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Abstract 

 

We compared the use of δ13C values and C:N ratios from salt-marsh sediments to reconstruct 

relative sea level (RSL) with an established approach using foraminifera. Analysis of bulk-

organic sediment and plant samples collected along transects at two sites in North Carolina, 

USA demonstrates that sediment δ13C values can be used to distinguish between Spartina 

alterniflora-dominated low marsh (C4 photosynthetic pathway, δ13C values from -17.6 ‰ to 16.1 

‰) and Juncus roemerianus-dominated high marsh (C3 photosynthetic pathway, δ13C values 

from -28.2 ‰ to -21.8 ‰) environments. Juncus roemerianus plants undergo little 

decompositional change in δ13C (average 0.8 ‰), although there is a clear difference between 

Spartina alterniflora tissue and bulk-organic sediments (approximately 4 ‰). C:N ratios on 

bulk-organic sediment from freshwater upland and salt-marsh environments converge during 

early diagenesis, rendering them of little use in reconstructing RSL. The utility of δ13C values as 

a sea-level indicator is limited by the elevational range of C4 plants, making it difficult to 

recognize salt-marsh sub-environments and improve the precision of RSL reconstructions. 

Furthermore, Juncus roemerianus-dominated high marsh and freshwater upland sediments 

cannot be adequately distinguished with δ13C values. 
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1 Introduction 

 

On low energy, temperate coasts, salt marshes exhibit a strong environmental gradient 

extending through marine, brackish and freshwater conditions that is driven by the frequency 

and duration of tidal inundation (e.g. Chapman, 1940, 1960). Vascular plants and microfaunas 

respond to this gradient by forming distinctive floral and faunal zones that reflect 

sub-environments along the gradient. This characteristic pattern of zonation can be used to 

estimate former relative sea level (RSL) by establishing the environmental origin of organic 

sediment preserved in estuaries, salt marshes and coastal lowlands (e.g. Shennan, 1992). RSL 

is reconstructed using sea-level indicators, which are physical, biological or chemical features 

possessing a systematic and quantifiable relationship to elevation in the tidal frame (Shennan, 

1986, van de Plassche, 1986). The indicative meaning (Figure 1d) is the elevational range 

occupied by a sea-level indicator (indicative range) in relation to a contemporaneous tide level 

(reference water level). 

 

Assemblages of salt-marsh foraminifera are widely used sea-level indicators that can accurately 

define zones within tidal environments with a precision of up to ± 0.05 m in high marsh settings 

(Scott and Medioli, 1978; Gehrels, 1994, 2000; Horton and Edwards, 2006). Foraminifera are 

frequently well preserved in salt-marsh deposits and their low diversity, high abundance 

assemblages (Sen Gupta, 1999; Gehrels, 2007) lend themselves to quantitative analysis. There 

are, however, potential difficulties with the application of salt-marsh foraminifera to reconstruct 

RSL. Interpretation of foraminiferal assemblages in subsurface sediments requires an 

understanding of the distribution and ecological preferences of modern foraminifera, including 

infaunal habitation (e.g. Goldstein and Harben, 1993; Ozarko et al., 1997; Saffert and Thomas, 

1998), seasonal population fluctuations (e.g. Murray and Alve, 2000) and micro-scale variability 

(patchiness) in the distribution of foraminifera (e.g. Hippensteel et al., 2000). Post-depositional 
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modification of assemblages may also compromise paleoenvironmental reconstructions through 

selective removal of tests (e.g. Jonasson and Patterson, 1992; Goldstein and Watkins, 1999). 

 

Potential alternative means to reconstruct RSL from salt-marsh sediments include the stable 

carbon isotopic composition (13C:12C ratio, expressed as δ13C in parts per mil (‰) compared to a 

standard reference sample, PDB) and the ratio of organic carbon to total nitrogen (C:N) in 

bulk-organic sediments (e.g. Wilson et al., 2005; Lamb et al., 2006, 2007). Salt-marsh plants 

using the C4 photosynthetic pathway, create plant tissues with an average δ13C composition of -

12 ‰ (Schlesinger, 1997) and a range from -17 ‰ to -9 ‰ (Chmura and Aharon, 1995). In 

contrast, plants utilizing the C3 photosynthetic pathway have a δ13C signature of -34 ‰ to -23 ‰ 

(Chmura and Aharon, 1995). The distinction between these pathways offers a potential means 

to reconstruct RSL by identifying salt-marsh environments in organic sedimentary sequences 

(Chmura et al., 1987). Reconstructions with increased precision are possible if salt-marsh zones 

(low and high marshes characterized by different proportions of C3 and C4 plants) can be 

recognized (Edwards, 2007). Such an approach requires locations where C3 and C4 plants have 

existed together with differing distributions for the period under consideration (Wilson et al., 

2005) and δ13C is incorporated into organic sediments with little diagenetic change (e.g. Ember 

et al., 1987; Fogel et al., 1989, Goni and Thomas, 2000). Measured values of δ13C and C:N 

record the balance between autochthonous and allochthonous inputs. The dominant 

autochthonous component in salt marshes is from vascular plants (Lamb et al., 2006), whilst 

allochthonous sediment may be derived from fresh, brackish or marine environments as 

particulate or dissolved material. The contribution of allochthonous inputs (volume and 

provenance, relative to autochthonous materials) to measured sediment δ13C and C:N values 

may be significant in salt-marsh environments (e.g. Lamb et al., 2006; Gebrehiwet et al., 2008). 
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We investigated the use of δ13C and C:N ratios to identify salt-marsh floral zones in bulk-organic 

sediments and reconstruct RSL in North Carolina, USA. Previous studies using δ13C and C:N in 

salt-marsh deposits have used the technique to characterize paleoenvironments and infer 

vegetation change (e.g. Malamud-Roam and Ingram, 2004; Wilson et al., 2005) or to provide 

qualitative information about the depositional environment of radiocarbon-dated samples (e.g. 

Chmura and Aharon, 1995; Törnqvist et al., 2006, 2008). To date, this technique has not been 

used to quantitatively reconstruct RSL. The δ13C and C:N values of surface sediments were 

measured along environmental and elevational gradients at two microtidal sites to consider the 

potential accuracy and precision of this approach.  We compare δ13C and C:N values from 

plants and surface sediments to better understand the effects of early diagenesis on salt-marsh 

sediments. To demonstrate the application of δ13C in reconstructing RSL, we estimated the 

indicative meaning of 11 Holocene sea-level data points from North Carolina and compared the 

results to those from a foraminifera-based transfer function approach. 

 

2 Study Area 

 

The Atlantic coast of North Carolina is characterised by sounds separating the mainland from 

the Outer Banks barrier islands (Pilkey et al., 2002). Water in the sounds reflects the balance 

between freshwater input from rivers and exchange of marine water with the Atlantic Ocean 

through inlets. The region is micro-tidal and wind-driven water levels regularly exceed the 

magnitude of astronomical tides.  Salt marshes occupy the margins of the sounds where 

brackish conditions exist (Pilkey et al., 2002). Spartina alterniflora forms narrow bands of low 

marsh (Adams, 1963; Brinson, 1991; Woerner and Hackney, 1997). Juncus roemerianus covers 

up to 77 % of salt-marsh area (Eleuterius, 1976) and dominates high marshes (Brinson, 1991). 

Other common species include Distichlis spicata and Spartina patens, which usually occur as 

patches in high marsh environments surrounded by Juncus roemerianus. At sites with low 
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salinity, Spartina cynusoroides occupies high marshes (e.g. Culver and Horton, 2005).  The 

vertical zonation of salt-marsh plants is limited by the microtidal nature of the study area, but it is 

this microtidal regime together with continuous sequences of high marsh peat that provides an 

ideal setting for reconstructing changes in sea level.  The study region is representative of a 

substantial proportion of back-barrier salt marshes on the Atlantic Coast of the USA.  

 

We selected two sites on salt marshes at Oregon Inlet and Sand Point (Figure 1a) that 

represent different environmental conditions from a larger set of sites where Kemp et al. (2009) 

documented modern foraminiferal distributions. The Oregon Inlet site is a high salinity (26 psu; 

Williams et al., 1973; Culver and Horton, 2005), back-barrier marsh located adjacent to the open 

inlet (Figure 1b). A 250 m long transect of 15 sampling stations (Figures 1b and 2) extended 

from a narrow (10 m wide) Spartina alterniflora-dominated low marsh to a large (240 m wide) 

high marsh, characterized by Juncus roemerianus, in association with Iva fructescens toward 

the upper edge of the marsh. The second site, Sand Point, is distal to an open inlet (Figure 1c), 

resulting in low salinity (8 psu; Schwartz and Chestnut, 1973). The marsh is up to 1500 m wide 

and displays a narrow (5 m), low marsh of Spartina alterniflora that is replaced inland by Juncus 

roemerianus and followed by a transition to freshwater upland vegetation. The transect included 

21 sampling stations extending across the marsh into the surrounding upland (Figures 1c and 

2). Similar to many salt-marsh shorelines in the Albemarle-Pamlico estuarine system, this site is 

experiencing significant erosion and the low marsh receives substantial inputs of reworked high-

marsh sediment, which is likely several thousands of years old (Riggs, 2001). Therefore, low 

marsh environments were not sampled at this site. Tidal flat environments and pioneer stage 

salt marshes are unusual in North Carolina and were not present at either site. 

 

Salt-marsh plants were collected from three additional sites (Figure 1a). Swan Quarter National 

Wildlife Refuge (NWR) is situated at the confluence of the Pamlico River with Pamlico Sound; it 
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is a large, low salinity salt marsh. Ocracoke is a narrow (150 m), higher salinity salt marsh on 

the Outer Banks. Cedar Island is one of the largest salt marshes in North Carolina (up to 6.7 km 

wide; Brinson, 1991) and is characterized by salinities between 15 and 20 psu. 

 

3 Methods 

 

We analyzed samples from transects at the Oregon Inlet and Sand Point sites to document the 

modern distribution of foraminifera and geochemical characteristics of salt-marsh sediment. The 

transects extended perpendicular to the shoreline from low marsh to freshwater upland 

environments. Positioning of samples reflected changes in elevation and vegetation. Sample 

elevations were measured by leveling to geodetic benchmarks (Figure 1b, c). The boundaries 

between floral zones were surveyed at as many as 40 locations at each site to estimate the 

elevational range of common plants. We measured the boundaries between a) freshwater 

upland and Juncus roemerianus, b) Spartina alterniflora and Juncus roemerianus and c) the 

lower limit of Spartina alterniflora. The program VDatum (Hess et al., 2005) enabled conversion 

from orthometric to tidal elevations (expressed relative to local Mean Tide Level, MTL). 

 

3.1 Sediment Grain Size and δ13C, C:N ratios and Total Organic Carbon of Modern Sediments 

and Plants 

Surface sediment samples (0-1 cm) were collected for analysis along both transects. 

Additionally, at Sand Point, we collected 19 samples of Juncus roemerianus and two of 

Distichlis spicata. Plant material was also collected at Swan Quarter NWR (Spartina alterniflora, 

Spartina cynusoroides and Spartina patens), Ocracoke (Distichlis spicata, Salicornia sp., 

Spartina alterniflora, and Spartina patens) and Cedar Island (Iva fructescens, Juncus 

roemerianus, Spartina alterniflora, Spartina cynusoroides and Spartina patens). Sample grain 
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size was measured using laser diffraction after Allen and Thornley (2004) and Hawkes et al. 

(2007). 

 

For measurement of δ13C and C:N, sediment samples were treated with 5 % HCL for 18 hours, 

washed with deionised water, dried in an oven at 40 ºC overnight and milled to a fine powder 

using a pestle and mortar. Plant samples were washed with deionised water to remove 

sediment particles, dried in an oven at 40 ºC overnight and milled to a fine powder. 

  

13C/12C analyses were performed on plant and sediment samples by combustion in a Costech 

Elemental Analyser coupled on-line to an Optima dual-inlet mass spectrometer. δ13C values 

were calculated to the VPDB scale using a within-run laboratory standard (cellulose, Sigma 

Chemical prod. no. C-6413) calibrated against NBS-19 and NBS-22. C:N ratios were analysed 

on the same instrument and the ratios were calibrated through an acetanilide standard. All C:N 

values are expressed on a weight ratio basis. Replicate analysis indicated a precision of <0.1 ‰ 

(1 SD) for δ13C and C:N measurements.  

 

3.2 Modern Foraminifera 

We collected surface sediment samples (0-1cm) for foraminiferal analysis. Samples were stored 

in buffered ethanol and stained with rose Bengal (Walton, 1952) to allow identification of live 

individuals. Samples were sieved to isolate the foraminifera-bearing fraction between 63 μm and 

500 μm. Each sample was divided into eight aliquots and a minimum of 200 individuals was 

counted from a known fraction of the sediment (Scott and Hermelin, 1993; de Rijk, 1995). 

Salt-marsh foraminifera typically form low diversity assemblages and counts of 200 are 

representative of the target population (Fatela and Taborda, 2002). Assemblage zones were 

identified by unconstrained, hierarchical cluster analysis (Kemp et al., 2009). 

 



 9

4 Results 

 

4.1 Elevational Distribution of Vascular Plants 

Leveling of floral boundaries provided estimates of the local vertical range of Spartina 

alterniflora and Juncus roemerianus. Despite differences in salinity and tidal range, the 

elevational distribution of plants at Oregon Inlet and Sand Point is similar. At Oregon Inlet, 

Spartina alterniflora occupies mean elevations between -0.09 m and 0.22 m MTL; Juncus 

roemerianus is found from 0.14 m to 0.42 m MTL. At Sand Point, Spartina alterniflora was 

dominant at elevations between -0.10 m and 0.11 m MTL. Juncus roemerianus was the 

dominant plant at elevations ranging from 0.10 m to 0.35 m MTL, but was absent from sites 

above approximately 0.35 m MTL, where it was replaced by freshwater upland vegetation. 

 

4.2 δ13C and C:N ratios of Modern Salt-Marsh Sediments 

At Oregon Inlet, surface sediments in the Spartina alterniflora low marsh between 0 m and 28 m 

along the transect exhibited δ13C values from -17.6 ‰ to -16.2 ‰ (average -17.0 ‰) and C:N 

ratios between 14.8 and 16.1 (Figure 2). These samples had an average total organic carbon 

(TOC) of 7.9 % (4.0 % to 10.7 %) and grain size concentrated in the silt-sized (3.9 µm to 62.5 

µm) fraction (47 % to 71 %, average median grain size, d50, of 22 µm). Surface sediments in 

Juncus roemerianus environments (28 m to 258 m along the transect) had δ13C values between 

-27.1 ‰ and -24.5 ‰ (average -26.3 ‰) and C:N ratios from 14.5 to 22.5 (Figure 2). TOC in 

these samples averaged 8.3 % (1.7 % to 15.8 %) and grain size was concentrated in the 

silt-sized fraction (12 % to 71 %, median grain size of 49 µm). 

 

At Sand Point, surface sediment samples from 0 m to 454 m along the transect in a Juncus 

roemerianus marsh yielded δ13C values from -28.2  ‰ to -21.8  ‰ (average -26.3 ‰) and C:N 

ratios between 11.1 and 41.3 (Figure 2). These samples had an average TOC of 24.6 % (14.5 
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% to 41.3 %) and a median grain size of 35 µm (16 % to 74 % silt-sized). Samples at the inland 

end of the transect (454 m to 471 m) in a freshwater upland had δ13C values between -28.8  ‰ 

and -26.6  ‰ (average -27.8 ‰) and C:N ratios of 41.6 to 48.8. TOC in these samples averaged 

39.2 % (11.1 % to 48.8 %), the median grain size was 83µm with 26 % to 70 % of clastic 

sediment in the silt-sized fraction. 

 

4.3 δ13C and C:N Ratios of Modern Salt-Marsh Plants 

The δ13C and C:N composition of seven common salt-marsh plants is shown in Figure 3. From 

17 specimens at Sand Point, δ13C values for Juncus roemerianus ranged from -28.1 ‰ to -24.9 

‰ (average -26.6 ‰), C:N ratios for this species varied from 31.8 to 70.3 (average 45.9). Three 

examples of Distichlis spicata (two from Sand Point and one from Ocracoke) had an average 

δ13C content of -15.0 ‰ (-16.2 ‰ to -13.1 ‰) and average C:N ratio of 48.3 (28.0 to 82.6). A 

Salicornia sp. plant from Ocracoke yielded a δ13C value of -27.8 ‰ and a C:N ratio of 58. An Iva 

fructescens plant from Cedar Island had a δ13C value of -28.3 ‰ and C:N ratio of 84.9. Three 

samples of Spartina alterniflora had δ13C values from -13.1 ‰ to -12.6 ‰ (average -12.9 ‰) 

and C:N ratios that averaged 139 (117.4 to 174.5). Two Spartina cynusoroides plants (Cedar 

Island and Swan Quarter) had δ13C values of -12.1 ‰ and -12.8 ‰ with C:N ratios of 70.7 and 

343.2. Three Spartina patens plants (one each from Cedar Island, Ocracoke and Swan Quarter 

NWR) displayed δ13C values between -13.6 ‰ and -12.9 ‰ and C:N ratios of 202.8 to 310.8. 

 

4.4 Elevational Distribution of Modern Foraminifera 

At Oregon Inlet, 12 species of foraminifera were recorded in 15 samples along a 250 m transect 

(0.02 m to 0.42 m MTL; Figure 4). Between 0 m and 28 m (low marsh, Spartina alterniflora 

zone), the dominant species was Miliammina fusca (up to 78 %). High abundances of 

Arenoparrella mexicana (up to 80 %) define the assemblage between 38 m and 223 m. 

Vegetation in this part of the marsh consisted of mono-specific stands of Juncus roemerianus.  
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The landward edge of the transect was represented by Haplophragmoides wilberti (57 %) and 

was associated with Juncus roemerianus and Iva fructescens.  

 

Three elevation-dependent ecological zones were recognized at Oregon Inlet (Figure 4). Zone 

OI-1 extended from 0.02 m to 0.23 m MTL and was defined by high abundances of Miliammina 

fusca. The Arenoparrella mexicana-dominated part of the marsh formed zone OI-2 (0.23 m to 

0.35 m MTL). Foraminiferal assemblages dominated by Haplophragmoides wilberti at elevations 

from 0.35 m to 0.42 m MTL constituted zone OI-3. 

 

At Sand Point, 16 species of foraminifera were recognised at 21 stations across an elevational 

range from 0.10 m to 0.53 m MTL (Figure 4). Between 0 m and 73 m, the dominant species was 

Ammoastuta inepta (up to 36 %). From 73 m to 137 m, Miliammina fusca (18 % to 59 %) was 

dominant, Ammoastuta inepta (up to 25 %) was an important species between 137 m and 429 

m. From 429 m to 448 m, Jadammina macrescens was the dominant species (up to 35 %) in 

association with Ammoastuta inepta (up to 29 %). All of these intervals were associated with 

Juncus roemerianus. Seven samples, positioned between 448 m and 471 m in the freshwater 

upland contained no foraminifera. Based on foraminiferal assemblages, three 

elevation-dependent ecological zones were recognized at Sand Point. Between 0.10 m and 

0.18 m MTL the dominant species was Miliammina fusca (zone SP-1). High proportions of 

Ammoastuta inepta defined zone SP-2 (0.18 m to 0.30 m MTL). A Jadammina 

macrescens-dominated zone (SP-3) extended from 0.23 m to 0.35 m MTL. The samples in 

which foraminifera were absent were positioned above 0.35 m local MTL. 

 

5 Discussion 

 

5.1 Modern Distribution of Plants and Foraminifera 
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Salt-marsh plant communities form elevation-dependent, floral zones that are correlated to the 

frequency and duration of tidal inundation (e.g. Chapman, 1940; Redfield, 1972). This 

relationship has been exploited to reconstruct former RSL by identifying the floral zone 

represented by peat preserved in coastal sedimentary sequences (e.g. Shennan, 1986). We 

identified two salt-marsh zones on the basis of vascular plants. The low marsh at Oregon Inlet 

was vegetated by Spartina alterniflora (-0.10 m to 0.14 m MTL) and high marshes at Oregon 

Inlet and Sand Point were characterized by Juncus roemerianus (0.10 m to 0.42 m MTL). The 

limited number and narrow range of elevational zones are a factor of micro-tidal regimes at 

Oregon Inlet (0.35 m range) and Sand Point (0.17 m range).  

 

In areas with larger tides, salt-marsh floral zones exist over an expanded elevational range. On 

the Atlantic coast of the USA, McKee and Patrick (1988, and references therein) showed that 

the average elevational range of Spartina alterniflora is 0.93 m (77 % of tidal range) but may be 

as much as 2.4 m (86 % of local tidal range). Adams (1963) showed a strong positive 

relationship between tidal range and the elevational extent of Spartina alterniflora at sites in 

North Carolina (up to 0.9m; 53 % of the tidal range). Similarly, larger tides were associated with 

an expanded elevational range of Juncus roemerianus (Adams, 1963). In the Cape Fear estuary 

of North Carolina, Woerner and Hackney (1997) recorded Juncus roemerianus occupying an 

elevational range of 0.65 m in a region with a tidal range of 1.43 m. Considerable variation in the 

elevational distribution of salt-marsh plants exists between sites and attests to the importance of 

local-scale factors (such as salinity and substrate) in determining floral zonation (e.g. McKee 

and Patrick, 1988; Woerner and Hackney, 1997). Gehrels (1994) noted differences in the 

elevational preference of plants between sites and argued that measurements of the elevational 

range of plant species (including our mean elevational ranges for Spartina alterniflora and 

Juncus roemerianus) should be considered a minimum because study of additional sites is likely 

to expand the observed range. 
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Foraminifera are more precise sea-level indicators than salt-marsh plants (e.g. Scott and 

Medioli, 1978, 1980; Gehrels, 1994), although direct comparisons in North America are few. At 

four sites in Maine, Gehrels (1994) showed that plants occupied wider and more variable 

elevational zones than salt-marsh foraminifera and concluded that the most precise (narrowest 

elevational ranges) foraminiferal assemblages were those from high marsh environments at the 

transition to freshwater upland. Foraminifera at Oregon Inlet and Sand Point also occupied 

narrower elevational ranges (as small as 0.07m, OI-3) than plants. In contrast, Patterson et al. 

(2000) concluded that the elevational range of plant and foraminiferal zones in British Columbia 

were similar. Jennings and Nelson (1992) showed that tidal flat, low marsh and high marsh 

zones could be delimited using either plants or foraminifera. 

 

5.2 Sediment δ13C Values as Sea-Level Indicators in North Carolina 

Previous investigations of sediment δ13C from salt marshes have alluded to the possibility of 

reconstructing RSL (e.g. Johnson et al., 2007).  The use of δ13C and C:N values as sea-level 

indicators requires that they can be assigned an indicative meaning and identify salt-marsh 

zones in sedimentary sequences. Although there is not a simple linear correlation between 

salt-marsh surface elevation and bulk sediment δ13C (Figure 5), there is a strong relationship 

between sediment δ13C and plant species making it possible to distinguish between sediments 

derived from Spartina alterniflora (C4) and Juncus roemerianus (C3). Three low-marsh samples 

of surface sediment dominated by Spartina alterniflora at Oregon Inlet had δ13C values between 

-17.6 ‰ and -16.2 ‰. In contrast, Juncus roemerianus-dominated environments at Oregon Inlet 

and Sand Point were characterized by sediment δ13C values between -28.2 ‰ and -21.8 ‰ 

(average -26.3 ‰). This difference has been identified elsewhere in North Carolina and at other 

locations on the Atlantic and Gulf coasts of the USA. In the Pamlico River estuary of North 

Carolina, Craft et al. (1988) differentiated between sediments derived from C4 plants, Juncus 
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roemerianus (-26 ‰) and forest (-27 ‰). Goni and Thomas (2000) identified sediments from 

forest (-28.8 ‰ to -27.5 ‰), Juncus (-23.8 ‰ to -21.4 ‰) and Spartina (-20.1 ‰ to -17.3 ‰) 

environments in South Carolina. A study by Gebrehiwet et al. (2008) in Georgia, showed a clear 

difference in δ13C values for sediments from Spartina alterniflora and Juncus roemerianus 

zones. In Louisiana, Chmura et al. (1987) reported δ13C values of -27.8 ‰, -22.1 ‰ and 16.2 ‰ 

for freshwater upland, intermediate and salt-marsh sediments, respectively. DeLaune (1986) 

recorded sediments derived from Spartina alterniflora in Louisiana as having an average δ13C 

value of -16.5 ‰. Choi et al. (2001) showed that Juncus roemerianus salt-marsh sediments in 

Florida had an average δ13C value of -27 ‰. In Massachusetts, Middleburg et al. (1997) 

distinguished between sediments from Spartina-dominated and more brackish environments. 

 

Although δ13C values from bulk-organic sediments differentiate Spartina alterniflora and Juncus 

roemerianus environments, δ13C values  associated with other plants on North Carolina salt 

marshes must be considered (Figure 3). Three specimens (two from Sand Point and one from 

Ocracoke) of Distichlis spicata (a high marsh, C4 plant) yielded an average δ13C value of -15.0 

‰ (-16.1 ‰ to -13.1 ‰), which is comparable to measurements from other studies (e.g. Ungar, 

1991; Chmura and Aharon, 1995). Spartina patens is also a C4 plant with a patchy distribution in 

high marshes (Adams, 1963). Three examples (from Cedar Island, Ocracoke and Swan 

Quarter) had an average δ13C value of -13.2 ‰. According to Chmura and Aharon (1995) this 

species has δ13C values of -13.6 ‰ to -11.7 ‰. Spartina cynusoroides is a low salinity, high 

marsh plant (C4); two examples from Cedar Island had δ13C values of -12.6 ‰ and -12.8 ‰. 

Chmura and Aharon (1995) listed Spartina cynusoroides as having a δ13C range of -13.6 ‰ to 

-12.0 ‰. Distichlis spicata, Spartina cynusoroides and Spartina patens have plant tissue δ13C 

values that are comparable to that of Spartina alterniflora but they are found in high rather than 

low marshes.  The problem that the wide distribution of these species presents for RSL 

reconstruction in the southeastern USA was highlighted by Chmura and Aharon (1995), who 
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recognized that high and low marsh C4 plants may be indistinguishable on the basis of plant or 

sediment δ13C and C:N values. Regional differences in the distribution of C4 plants and δ13C 

values must be considered before making paleoenvironmental interpretations (Chmura and 

Aharon, 1995). 

 

In the same way, overlap of sediment δ13C values from high marsh (Juncus roemerianus) and 

freshwater upland zones at Oregon Inlet and Sand Point makes differentiating them difficult. 

The average δ13C of bulk sediments differs only slightly (-26.3 ‰ for Juncus roemerianus and 

-27.8 ‰ for freshwater upland zones) and their ranges overlap. Whereas Juncus roemerianus 

sediments displayed δ13C values from -28.2 ‰ to -21.8 ‰, freshwater upland sediments ranged 

from -28.1 ‰ to -26.8 ‰.  Several studies have distinguished these environments using 

sediment δ13C values (e.g. Chmura et al., 1987; Craft et al., 1988; Chmura and Aharon, 1995; 

Goni and Thomas, 2000), but results from this study show that this distinction is difficult. 

 

5.3 Bulk Sediment and Vegetation δ13C, C:N 

We investigated whether surface sediments adequately represented the dominant type of 

vegetation at the time of accumulation by comparing δ13C and C:N values of Juncus 

roemerianus plants to the surface sediment they were collected from at Sand Point (Figure 6). 

The average difference between plant and surface sediments was 0.8 ‰, although a single 

sample recorded a difference of 4 ‰ (Figure 6a). This change is not sufficient to cause samples 

from Juncus roemerianus zones to be mis-classified (figure 3) and is similar to differences 

reported elsewhere (e.g. Chmura et al., 1987). In North Carolina, Craft et al. (1988) concluded 

that the δ13C of Juncus roemerianus sediments (-23.8 ‰) was similar to plant material (-26.0 

‰). Goni and Thomas (2000) showed little difference between δ13C from Juncus roemerianus 

plants (-24.9 ‰) and sediments (-23.8 ‰). Similarly, Johnson and Calder (1973) and Hackney 
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and Haines (1980) reported little difference between sediment and plant δ13C values in Juncus 

roemerianus zones.  

 

In contrast, there is a clear difference between δ13C of Spartina alterniflora plants and surface 

sediments (Figure 6c). At Oregon Inlet, low marsh, Spartina alterniflora sediments had δ13C 

values from -17.6 ‰ to -16.2 ‰ (Figures 2 and 6c), whilst plants (from Ocracoke, Swan Quarter 

NWR and Cedar Island) had less depleted values ranging from -13.1 ‰ to -12.6 ‰ (Figures 3 

and 6c). Spartina alterniflora-derived sediments commonly have more negative δ13C values 

than living plant tissue from this species. In North Carolina, Craft et al. (1988) showed that 

Spartina alterniflora plants had an average δ13C value of -12.0 ‰, whilst corresponding surface 

sediments had an average δ13C value of -18.4 ‰. Goni and Thomas (2000) reported changes of 

4.0 ‰ to 6.8 ‰ between Spartina alterniflora tissue and sediment. Chmura et al. (1987) found 

that sediments were depleted by up to 4 ‰ in comparison with plant material. In Georgia, Fogel 

et al. (1989) recorded sediments that were up to 5.5 ‰ more depleted than Spartina alterniflora 

plants. Changes in δ13C values between plants and bulk-organic sediment are probably not 

sufficiently large to cause Spartina alterniflora environments to be misidentified and assigned an 

erroneous indicative meaning (Figures 3 and 5). 

 

Differences between plant and sediment δ13C values may be caused by decomposition during 

accumulation of organic material (Lamb et al., 2006). According to Ember et al. (1987), Spartina 

alterniflora values for plant tissues and bulk sediments are different due to fractionation of 

organic carbon within the living plant and the subsequent preferential breakdown of cellulose 

over lignin. Lignin δ13C is typically more depleted than cellulose δ13C or the δ13C from the plant 

as a whole (Vane et al., 2003; Lamb et al., 2006). During decomposition, lignin is preferentially 

concentrated in surface sediments resulting in a relative depletion of sediment δ13C (Chmura et 

al., 1987; Chmura and Aharon, 1995: Mallamud-Roam and Ingram, 2001). Alternatively, δ13C of 
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bulk sediments may differ from plant tissue due to allochthonous carbon inputs. Sources include 

fluvial or marine particulate and dissolved organic carbon (Lamb et al., 2006). Low marsh 

settings are most likely to be inundated by astronomical tides and storms, whilst high marsh 

settings are more likely to receive inputs of terrestrial organic carbon. However, Chmura et al. 

(1987) concluded that local plants were the main source of organic carbon in salt marshes and 

that sediment δ13C values were representative of the dominant vegetation.  On longer 

timescales, two studies in the San Francisco Bay estuary (Byrne et al., 2001; Malamud-Roam 

and Ingram, 2004) showed that salt-marsh zones could be reliably identified in sediments more 

than 3000 years after deposition, whilst Lamb et al. (2007) compared downcore δ13C values in 

sediments up to 3300 years old to foraminiferal assemblages and concluded that there was little 

fractionation. 

 

C:N ratios are strongly influenced by post-depositional processes. At Sand Point, organic 

sediment C:N ratios were lower than those recorded in plants (Figure 6b). Goni and Thomas 

(2000) demonstrated the tendency for forest, Juncus- and Spartina-derived sediments to have 

comparable C:N ratios despite large differences in the C:N ratio of source vegetation. The 

similarity in bulk sediment C:N ratios is a consequence of nitrogen retention coupled with carbon 

loss through oxidation of plant material during decomposition (Ember et al., 1987; Chmura et al., 

1987). The size of this change makes it difficult to reconstruct the salt-marsh zone in which bulk-

organic sediments formed because C:N ratios from different zones converge during early 

diagenesis, rendering them unsuitable for reconstructing former RSL. 

 

5.4 Implications for Reconstructing Holocene Relative Sea Level 

We examined the utility of sediment δ13C as a sea-level indicator by reconstructing RSL from 

published sea-level data. Horton et al. (2009) compiled a database of validated North Carolina 

Holocene sea-level index points and data points that constrain the maximum and minimum 
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elevation of RSL (freshwater and marine limiting points). We considered a sub-sample of eight 

sea-level index points and three freshwater limiting points.  Estimates of the indicative meaning 

were based on the elevational range of modern salt-marsh plants and recognition of these floral 

zones from the analogy between modern and fossil sediment δ13C values (Table 1; Figure 7). 

 

Sediment δ13C values from -26.7 ‰ to -21.8 ‰ were considered to represent a Juncus 

roemerianus floral zone. Freshwater upland zones are identified by sediment δ13C values more 

depleted than -28.2 ‰.  Sediments with intermediate values could be from either zone and are 

assigned an indicative meaning reflecting this uncertainty.  These values may only be 

appropriate for the study region (Chmura and Aharon, 1995) and additional studies from meso- 

and macrotidal regions incorporating high, low and pioneer marshes and tidal flat environments 

would be appropriate and necessary for efforts to reconstruct RSL from other regions.  From 

leveling of floral zone boundaries at Oregon Inlet and Sand Point we assigned Spartina 

alterniflora zones an indicative meaning of 0.02 m MTL ± 0.12 m and Juncus roemerianus 

zones were assigned an indicative meaning of 0.26 m MTL ± 0.16 m. In the case of C4 plants, 

sediment δ13C values cannot distinguish between specific plants, therefore we gave them an 

indicative meaning of 0.16 m MTL ± 0.26 m, because they can occupy the full elevational range 

of salt-marshes in North Carolina. For comparison, alternative estimates of the indicative 

meaning were produced using a transfer function based upon the modern distribution of 

foraminifera in the Albemarle-Pamlico estuarine system (Kemp et al., 2009). This statistical 

technique has become common-place for reconstructing RSL from salt-marshes (Gehrels, 

2007). 

 

Sea-level index points 1 to 3 (table one) had δ13C values between -25.5 ‰ and -21 ‰ and 

represent Juncus roemerianus zones.  Foraminiferal data provided estimated reference water 

levels (RWL) between 0.20 m and 0.29 m MTL with an average indicative range (IR) of ± 0.05 
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m. Index point 4 was identified as being from either a Juncus roemerianus or freshwater upland 

zone because it had an intermediate δ13C value of -26.67 ‰. However, foraminifera indicated 

that it formed in brackish rather than freshwater conditions and was assigned an indicative 

meaning of 0.19 m MTL ± 0.05 m. Sea-level index points 5 to 8 had δ13C values typical of C4 

vegetation (Table 1) and were assigned an indicative meaning spanning the entire elevational 

range of salt-marsh vegetation (Figure 7; Table 1). Foraminifera associated with these samples 

estimated RWLs from 0.12 m to 0.25 m MTL with an average IR of ± 0.05 m (Figure 7; Table 1). 

The RWL estimated for sea-level index points using δ13C values are not significantly different 

from transfer function estimates. Foraminifera are more precise sea-level indicators that are 

able to estimate the indicative meaning of samples from all salt-marsh zones. In contrast, 

sediment δ13C values are restricted to describing broad changes in RSL by identifying sea-level 

index points (with large uncertainties) derived from salt marshes dominated by C4 vegetation. 

 

Freshwater limiting points are derived from supra-tidal environments and provide an important 

constraint on the upper limit of former RSL (Shennan, 2007). We considered three samples that 

were defined as freshwater limiting points by Horton et al. (2009) on the basis of diatom and 

pollen assemblages and an absence of foraminifera (Mallinson et al., 2005; Culver et al., 2008). 

Using this microfossil evidence, we recognized samples 9, 10 and 11 as freshwater limiting 

points (Table 1, Figure 7). The reported δ13C values of these samples were -28.0 ‰, -27.21 ‰ 

and -26.35 ‰. Due to the difficulty in separating freshwater upland and Juncus roemerianus-

dominated zones, samples with δ13C values between -28.5 ‰ and -26.0 ‰ may represent either 

zone and were assigned an indicative meaning reflecting this uncertainty (Table 1, Figure 7). 

 

5.5 Refinement of δ13C and C:N as Sea-Level Indicators 

A key issue in using bulk-organic sediment δ13C and C:N values to reconstruct sea-level is the 

difficulty in identifying salt-marsh zones dominated by a particular plant species.  We have 
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shown that it is possible to recognize sediments derived from C3 or C4 zones and that the 

application of this approach is limited by the broad elevational tolerance of C4 plants and 

problems distinguishing between freshwater upland and salt-marsh C3 plant zones.  Measured 

values of δ13C and C:N in bulk sediment incorporate the influence of allochthonous material and 

plant decomposition, which may distort the signal from the dominant plant community.  

 

One approach that might overcome these difficulties is to analyze δ13C values from a specific 

fraction of the sediment, which may include organic components from only the dominant plant 

community.  For example, some components may consist of the fraction that is soluble in 

common organic solvents (lipids, pigments, flavonoids) or the insoluble fraction such as lignin, 

tannins and structural polysaccharides (Stephenson et al., 2005, 2008). Molecular level studies 

of lipids and major cell wall polymers (e.g. lignin, tannins and structural polysaccharides) may 

be potential indicators of plant source and vegetation zones (Benner et al., 1991; Goni et al., 

2000; Herenes, 2001). In particular, lignin is well preserved in salt-marsh sediments (Vane et 

al., 2003, 2005, 2006; Lamb et al., 2007). Analytical pyrolysis, tetra alkyl chemolysis, and 

alkaline CuO oxidation are frequently applied to cleave bonds within the lignin structure and 

yield monomers that can be separated and identified by gas-chromatography mass-

spectrometry (GC/MS).  Assuming the distribution and quantity of monomers can be related to 

plant species, they may be used to identify the dominant type of vegetation in sediments (Goni 

et al., 2000; Vane, 2003) 

 

A second possible approach is to analyze sediment δ13C values retained in particular organic 

compounds, namely n-alkanes.  Compound-specific isotopic analysis (CSIA) of long chain n-

alkanes nC21-nC33 in salt-marsh sediments has been used to distinguish specific plant 

communities in northeastern USA (Wang et al., 2003 in Massachusetts; Tanner et al., 2007 in 

Maine). Gas chromatography isotope-ratio mass spectrometry (GC-IRMS) of individual n-
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alkanes extracted from living plants showed that the nC27 and nC29 homologues were abundant 

in all plants and could distinguish Spartina alterniflora and Spartina patens (C4) from C3 plants 

such as Juncus spp. based upon a 3.0 to 6.4 ‰ minimum difference (Tanner et al., 2007). 

However, other homologues such as nC31 were not present in all plants and are variable in 

absolute concentration; high concentrations of compounds are generally considered a 

prerequisite for GC/IRMS analysis. Although detailed molecular techniques show considerable 

promise as tools to identify vegetation zones, they are presently more timing consuming and 

costly than carbon isotope analysis of bulk-organic sediment. 

 

6 Conclusions 

 

We investigated the use of bulk-organic sediment geochemistry as a means of identifying floral 

zones that could be used as sea-level indicators. δ13C values and C:N ratios were measured 

along modern transects of surface sediment at Oregon Inlet and Sand Point (North Carolina, 

USA) and compared to elevational zones defined by plants and foraminiferal assemblages. 

Sediment δ13C values do not have a simple linear correlation with elevation but can distinguish 

zones dominated by Spartina alterniflora (C4 photosynthetic pathway, δ13C values from -17.6 ‰ 

to -16.2 ‰) and Juncus roemerianus (C3 photosynthetic pathway δ13C values from -28.2 ‰ to 

-21.8 ‰). The elevational range of the two floral zones at these sites reflects the microtidal 

nature of the region. Comparison between the geochemical characteristics of Juncus 

roemerianus plants and surface sediments revealed that there is little change in δ13C values 

during diagenesis (average 0.8 ‰). Based on three samples, the difference between Spartina 

alterniflora plants and sediment was approximately 4 ‰. In contrast, C:N ratios are significantly 

altered during early diagenesis, causing low marsh, high marsh and freshwater upland 

sediments to have similar values. 
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The elevational distribution of common salt-marsh plants was used to estimate the indicative 

meaning of sea-level index points using sediment δ13C values to identify floral zones. The use of 

sediment δ13C values as independent sea-level indicators is complicated in North Carolina by C4 

plants (such as the low marsh species Spartina alterniflora and high marsh species including 

Distichlis spicata, Spartina cynusoroides and Spartina patens) occupying the full elevational 

range of salt-marsh environments. Uncertainty in differentiating between sediments derived 

from these plant species on the basis of δ13C values results in a large indicative range. 

Furthermore, Juncus roemerianus-dominated sediments from high marsh settings cannot be 

adequately distinguished from the sediment of freshwater upland zones. 

 

In instances where microfossil assemblages are absent from the fossil record or have 

undergone significant post-depositional modification, δ13C values may help distinguish the 

sediments of former high and low marshes. Refined analysis using δ13C values from specific 

fracations of sediment may increase the possible precision of RSL reconstructions from 

geochemical proxies preserved in bulk-organic sediments by recognizing particular plant 

species.   
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Table One 
 
The indicative meaning of sea-level data estimated from δ13C values and foraminifera 
 

No. Type Lab Code δ13C Description δ13C   Foraminifera   

      (‰)   RWL (m MTL) IR (± m) RWL (m MTL) IR (± m) 

1 
SL Index 

Point OS-43066 -24.80 Juncus 0.26 0.16 0.20 0.04 

2 
SL Index 

Point OS-43068 -25.50 Juncus 0.26 0.16 0.21 0.05 

3 
SL Index 

Point OS-43069 -21.90 Juncus 0.26 0.16 0.29 0.06 

4 
SL Index 

Point OS-58897 -26.67 Juncus/Fresh Above 0.05 - 0.19 0.05 

         

5 
SL Index 

Point OS-58896 -14.08 C4 0.16 0.26 0.17 0.05 

6 
SL Index 

Point OS-58712 -13.40 
C4 

0.16 0.26 0.25 0.05 

7 
SL Index 

Point OS-58711 -13.28 
C4 

0.16 0.26 0.18 0.05 

8 
SL Index 

Point OS-58710 -13.78 
C4 

0.16 0.26 0.12 0.05 

         

9 
Fresh 

Limiting 
Beta-

168060 -28.00 
Juncus/Fresh

Above 0.10 - Above 0.35* - 

10 
Fresh 

Limiting OS-36098 -27.21 
Juncus/Fresh

Above 0.10 - Above 0.35* - 

11 
Fresh 

Limiting OS-36100 -26.35 
Juncus/Fresh

Above 0.10 - Above 0.35* - 
  
 

Interpretation of Holocene sea-level index points and freshwater limiting points. For each 

sample, a Reference Water Level (RWL) and Indicative Range (IR) were estimated using 

sediment δ13C values and a foraminifera-based transfer function. *The RWL assigned to 

freshwater limiting points reflects the quantitative diatom evidence (with an absence of 

foraminifera) reported in Horton et al. (2009).  
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Figure Captions 
 
Figure 1: (A) Location of the Oregon Inlet and Sand Point sites in coastal North Carolina. 
Foraminifera, δ13C and C:N were measured in samples along two transects (dashed lines, X to 
Y) at (B) Oregon Inlet and (C) Sand Point. Sample elevations were established by leveling to 
geodetic benchmarks. (D) The components of indicative meaning, which defines the relationship 
between a sea-level indicator and elevation in the tidal frame. HAT = Highest Astronomical Tide, 
MHHW = Mean Higher High Water, MTL = Mean Tide Level. 
 
Figure 2: Pattern of δ13C, C:N, Total Organic Carbon (TOC) and grain size of bulk-organic 
sediment along modern transects at Oregon Inlet and Sand Point. Median grain size (d50) in µm 
is shown by dots and percentage clay by volume is shown by vertical grey bars. Solid circles 
show samples collected in Juncus roemerianus environments; at Oregon Inlet samples from the 
Spartina alterniflora (SA) low marsh are shown as hollow circles; at Sand Point these represent 
samples from the freshwater upland. 
 
Figure 3: δ13C and C:N values measured from modern specimens of common salt-marsh plants 
and bulk-organic sediment in North Carolina. Grey boxes represent the range of values thought 
to be representative of C3 and C4 plants (after Lamb et al., 2006). Dashed lines are the average 
δ13C of C4 (-12 ‰; Schlesinger, 1997) and C3 (-27 ‰; Choi et al., 2001) plants.  
 
Figure 4: (A) Distribution of samples, vegetation and dominant salt-marsh foraminifera along 
modern transects at Oregon Inlet and Sand Point. Only species that dominant foraminiferal 
zones are presented. Solid circles show samples collected in Juncus roemerianus 
environments; at Oregon Inlet samples from the Spartina alterniflora (SA) low marsh are shown 
as hollow circles; at Sand Point these represent samples from the freshwater upland. Elevation-
dependent ecological zones of foraminifera at Oregon Inlet (OI) and Sand Point (SP) defined by 
cluster analysis are presented for each site. 
 
Figure 5: (A) The relationship between surface sediment δ13C values and elevation at Oregon 
Inlet and Sand Point. Samples are differentiated on the basis of the floral environment from 
which they were collected. (B) The indicative meaning assigned to Juncus roemerianus (Jr), 
Spartina alterniflora (Sa), C4 and freshwater upland vegetation zones based on levelling of the 
boundaries between floral zones. The elevational ranges are a minimum estimate. 
 
Figure 6: Comparison of plant and bulk sediment δ13C values (A) and C:N ratios (B) from a 
Juncus roemerianus-dominated salt marsh at Sand Point. (C) Non-paired samples of Spartina 
alterniflora plants (open circles; Ocracoke, Swan Quarter and Cedar Island) and sediments 
(filled circles; Oregon Inlet). 
 
Figure 7: Indicative meanings of eight sea-level index points and three freshwater limiting 
points from a database of North Carolina Holocene sea-level data. Estimates of indicative 
meaning were made on the basis of sediment δ13C values (grey boxes) and a foraminifera-
based transfer function (white boxes). Hashed boxes represent the inference made from diatom 
evidence that the samples were formed in a freshwater upland environment. Arrows represent 
show that estimates associated with freshwater limiting points are minimums. MTL = Mean Tide 
Level.
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