as defined in Section 2, and with area-
weighting of each grid point). We show this time series (with annual and
semiannual cycles removed), and the spectrum of the detrended time series,
in Figure 9. The thick line in the left hand panel is the part of the time series
used in this study. The first eleven points, marked with crosses, are from an
initial period of the TOPEX/POSEIDON altimeter during which the altime-
ter boresight pointing error was anomalously large [Fu et al., 1994], and are
clearly anomalous. The spectrum has been plotted on a scale three orders of
magnitude smaller than that used in Figure 6, reflecting the fact that vari-
ability about the trend is much smaller than at a typical single point in the
ocean.
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For the analysis period, the standard deviation of the global sea level time
series minus fitted trend is 2.50 mm. This small variability is the result of
two processes. First, there is simple statistical noise reduction. This would
happen most effectively if each time series was independent of every other one,
as the average of a large number of independent time series tends toward zero.
The second process is associated with spatial covariance. Change in global-
average sea level requires a change in the volume of the ocean, whereas the
variation at each grid point can be much greater as a result of redistribution
of water with no net volume change. If the time series were all independent
(except for a spatially-constant trend), then noise reduction would best be
achieved by averaging the time series weighted inversely by the standard
“error” represented by the noise. If we do such an average, then we obtain a
time series with standard deviation (after detrending) of 3.83 mm assuming
“white” noise, or 3.74 mm using our spectral estimate of the trend error at
each point. From this it is clear the global average is reducing variability
by more than just statistical averaging of noise, it is genuinely reflecting the
fact that much of the variability is due to redistribution of volume.

The BIC, when applied to this spectrum, recommends the use of an AR(5)
model of the spectrum. With such a model, we find that the time to 1 mm/yr
accuracy (one standard deviation) is only 107 weeks. Simultaneous fitting of
a trend plus AR(5) model to the time series results in a trend of 3.2 mm/yr
with a standard error of 0.1 mm/yr. This statistical error estimate is 3.5 times
the error estimate which would result assuming “white” noise, but remains
significantly smaller than the true error, estimated from systematic effects
[Leuliette et al., 2004] to be about 0.4 mm/yr. Both trend and statistical
error are consistent with that reported by Cazenave et al. [2008] for the
15-year period from the beginning of 1993 (3.1±0.1 mm/yr). It is also worth
noting that this is the trend of the raw time series, without any correction
for the effect of glacial isostatic adjustment on the volume of the ocean (the
changing shape of the ocean basins is such that, if the sea surface did not
move, the volume of water would be increasing at a rate equivalent to about
0.3 mm/yr of sea level rise [Peltier, 2001]).

6 Summary and conclusions

We have investigated the shape of the spectrum of sea level variability based
on a homogeneous subset of 12 years of the AVISO gridded altimeter dataset.
We find that, while the spectrum proposed by ZW is a reasonable first order
description of the average spectral shape, there are significant spatial vari-
ations in shape. These variations mean that errors in trend estimates are
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not simply related to the variance of detrended sea level time series, so the
variation in spectral shape must be explicitly accounted for when estimating
trends (or fits to any other chosen function of time).

Spectra typically show very steep power laws at high frequencies (a few
weeks to, usually, a few months), perhaps as steep as power proportional to
frequency to the power -5 in places. There is often a shoulder in the spectrum,
sometimes a peak and sometimes a more gradual curvature, before it settles
to a gentler power law at lower frequencies. In some places, the spectrum
then steepens again to an interannual peak. There are spatial variations
in the amount of structure in the spectrum, as well as in the positions of
the break points and steepness of power laws, and we find that a fifth-order
autoregressive model is necessary to capture the spectral structure over much
of the ocean.

A good visual representation of spatial variations in spectral shape and
amplitude can be presented (Figure 1) by exploiting the way the eye repre-
sents spectral information as color, although only at relatively high frequen-
cies which provide sufficient degrees of freedom. We limit this representation
to periods shorter than 24 weeks for this reason. This shows a rainbow effect
over latitudes equatorward of about 30◦. While this is consistent with the
significance of the baroclinic Rossby wave cut-off frequency, as suggested by
Lin et al. [2008], we argue that many of the energetic features giving rise
to this rainbow have already been identified as instability processes, and are
therefore nonlinear effects, albeit with Rossby wave dynamics as an impor-
tant component.

The visualization also emphasizes the complexity of spectra at higher
latitudes, and the difference between deep ocean and shelf seas. Shelf seas
typically have a bluer spectrum, indicative of the dominance of atmospheric
forcing, and there is often a minimum of variance separating the different col-
ors of deep ocean and shelf seas, showing that deep ocean sea level variations
are decoupled from coastal variations at these relatively high frequencies.

Trends in sea level over the altimetry period show significant spatial varia-
tions, which appear from their patterns to be of dynamical origin. Statistical
significance of these patterns means that it is a meaningful exercise to use
ocean models and observations to determine the physical cause of these vari-
ations.

Appendix: Converting spectra to colors

This Appendix summarizes how to go from a spectrum to a color displayed on
a monitor. The information here was mostly gleaned from Charles Poynton’s
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Color FAQ and Gamma FAQ documents hosted at http://www.poynton.com.
The first stage is to determine tristimulus values X, Y , and Z. These

can be considered to be the three numbers which completely specify a color
and its brightness. Each number represents a weighted integral of the light
spectrum, with Y in particular corresponding to the perception of brightness
known as luminance. The procedure for calculating these values will be
described at the end. For now, assume you have X, Y , and Z, and want to
work out how to display the corresponding color on a monitor, by sending it
three bytes corresponding to r, g and b values.

This is an inverse problem. You know the color you wish to achieve, and
you know (in principle) the colors of the three (red, green, blue) phosphors
used by the display. The question is to find the brightnesses of each of
these (more precisely, the number to send to the software to produce the
appropriate brightness) you need in order to produce the correct color. To
work this out, it is useful to work with an intermediate set of numbers R, G,
B which are linear functions of X, Y , Z. These are conventionally specified
such that R = G = B = 1 corresponds to white light at full brightness,
according to the monitor’s chosen definition of white (this may actually be
quite a bluish color). We now seek the matrix A such that X

Y
Z

 = A ·

 R
G
B

 . (1)

Since A consists of 9 numbers, we need 9 independent pieces of information
to determine it. However, the information (the colors of the three phosphors)
needed to work out X, Y , Z from R, G and B is conventionally given in a
slightly strange form. The color of each phosphor is specified in terms of its
chromaticity x, y, z = 1−x−y where x = X/(X+Y +Z), y = Y/(X+Y +Z),
z = Z/(X + Y + Z), which tell you about the color without luminance
information (only x and y may be given as z can be derived from them), and
relative weights for the phosphors are specified by the chromaticity chosen
to represent white. So we have chromaticities xr, yr, zr for red, xg, yg, zg for
green, xb, yb, zb for blue, and xw, yw, zw for white, giving eight independent
numbers (because z = 1 − x − y). The final piece of information is the fact
that R = G = B = 1 gives white light with Y = 1. This is sufficient, after
some manipulation, to specify A, which can then be inverted to give the
conversion from XY Z to RGB: R

G
B

 = A−1 ·

 X
Y
Z

 . (2)
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As an example (as used in the calculations in this paper), Poynton rec-
ommends the use of a standard he calls Rec. 709, for which

xr = 0.640 xg = 0.300 xb = 0.150 xw = 0.3127
yr = 0.330 yg = 0.600 yb = 0.060 yw = 0.3290
zr = 0.030 zg = 0.100 zb = 0.790 zw = 0.3582,

(3)

which leads to

A =

 3.2409699 −1.5373832 −0.49861079
−0.96924375 1.8759676 0.041555082
0.055630032 −0.20397685 1.0569714

 . (4)

and

A−1 =

 0.41239081 0.35758433 0.18048081
0.21263903 0.71516866 0.072192319
0.019330821 0.11919473 0.95053222

 . (5)

Note: this is our calculation, which differs from Poynton’s in the 5th sig-
nificant figure, perhaps because the white chromaticities given in (A3) are
truncated at 4 significant figures.

Inserting XY Z into (A2) gives us the RGB values, but there is a potential
problem: what if one or more values is either negative or greater than 1? We
will consider how to fix negative values first, and then values greater than 1.

It may seem surprising that negative values can arise. The reason for this
is that no three colors are sufficient to produce all possible colors. While
the XY Z values derived from any power spectrum must be positive, and
the transform from RGB to XY Z is bound to result in positive values, that
is not the case for the inverse transform. Physically, what is meant by a
negative value for R (say) is that the target color cannot be matched using
the chosen set of three colors, but if some red was added to the target color
then a match could be found. The range of possible colors for a given set of
red, green and blue chromaticities is called the gamut, so negative values are
referred to as an “out of gamut” error.

So, we have a color which cannot be displayed. What can we do about
it? Our chosen option is to do as little damage as possible to the color and
brightness, but accept a reduction in saturation of the color. This is achieved
by 1) adding just enough white (equal amounts of R, G and B) to remove the
negative value, and then 2) rescaling the luminance back to its original value
by applying the same factor to R, G and B. This is achieved by calculating
δ = −min (R,G,B, 0). If δ > 0 then calculate fixed values R1, G1 and B1

from

(R1, G1, B1) = (R + δ,G + δ, B + δ)
Y

Y + δ
. (6)
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Now we have to deal with large values. These could have been avoided by
scaling everything at the beginning, but that is often not what is wanted as
it can result in pictures which are dark except for very small regions. Given
that we are going to allow large values to occur, how should we rescale them
for display?

There are various options, depending on the application. In our pictures,
where preserving color is more important than brightness, our preferred op-
tion is to rescale R, G and B by dividing by the largest of the three, if the
largest is greater than 1. This means that brightness can be compromised,
but leaves meaningful colors at all points (meaning that white cannot occur
as a result of over-saturation of the brightness).

So far we have been working in linear RGB. That means that images
can be added by adding the RGB components (before applying out of gamut
corrections and limiting the maximum), and the correct colors will result.
However, for reasons of efficiency, it is usual for the monitor to have a non-
linear response to input numbers, with brightness being proportional to input
number raised to some power γ (but with a linear tail added at low values).
This means that the inverse function must be applied to RGB to give the
nonlinear R′G′B′ which must be presented to the monitor. While the actual
response usually has a γ of about 2.5, it is usual to extend the dynamic
range slightly by using a somewhat smaller γ for the inverse transform, the
standard value being 20/9 = 2.22̇, or 1/γ = 0.45.

The inverse transform takes the form

R′ = hR R ≥ Rc

R′ = fR1/γ + g R ≤ Rc, (7)

where the coefficients are chosen so that R′ = 1 where R = 1 and at the
matching value R = Rc = 0.018, the curve of R′ against R is continuous and
has a continuous first derivative. This results in

h = 4.506813168

g = −0.09914989

f = 1.09914989. (8)

Once this transform has been applied to give R′G′B′ each in the range 0
to 1, these can be linearly rescaled and converted into byte variables in the
range 0 to 255 to give the usual rgb values used in 24-bit color representation.
This is the final product, to be sent to the display.

Finally, we return to the issue of how to determine the tristimulus values
X, Y and Z. These are determined from the Spectral Power Distribution
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Figure 10: The CIE 1931 color matching functions x, y and z.

(SPD) function I(λ), which describes the power emitted per unit area of the
object (illuminant) per nanometre of wavelength, as a function of wavelength
(units W m−2 nm−1). This is convolved with the CIE 1931 color matching
functions [CIE, 1971] x, y, z (also functions of wavelength) to give XY Z
values, thus

X =

∫ ∞

0

I(λ)x(λ) dλ, (9)

with analogous expressions for Y and Z. The color matching functions are
tabulated at 5 nm intervals, and are shown in Figure 10. A spectrum in
which I is independent of wavelength gives a color quite close to white, and
results in equal values for X, Y and Z.

The input to this convolution is the SPD I(λ) rather than the Power
Spectral Density (PSD) S(σ). The two can be related by noting that the
power P between two wavelengths λ1 and λ2 is given by

P =

∫ λ2

λ1

I(λ) dλ, =

∫ σ1

σ2

S(σ) dσ, (10)

where, for light, σ = c/λ, so that σ1 = c/λ1 and σ2 = c/λ2. Noting that
dλ = −c dσ/σ2, this allows us to identify that

I = S
σ2

c
. (11)

When the spectrum is not light, but some other quantity (such as sea-
level variability), the amplitude becomes rather arbitrary, and the speed of
light in (A11) is clearly no longer relevant. We use a periodogram PSD
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estimate (normalized to be in units of m2/Hz) multiplied by σ2 (frequency in
Hz) to obtain the equivalent of I, and then linearly rescale the chosen range
of periods onto the 380–760 nm range of the CIE color matching functions,
before proceeding as for a light spectrum. The resulting values of XY Z are
then normalized for our plots, dividing by a factor of 1.6 × 106 (the factor
is six times smaller for Figure 2). We also brighten the darker regions by
dividing each of X, Y , Z by Y 0.2 (equivalent to raising luminance Y to the
power 0.8 while keeping chromaticity constant), as this makes it possible
to display a wider range of brightness. We have investigated the impact of
smoothing the PSD estimate, but it makes little difference to the final image.
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