



# **Cruise Report**









# SOUTHAMPTON OCEANOGRAPHY CENTRE

# CRUISE REPORT No. 7

# RRS CHARLES DARWIN CRUISE 101C LEG 2 14 JUL-20 AUG 1996

Atlantic Margin Environmental Survey: Seabed survey of the shelf edge and slope west of Shetland

Principal Scientist
B J Bett

1997

Challenger Division for Seafloor Processes Southampton Oceanography Centre European Way Southampton SO14 3ZH

UK

Tel: 01703 596355
Fax: 01703 596247
e-mail bjb@soc.soton.ac.uk

# DOCUMENT DATA SHEET

**AUTHOR** 

PUBLICATION DATE

BETT, B J et al

1997

TITLE

RRS Charles Darwin Cruise 101C Leg 2, 14 Jul-20 Aug 1996. Atlantic Margin Environmental Survey: seabed survey of the shelf edge and slope west of Shetland.

#### REFERENCE

Southampton Oceanography Centre, Cruise Report No. 7, 127pp. & appendices.

# ABSTRACT

This was the second of two cruises, the overall objective of which was to undertake an integrated baseline environmental survey of the continental slope west of Shetland. The primary objective of this cruise was to carry out a large-scale seabed sampling survey of the area to the west of Shetland. In total some 200 seabed stations were sampled using either a Megacorer, Box corer or Day grab, and samples collected for the subsequent analysis of macrobenthos, hydrocarbons, heavy metals, particle size and total organic carbon and nitrogen. Additional survey operations included photographic reconnaissance of the seafloor using the SOC WASP system and the collection of demersal fish using pop up fish traps. Shipboard observation of seabed samples suggests that the survey region is very heterogeneous in terms of both sediments (as observed by TOBI sidescan sonar during the preceding cruise) and benthos. Particular features of note include highly developed epifaunal communities on the numerous ice rafted rocks in the 300 - 600m depth range and an abundant population of, apparently, sediment surface dwelling enteropneusts on a sandy contourite sheet located in the mid to north reaches of the survey at depths of 800 - 1000m.

# **ACKNOWLEDGEMENTS:**

All data and survey results presented herein were acquired on the Atlantic Frontiers Region Survey Project undertaken on behalf of the Atlantic Frontiers Environmental Network Consortium of operators comprising: Amerada Hess Ltd, Amoco (UK) Exploration Co, ARCO British Ltd, BP Operating Co, Chevron (UK) Ltd, Conoco (UK) Ltd, Deminex (UK) Oil and Gas Ltd, Elf Enterprise Caledonia Ltd, Esso Exploration and Production (UK) Ltd, Kerr McGee Oil (UK) Plc, Mobil North Sea Ltd, Shell UK Exploration and Production, Texaco North Sea UK Co and Total Oil Marine Plc, by the University of Southampton. The survey project was scoped and agreed between the Department of Trade and Industry, SOAEFD, the University of Southampton and the AFEN Consortium, and was commissioned and funded by the AFEN Consortium.

#### KEYWORDS

ATLANTIC MARGIN ENVIRONMENTAL SURVEY; BENTHIC COMMUNITIES; BOX CORER; CHARLES DARWIN/RRS; CRUISE 101C LEG 2 1996; DAY GRAB; DEMERSAL FISH; FAEROE-SHETLAND CHANNEL; FISH TRAP; HEAVY METALS; HYDROCARBONS; MACROBENTHOS; MEGACORER; NE ATLANTIC; PHOTOGRAPHY; PHOTOSLEDGE; SEDIMENTS; SHETLAND; TRAWL; WASP; WEST SHETLAND SHELF

# ISSUING ORGANISATION

Southampton Oceanography Centre European Way Southampton SO14 3ZH

Director: Professor John Shepherd

Copies of this report are available from:

The National Oceanographic Library, SOC

Tel: 01703 596116 Fax: 01703 596115 PRICE: £34.00

# CONTENTS

|                                                                                                                                           | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. SCIENTIFIC PERSONNEL                                                                                                                   | 6    |
| 2. SHIP'S PERSONNEL                                                                                                                       | 6    |
| 3. ITINERARY                                                                                                                              | 7    |
| 4. OBJECTIVES                                                                                                                             | 7    |
| 5. NARRATIVE                                                                                                                              | 8    |
| 6. GEAR REPORTS                                                                                                                           | 18   |
| 7. SURVEY DESIGN                                                                                                                          | 22   |
| 8. SAMPLING PROTOCOL                                                                                                                      | 34   |
| 9. SCIENTIFIC OBSERVATIONS                                                                                                                | 39   |
| 10. SAMPLE CATALOGUE                                                                                                                      | 42   |
| 11. STATION LIST                                                                                                                          | 54   |
| 12. CHARTS                                                                                                                                | 85   |
| 13. APPENDIX 1. Summary of wind speed and swell height during cruise prepared by Robin Plumley (Master RRS Charles Darwin).               | 128  |
| 14. APPENDIX 2. Report of geological observations made during the cruise prepared by Colin Graham (British Geological Survey, Edinburgh). | 129  |

#### 1. SCIENTIFIC PARTY

BRIAN BETT (PSO) Southampton Oceanography Centre

MARTIN BENEY Research Vessel Services

DAVE BILLETT (DPSO)

BEN BOORMAN

Southampton Oceanography Centre

STEVE DEWEY

JEZ EVANS

Southampton Oceanography Centre

COLIN GRAHAM British Geological Survey

NICK GRAY Southampton Oceanography Centre
DAVE HARRIS Environment Resource Technology

JEFF JONES Research Vessel Services
TOM MERCER Oil Pollution Research Unit
RICHIE PHIPPS Research Vessel Services

JON RIELLY Environment Resource Technology
BARBARA SMALLWOOD Southampton Oceanography Centre

JAN SMITH Oil Pollution Research Unit

ACE WALLACE Southampton Oceanography Centre
DAVE WHITE Southampton Oceanography Centre

#### 2. SHIP'S COMPANY

ROBIN PLUMLEY Master ROGER CHAMBERLAIN Chief Officer 2nd Officer PHIL OLDFIELD ALISTAIR MACKAY 3rd Officer Radio Officer DAVID SUGDEN Chief Engineer IAN MCGILL 2nd Engineer ROBBIE SMITH 3rd Engineer RAY PERRIAM 3rd Engineer DOUG SHARP

MARTIN HARRISON Bo'sun

KEVIN LUCKHURST Bo'sun's Mate
JOHN DALE Seaman
STEVE DAY Seaman
PAUL DEAN Seaman
BOB DICKINSON Seaman
TONY HEALY Motorman

EDDIE STAITE Senior Catering Manager

PAUL DANE Chef

RICHIE EDES Messman / Steward

SUE SHIELDS Steward CATH THOMPSON Steward

#### 3. ITINERARY

Sailed Aberdeen Arrived Fairlie 4 July 1996 20 August 1996

#### 4. OBJECTIVES

# 4.1. Primary survey objectives

- 1. To carry out a large-scale survey of the benthic environment in the region to the West of Shetland based on a stratified random sampling design.
- 2. To carry out a depth-related transect survey at one location on the West Shetland Slope.
- 3. To carry out, as part of the transect survey, a sampler / sample intercomparison exercise for the seabed sampling equipment deployed in the course of the survey.
- 4. To carry out a large-scale photographic survey using the WASP camera system.
- 5. To carry out a photographic transect survey using a photosledge.
- 6. To sample demersal fish throughout the region using pop-up fish traps.
- 7. To recover a Bathysnap camera system previously deployed in the area.

#### 4.2. Secondary survey objectives

- 8. To expand the large-scale benthic survey by sampling strategically located sites to improve general coverage and / or investigate features revealed by TOBI sidescan data.
- 9. To similarly expand the large-scale photographic survey using the WASP camera system.

#### 4.3. Post -survey, 'NERC Days' objectives

- 10. To carry out additional seabed sampling on the transect.
- 11. To sample megabenthos and fish using otter trawl.

#### 5. NARRATIVE

# 5.1 Diary

#### Sunday 14 July

Completed loading and embarkation of scientists. Scientific party given safety instruction and an emergency muster and boat drill carried out. Sailed Aberdeen 2100 BST.

# Monday 15 July

On passage to survey area. Science meeting held to familiarise scientific party and ship's senior officers of the purpose and planned conduct of the survey. Scientists unfamiliar with *Charles Darwin* given guided tours of the ship's spaces normally accessible to scientists. SOC, ERT and OPRU representatives meet to discuss sampling protocols.

# Tuesday 16 July

Arrived at first survey station 0500 UTC; 10 kHz and 3.5 kHz fish deployed. Successfully worked Megacorer at sites X1, X2, X3, X4, V4 and V3.

#### Wednesday 17 July

Successfully worked Megacorer at sites X5, V2, and V1. Carried out wire test of acoustic releases. Following two Megacorer failures at site S4, repeated wire test of releases; the first test having failed as a result of a deck unit fault. Switched to Box corer and successfully worked sites S4, S3 and S5.

#### Thursday 18 July

Continued successful operation of Box corer at sites T1, P1, P2, H1 and H2. After two box corer failures at site H3 switched to Day grab; one useful sample (chemistry) taken in three attempts. Three attempts with no success at site E1. Similarly, no success at site B1 despite three attempts with the grab and two with the Box corer. One of two grabs at site E2 yielded a useful sample (chemistry).

#### Friday 19 July

Work at E2 continued with three unsuccessful grabs and two unsuccessful box corers. Site H4 was completed with a single drop of the Box corer. At site E3 three Box corers and four grabs yielded only a chemistry sample. Sites H5, L1, L2, P3 and L3 were successfully completed with single drops of the Box corer. In transit from H5 to L1 a fire drill and emergency muster to boat stations were carried out. On recovery of the Box corer at site P3 a rope was fouled round the top of the corer and appeared to be leading aft in to the propeller - this was freed by slowly reversing the propeller for a few revolutions. Two attempts with the box corer and four with the grab produced a full set of samples for site E4. In contrast, only two drops of the grab were required at site E5.

# Saturday 20 July

Continued working the grab: four drops at B3 for a full set of samples; seven at B2 for a chemistry sample only; six at B4 and four at B5, both yielding full sample sets. Started working the transect with the grab: six drops at '200m' and five drops at '250m' produced full sample sets, while five drops at '300m' yielded no useful samples. Switched to Box corer and successfully completed '350m', L5 and '450m' with single drops. Continuing with the Box corer, site L4 required two drops but site P4 only one.

#### Sunday 21 July

Continued successful operation of the Box corer on the transect, sites '550m', '600m', '650m' and S2 completed. Deployed fish trap at '500m'. Successful Box coring continued at sites P5, '800m' and '900m'. Next attempt with the Box corer failed in the 'Black Hole' sandy sediments of the '1000m' site. Returned to the fish trap position and successfully released and recovered the trap after a 9.5 hour soak. Switched to the Megacorer and continued transect sampling, successfully operating the corer at the '550m' and '650m' stations.

#### Monday 22 July

Continued working the Megacorer on the transect, successfully completing sites S2 and '600m'. Deployed fish trap at '800m'. Successful Megacorer drops at '800m', '900m' and '1000m'. Made second attempt to Box core the '1000m' site, again with no success (it will not work in the 'Black Hole' sand). Box core failed again at site U1, another 'Black Hole' type location. Released and recovered the fish trap after an 11 hour soak. Returned to site U1 and successfully recovered a full suite of sample with the Megacorer. Ship's safety committee convened for a regular meeting (principal scientist is a co-opted member as a head of department). Two items of relevance to the current cruise were raised: a) the need for continued vigilance, and washing down, of mud on the deck; b) with regard to rope round the prop incident, the prompt action of the duty seaman was praised, and a recommendation made (and implemented immediately) that a back-up battery for the deck VHF walkie talkie always be available in the main laboratory.

#### Tuesday 23 July

Continued working on, and in the vicinity of, the transect. Site S1 successfully completed with the Megacorer, sites N1, K1 and G1 successfully completed with the Box corer. Fish trap deployed at '300m'. Successfully worked Day grab at '350m', L5, '450m' and L4. Following one failed attempt with the grab at '600m' returned to, released and recovered the fish trap after an 11.5 hour soak. Ended day with a revisit to '300m' site, where four grab drops produced a full sample set.

#### Wednesday 24 July

Begin main operations in the North zone. Successfully sample sites A1 and A2, though both require eight drops of the grab. Site A3 takes only two grabs to complete but A4 a further seven drops. Attempt to switch to Box corer at site D1, but after two failures return to Day grab which requires five drops to produce the full sample suite. At site D2 a single attempt with the Box corer fails and samples are collected with four drops of the grab. Successfully switch to the Box corer and complete sites G2, K2, N2, R1 and K3 with a single drop each.

#### Thursday 25 July

After four Box corer failures (one of which produced some fragments of dead *Lophelia*) at site D3 switched to grab and collected full set of samples in two drops. Similarly, at site G3 after two Box corer failures switched to grab and completed sampling with five grab deployments (one of which contained fragments of living and dead *Lophelia*). On a second attempt the Box corer worked successfully at site K4. Deployed fish trap at '500m'. Successfully released and recovered Bathysnap (WoS#1) originally deployed 15 September 1995. Completed site N4 with a single drop of the Box corer. A trial deployment of the WASP system was carried out. Completed site N3 with two drops of the Box corer. Sites R4 and R5 were completed with single drops of the Box corer.

#### Friday 26 July

Continuing operations in the north zone. Box cored sites N5 and K5. After a Box corer failure at site G4 switched to Day grab and completed sampling at G4 (3 drops) and G5 (5 drops). Fish trap successfully released and recovered, and subsequently redeployed at '300m'. Finished the day with a run of three WASPs at '300m', '500m' and '800m'.

#### Saturday 27 July

Working Day grab in shallower strata of north zone: repeated G5 for better macrobenthos sample (2 drops); completed sites D5 (5 drops), A5 (5 drops) and D4 (5 drops). Fish trap successfully released and recovered, and subsequently redeployed at '800m'. Switched to Megacorer and completed sites U4 and W4.

#### Sunday 28 July

Working Megacorer in deeper strata of north zone: completed sites W5, U5, R2 and R3. Fish trap successfully released and recovered. Continued with Megacorer, completing sites U3 and U2. Deployed fish trap at '1100m'. Megacored Y3 to finish the day.

#### Monday 29 July

Continued Megacorer operations in deep strata of north zone; completed sites Y4, W3 and W2. Fish trap successfully released and recovered. Continued with Megacorer, completing sites W1 and Y5.

#### Tuesday 30 July

Continued Megacorer operations in deep strata of north zone; completed sites Z4, Z5, Z3 and Z2. Subsequent deployment of Megacorer at site Z1 appeared to have landed on its side snapping off three of the bottom closing sliders, likely cause appeared to be strong current running. Switched to Box corer and successfully completed sites Z1 and Y1.

#### Wednesday 31 July

Completed initial operations in the north zone with successful deployment of Box corer at site Y2. Proceeded to south zone via site V5 (mid-zone), completing that site with a single drop of the Megacorer. Started working the south zone with Box corer: completing stations M1 (significant damage to box), Q1, T2 and Q2. After two Box corer failures at site M2, attributed to strong current, deployed the HORNET camera system in the vicinity of site M2 at '500m'.

#### Thursday 1 August

Continue working Box corer in south zone; completed sites M2 (current now reduced), M4, Q5 and M5. Subsequent deployment of Box corer at J5 resulted in significant damage to the box and a break at a weld in the corer's support frame. Switched to Day grab and completed site J5 in four drops. Site F5 yielded no samples after seven attempts and was abandoned. Sites C14 (3 drops) and C15 (4 drops) successfully completed. After seven failed attempts site C10 was abandoned. Ten drops of the grab at site C2 yielded only chemistry samples and the site was abandoned. HORNET was deployed in the vicinity of C2 at '100m' to end the day.

#### Friday 2 August

Working Day grab in shallow strata of south zone: C3 abandoned after eight failures; C4 completed (4 drops); C5 completed (5 drops); C9 abandoned after seven failures; and, C1 completed (4 drops). Emergency drill and muster to boat stations carried out on transit to following site. Continued working the grab, completing sites: C8, C7, F4, F2, F1 and C13, each requiring between two and seven drops of the grab.

#### Saturday 3 August

Continued operations in the south zone. With Day grab completed sites C6 (2 drops), C11 (9 drops) and C12 (6 drops). Moved to deeper J stratum and switched to Box corer; completed sites J1 and J2, but after three failures at J3 reverted to grab. Completed site J3 with three drops of the grab. Deployed Fishsnack (fish trap with camera system) at '800m'. Ended the day with successful Megacorer operations at site T3.

# Sunday 4 August

Worked Megacorer at site T4, completing the site with four drops. Switched to Day grab and completed sites J4 (8 drops) and F3 (5 drops). Switched to Box corer and completed site M3; this

deployment resulted in serious damage to the corer - a weld on the lever arm at the pivot point was sheared through. Relocated to the Fishsnack position and attempted to release the mooring. Although acoustic contact was readily made and the transmission of the release code was acknowledged by received and executed returns the mooring failed to rise. Remote diagnostic checks confirmed that the release unit was fully powered and in a vertical position; i.e. there was no reason for the release to have failed to operate. The symptoms suggested that the release had operated correctly, but that the release link attached to the ballast weight remained (on a knife edge) in the open jaw of the release - possibly as a result of the frame lying at a slight angle from the horizontal. If these assumptions were correct then the mooring was likely to rise either when given a 'tidal nudge' or if dislodged by dragging. Charles Darwin therefore remained hove to over the mooring and preparations were made for a dragging attempt (500 m of sacrificial pennant were wound on to the main warp and the wire diverted to the after A-frame).

#### Monday 5 August

By mid-morning it was clear that conditions would not be suitable for a dragging attempt (force 8 winds), the vessel was therefore re-rigged for coring and survey work recommenced. Successfully worked the Megacorer at sites T5, Q4 and Q3.

#### Tuesday 6 August

With conditions still unsuitable for dragging proceeded to shallow strata of mid-zone to re-sample sites where no or only partial sample sets had been recovered in previous attempts. Working Day grab completed H3, E1, B1, E2, B2 and E3. With weather conditions now improved planned to make an attempt at dragging mooring at first light next day; for remainder of this day worked Megacorer at AA sites (additional sites located to improve alongslope coverage). Three drops at AA3 produced only a set of chemistry samples, while three drops at AA5 produced a full set of samples. On completing site AA3 *Charles Darwin* set course for the Fishsnack position.

# Wednesday 7 August

On route to the FISHSNACK position *Charles Darwin* received a radio communication from the standby vessel *Viking Protector* informing us that they had found and recovered the mooring. A rendezvous was arranged just off the drill rig *Ocean Alliance* and the mooring (intact) was boat transferred from *Viking Protector* to *Charles Darwin*. Worked Day grab at site F1 to improve quality of macrobenthos sample. After three failed attempts with the grab at site AB2 (an additional shelf C site) repositioned the site and obtained a set of chemistry samples from three drops. Broke off sampling to rendezvous with supply boat *Far Grimshader*. Boat transferred WASP camera technician and sundry goods (e.g. wellie boots for those developing trench foot) from *Far Grimshader* to *Charles Darwin*. Completed site AB2 with a final drop of the grab for a macrobenthos sample.

Recommenced operations at AA sites; successfully working the Box corer at sites AA1, AA2, AA3 and AA4.

#### Thursday 8 August

Continued operations at AA sites; successfully working the Megacorer at sites AA6, AA7, AA8 and AA9. The WASP system was deployed for a short trial. The Megacorer was deployed at '650m' to provide an archive (frozen) sample from this site which was previously noted (53757#1) to be somewhat 'unusual' (a possible temperature anomaly and rich fauna). Commenced sampling AC sites (study local variation in an area of featureless sidescan). Working Box corer, successfully completed sites AC1 to AC4 (note that AC1 was an exploratory deployment and should be discounted from the analysis of other AC sites).

# Friday 9 August

The WASP system was deployed for a short trial. Sampling at AC sites was successfully completed with Box corers at AC5 and AC6. Commenced sampling AD sites (study of local variation in an area of varied sidescan - barchan dunes). Worked Box corer successfully at sites AD1 to AD5. Successfully deployed WASP at '300m' and '400m' on the transect. Completed sampling of AA sites with two Megacorer drops at site AA10.

#### Saturday 10 August

Successfully deployed WASP at '600m' on transect. Worked Day grab in the A stratum; repeating site A1 for a better chemistry sample (6 drops) and successfully sampled AE sites (additional shelf stratum A sites), AE1 (4 drops) and AE2 (3 drops). Deployed WASP at '300m', '500m' and '800m' locations in the north zone.

# Sunday 11 August

Continued WASP operations with successful deployments at '1100m', '800m', 500m' and '300m' on the transect. Towed photosledge down transect, '400-600m'; film run through camera, however, flash gun dislodged by contact with solid object (boulder) also other signs of 'crash' damage on sledge. WASP successfully deployed at '400m' on the transect. Initiated sampling of AF sites (additional shelf stratum B sites), successfully worked Day grab at site AF1 (6 drops).

#### Monday 12 August

Completed work at AF sites with two drops of the grab at site AF2. Successfully deployed Box corer at site AG1 to investigate an area of 'smoothed' iceberg ploughmarks. Initiated sampling of AH sites (study of local variation in an area of varied sidescan - iceberg ploughmarks); working Box corer, completed sites AH1, AH2 and AH3. Broke off sampling to boat transfer WASP camera technician from *Charles Darwin* to supply boat *Far Service* in the vicinity of the drill rig *Stena D*. Recommenced work at AH sites. Successfully sampled AH4, but after two failures abandoned site

AH5, then located and successfully sampled a new site, AH6. Completed investigation of areas of 'smoothed' iceberg ploughmarks with a Box corer deployment at site AG2. Switched to the Day grab to investigate an 'ice margin scour hole', retaining a set of chemistry samples from the first deployment and carrying out a second deployment to confirm the general nature of the ground. Continued working the grab at site F6 (8 drops), a 'new' F stratum site to act as a replacement for the abandoned site F5.

# Tuesday 13 August

Completed sampling of AB sites with two successful deployments of the Day grab at site AB1. Commenced sampling 'new' and repeat sites in the C strata with the grab. Completed C18 (4 drops) and C17 (2 drops) but abandoned site C16 after ten failed drops. Finally obtained a macrobenthos sample from site C2 after seven drops. Successfully deployed WASP at '100m', '300m' and '500m' in the south zone.

#### Wednesday 14 August

Completed WASP operations in the south zone with a successful deployment at '800m'. Moved to the mid-zone and completed a WASP run in the area of canyons. Proceeded to vicinity of Amoco well site 208/17-B (north zone) and commenced a sampling programme with the Megacorer; successfully completing sites AK1 to AK3.

# Thursday 15 August

Continued working the Amoco well area, completing sites AK4 to AK9. Successfully deployed WASP in the adjacent 'Amoco coral area' at '570m'. Survey time ends; NERC time begins. Continued WASP operations with a successful deployment in the vicinity of a fault-like feature image by TOBI. Relocated to shallow end of transect. Made two test deployment of Van Veen grab and began an additional sampling programme on the transect working the Megacorer. All deployments at '200m', '250m' and '300m' failed.

#### Friday 16 August

Continued working Megacorer on the transect, successfully completing sites '350m', L5, '450m', L4, '550m', '600m', '650m', S2, '800m', '900m', '1000m' and '1100m'. Deployed fish trap at '1400m' in the north zone. Successfully deployed WASP at '1400m' (north zone) and '1200m' (transect).

#### Saturday 17 August

Continued WASP operations with a deployment at '1000m'; however, no film run, a total failure. Fished otter trawl (OTSB14) along the 1400m contour in the north zone - on recovery the net a total write off, though retaining a small catch. Successfully released and recovered the fish trap after a soak time of 23 hours. Day ended with two further WASP deployments at '900m' and '700m' on the transect.

# Sunday 18 August

Carried out the final WASP deployment of the cruise in the 'coral area' of the Kingfisher Chart. Completed cruise by sampling a final 'new' C site, C19, obtaining a full set of samples with seven drops of the Day grab. 3.5 kHz and 10 kHz fish recovered and ship set on passage to Fairlie at 1448 UTC.

# Monday 19 August

On passage to Fairlie. Scientific party stow gear and samples, and clean vessel in readiness for demobilisation.

#### Tuesday 20 August

Charles Darwin starboard side to Fairlie NATO pier by 0800 BST, demobilisation commences. Majority of scientific part depart vessel by 1200 BST, remainder by 1700.

#### 5.2. Time allocation record

| In port: | Mobilisation, Aberdeen   | 21 hrs  |           |
|----------|--------------------------|---------|-----------|
|          | Demobilisation, Fairlie  | 16 hrs  |           |
| At sea:  | Outward passage          | 32 hrs  |           |
|          | Inward passage           | 41 hrs  |           |
|          | Survey                   | 729 hrs | 35.0 days |
|          |                          |         |           |
|          | 'NERC days'              | 73 hrs  | 3.0 days  |
|          |                          |         |           |
|          |                          |         |           |
| Survey:  | Active time              | 700 hrs | 96 %      |
|          | Down time                | 29 hrs  | 4 %       |
|          | avoiding siesmic vessels | 4 hrs   |           |
|          |                          |         |           |
|          | boat transfers           | 4 hrs   |           |
|          | repairs                  | 5 hrs   |           |
|          | fish trap recovery       | 16 hrs  |           |
|          |                          |         |           |

#### 5.3. Conclusions

#### Progress towards objectives

- 1. Large-scale survey. This objective was fully met; five full sample sets were obtained from each of the survey strata.
- 2. Transect survey. This objective was fully met; full sample sets were obtained at approximately 50 m depth intervals from 150 m to 600 m and thereafter at 100 m interval to 1000 m.
- 3. Sampler / sample intercomparison. This objective was well met; samples for the comparison of Day grab and Box corer were obtained from four stations between 350 m and 500 m, samples for the comparison of Box corer and Megacorer were obtained from six stations between 550 m and 900 m.
- 4. WASP camera survey. This objective was fully met; 22 successful WASP deployments were made throughout the region.
- 5. Photographic transect. This objective was only partially attempted; only one of three planned photosledge deployments was made. The first deployment of the photosledge results in substantial damage to the sledge as a result of contact with rocks / boulders.
- 6. Fish trapping. This objective was largely achieved; only eight of the planned ten deployments were attempted. Deployments at 300 and 500 m in the south zone were cut from the programme as a result of the high risk of mooring loss in this intensively trawled area.
- 7. Bathysnap recovery. This objective was fully achieved.
- 8. Additional seabed sampling. This secondary objective was very successful; samples were obtained from some 44 strategically located stations.
- 9. Additional WASP surveying. This secondary objective was achieved; four strategically located WASP deployments were carried out in addition to those of objective 4.
- 10. Additional transect sampling. This objective was achieved; samples were obtained from 12 transect stations between 350 and 1100 m.
- 11. Otter trawling. This objective was attempted; however, the first deployment of the trawl resulted in a total write off of the net and no further trawling was attempted.

In total I believe it is fair to describe this cruise as extremely successful. Clearly, fine weather played a significant role in the success of the cruise. However, it is worth noting that weather and sea conditions were significantly worse than expected / planned for (see Appendix 1). The success of the seabed sampling programme, despite significant swell height for much of the cruise, must be attributed to a combination of the stability of RRS *Charles Darwin* and her purpose build mid-ships gear handling system. This level of success would, in my opinion, not have been possible from a stern gantry. For this, and numerous other reasons, I believe that it is important to record that the level of success achieved during this cruise largely depended on the use of a purpose built multi-role ocean-going research vessel. Equally, it must be noted that the potential of the vessel can only be realised, as in this case, when she is operated by a skilled and experienced crew.

#### 5.4. Acknowledgements

To say I was pleased with this cruise would be a vast understatement. The amount of work done was tremendous. This was a long and busy cruise, yet the atmosphere aboard remained relaxed, friendly and sociable at all times. I could write several pages in praise of numerous individuals aboard; however I don't think that would be entirely fair. My sincerest thanks instead go to every single person aboard, because I'm sure that everyone made efforts beyond the normal call of duty; thank you all. I would also like to thank all those from RVS and IOS at SOC who were lumbered with the preparation and mobilisation of this cruise while I swanned off on the first leg of the survey; all your efforts were very much appreciated.

**BRIAN BETT** 

#### 6. GEAR REPORTS

#### 6.1. Acoustic systems

The 10 kHz sounding and 3.5 kHz profiling systems performed without incident. Acoustic command (deck units) and monitoring (Waterfall displays) systems were similarly reliable. The Nautronix USBL system suffered a limited number of minor problems. The battery pack in one transponder became unreliable and was replaced with a pack made up from batteries available aboard. The hull mounted hydrophone failed / timed out on a few occasions, no cause was determined; this was cured by switching the system off and on (an effective treatment not mentioned in the supplied manual).

# 6.2. Day grab

A standard 0.1 m<sup>2</sup> Day grab, supplied by RVS, was employed during the survey, it was rigged and deployed in the conventional manner. A total of 367 Day grab deployments were made during the cruise, of which only 144 produced useful samples (i.e. an overall success rate of 31 %). The failures can be categorised as follows:

| Gear failed to trigger                    | 1.8 %  |
|-------------------------------------------|--------|
| Gear fouled by swivel or warp             | 2.2 %  |
| Grab fired but empty                      | 10.7 % |
| Jaw closure obstructed (pebbles or rocks) | 66.5 % |
| Poor and/or small sample only             | 8.9 %  |
| Sample of gravel or rocks                 | 10.7 % |

The high failure rate is very largely attributable to the nature of the ground and is likely to be common to all grab types operated in this region. Other than varying the ballast loading and replacing a kinked activating warp no significant repairs or modifications were necessary.

#### 6.3. Box corer

A modified USNEL-type 0.25 m<sup>2</sup> spade box corer, supplied by RVS, was used during the survey, it was rigged and deployed in the conventional manner. A total of 118 box corer deployments were made during the cruise, of which 77 produced useful samples (i.e. an overall success rate of 65 %).

The failures can be categorised as follows:

| Gear failed to trigger           | 7.3 %  |
|----------------------------------|--------|
| Warp fouled on lifting eye       | 12.2 % |
| Short sample; top water not held | 61.0 % |
| Little or no sample              | 12.2 % |
| Other failures                   | 7.3 %  |

Although the success rate was not particularly high, the Box corer performed very well throughout the cruise. The key problem was the gear's inability to hold short cores when recovered to the deck. Limited sediment penetration and hence short cores mainly occurred in two situations: in the shallow strata of the north zone where the superficial sediment is underlain by stiff boulder clay, and in the 'Black hole' sand of the deeper strata in the north and mid zones. Penetration might be improved by increasing the corer's ballast load; however, with a total deployed weight of approximately one tonne the corer is already a substantial piece of equipment.

Further ballasting would undoubtedly increase the severity of damage of the types encountered during the survey. On a number of occasions the corer's box was badly bent and on one occasion essentially demolished. Contact with the large rocks and boulders that seem to be common on the mid to upper slope also damaged the structure of the corer, with two incidences of welds snapping. Given the nature of the ground, future surveys contemplating using box corers in this area should, in addition to carrying spare boxes and spades, seriously consider carrying a complete second corer. No modifications were made to the corer during the survey; however, several repairs were necessary, both minor and major panel beating to restore damaged boxes, replacement of a kinked activating warp, bolt head of the lifting shackle pin cut down, and two bouts of welding to repair supporting frame and spade lever arm.

#### 6.4. Megacorer

A Bowers and Connelly (Oban) Megacorer equipped with twelve 10 cm internal diameter cores was used during the survey, other than varying the number of coring units on the head (see below and station list) it was rigged and deployed in the conventional manner. A total of 138 Megacorer deployments were made during the cruise, of which 121 produced useful samples (i.e. an overall success rate of 88 %).

The total failures can be categorised as follows:

| Hard ground, no samples | 58.8 % |
|-------------------------|--------|
| Fell over, no samples   | 11.8 % |
| Short cores only        | 17.6 % |
| Disturbed cores only    | 11.8 % |

Of those deployments yielding useful samples the following tabulation details the number of unusable cores obtained against the number of coring units deployed:

|              |             | Unusable cores (%) |      |      |      |
|--------------|-------------|--------------------|------|------|------|
| Coring units | Deployments | 0                  | 1    | 2    | more |
| 12           | 18          | 11.1               | 33.3 | 33.3 | 22.3 |
| 10           | 47          | 6.4                | 12.8 | 80.8 | 0.0  |
| 8            | 25          | 0.0                | 44.0 | 36.0 | 20.0 |
| 6            | 4           | 75.0               | 25.0 | 0.0  | 0.0  |
| 4            | 27          | 85.2               | 7.4  | 7.4  | 0.0  |

The Megacorer worked well throughout the survey, although successful operations were more-or-less limited to the mid to deeper slope strata. Of the total failures, lack of penetration into the stiff subsurface sediments of the shallower strata was the most significant cause. To a degree, however, the Megacorer can out perform the Box corer in this respect, e.g the Megacorer was able to collect and successfully retain samples from the 'Black Hole' sand. The ability to easily remove entire coring units, increasing the effective sediment penetrating force, proved to be an unforeseen bonus of the corer's design.

The Megacorer was subject to two forms of significant damage during the survey: (a) main warp fouling on the weight / trigger arm of the bottom closing mechanisms, in one case resulting in the total loss of the entire bottom closing mechanism, in a second severely bending the trigger arm and drop bar; and (b) the gear falling over resulting in bottom closing sliders being snapped off. Both of these problems could easily be avoided by providing the corer with a supporting frame that fully encloses all of the working mechanisms. No modifications were made to the corer during the survey. Fine tuning of the top closing mechanisms was necessary from time to time. Damaged (snapped) bottom sliders were replaced with spares initially and subsequently with plywood cut to the same pattern.

#### 6.5. Hornet

With the WASP system behaving somewhat erratically (see below) a backup system was conceived and constructed aboard. A fish trap frame was modified (crossbars moved to the vertical) to carry the photosledge camera and flash and the WASP altimeter and monitor. The system performed well, but is rather limited by the need to fly the vehicle at an altitude of 3m or less as a result of the limited flash output power.

#### 6.6. WASP

The WASP camera and flash system suffered a number of initial electronic faults and failures. It was possible to replace some suspect integrated circuits with component built circuits made aboard; further replacements were made following the boat transfer of the camera technician. However, the WASP system continued (and continues) to suffer from an untraceable intermittent fault that results in the camera shutting down prematurely. This fault was of little consequence to the survey, where only short deployments were required, however, it may prove to be a significant problem where full duration runs are required.

#### 6.7. Fish trap (and fishsnack)

Functionally the fish traps performed well. The only problem encountered being the failure of the mooring to rise on command on one occasion (see narrative). The catch rate of the traps was, however, rather disappointing: for the first eight deployments the catch averaged less than one fish. Given that the last deployment alone took 34 fish it is clear that the traps 'work'. It is possible that the performance of the traps could be generally improved by modifications to the entrances (some minor changes were made during the survey to no obvious effect). The difficulties in operating towed gear in the survey region (see below) suggest that further development of traps would be useful. One deployment of the fish trap was modified to a Fishsnack (aff. Bathysnack) by the removal of one of the cages and the fitting of the sledge camera and flash in a standard Bathysnap orientation.

# 6.8. Photosledge and otter trawl

Only one deployment each of the photosledge and otter trawl were attempted as a result of damage sustained to both during these tows. As the WASP photographs will reveal the survey region, particularly the shallower strata, is strewn will ice-rafted rocks and boulders. Although trawling for

demersal fish is evidently a suitable commercial prospect in the area, the use of large diameter rollers on the foot ropes of such demersal trawls is a safety feature not possible where semi-quantitative catches of megabenthos are required. With a redesign or reconfiguration of the (or another) photosledge it may be possible to complete a bottom tow without incurring significant risk; however, quantitative assessment of the megabenthos from photographs would be compromised (with a single camera system) by the varying orientation of the sledge as it rides over obstructions. Off bottom systems, such as WASP, would seem to offer the best option for routine surveys of the megabenthos under these circumstances.

#### 7. SURVEY DESIGN

# 7.1. Seabed sampling

#### 7.11. Large-scale survey

The large-scale survey was conducted on the basis of a stratified random design. Primary stratification was by depth, with secondary stratification by geography (dividing the region in to north, mid and south zones), additionally the shallowest stratum (< 200 m) of the south zone was subdivided in to three substrata (to improve areal coverage); see figures 1 and 2 and charts 3a-d. Each stratum is designated by a single letter prefix, A - Z (excluding I and O) as follows:

| Depth      | North | Mid | South |
|------------|-------|-----|-------|
| <200m      | A     | В   | С     |
| 200-300m   | D     | E   | F     |
| 300-400m   | G     | Н   | J     |
| 400-500m   | K     | L   | M     |
| 500-600m   | N     | P   | Q     |
| 600-800m   | R     | S   | T     |
| 800-1000m  | U     | V   |       |
| 1000-1200m | W     | X   |       |
| 1200-1400m | Y     |     |       |
| >1400m     | Z     |     |       |

Sampling effort was allocated on a simple proportional basis of five sites per stratum, e.g. A1-A5, B1-B5 etc, note that sites in the substrata of stratum C are designated C1-5, C6-C10, C11-C15. Sites were located by random co-ordinate selection within strata. Note that four of the originally selected sites could not be sampled: C3, C9, C10 and F5; they were abandoned after 7 or 8 failed attempts

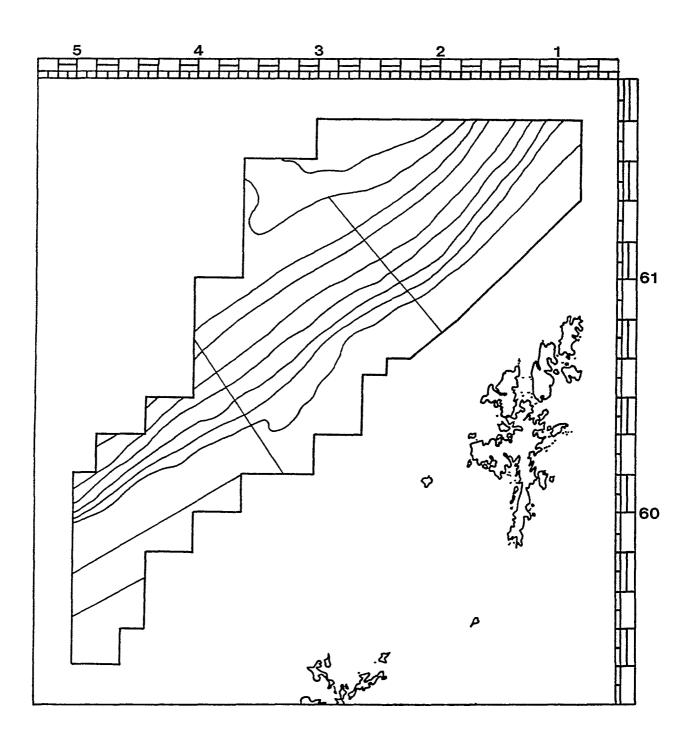



Figure 1. Location of survey area, showing outer boundaries of the survey area and the internal divisions of the area used in the large-scale stratified random sampling programme. (The isobaths shown are: 200, 300, 400, 500, 600, 800, 1000, 1200 and 1400 m, see text for further details.)

| North                                    | Mid                                                 | South                                    |                                           |
|------------------------------------------|-----------------------------------------------------|------------------------------------------|-------------------------------------------|
| ○ Large-scale                            | survey sites                                        | <b>c</b> 00000                           |                                           |
| A 00000<br>D 00000<br>G 00000<br>K 00000 | B 00000<br>E 00000<br>H 00000<br>L 00000<br>P 00000 | C 00000<br>F 00000<br>J 00000<br>M 00000 | 200 m<br>300 m<br>400 m<br>500 m<br>600 m |
| W 00000                                  | <b>v</b> 00000                                      | T 0000                                   | 800 m                                     |
| <b>Y</b> 00000                           | 1400 m                                              | ] 1200 m                                 |                                           |

Figure 2. Schematic representation of the stratified survey area showing the disposition of successful sampling sites by strata.

with the Day grab. These failed sites were replaced with additional randomly selected sites as follows:

| C19 | replaces C3  |
|-----|--------------|
| C17 | replaces C9  |
| C18 | replaces C10 |
| F6  | replaces F5  |

(Note that site C16 was an attempted replacement site that was abandoned after 10 failed grabs.) Five full sample sets were successfully obtained from each stratum or substratum.

In the subsequent analysis of data from strata C and F it will be important to acknowledge and account for the inability to sample the originally selected sites.

# 7.12. Transect survey

Transect survey sites were located systematically in a near-linear downslope arrangement incorporating four sites from the large-scale survey (B5, L5, L4, and S2) to economise on sampling effort. Transect sites are designated by the prefix 'Tr' and their nominal depth (Tr200, Tr250, Tr300 etc). Full sample sets were obtained from the following sites (see figure 3 and chart 4):

| Depth (ucm) | Site   |
|-------------|--------|
| 134         | B5     |
| 202         | Tr200  |
| 248         | Tr250  |
| 290         | Tr300  |
| 346         | Tr350  |
| 414         | L5     |
| 454         | Tr450  |
| 500         | L4     |
| 552         | Tr550  |
| 601         | Tr600  |
| 650         | Tr650  |
| 709         | S2     |
| 804         | Tr800  |
| 917         | Tr900  |
| 998         | Tr1000 |

#### 7.13. Gear comparison exercise

Sampling for the gear comparison exercise was combined with that of the transect survey to economise on effort. The study was designed for subsequent analysis to be carried out on a paired sample basis; full sample sets for the following pair comparisons were collected (see figure 3 and chart 4):

Day grab vs. Box corer - Tr350, L5, Tr450 and L4

Box corer vs. Megacorer - Tr550, Tr600, Tr650, S2, Tr800 and Tr900

# 7.14. Additional strategic sampling

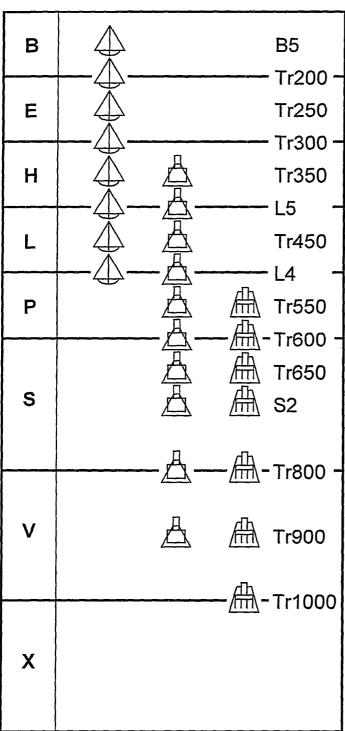
In addition to the large-scale survey and work on the transect, other sampling was undertaken for a variety of purposes as outlined below. These additional sites are identified by a two letter prefix AA-AK (excluding AI). The general disposition of these sites relative to those of the large-scale survey is shown schematically in figure 4 (see also charts 3a-d).

- Study of alongslope variation. Sites AA1 AA10 were located strategically to fill 'gaps' in the large-scale survey coverage, principally to investigate alongslope variation.
- Additional shelf edge strata sites. Two additional sites were located in each of the three shelf edge strata; i.e. AE1,2 in stratum A, AF1,2 in stratum B, and AB1,2 in stratum C. These sites were located strategically to fill 'gaps' in the alongslope coverage of the large-scale survey.
- Studies of local variation. Three locations were strategically selected from the TOBI sidescan record to assess the relative heterogeneity of acoustic fabric against that of corresponding ground-truth samples. The nominal position of AC was located in an area of relatively featureless sidescan, AD in an area interpreted as barchan dunes, and AH in an area of iceberg ploughmarks. At each of these three positions five replicate samples were obtained at random (by random range and bearing) within a circular area centred on the nominal position and having a radius of three cables (approximately 500 m).
- Investigation of areas of 'smoothed' iceberg ploughmarks. Sites AG1 and AG2 were strategically located in two separate areas of 'smoothed' iceberg ploughmarks as interpreted from the TOBI sidescan record.

Investigation of an ice margin scour hole. Site AJ1 was strategically located in an area interpreted as an ice margin scour hole on the TOBI sidescan record.

Investigation of AMOCO well site 208/17-B (AK sites). Sites AK1 - AK 9 were strategically located in the vicinity of AMOCO well site 208/17-B, as follows:

| Site | Nominal location                 |
|------|----------------------------------|
| AK1  | 200 m upslope of well site       |
| AK2  | 200 m upcurrent of well site     |
| AK3  | 200 m downslope of well site     |
| AK4  | 200 m downcurrent of well site   |
| AK5  | 500 m downcurrent of well site   |
| AK6  | 1400 m downcurrent of well site  |
| AK7  | 3800 m downcurrent of well site  |
| AK8  | 10000 m downcurrent of well site |
| AK9  | at the well site                 |


Note that replicate samples (i.e. separate drops) were obtained from each of the nominal site locations.

# 7.15. Additional transect sampling

Further sampling of the transect sites was carried out during the 'NERC days' as follows:

| Depth (ucm) | Site   |
|-------------|--------|
| 345         | Tr350  |
| 415         | L5     |
| 454         | Tr450  |
| 498         | L4     |
| 553         | Tr550  |
| 600         | Tr600  |
| 649         | Tr650  |
| 708         | S2     |
| 798         | Tr800  |
| 915         | Tr900  |
| 998         | Tr1000 |
| 1088        | Tr1100 |

# Mid



Day grab



**Box corer** 



Megacorer



Figure 3. Schematic representation of successful survey sampling operations on the transect.

| North                    |        | Mid    |            | South  |        |       |
|--------------------------|--------|--------|------------|--------|--------|-------|
| ○Additional survey sites |        |        |            | C<br>C |        |       |
| Α                        | ○AE1-2 | В      | ○AF1-2     | С      | ○AB1-2 | 200   |
| D                        |        | E      |            | F      | 0.44   | 200 m |
| G                        | ○AD1-5 | Н      |            | J      | OAJ1   | 300 m |
| K                        |        | L      | ○AA2-3     | M      |        | 400 m |
| N                        | OAK1-9 | Р      | OAC1-6OAA4 | Q      |        | 500 m |
| R                        | ⊖AA10  | S      | ○AA5-9     | Т      |        | 600 m |
| U                        |        | ٧      |            |        |        | 800 m |
| w                        |        | X      |            | 1000 m |        |       |
| Υ                        |        | 1200 m |            |        |        |       |
| Z                        |        | 140    | 00 m       |        |        |       |

Figure 4. Schematic representation of the stratified survey area showing the disposition of successful additional strategic sampling sites by strata.

### 7.2. WASP photographic survey

WASP deployments were carried out in a systematic manner to give coverage of 300, 500 and 800 m in each of the three survey zones (north, mid, south), and additionally at 100 m in the south zone. Further deployments were made at 400, 600, 700, 900 and 1100 m on the transect in the mid zone. The transect was effectively extended by two additional deployments; one at 1200 m on the boundary between the north and mid zones, and one at 1400 m in the north zone.

WASP was also deployed on four 'strategic' target areas:

- (a) the fault-like feature imaged by TOBI in the K stratum;
- (b) in the vicinity of AMOCO well site 208/17-B, where earlier sidescan interpretations had suggested the presence of *Lophelia* (stratum N);
- (c) the canyons or channels imaged by TOBI in the southern reaches of stratum V; and
- (d) the main 'coral' area identified on the Kingfisher chart (stratum J).

The general disposition of successful WASP deployments relative to the survey strata is shown schematically in figure 5 (see also chart 5).

#### 7.3. Fish trap operations

The fish trap was deployed at 300, 500 and 800 m in the north and mid zones; in the south zone the trap was only deployed at 800 m as result of the perceived risk of gear loss to the intensive commercial trawling activity in the shallower strata of this zone. Additional deployments were carried out at 1100 and 1400 m in the north zone (see figure 6 and chart 6).

#### 7.4. Other operations

Three other gears were deployed during the cruise: HORNET, photosledge and otter trawl. HORNET was deployed on two occasions to trial the system as a potential backup for WASP. Only one deployment each of the photosledge and otter trawl was attempted as both deployments resulted in significant damage to the gear; though both did yield some useful results (see figure 7 and chart 7).

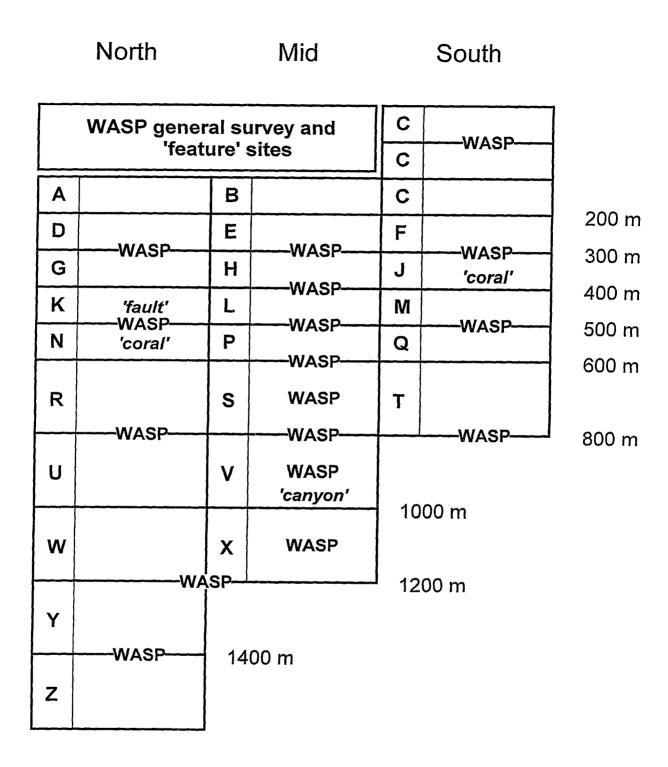



Figure 5. Schematic representation of the stratified survey area showing the disposition of successful WASP deployments by strata.

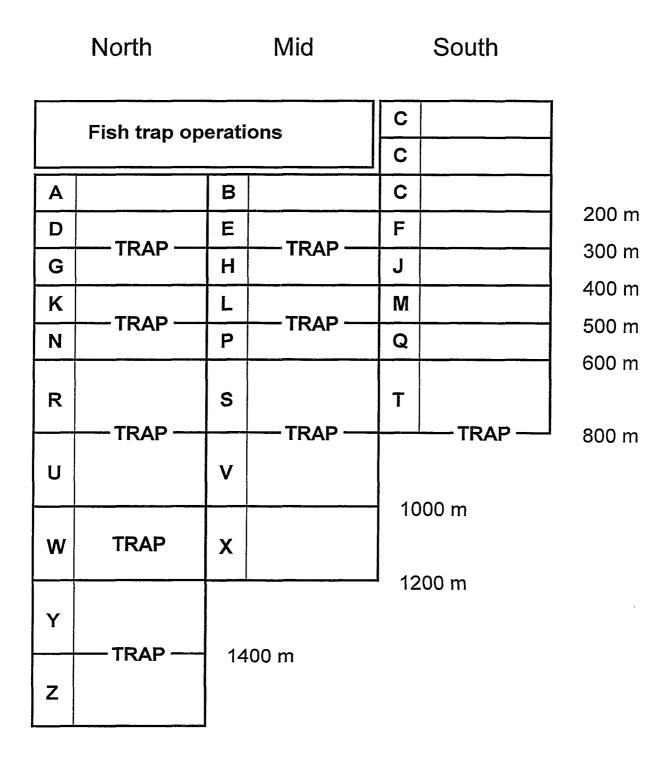



Figure 6. Schematic representation of the stratified survey area showing the disposition of fish trap deployments by strata.

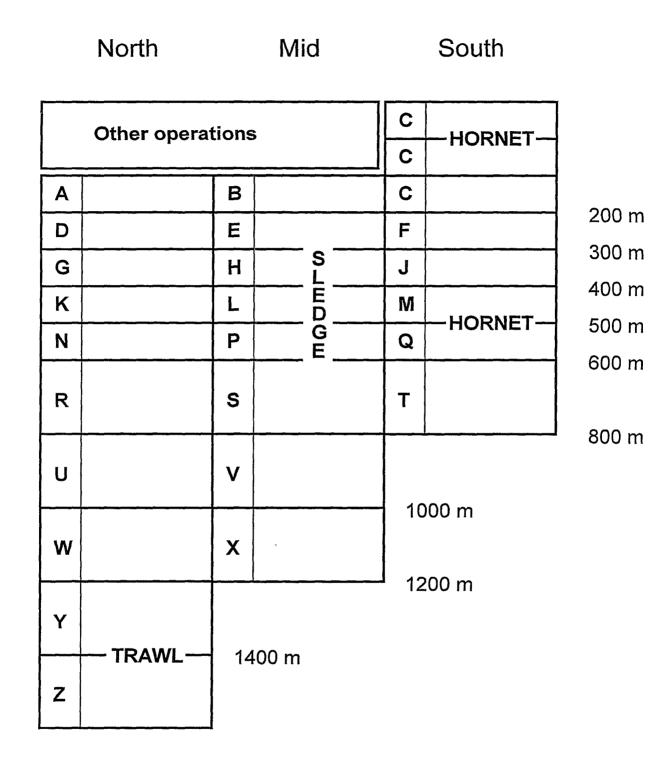



Figure 7. Schematic representation of the stratified survey area showing the disposition of HORNET, photosledge and otter trawl deployments by strata.

#### 8. SAMPLING PROTOCOL

# 8.1. Standard sampling protocol

The standard protocol, as detailed below, was carried out at the following sites:

A-Z large-scale survey
Trxxx transect and gear comparison
AA alongslope variation
AB, AE, AF shelf edge strata
AG 'smoothed' iceberg ploughmarks
AJ1 ice margin scour hole (NB chemistry samples only)

Of necessity, variant protocols were followed for samples from the Megacorer, Box corer and Day grab.

# 8.11. Megacorer

On recovery of the corer, the function of each coring unit was checked and recorded. Core lengths were measured and recorded and any surface and profile features noted. Sample acceptance was based on the following criteria: cores > 10 cm in length; core surfaces essentially level; and, the sediment-water interface intact. The latter criterion was partly relaxed where localised disturbance had been caused by the dislodgement of gravel during core penetration. Acceptable cores were removed from the corer and transferred to the ship's laboratories for subsequent processing. In all cases, processing began with the careful removal of the supernatant water using a pump siphon and syringe.

For macrobenthos samples, cores were further processed as follows. Cores were extruded (by plunger from below) and sectioned into two horizons, 0-5 cm and 5-10 cm. Corresponding horizons from successive cores were pooled to produce a nominal sample size of eight cores. Where only seven acceptable cores were available (six sites) this was deemed to be an acceptable sample and no further sampling was undertaken. Where less than seven acceptable cores were available from a single drop a further deployment of the corer was undertaken; where the additional deployment failed to yield at least seven cores (5 sites) cores from both deployments were combined to give a sample size of at least seven cores (2 sites). Macrobenthos samples were then elutriated through 0.5 mm and 0.25 mm

sieve meshes. The four resultant residues (0-5 cm - 0.5 mm, 0-5 cm - 0.25 mm, 5-10 cm - 0.5 mm, 5-10 cm - 0.25 mm) were fixed and preserved in 10 % formalin.

Hydrocarbon samples were collected by extruding the cores into a metal collar and sectioning off the 0-2 cm horizon. The samples were preserved, in glass pots, by freezing at -20 °C.

Heavy metal samples were collected by extruding the cores into a polycarbonate collar and sectioning off the 0-2 cm horizon. The samples were preserved, in polycarbonate pots, by freezing at -20 °C.

Particle size samples were collected by extruding the cores into a polycarbonate collar and sectioning off the 0-5 cm horizon. The samples were preserved, in polythene bags, by freezing at -20 °C.

#### 8.12. Box corer

On recovery of the corer, its function was checked and recorded. If, on inspection through the top vents, the core appeared to be acceptable, the box and spade were dismounted and moved to a clear deck space. Sample acceptance was based on the following criteria: cores > 10 cm in length; core surfaces essentially level (excepting relief deemed to be natural); sediment surface covering the full cross-sectional area of the box (excepting limited, 5cm or less, lateral compression); and, essentially clear supernatant water. Processing of acceptable cores started with the division of the core's surface area into macrobenthos and chemistry areas. A metal insert of either 0.1 m<sup>2</sup> or 0.15 m<sup>2</sup> was pushed into the sediment with one of its edges against one side of the box. The open sediment area and that enclosed by the insert were then separately drained of supernatant water using a pump siphon. The overlying water from the 0.1 m<sup>2</sup> area (whether enclosed or open) was drained through a 0.25 mm sieve and any sieve residue subsequently combined with the 0-5 cm sediment layer (see below). The overlying water from the 0.15 m<sup>2</sup> area (whether enclosed or open) was drained to waste (see figure 8). The use of the insert ensured that little or no movement of superficial sediments between areas occurred during the draining process. In the vast majority of cases the 0.15 m<sup>2</sup> insert was used; however, where gravel or cobbles obstructed its use the 0.1 m<sup>2</sup> insert was used. In a few cases neither insert could be used, in this event the core was drained and its surface divided by measuring off a 0.1 m<sup>2</sup> area and marking it with a trowelled line. Once drained, the surface of the core was examined and a record made of any surface features and / or fauna of note; the majority of core tops were also photographed at this point.

For macrobenthos samples, cores were further processed as follows. The front of the box was removed and the sediment underlying the 0.1 m<sup>2</sup> area trowelled out in two horizons: 0-5 and 5-10 cm. Macrobenthos samples were then elutriated through 0.5 mm and 0.25 mm sieve meshes. The four

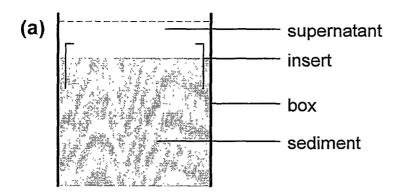
resultant residues (0-5 cm - 0.5 mm, 0-5 cm - 0.25 mm, 5-10 cm - 0.5 mm, 5-10 cm - 0.25 mm) were fixed and preserved in 10 % formalin.

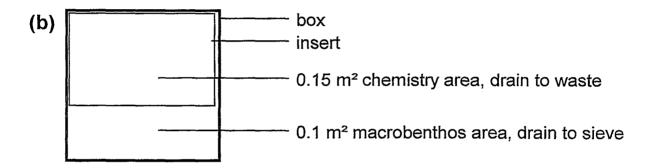
Hydrocarbon samples were collected from the 0.15 m<sup>2</sup> area using a metal scoop to a nominal depth of 2 cm. The samples were preserved, in glass pots, by freezing at -20 °C.

Heavy metal samples were collected from the 0.15 m<sup>2</sup> area using a plastic scoop to a nominal depth of 2 cm. The samples were preserved, in polycarbonate pots, by freezing at -20 °C.

Particle size samples were collected from the 0.15 m<sup>2</sup> area using a plastic scoop to a nominal depth of 5 cm. The samples were preserved, in polythene bags, by freezing at -20 °C.

# 8.13. Day grab


On recovery of the grab, its function was checked and recorded. Sample acceptance was based on the following criteria: grab fully closed; grab holding or only slowly leaking supernatant water. In the case of chemistry samples, the sample was taken to be acceptable if it contained sufficient material to generate a full set of samples. In the case of macrobenthos samples, potentially acceptable samples were measured for volume in a calibrated bucket. In the majority of cases (63 %) the finally accepted sample was of 5 litres or more, though at 12 % of sites samples of between 3 and 5 litres were accepted out of practical necessity. At the remaining 25 % of sites it was necessary to pool two, and in one case three, grabs to obtain an acceptable sample size.


Macrobenthos samples were then processed by elutriating the complete contents of one or more grabs though 0.5 mm and 0.25 mm sieve meshes. The two resultant residues were fixed and preserved in 10 % formalin.

Hydrocarbon samples were collected from the chemistry grab using a metal scoop to a nominal depth of 2 cm. The samples were preserved, in glass pots, by freezing at -20 °C.

Heavy metal samples were collected from the chemistry grab using a plastic scoop to a nominal depth of 2 cm. The samples were preserved, in polycarbonate pots, by freezing at -20 °C.

Particle size samples were collected from the chemistry grab using a plastic scoop to a nominal depth of 5 cm. The samples were preserved, in polythene bags, by freezing at -20 °C.





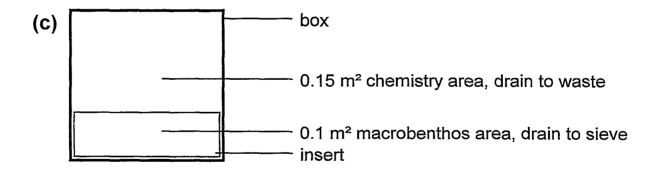



Figure 8. Box corer sampling protocol - use of inserts. (a) Cross-section of box core though insert. (b) Operation of 0.15 m² insert in plan view. (c) Operation of 0.1 m² insert in plan view.

## 8.2. Reduced sampling protocol

A reduced version of the standard sampling protocol was employed for the studies of local variation (sites AC, AD and AH). At these sites hydrocarbon, heavy metal and particle size samples were collected as per the standard protocol for the Box corer; however, macrobenthos samples were taken as a single 0 - 10 cm horizon and elutriated over a 0.5 mm sieve only.

## 8.3. AMOCO well site survey sampling protocol

The well site survey (AK sites) was carried out using the Megacorer only. Hydrocarbon, heavy metal and particle size samples were collected as per the standard protocol for the Megacorer. No macrobenthos samples were collected. Meiobenthos samples were collected as follows: two 2.6 cm internal diameter (syringe) subcores were inserted in to a single Megacorer core to a depth in excess of 5 cm, the subcores were dug out, extruded to give a length of 5 cm and fixed jointly in 10 % formalin. The pooled material therefore represents a 10.62 cm², 0 - 5 cm horizon sample.

## 8.4. Additional transect sampling protocol

The 'NERC days' transect sampling was carried out using the Megacorer only. Meiobenthos samples were collected as detailed above in the AMOCO well site survey protocol. Foraminifera samples were collected as follows: supernatant water was carefully removed by siphon and syringe, the core extruded and sectioned in to 1 cm horizons down to 10 cm sediment depth, and the sections fixed separately in 10 % formalin. Archive cores were also retained; the supernatant water was carefully removed, the cores frozen to -20 °C in an upright position, and subsequently extruded and wrapped in tin foil then returned to a -20 °C freezer.

# 9. SCIENTIFIC OBSERVATIONS

# 9.1. Seabed sampling

A general synopsis of the seabed sampling in terms of bottom type and obvious fauna follows, a report of corresponding geological observations is given in appendix 2.

|             | ~          |                                                                                       |
|-------------|------------|---------------------------------------------------------------------------------------|
| < 200 m     | Stratum A. | Coarse to fine shelly sand, with pebbles / stones, somewhat difficult ground to work. |
|             | Stratum B. | Fairly coarse sand, some shell debris, with pebbles and stones, quite                 |
|             |            | difficult ground to work. Sea pens and solitary corals noted.                         |
|             | Stratum C. | Variably coarse sand, gravel and rocks, variation appears to occur                    |
|             |            | over relatively short spatial scale.                                                  |
| 200 - 300 m | Stratum D. | Coarser shelly sand over stiff clag. Fragments of dead <i>Lophelia</i> recovered.     |
|             | Stratum E. | Difficult ground to work; fairly coarse sand, pebbles and stones.                     |
|             | Stratum F. | Variably coarse sand, gravel and rocks (as per stratum C).                            |
| 300 - 400 m | Stratum G. | Varied shelly sand over stiff clag, possibly undulating ground. Sand                  |
|             |            | wave like topography in the one box core sample obtained. Tube                        |
|             |            | worms, brachiopods and cerianthids recorded. Some live and dead                       |
|             |            | Lophelia recovered.                                                                   |
|             | Stratum H. | Coarse sediments with stones, one example of a sand wave like                         |
|             |            | feature. Epifauna (sponges and ophiuroids) quite abundant.                            |
|             | Stratum J. | Coarse-fine shelly sand. Two incidences of sand wave like features,                   |
|             |            | gravel and rocks present. Generally, little obvious encrusting fauna.                 |
| 400 - 500 m | Stratum K. | A 50:50 mix of sand wave like and flat ground. Some gravel and                        |
|             |            | cobbles with encrusting fauna (sponges and brachiopods, etc.),                        |
|             |            | ophiuroids and worm tubes also noted.                                                 |
|             | Stratum L. | A sand wave stratum, with 10 cm scale local relief. Sponges and                       |
|             |            | brachiopods abundant.                                                                 |
|             | Stratum M. | Generally level ground of coarse-fine shelly sand, with gravel and                    |
|             |            | some cobbles. Relatively little sessile epifauna, though squat lobsters               |
|             |            | common.                                                                               |

| 500 - 600 m   | Stratum N. | Generally level ground of muddy sand with some gravel. Sponges, brachiopods, ophiuroids and worm tubes noted.                                                                                                        |
|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Stratum P. | Generally level ground, sponges ophiuroids and brachiopods abundant.                                                                                                                                                 |
|               | Stratum Q. | Generally level sandy substrate, epifauna better developed than stratum M, though not particularly abundant.                                                                                                         |
| 600 - 800 m   | Stratum R. | Level muddy sand bottom, ophiuroids may be particularly abundant.                                                                                                                                                    |
|               | Stratum S. | Fairly level bottom of softer muddy sand or fine sand. Polychaete tubes may be quite dense.                                                                                                                          |
|               | Stratum T. | Level ground of medium sand with some gravel, having only a modest encrusting fauna.                                                                                                                                 |
| 800 - 1000 m  | Stratum U. | Generally of the 'Black Hole' sand type, some gravel present. Deep<br>burrows noted; sabellids(tube-dwelling polychaetes) and<br>pycnogonids (sea spiders) quite abundant.                                           |
|               | Stratum V. | Ground probably variable across the stratum: soupy muddy sand near<br>the canyons to the south; 'Black Hole' sand to the north. On the<br>sand, enteropneusts (acorn worms) and polychaete tubes may be<br>abundant. |
| 1000 - 1200 m | Stratum W. | Thin (3 cm) muddy-sand veneer over clag. Sabellids / their tubes numerous, deep vertical burrows present, pycnogonids abundant.                                                                                      |
|               | Stratum X. | Fairly muddy ground, pycnogonids abundant.                                                                                                                                                                           |
| 1200 - 1400 m | Stratum Y. | Thin muddy-sand veneer over clag. Sabellids common, octocorals (soft corals) on gravel, some ophiuroids, stalked tunicates (sea squirts) and deep burrows.                                                           |
| > 1400 m      | Stratum Z. | Essentially as per stratum Y, though ophiuroids may be more abundant.                                                                                                                                                |

## 9.2. Fish trap operations

Fish trap catches are summarised in the following table.

| ZONE  | DEPTH  | FISH CATCH                               | OTHER CATCH                  |
|-------|--------|------------------------------------------|------------------------------|
| North | 300 m  | 1 Torsk (Brosme brosme)                  | Amphipoda, Isopoda           |
| North | 500 m  | Nil                                      | Amphipoda, Decapoda          |
| North | 800 m  | Nil                                      | Amphipoda                    |
| North | 1100 m | 1 Arctic rockling (Onogadus argentatus)  | Amphipoda                    |
| North | 1400 m | 34 Arctic rockling (Onogadus argentatus) | Amphipoda                    |
|       |        |                                          |                              |
| Mid   | 300 m  | 1 Blue ling (Molva dipterygia)           | Amphipoda, Isopoda, Mollusca |
| Mid   | 500 m  | 4 Torsk (Brosme brosme)                  | Amphipoda, Decapoda          |
| Mid   | 800 m  | Nil                                      | Amphipoda                    |
|       |        |                                          |                              |
| South | 800 m  | Nil                                      | Nil                          |

## 9.3. Otter trawl catch

On recovery of the trawl, the net was found to be very seriously damaged; it was ripped end to end down the starboard wing and the codend was completely detached. A small catch was nevertheless retained, though it is impossible to say whether or not this catch is representative. The fish catch consisted of 11 arctic rockling (*Onogadus argentatus*) and eight eelpouts (Zoarcidae), possibly of more than one species. The remainder of the catch was dominated by small stalked sponges, most having epizoic anemones. Sea spiders (Pycnogonida) were also common, including a number of large specimens (leg span to 30 cm). Other abundant taxa included burrowing anemones (Ceriantharia) and 'gerkin worms' (Priapulida).

## 10. SAMPLE CATALOGUE

All of the samples retained during the cruise are listed below by major survey component:

Large-scale survey

Additional strategically located sites

Transect survey and gear comparison study

WASP operations

Fish trap operations

Other operations

Additional transect sampling

## Abbreviations used in the catalogue:

| HC                 | hydrocarbon sample       |
|--------------------|--------------------------|
| HM                 | heavy metal sample       |
| PS                 | particle size sample     |
| у                  | yes / available          |
| MACROB.            | macrobenthos sample      |
| 0.1 m <sup>2</sup> | macrobenthos sample size |
| 8 cores            | macrobenthos sample size |
| MEIOB.             | meiobenthos sample       |
| FORAM.             | Foraminifera sample      |
| ARCHIVE            | archive sample           |

Note that additional samples (and data) were retained by the BGS representive (Colin Graham): see appendix 2.

10.1. Sample catalogue - large-scale survey

| SITE       | STATION                  | DEPTH | GEAR     | нс | нм | PS | MACROB. |
|------------|--------------------------|-------|----------|----|----|----|---------|
| A1         | 53785#4                  | 117   | Day Grab | у  | у  | у  |         |
| A1         | 53785#7                  | 117   | Day Grab |    |    |    | 0.1 m2  |
| A1         | <i>5</i> 391 <i>7</i> #4 | 116   | Day Grab | У  | У  | У  |         |
| Al         | <i>5</i> 391 <i>7</i> #6 | 116   | Day Grab | У  | у  |    |         |
| A2         | 53786#5                  | 148   | Day Grab | У  | У  | У  |         |
| A2         | 53786#7                  | 146   | Day Grab |    |    |    | 0.1 m2  |
| A3         | 53787#1                  | 160   | Day Grab | У  | У  | У  |         |
| A3         | 53787#2                  | 158   | Day Grab |    |    |    | 0.1 m2  |
| A4         | 53788#3                  | 133   | Day Grab | У  | У  | У  |         |
| A4         | 53788#7                  | 133   | Day Grab |    |    |    | 0.1  m2 |
| A.5        | 53815#3                  | 180   | Day Grab | У  | У  | У  |         |
| A5         | 53815#4                  | 180   | Day Grab |    |    |    | 0.1  m2 |
| <b>A</b> 5 | 53815#5                  | 180   | Day Grab |    |    |    | 0.1 m2  |
| B1         | 53883#1                  | 168   | Day Grab |    |    |    | 0.1 m2  |
| B1         | 53883#2                  | 168   | Day Grab |    |    |    | 0.1 m2  |
| B1         | 53883#3                  | 167   | Day Grab | У  | У  | У  |         |
| B2         | 53744#1                  | 120   | Day Grab | У  | у  | у  |         |
| B2         | 53885#2                  | 120   | Day Grab |    | •  | •  | 0.1 m2  |
| B2         | 53885#5                  | 120   | Day Grab |    |    |    | 0.1 m2  |
| <b>B</b> 3 | 53743#1                  | 147   | Day Grab | у  | У  | У  |         |
| B3         | 53743#4                  | 148   | Day Grab |    | •  | •  | 0.1 m2  |
| B4         | 53745#5                  | 143   | Day Grab | у  | У  | у  |         |
| B4         | 53745#6                  | 143   | Day Grab | 2  | •  | •  | 0.1 m2  |
| B5         | 53746#1                  | 134   | Day Grab | у  | у  | у  |         |
| B5         | 53746#4                  | 133   | Day Grab | •  | •  | •  | 0.1 m2  |
| C1         | 53859#2                  | 107   | Day Grab | у  | у  | у  |         |
| C1         | 53859#4                  | 108   | Day Grab | •  | •  | •  | 0.1 m2  |
| C2         | 53854#4                  | 100   | Day Grab | у  | у  | у  |         |
| C2         | 53946#1                  | 98    | Day Grab | •  | •  | •  | 0.1 m2  |
| C2         | 53946#3                  | 96    | Day Grab |    |    |    | 0.1 m2  |
| C4         | 53856#3                  | 110   | Day Grab | у  | У  | у  |         |
| C4         | 53856#4                  | 110   | Day Grab | •  | •  | •  | 0.1 m2  |
| C5         | 53857#2                  | 127   | Day Grab | У  | у  | У  |         |
| C5         | 53857#4                  | 127   | Day Grab | -  | •  | •  | 0.1 m2  |
| C5         | 53857#5                  | 127   | Day Grab |    |    |    | 0.1 m2  |
| C6         | 53866#1                  | 123   | Day Grab | У  | У  | У  |         |
| C6         | 53866#2                  | 123   | Day Grab | •  | •  | •  | 0.1 m2  |
| C7         | 53861#1                  | 123   | Day Grab | у  | у  | У  |         |
| C7         | 53861#2                  | 123   | Day Grab | J  | ,  | •  | 0.1 m2  |
| C8         | 53860#4                  | 110   | Day Grab | у  | У  | У  |         |
| C8         | 53860#7                  | 110   | Day Grab | ,  | ,  | •  | 0.1 m2  |
| C11        | 53867#6                  | 140   | Day Grab | у  | у  | У  |         |
| C11        | 53867#8                  | 139   | Day Grab | ,  | ,  | •  | 0.1 m2  |
| C11        | 53867#9                  | 139   | Day Grab |    |    |    | 0.1 m2  |
| C12        | 53868#3                  | 181   | Day Grab | у  | у  | У  |         |
| C12        | 53868#5                  | 178   | Day Grab | ,  | ,  | •  | 0.1 m2  |
| •          | •                        | *     | •        |    |    |    |         |

| C12 | 53868#6 | 176 | Day Grab |   |   |   | 0.1 m2   |
|-----|---------|-----|----------|---|---|---|----------|
| C13 | 53865#2 | 170 | Day Grab | У | У | У |          |
| C13 | 53865#4 | 170 | Day Grab | • | • | , | 0.1 m2   |
| C14 | 53851#1 | 152 | Day Grab | у | у | у |          |
| C14 | 53851#3 | 152 | Day Grab |   |   | , | 0.1 m2   |
| C15 | 53852#2 | 155 | Day Grab |   |   |   | 0.1 m2   |
| C15 | 53852#4 | 156 | Day Grab | у | у | у |          |
| C17 | 53944#1 | 122 | Day Grab | , | , | J | 0.1 m2   |
| C17 | 53944#2 | 123 | Day Grab | у | У | у |          |
| C18 | 53943#3 | 123 | Day Grab | y | y | y | •        |
| C18 | 53943#4 | 123 | Day Grab | , | • | , | 0.1 m2   |
| C19 | 53987#3 | 104 | Day Grab |   |   |   | 0.1 m2   |
| C19 | 53987#7 | 104 | Day Grab | У | У | У |          |
|     |         |     |          | , | • | J |          |
| D1  | 53789#5 | 226 | Day Grab | у | у | У |          |
| D1  | 53789#7 | 225 | Day Grab | _ | • | • | 0.1 m2   |
| D2  | 53790#4 | 274 | Day Grab |   |   |   | 0.1 m2   |
| D2  | 53790#5 | 274 | Day Grab | У | У | у |          |
| D3  | 53796#5 | 250 | Day Grab | • | • | • | 0.1 m2   |
| D3  | 53796#6 | 249 | Day Grab | у | У | у |          |
| D4  | 53816#3 | 235 | Day Grab | , | y | y |          |
| D4  | 53816#4 | 235 | Day Grab |   | , | , | 0.1 m2   |
| D4  | 53816#5 | 236 | Day Grab | У |   |   | 0.1 1112 |
| D5  | 53814#3 | 247 | Day Grab | У | у | у |          |
| D5  | 53814#5 | 249 | Day Grab | , | , | , | 0.1 m2   |
|     |         | ,   | ,        |   |   |   | 011 1112 |
| E1  | 53882#1 | 239 | Day Grab | у | у | У |          |
| E1  | 53882#3 | 240 | Day Grab | • | • | , | 0.1 m2   |
| E1  | 53882#5 | 235 | Day Grab |   |   |   | 0.1 m2   |
| E2  | 53733#2 | 207 | Day Grab | у | у | У |          |
| E2  | 53884#3 | 211 | Day Grab | • | • | • | 0.1 m2   |
| E2  | 53884#4 | 208 | Day Grab |   |   |   | 0.1 m2   |
| E2  | 53884#6 | 206 | Day Grab | у | у | у |          |
| E3  | 53735#4 | 224 | Day Grab | y | y | y |          |
| E3  | 53886#2 | 225 | Day Grab | 2 | , | , | 0.1 m2   |
| E4  | 53741#3 | 300 | Day Grab | У | У | у | 0.1 1.12 |
| E4  | 53741#5 | 299 | Day Grab | J | , | J | 0.1 m2   |
| E4  | 53741#6 | 299 | Day Grab |   |   |   | 0.1 m2   |
| E5  | 53742#1 | 249 | Day Grab | у | у | у | 012 222  |
| E5  | 53742#2 | 249 | Day Grab | , | , | J | 0.1 m2   |
|     |         |     | <b>,</b> |   |   |   | ****     |
| F1  | 53864#1 | 234 | Day Grab | У | У | У |          |
| F1  | 53864#4 | 238 | Day Grab | - | • | • | 0.1 m2   |
| F1  | 53889#1 | 235 | Day Grab |   |   |   | 0.1 m2   |
| F1  | 53889#2 | 231 | Day Grab |   |   |   | 0.1 m2   |
| F2  | 53863#1 | 254 | Day Grab | у | y | y |          |
| F2  | 53863#2 | 245 | Day Grab | , | • | • | 0.1 m2   |
| F3  | 53876#1 | 212 | Day Grab | у | У | у |          |
| F3  | 53876#4 | 213 | Day Grab | • | - | , | 0.1 m2   |
| F4  | 53862#1 | 226 | Day Grab |   |   |   | 0.1 m2   |
| F4  | 53862#5 | 227 | Day Grab | У | У | у |          |
| F6  | 53941#7 | 242 | Day Grab | • | - | • | 0.1 m2   |
|     |         |     | -        |   |   |   |          |

| F6         | 53941#8 | 242 | Day Grab  | У  | у  | у  |              |
|------------|---------|-----|-----------|----|----|----|--------------|
| G1         | 53777#1 | 352 | Box Corer | У  | У  | у  | 0.1 m2       |
| G2         | 53791#1 | 367 | Box Corer | У  | y  | y  | 0.1 m2       |
| G2<br>G3   | 53797#6 | 324 | Day Grab  | y  |    |    | 0.1 1112     |
| G3         | 53797#0 | 331 | Day Grab  | y  | У  | У  | 0.1 m2       |
|            | 53807#3 | 361 | •         | •• | ., | ~. | 0.1 1112     |
| G4         |         |     | Day Grab  | У  | У  | У  | 0.1.0        |
| G4         | 53807#4 | 368 | Day Grab  |    |    |    | 0.1 m2       |
| G5         | 53808#2 | 351 | Day Grab  | У  | У  | У  | 0.1.0        |
| G5         | 53808#3 | 348 | Day Grab  |    |    |    | 0.1 m2       |
| G5         | 53813#2 | 352 | Day Grab  |    |    |    | 0.1 m2       |
| H1         | 53728#1 | 382 | Box Corer | у  | У  | у  | 0.1 m2       |
| H2         | 53729#2 | 337 | Box Corer | У  | У  | У  | 0.1 m2       |
| H3         | 53730#4 | 315 | Day Grab  | У  | у  | y  |              |
| H3         | 53881#2 | 318 | Day Grab  | •  | •  | -  | 0.1 m2       |
| H3         | 53881#3 | 317 | Day Grab  |    |    |    | 0.1 m2       |
| H3         | 53881#4 | 314 | Day Grab  |    |    |    | 0.1 m2       |
| H4         | 53734#1 | 333 | Box Corer | y  | у  | У  | 0.1 m2       |
| H5         | 53736#1 | 395 | Box Corer | у  | y  | y  | 0.1 m2       |
| 115        | 337301  | 373 | Box Coror | J  | y  | 3  | 0.1 1112     |
| J1         | 53869#1 | 390 | Box Corer | у  | У  | У  | 0.1 m2       |
| J2         | 53870#2 | 332 | Box Corer | у  | У  | У  | 0.1 m2       |
| J3         | 53871#4 | 354 | Day Grab  | у  | У  | У  |              |
| J3         | 53871#6 | 340 | Day Grab  | •  | •  | •  | 0.1 m2       |
| J4         | 53875#4 | 375 | Day Grab  | у  | у  | У  | V-2          |
| J4         | 53875#5 | 374 | Day Grab  | J  | ,  | 3  | 0.1 m2       |
| J4         | 53875#8 | 380 | Day Grab  |    |    |    | 0.1 m2       |
| J5         | 53849#2 | 341 | Day Grab  | у  | */ | 77 | 0.1 1112     |
| J5         | 53849#3 | 341 | Day Grab  | У  | У  | У  | 0.1 m2       |
| J5         | 53849#5 | 342 | Day Grab  |    |    |    | 0.1 m2       |
| 3.5        | 33649#3 | 342 | Day Grab  |    |    |    | 0.1 1112     |
| K1         | 53776#1 | 466 | Box Corer | у  | У  | У  | 0.1 m2       |
| K2         | 53792#1 | 436 | Box Corer | y  | у  | У  | 0.1 m2       |
| K3         | 53795#1 | 489 | Box Corer | у  | у  | y  | 0.1 m2       |
| K4         | 53798#2 | 452 | Box Corer | у  | у  | У  | 0.1 m2       |
| K5         | 53806#2 | 467 | Box Corer | у  | y  | У  | see station  |
|            |         |     |           | ,  | ,  | ,  | list comment |
| L1         | 53737#1 | 481 | Box Corer | 37 | *7 | */ | 0.1 m2       |
| L2         | 53738#1 | 472 | Box Corer | У  | У  | У  | 0.1 m2       |
| L3         | 53740#1 | 462 | Box Corer | У  | У  | У  | 0.1 m2       |
| L3<br>L4   | 53753#2 | 502 | Box Corer | У  | У  | У  |              |
|            |         | 413 |           | У  | У  | У  | 0.1 m2       |
| L5         | 53751#1 | 413 | Box Corer | У  | У  | У  | 0.1 m2       |
| <b>M</b> 1 | 53841#1 | 481 | Box Corer | у  | у  | у  | 0.1 m2       |
| M2         | 53845#4 | 496 | Box Corer | У  | У  | У  | 0.1 m2       |
| M3         | 53877#1 | 447 | Box Corer | У  | У  | У  | 0.1 m2       |
| M4         | 53846#1 | 467 | Box Corer | у  | У  | У  | 0.1 m2       |
| M5         | 53848#1 | 421 | Box Corer | У  | У  | У  | 0.1 m2       |
| N1         | 53775#1 | 551 | Box Corer | у  | у  | у  | 0.1 m2       |

| N2    | 53793#1   | 563        | Box Corer               | у  | у  | y  | 0.1 m2   |
|-------|-----------|------------|-------------------------|----|----|----|----------|
| N3    | 53802#2   | 595        | Box Corer               | y  | y  | y  | 0.1 m2   |
| N4    | 53800#1   | 558        | Box Corer               | y  | У  | y  | 0.1 m2   |
| N5    | 53805#1   | 580        | Box Corer               | у  | y  | y  | 0.1 m2   |
| 143   | 23003#1   | 300        | DOX COIO                | J  | 3  | J  | 0.1 1112 |
| P1    | 53726#1   | 530        | Box Corer               | у  | у  | у  | 0.1 m2   |
| P2    | 53727#1   | 535        | Box Corer               | у  | у  | y  | 0.1 m2   |
| P3    | 53739#1   | 567        | Box Corer               | у  | y  | y  | 0.1 m2   |
| P4    | 53754#1   | 560        | Box Corer               | y  | y  | y  | 0.1 m2   |
| P5    | 53760#1   | 518        | Box Corer               | y  | y  | y  | 0.1 m2   |
| 13    | JJ / 00#1 | 310        | DOX COICI               | y  | y  | J  | 0.1 1112 |
| Q1    | 53842#1   | 533        | Box Corer               | у  | у  | У  | 0.1 m2   |
| Q2    | 53844#1   | 538        | Box Corer               | У  | у  | у  | 0.1 m2   |
| Q3    | 53880#1   | 534        | Mega Corer              | У  | y  | y  |          |
| Q3    | 53880#2   | 530        | Mega Corer              | ,  |    | J  | 7 cores  |
| Q4    | 53879#1   | 543        | Mega Corer              |    |    |    | 7 cores  |
| Q4    | 53879#2   | 542        | Mega Corer              | у  | v  | 17 | , 00105  |
| Q5    | 53847#1   | 520        | Box Corer               |    | У  | У  | 0.1 m2   |
| ŲΣ    | JJ047#1   | 320        | Dox Colei               | У  | У  | У  | 0.1 1112 |
| R1    | 53794#1   | 657        | Box Corer               | У  | У  | у  | 0.1 m2   |
| R2    | 53822#1   | 685        | Mega Corer              | y  | y  | y  | 1 core   |
| R2    | 53822#2   | 685        | Mega Corer              | y  | y  | y  | 7 cores  |
| R3    | 53823#1   | 738        | Mega Corer              | ₹, | 17 | *7 | / Coics  |
|       | 53823#3   | 735        | •                       | У  | У  | У  | 8 cores  |
| R3    |           |            | Mega Corer<br>Box Corer |    |    |    |          |
| R4    | 53803#1   | 649        |                         | У  | У  | У  | 0.1 m2   |
| R5    | 53804#1   | 683        | Box Corer               | У  | У  | У  | 0.1 m2   |
| S1    | 53774#1   | 727        | Mega Corer              |    |    |    | 8 cores  |
| S1    | 53774#2   | 729        | Mega Corer              | ₹1 | *1 | 37 | 0 00103  |
| S2    | 53766#1   | 709        | Mega Corer              | У  | У  | У  |          |
|       | 53766#2   | 709<br>709 | _                       | У  | У  | У  | 8 cores  |
| S2    |           |            | Mega Corer              |    |    |    |          |
| S3    | 53723#2   | 803        | Box Corer               | У  | У  | У  | 0.1 m2   |
| S4    | 53722#3   | 778        | Box Corer               | У  | У  | У  | 0.1 m2   |
| S5    | 53724#1   | 693        | Box Corer               | У  | У  | У  | 0.1 m2   |
| T1    | 53725#1   | 754        | Box Corer               | 47 | •  | τ, | 0.1 m2   |
|       |           | 601        |                         | У  | y  | У  |          |
| T2    | 53843#1   |            | Box Corer               | У  | У  | У  | 0.1 m2   |
| T3    | 53873#1   | 788        | Mega Corer              | У  | У  | У  | 0        |
| T3    | 53873#2   | 783        | Mega Corer              |    |    |    | 8 cores  |
| T4    | 53874#3   | 721        | Mega Corer              | У  | У  | У  | 2 cores  |
| T4    | 53874#4   | 721        | Mega Corer              |    |    |    | 6 cores  |
| T5    | 53878#1   | 687        | Mega Corer              | у  | y  | У  |          |
| T5    | 53878#2   | 689        | Mega Corer              |    |    |    | 8 cores  |
| ~ ~ . |           |            |                         |    |    |    |          |
| U1    | 53773#1   | 939        | Mega Corer              | У  | У  | У  | •        |
| U1 ·  | 53773#2   | 940        | Mega Corer              |    |    |    | 8 cores  |
| U2    | 53825#1   | 882        | Mega Corer              |    |    |    | 8 cores  |
| U2    | 53825#2   | 876        | Mega Corer              | У  | У  | У  |          |
| U3    | 53824#1   | 842        | Mega Corer              |    |    |    | 8 cores  |
| U3    | 53824#2   | 840        | Mega Corer              | У  | У  | У  |          |
| U4    | 53818#1   | 955        | Mega Corer              |    |    |    | 7 cores  |
| U4    | 53818#2   | 952        | Mega Corer              | У  | y  | У  |          |
|       |           |            |                         |    |    |    |          |

| U5           | 53821#1 | 880  | Mega Corer | У      | у  | У  |         |
|--------------|---------|------|------------|--------|----|----|---------|
| U5           | 53821#2 | 878  | Mega Corer | •      |    | •  | 8 cores |
|              |         |      | Ü          |        |    |    |         |
| V1           | 53721#1 | 836  | Mega Corer | У      | У  | у  | 8 cores |
| V2           | 53720#1 | 846  | Mega Corer | У      | y  | y  | 0 00.00 |
| V2           | 53720#2 | 845  | Mega Corer | 3      | 3  | 3  | 8 cores |
| V2<br>V3     | 53728#2 | 919  | Mega Corer | *7     | 37 | 37 | 8 cores |
| V4           | 53717#1 | 866  | Mega Corer | y      | У  | У  | 8 cores |
| V 5          | 53840#1 | 985  |            | У      | У  | У  |         |
| <b>v</b> 3   | 33040#1 | 903  | Mega Corer | У      | У  | У  | 8 cores |
| <b>XX</b> 71 | 52021#1 | 1000 | Mara Causa |        |    |    | 0       |
| W1           | 53831#1 | 1092 | Mega Corer |        |    |    | 8 cores |
| W1           | 53831#2 | 1090 | Mega Corer | У      | У  | У  |         |
| W2           | 53830#1 | 1057 | Mega Corer |        |    |    | 8 cores |
| W2           | 53830#2 | 1057 | Mega Corer | У      | У  | У  |         |
| W3           | 53829#1 | 1186 | Mega Corer |        |    |    | 8 cores |
| W3           | 53829#2 | 1191 | Mega Corer | У      | У  | У  |         |
| W4           | 53819#1 | 1091 | Mega Corer | У      | у  | У  |         |
| W4           | 53819#3 | 1094 | Mega Corer |        |    |    | 8 cores |
| W5           | 53820#1 | 1090 | Mega Corer | у      | у  | у  |         |
| W5           | 53820#2 | 1093 | Mega Corer | J      | •  | J  | 8 cores |
|              |         |      |            |        |    |    |         |
| X1           | 53713#1 | 1139 | Mega Corer | у      | у  | У  |         |
| X1           | 53713#2 | 1135 | Mega Corer | 3      | J  | 3  | 8 cores |
| X2           | 53714#1 | 1067 | Mega Corer |        |    | 77 | 8 cores |
| X2<br>X2     | 53714#1 | 1067 | _          | ٠.     | ٠. | У  | o cores |
| X2<br>X3     | 53715#1 |      | Mega Corer | У      | У  |    | 7       |
|              |         | 1095 | Mega Corer | У      | У  | У  | 7 cores |
| X4           | 53716#1 | 1100 | Mega Corer | У      | У  | У  | 8 cores |
| X5           | 53719#1 | 1101 | Mega Corer | У      | У  | У  | 7 cores |
|              |         |      |            |        |    |    |         |
| <b>Y</b> 1   | 53838#1 | 1355 | Box Corer  | У      | У  | У  | 0.1 m2  |
| Y2           | 53839#1 | 1366 | Box Corer  | У      | У  | У  | 0.1 m2  |
| Y3           | 53827#1 | 1238 | Mega Corer |        |    |    | 8 cores |
| Y3           | 53827#2 | 1237 | Mega Corer | У      | У  | У  |         |
| Y4           | 53828#1 | 1350 | Mega Corer |        | •  | •  | 8 cores |
| <b>Y</b> 4   | 53828#2 | 1352 | Mega Corer | у      | У  | у  |         |
| Y5           | 53832#1 | 1388 | Mega Corer | ,      | ,  | 2  | 8 cores |
| Y5           | 53832#2 | 1389 | Mega Corer | у      | У  | у  | 0 00.00 |
|              | 000022  | 1507 | moga coror | 9      | 3  | 9  |         |
| <b>Z</b> 1   | 53837#2 | 1439 | Box Corer  | W      | 37 | У  | 0.1 m2  |
| Z2           | 53836#2 | 1416 | Mega Corer | у<br>У | У  |    | 7 cores |
| Z3           | 53835#1 | 1517 | Mega Corer | У      | У  | У  | 8 cores |
| Z3           | 53835#2 |      |            |        | ٠. |    | 0 00162 |
| Z3<br>Z4     |         | 1517 | Mega Corer | У      | У  | У  | 0       |
|              | 53833#1 | 1513 | Mega Corer |        |    |    | 8 cores |
| Z4           | 53833#2 | 1514 | Mega Corer | У      | У  | У  | •       |
| Z5           | 53834#1 | 1542 | Mega Corer |        |    |    | 8 cores |
| <b>Z</b> 5   | 53834#2 | 1547 | Mega Corer | У      | У  | У  |         |
|              |         |      |            |        |    |    |         |

•

10.2. Sample catalogue - additional strategically located sites

| SITE        | STATION           | DEPTH         | GEAR             | нс   | нм | PS | MACROB. |
|-------------|-------------------|---------------|------------------|------|----|----|---------|
| AA STATION  | S - alongslope    | variation st  | udy              |      |    |    |         |
| AA1         | 53892#1           | 452           | Box Corer        | У    | У  | у  | 0.1 m2  |
| AA2         | 53893#1           | 461           | Box Corer        | y    | у  | y  | 0.1 m2  |
| AA3         | 53887#1           | 449           | Mega Corer       | y    | y  | у  |         |
| AA3         | 53894#1           | 445           | Box Corer        | y    | y  | y  | 0.1 m2  |
| AA4         | 53895#1           | 538           | Box Corer        | y    | у  | y  | 0.1 m2  |
| AA5         | 53888#2           | 627           | Mega Corer       | у    | y  | y  | 2 cores |
| AA5         | 53888#3           | 624           | Mega Corer       | •    | •  | •  | 5 cores |
| AA6         | 53896#1           | 640           | Mega Corer       | у    | У  | У  | 1 core  |
| AA6         | 53896#2           | 639           | Mega Corer       | -    | •  | •  | 6 cores |
| AA7         | 53897#1           | 735           | Mega Corer       |      |    |    | 8 cores |
| AA7         | 53897#2           | 738           | Mega Corer       | у    | у  | У  |         |
| AA8         | 53898#1           | 642           | Mega Corer       |      | •  | •  | 8 cores |
| AA8         | 53898#2           | 641           | Mega Corer       | у    | у  | у  |         |
| AA9         | 53899#1           | 635           | Mega Corer       | •    | •  | •  | 8 cores |
| AA9         | 53899#2           | 636           | Mega Corer       | у    | У  | У  |         |
| AA10        | 53915#1           | 642           | Mega Corer       | •    | ,  | •  | 8 cores |
| AA10        | 53915#2           | 639           | Mega Corer       | У    | У  | У  |         |
| AB STATIONS | S - extra shelf   | stratum C st  | ations           |      |    |    |         |
| AB1         | 53942#1           | 143           | Day Grab         | У    | у  | у  |         |
| AB1         | 53942#2           | 143           | Day Grab         | J    | J  | ,  | 0.1 m2  |
| AB2         | 53891#3           | 150           | Day Grab         | У    | У  | у  |         |
| AB2         | 53891#4           | 150           | Day Grab         | J    | J  | J  | 0.1 m2  |
| AC STATIONS | S - local variati | ion study (fe | eatureless sides | can) |    |    |         |
| AC2         | 53903#1           | 548           | Box Corer        | y    | у  | у  | 0.1 m2  |
| AC3         | 53904#1           | 541           | Box Corer        | y    | y  | y  | 0.1 m2  |
| AC4         | 53905#1           | 546           | Box Corer        | У    | У  | У  | 0.1 m2  |
| AC5         | 53906#1           | 546           | Box Corer        | y    | У  | У  | 0.1 m2  |
| AC6         | 53907#1           | 546           | Box Corer        | y    | y  | У  | 0.1 m2  |
| AD STATIONS | S - local variati | ion study (b  | archan dunes)    | -    | •  | •  |         |
|             |                   |               |                  |      |    |    |         |
| AD1         | 53908#1           | 328           | Box Corer        | У    | У  | У  | 0.1  m2 |
| AD2         | 53909#1           | 333           | Box Corer        | У    | y  | У  | 0.1  m2 |
| AD3         | 53910#1           | 330           | Box Corer        | У    | у  | У  | 0.1 m2  |
| AD4         | 53911#2           | 336           | Box Corer        | У    | У  | y  | 0.1  m2 |
| AD5         | 53912#1           | 332           | Box Corer        | У    | У  | У  | 0.1 m2  |
| AE STATIONS | - extra shelf s   | stratum A st  | ations           |      |    |    |         |
| AE1         | 53918#2           | 160           | Day Grab         | у    | у  | у  |         |
| AE1         | 53918#3           | 160           | Day Grab         | -    | •  | -  | 0.1 m2  |
| AE1         | 53918#4           | 160           | Day Grab         |      |    |    | 0.1 m2  |
| AE2         | 53919#1           | 169           | Day Grab         | у    | у  | у  |         |
| AE2         | 53919#2           | 168           | Day Grab         | •    | •  | -  | 0.1 m2  |
| AE2         | 53919#3           | 168           | Day Grab         |      |    |    | 0.1 m2  |
|             |                   |               |                  |      |    |    |         |

| AF STATION   | S - extra shelf:  | stratum B   | stations            |          |        |        |          |
|--------------|-------------------|-------------|---------------------|----------|--------|--------|----------|
| AF1          | 53930#2           | 153         | Day Grab            | у        | У      | у      |          |
| AF1          | 53930#3           | 152         | Day Grab            | J        | J      |        | 0.1 m2   |
| AF2          | 53931#1           | 144         | Day Grab            | у        | у      | у      |          |
| AF2          | 53931#2           | 144         | Day Grab            | •        | ,      |        | 0.1 m2   |
| AG STATION   | S - investigate   | areas of 's | smoothed' iceberg   | ploug    | ghmarl | ks     |          |
| AG1          | 53932#1           | 402         | Box Corer           | 77       | 77     | *7     | 0.1 m2   |
| AG2          | 53939#1           | 388         | Box Corer           | y<br>y   | y<br>y | y<br>y | 0.1 m2   |
|              |                   |             | (iceberg ploughm    | _        | ,      | J      | 0.1 1112 |
| THI STITLION | io iocai variat   | ion brady   | (1000018 bloggin    | iar iio) |        |        |          |
| AH1          | 53933#1           | 416         | Box Corer           | y        | У      | у      | 0.1 m2   |
| AH2          | 53934#1           | 417         | Box Corer           | У        | У      | У      | 0.1 m2   |
| AH3          | 53935#1           | 418         | Box Corer           | у        | у      | y      | 0.1 m2   |
| AH4          | 53936#1           | 416         | Box Corer           | У        | У      | У      | 0.1  m2  |
| AH6          | 53938#1           | 416         | Box Corer           | У        | У      | y      | 0.1 m2   |
| AJ STATION   | - investigate ice | e margin s  | cour hole           |          |        |        |          |
| AJ1          | 53940#1           | 298         | Day Grab            | У        | у      | у      |          |
| AK STATION   | S - investigate   | Amoco w     | ell site 208/17 - E | 3        |        |        |          |
| AK1          | 53952#1           | 556         | Mega Corer          | У        | У      | у      | Meiob.   |
| AK1          | 53952#2           | 556         | Mega Corer          | у        | у      | y      | Meiob.   |
| AK2          | 53953#1           | 557         | Mega Corer          | У        | у      | у      | Meiob.   |
| AK2          | 53953#2           | 557         | Mega Corer          | У        | y      | y      | Meiob.   |
| AK3          | 53954#1           | 561         | Mega Corer          | y        | y      | y      | Meiob.   |
| AK3          | 53954#2           | 562         | Mega Corer          | у        | у      | y      | Meiob.   |
| AK4          | 53955#1           | 559         | Mega Corer          | y        | y      | y      | Meiob.   |
| AK4          | 53955#2           | 558         | Mega Corer          | y        | y      | у      | Meiob.   |
| AK5          | 5395 <b>6</b> #1  | 560         | Mega Corer          | •        | •      | У      | Meiob.   |
| AK5          | 53956#2           | 560         | Mega Corer          | У        | У      | •      | Meiob.   |
| AK5          | 53961#1           | 562         | Mega Corer          | y        | y      | У      | Meiob.   |
| AK6          | 53960#1           | 563         | Mega Corer          | у        | у      | у      | Meiob.   |
| AK6          | 53960#2           | 563         | Mega Corer          | у        | y      | у      | Meiob.   |
| AK7          | 53958#1           | 560         | Mega Corer          | У        | У      | у      | Meiob.   |
| AK7          | 53958#2           | 560         | Mega Corer          | у        | У      | у      | Meiob.   |
| AK8          | 53959#1           | 562         | Mega Corer          | У        | y      | y      | Meiob.   |
| AK8          | 53959#2           | 563         | Mega Corer          | y        | y      | y      | Meiob.   |
| AK9          | 53957#1           | 557         | Mega Corer          | y        | y      | y      | Meiob.   |
| AK9          | 53957#2           | 558         | Mega Corer          | у        | у      | y      | Meiob.   |
|              |                   |             |                     |          |        |        |          |

10.3. Sample catalogue - transect survey and gear comparison study

| SITE           | STATION            | DEPTH      | GEAR                 | HC | HM | PS | MACROB. |
|----------------|--------------------|------------|----------------------|----|----|----|---------|
| B5<br>B5       | 53746#4<br>53746#1 | 133<br>134 | Day Grab<br>Day Grab | у  | у  | у  | 0.1 m2  |
| Tr200<br>Tr200 | 53747#4<br>53747#6 | 202<br>202 | Day Grab<br>Day Grab | у  | у  | У  | 0.1 m2  |
| Tr250<br>Tr250 | 53748#2<br>53748#5 | 248<br>248 | Day Grab<br>Day Grab | У  | У  | У  | 0.1 m2  |
| Tr300<br>Tr300 | 53784#1<br>53784#4 | 289<br>290 | Day Grab<br>Day Grab | У  | У  | У  | 0.1 m2  |
| Tr350<br>Tr350 | 53779#1<br>53779#4 | 346<br>346 | Day Grab<br>Day Grab | У  | у  | У  | 0.1 m2  |
| Tr350          | 53750#1            | 348        | Box Corer            | У  | У  | У  | 0.1 m2  |
| L5<br>L5       | 53780#1<br>53780#2 | 414<br>414 | Day Grab<br>Day Grab | У  | У  | У  | 0.1 m2  |
| L5             | 53751#1            | 413        | Box Corer            | У  | У  | У  | 0.1 m2  |
| Tr450          | 53781#2            | 454        | Day Grab             |    |    |    | 0.1 m2  |
| Tr450          | 53781#1            | 455        | Day Grab             | У  | У  | У  |         |
| Tr450          | 53752#1            | 454        | Box Corer            | У  | У  | У  | 0.1 m2  |
| L4             | 53782#4            | 498        | Day grab             | У  | У  | У  |         |
| L4             | 53782#3            | 500        | Day Grab             |    |    |    | 0.1  m2 |
| L4             | 53753#2            | 502        | Box Corer            | У  | У  | У  | 0.1 m2  |
| Tr550          | 53755#2            | 554        | Box Corer            | У  | У  | у  | 0.1 m2  |
| Tr550          | 53764#1            | 551        | Mega Corer           | У  | У  | У  |         |
| Tr550          | 53764#2            | 552        | Mega Corer           |    |    |    | 8 cores |
| Tr600          | 53756#1            | 601        | Box Corer            | У  | У  | У  | 0.1 m2  |
| Tr600          | 53767#1            | 600        | Mega Corer           | У  | У  | y  |         |
| Tr600          | 53767#2            | 601        | Mega Corer           |    |    |    | 8 cores |
| Tr650          | 53757#1            | 649        | Box Corer            | У  | У  | у  | 0.1 m2  |
| Tr650          | 53765#1            | 650        | Mega Corer           | У  | У  | у  |         |
| Tr650          | 53765#2            | 650        | Mega Corer           |    |    |    | 8 cores |
| S2             | 53758#1            | 710        | Box Corer            | у  | у  | у  | 0.1 m2  |
| S2             | 53766#1            | 709        | Mega Corer           | у  | у  | у  |         |
| S2             | 53766#2            | 709        | Mega Corer           |    | •  |    | 8 cores |
| Tr800          | 53761#1            | 806        | Box Corer            | у  | у  | у  | 0.1 m2  |
| Tr800          | 53769#2            | 803        | Mega Corer           | y  | у  | y  |         |
| Tr800          | 53769#1            | 804        | Mega Corer           | •  | •  | -  | 8 cores |
| Tr900          | 53762#1            | 916        | Box Corer            | у  | у  | У  | 0.1 m2  |
| Tr900          | 53770#1            | 915        | Mega Corer           | у  | y  | y  |         |
| Tr900          | 53770#2            | 919        | Mega Corer           | •  | •  | -  | 8 cores |
| Tr1000         | 53771#2            | 998        | Mega Corer           |    |    |    | 5 cores |
| Tr1000         | 53771#1            | 999        | Mega Corer           | у  | у  | У  | 3 cores |
|                |                    |            | -                    | •  | -  | -  |         |

10.4. Sample catalogue - WASP operations

| STATION | AREA                      | DEPTH              | FILM RUN              |
|---------|---------------------------|--------------------|-----------------------|
| 53920#1 | North zone                | 297-289 m          | 11 m colour           |
| 53810#1 | North zone                | 300-303 m          | 12 m colour           |
| 53921#1 | North zone                | 496-486 m          | 5 m colour            |
| 53811#1 | North zone                | 515-525 m          | 10 m colour           |
| 53812#1 | North zone                | 794-779 m          | 10 m colour           |
| 53922#1 | North zone                | 812-787m           | 12 m colour           |
| 53980#1 | North zone                | 1408-1401 m        | 12 m colour           |
| 53981#1 | North / Mid zone          | 1209-1203 m        | 10 m colour           |
| 53913#1 | Mid zone                  | 290-275 m          | 5 m colour            |
| 53926#1 | Mid zone                  | 294-278 m          | 4 m colour            |
| 53928#1 | Mid zone                  | 390-370m           | 7 m colour            |
| 53914#1 | Mid zone                  | 410-397 m          | 7 m colour            |
| 53925#1 | Mid zone                  | 507-496 m          | 12 m colour           |
| 53916#1 | Mid zone                  | 595 <b>-</b> 580 m | 11 m colour           |
| 53985#1 | Mid zone                  | 685-672 m          | 5 m colour            |
| 53924#1 | Mid zone                  | 798-781 m          | 10 m colour           |
| 53984#1 | Mid zone                  | 912-881 m          | 12 m colour           |
| 53923#1 | Mid zone                  | 1088 m             | 12 m colour           |
| 53947#1 | South zone                | 101-104 m          | 12 m colour           |
| 53948#1 | South zone                | 304-324 m          | 9 m colour            |
| 53949#1 | South zone                | 512-504 m          | 3 m colour            |
| 53950#1 | South zone                | 816-829 m          | 13 m colour           |
| 53905#2 | Test (AC stations)        | 546 m              | B & W test strip only |
| 53801#1 | Test (Amoco 'coral' area) | 575 m              | 12 m B & W            |
| 53962#1 | Amoco 'coral' area        | 580-575 m          | 4 m colour            |
| 53951#1 | Area of canyons           | 983-969 m          | 5 m colour            |
| 53963#1 | Area of 'fault'           | 488-485 m          | 12 m colour           |
| 53986#1 | Kingfisher 'coral' area   | 390-378 m          | 5 m colour            |

# 10.5. Sample catalogue - fish trap operations

| STATION | ZONE  | DEPTH | GEAR       | SAMPLES                                          |
|---------|-------|-------|------------|--------------------------------------------------|
| 53809#1 | North | 297   | Fish Trap  | Fish (frozen), crustacea (formalin)              |
| 53799#1 | North | 516   | Fish Trap  | Crustacea (formalin)                             |
| 53817#1 | North | 789   | Fish Trap  | Crustacea (formalin)                             |
| 53826#1 | North | 1091  | Fish Trap  | Fish (frozen), crustacea (formalin)              |
| 53979#1 | North | 1424  | Fish Trap  | Fish (frozen and formalin), crustacea (formalin) |
| 53778#1 | Mid   | 289   | Fish Trap  | Fish (frozen), crustacea (formalin)              |
| 53759#1 | Mid   | 506   | Fish Trap  | Fish (frozen), crustacea (formalin)              |
| 53768#1 | Mid   | 796   | Fish Trap  | Crustacea (formalin)                             |
| 53872#1 | South | 816   | Fish Snack | 10 m colour film                                 |

# 10.6. Sample catalogue - other operations

| STATION             | AREA           | DEPTH              | GEAR             | SAMPLES                                          |
|---------------------|----------------|--------------------|------------------|--------------------------------------------------|
| 53983#1             | North          | 1402-1414 m        | Otter Trawl      | Fish (frozen and formalin)<br>Benthos (formalin) |
| 53927#1             | Mid            | 400-550 m          | Photo Sledge     | 14 m colour                                      |
| 53845#3<br>53854#11 | South<br>South | 500-518 m<br>100 m | Hornet<br>Hornet | 12 m B & W<br>5 m B & W                          |

10.7. Sample catalogue - additional transect sampling

| SITE   | STATION | DEPTH | GEAR       | MEIOB. | FORAM. | ARCHIVE |
|--------|---------|-------|------------|--------|--------|---------|
| Tr350  | 53967#1 | 345   | Mega Corer | 1      | 1      | 2       |
| L5     | 53968#1 | 415   | Mega Corer | 1      | 1      | 1       |
| Tr450  | 53969#1 | 454   | Mega Corer | 1      | 1      | 2       |
| L4     | 53970#1 | 498   | Mega Corer | 1      | 1      | 2       |
| Tr550  | 53971#1 | 553   | Mega Corer | 1      | 1      | 1       |
| Tr600  | 53972#1 | 600   | Mega Corer | 1      | 1      | 2       |
| Tr650  | 53973#1 | 649   | Mega Corer | 1      | 1      | 2       |
| S2     | 53974#1 | 708   | Mega Corer | 1      | 1      | 2       |
| Tr800  | 53975#1 | 798   | Mega Corer | 1      | 1      | 2       |
| Tr900  | 53976#1 | 915   | Mega Corer | 1      | 1      | 2       |
| Tr1000 | 53977#1 | 998   | Mega Corer | 1      | 1      | 2       |
| Tr1100 | 53978#1 | 1088  | Mega Corer | 1      | 1      | 2       |

#### 11. STATION LIST

STATION station and series number; station number increments by one each

time the ship moves to another nominal location (note this system continues to operate even where the ship is revisiting a previously

sampled station), series number increments by one for each

deployment made at a station.

**DATE and TIME** date and time of GEAR's first contact with the seafloor (or in the

case of WASP, estimated time of first seafloor photograph).

SITE site name, see survey design section for naming system.

**SAMPLES** samples collected y / n (yes / no).

**DEPTH (ucm)** sounding, in uncorrected metres (i.e. assuming uniform sound

velocity profile of 1500 ms<sup>-1</sup>) at DATE and TIME.

GEAR the equipment deployed

**SHIP'S POSITION** ship's position at DATE and TIME

GEAR'S POSITION gear's position estimated from ship's position and ultra short

baseline navigation offsets at DATE and TIME

HC and HM and PS 'chemistry' samples HC-hydrocarbon, HM-heavy metal, PS-particle

size: y = available.

MACROB. macrobenthos sample size by area or number of 10 cm ID Megacorer

cores

**COMMENT** gear performance and sample comments

| STATION | DATE     | TIME | SITE      | SAM  | DEPTH | GEAR       | SHIP'S P | OSITION |            |        | GEAR'S | POSITION |            |        | нс | нм | PS | MACROB. |
|---------|----------|------|-----------|------|-------|------------|----------|---------|------------|--------|--------|----------|------------|--------|----|----|----|---------|
|         |          |      |           | PLES | (ucm) |            | deg.N    | min.N   | deg.W      | min.W  | deg.N  | min.N    | deg.W      | min.W  |    |    |    |         |
| 53713#1 | 16/07/96 | 0601 | X1        | у    | 1139  | Mega Corer | 61       | 12.437  | -3         | 4.127  | 61     | 12.453   | -3         | 4.050  | у  | y  | у  |         |
| 53713#2 | 16/07/96 | 0810 | X1        | y    | 1135  | Mega Corer | 61       | 13.176  | -3         | 1.635  | 61     | 13.179   | -3         | 1.640  | •  | •  | •  | 8 cores |
| 53714#1 | 16/07/96 | 1103 | X2        | у    | 1067  | Mega Corer | 61       | 9.164   | -3         | 0.290  | 61     | 9.129    | -3         | 0.305  |    |    | у  | 8 cores |
| 53714#2 | 16/07/96 | -    | X2        | У    | 1068  | Mega Corer | 61       | 9.131   | -3         | 0.478  | 61     | 9.110    | -3         | 0.462  | у  | у  | •  |         |
| 53715#1 | 16/07/96 | 1518 | X3        | У    | 1095  | Mega Corer | 61       | 4.977   | -3         | 15.897 | 61     | 4.984    | -3         | 16 071 | у  | y  | у  | 7 cores |
| 53716#1 | 16/07/96 | 1734 | X4        | у    | 1100  | Mega Corer | 61       | 3.464   | -3         | 19.987 | 61     | 3.467    | -3         | 20.054 | y  | y  | y  | 8 cores |
| 53717#1 | 16/07/96 | 2011 | V4        | У    | 866   | Mega Corer | 60       | 56.941  | -3         | 19.387 | 60     | 56.946   | -3         | 19.315 | у  | y  | y  | 8 cores |
| 53718#1 | 16/07/96 | 2234 | V3        | n    | 919   | Mega Corer | 60       | 54.007  | -3         | 29.901 | 60     | 54.019   | -3         | 29.833 |    | -  | -  |         |
| 53718#2 | 16/07/96 | 2351 | V3        | У    | 919   | Mega Corer | 60       | 54.014  | -3         | 29.906 |        |          |            |        | у  | y  | у  | 8 cores |
| 53719#1 | 17/07/96 | 0226 | X5        | y    | 1101  | Mega Corer | 60       | 53.714  | -3         | 49.395 | 60     | 53.707   | -3         | 49.422 | y  | y  | y  | 7 cores |
| 53720#1 | 17/07/96 | 0437 | V2        | у    | 846   | Mega Corer | 60       | 46.538  | <b>-</b> 3 | 48.867 | 60     | 46,525   | -3         | 48.919 | y  | y  | y  |         |
| 53720#2 | 17/07/96 | 0619 | V2        | у    | 845   | Mega Corer | 60       | 46.466  | -3         | 48.941 | 60     | 46.461   | -3         | 48.920 |    | •  | •  | 8 cores |
| 53721#1 | 17/07/96 | 0755 | V1        | y    | 836   | Mega Corer | 60       | 45.485  | -3         | 50.900 | 60     | 45.489   | <b>-</b> 3 | 50.915 | у  | y  | у  | 8 cores |
| 53722#1 | 17/07/96 | 1215 | S4        | n    | 779   | Mega Corer | 60       | 46.520  | -3         | 43.766 | 60     | 46.525   | -3         | 43.737 |    | •  | -  |         |
| 53722#2 | 17/07/96 | 1326 | <b>S4</b> | n    | 780   | Mega Corer | 60       | 46.488  | -3         | 43.869 | 60     | 46.486   | -3         | 43.856 |    |    |    |         |
| 53722#3 | 17/07/96 | 1712 | S4        | y    | 778   | Box Corer  | 60       | 46.451  | -3         | 43.909 | 60     | 46.446   | -3         | 43.897 | у  | y  | у  | 0.1 m2  |
| 53723#1 | 17/07/96 | 1927 | S3        | n    | 803   | Box Corer  | 60       | 48.968  | -3         | 37.513 | 60     | 48.976   | -3         | 37.423 |    | -  | -  |         |
| 53723#2 | 17/07/96 | 2038 | S3        | у    | 803   | Box Corer  | 60       | 49.024  | <b>-</b> 3 | 37.483 | 60     | 49.036   | -3         | 37.446 | у  | y  | у  | 0.1 m2  |
| 53724#1 | 17/07/96 | 2332 | S5        | y    | 693   | Box Corer  | 60       | 41.011  | -3         | 49.891 | 60     | 41.037   | -3         | 49.865 | y  | y  | y  | 0.1 m2  |
| 53725#1 | 18/07/96 | 0135 | T1        | У    | 754   | Box Corer  | 60       | 39.535  | -3         | 57.908 | 60     | 39.534   | -3         | 57.898 | y  | y  | y  | 0.1 m2  |
| 53726#1 | 18/07/96 | 0417 | P1        | У    | 530   | Box Corer  | 60       | 37.412  | -3         | 35.019 | 60     | 37.399   | -3         | 34.990 | y  | y  | y  | 0.1 m2  |
| 53727#1 | 18/07/96 | 0649 | P2        | у    | 535   | Box Corer  | 60       | 41.409  | -3         | 25.243 | 60     | 41,422   | -3         | 25.225 | ÿ  | y  | y  | 0.1 m2  |
| 53728#1 | 18/07/96 | 0915 | H1        | у    | 382   | Box Corer  | 60       | 32.913  | -3         | 23.346 | 60     | 32.930   | -3         | 23.334 | y  | y  | y  | 0.1 m2  |
| 53729#1 | 18/07/96 | 1126 | H2        | n    | 336   | Box Corer  | 60       | 32.453  | -3         | 19.935 | 60     | 32,459   | -3         | 19.927 | •  | •  | •  |         |
| 53729#2 | 18/07/96 | 1208 | H2        | y    | 337   | Box Corer  | 60       | 32.460  | <b>-</b> 3 | 19.955 | 60     | 32.471   | -3         | 19.953 | у  | y  | y  | 0.1 m2  |
| 53730#1 | 18/07/96 | 1407 | H3        | n    | 314   | Box Corer  | 60       | 31.960  | -3         | 17.553 | 60     | 31.963   | -3         | 17.564 | •  | •  | •  |         |
| 53730#2 | 18/07/96 | 1445 | H3        | n    | 313   | Box Corer  | 60       | 31.977  | -3         | 17.508 | 60     | 31.982   | -3         | 17.514 |    |    |    |         |
| 53730#3 | 18/07/96 | 1521 | H3        | n    | 315   | Day Grab   | 60       | 31.983  | -3         | 17.613 |        |          |            |        |    |    |    |         |
| 53730#4 | 18/07/96 | 1549 | Н3        | у    | 315   | Day Grab   | 60       | 31.990  | -3         | 17.584 |        |          |            |        | У  | y  | y  |         |
| 53730#5 | 18/07/96 | 1619 | Н3        | n    | 312   | Day Grab   | 60       | 31.981  | -3         | 17.433 |        |          |            |        | -  | •  | •  |         |
| 53731#1 | 18/07/96 | 1734 | Ei        | n    | 238   | Day Grab   | 60       | 26.581  | -3         | 23.081 |        |          |            |        |    |    |    |         |
| 53731#2 | 18/07/96 | 1756 | El        | n    | 235   | Day Grab   | 60       | 26.442  | -3         | 22.992 |        |          |            |        |    |    |    |         |
| 53731#3 | 18/07/96 | 1813 | E1        | n    | 235   | Day Grab   | 60       | 26.453  | -3         | 23.031 |        |          |            |        |    |    |    |         |
| 53732#1 | 18/07/96 | 2013 | B1        | n    | 168   | Day Grab   | 60       | 22.567  | -2         | 51.952 |        |          |            |        |    |    |    |         |
| 53732#2 | 18/07/96 | 2026 | BI        | n    | 169   | Day Grab   | 60       | 22.581  | -2         | 52.051 |        |          |            |        |    |    |    |         |
| 53732#3 | 18/07/96 | 2044 | B1        | n    | 168   | Day Grab   | 60       | 22.576  | -2         | 51.851 |        |          |            |        |    |    |    |         |
| 53732#4 | 18/07/96 | 2108 | Bi        | n    | 169   | Box Corer  | 60       | 22,562  | -2         | 52.058 | 60     | 22,567   | -2         | 52.066 |    |    |    |         |
| 53732#5 | 18/07/96 | 2130 | B1        | n    | 169   | Box Corer  | 60       | 22.586  | -2         | 51.898 | 60     | 22.590   | -2         | 51.898 |    |    |    |         |
| 53733#1 | 18/07/96 | 2325 | E2        | n    | 209   | Day Grab   | 60       | 33.558  | -2         | 59.306 |        |          |            |        |    |    |    |         |
| 53733#2 | 18/07/96 | 2343 | E2        | у    | 207   | Day Grab   | 60       | 33.556  | -2         | 59 484 |        |          |            |        | у  | y  | у  |         |
| 53733#3 | 19/07/96 | 0012 | E2        | n    | 208   | Day Grab   | 60       | 33,520  | -2         | 59.541 |        |          |            |        | •  | •  | •  |         |
| 53733#4 | 19/07/96 | 0033 | E2        | n    | 209   | Day Grab   | 60       | 33.539  | -2         | 59 430 |        |          |            |        |    |    |    |         |
|         |          |      |           |      |       |            |          |         |            |        |        |          |            |        |    |    |    |         |

| 00100110   | 17101170 | 0102 | LJ4        |    | 201 | Day Grao  | 00 | 22,210  | -2       | 37 031 |    |        |          |        |    |    |   |          |
|------------|----------|------|------------|----|-----|-----------|----|---------|----------|--------|----|--------|----------|--------|----|----|---|----------|
| 53733#6    | 19/07/96 | 0201 | E2         | n  | 207 | Box Corer | 60 | 33.533  | -2       | 59.513 | 60 | 33 535 | -2       | 59,530 |    |    |   |          |
| 53733#7    | 19/07/96 | 0225 | E2         | n  | 207 | Box Corer | 60 | 33.551  | -2       | 59.558 | 60 | 33,553 | -2       | 59.562 |    |    |   |          |
| 53734#1    | 19/07/96 | 0341 | H4         | у  | 333 | Box Corer | 60 | 40.369  | -3       | 3.484  | 60 | 40.374 | -3       | 3.500  | у  | у  | У | 0.1 m2   |
| 53735#1    | 19/07/96 | 0547 | E3         | n  | 219 | Day Grab  | 60 | 43.024  | -2       | 49 950 |    |        |          |        | ,  | ,  | , |          |
| 53735#2    | 19/07/96 | 0638 | E3         | n  | 220 | Box Corer | 60 | 43.092  | -2       | 49 919 | 60 | 43.100 | -2       | 49,941 |    |    |   |          |
| 53735#3    | 19/07/96 | 0659 | E3         | n  | 221 | Box Corer | 60 | 43.064  | -2       | 49.960 | 60 | 43.069 | -2       | 49.975 |    |    |   |          |
| 53735#4    | 19/07/96 | 0730 | E3         | y  | 224 | Day Grab  | 60 | 43 104  | -2       | 50.305 | •  | .0.005 |          | 13.370 | у  | y  | у |          |
| 53735#5    | 19/07/96 | 0758 | E3         | n  | 221 | Day Grab  | 60 | 43.143  | -2       | 49.862 |    |        |          |        | J  | ,  | y |          |
| 53735#6    | 19/07/96 | 0816 | E3         | n  | 219 | Day Grab  | 60 | 43.114  | -2       | 49.783 |    |        |          |        |    |    |   |          |
| 53735#7    | 19/07/96 | 0840 | E3         | n  | 221 | Box Corer | 60 | 43.087  | -2       | 49.895 | 60 | 43.094 | -2       | 49.901 |    |    |   |          |
| 53736#1    | 19/07/96 | 0949 | H5         | y  | 395 | Box Corer | 60 | 46,421  | -2       | 55 364 | 60 | 46,434 | -2<br>-2 | 55,357 | •• | ., |   | 0 1 m2   |
| 53737#1    | 19/07/96 | 1141 | Ll         | y  | 481 | Box Corer | 60 | 50.074  | -2       | 57.568 | 60 | 50.093 | -2<br>-2 | 57.536 | У  | У  | У |          |
| 53738#1    | 19/07/96 | 1320 | L2         |    | 472 | Box Corer | 60 | 51.088  | -2<br>-2 | 52.790 | 60 | 51.103 | -2<br>-2 | 52,801 | у  | У  | У | 0 1 m2   |
| 53739#1    | 19/07/96 | 1510 | P3         | y  | 567 | Box Corer | 60 | 55.351  | -2<br>-2 | 53.899 | 60 | 55,348 |          |        | у  | y  | У | 0.1 m2   |
| 53740#1    | 19/07/96 | 1722 | L3         | у  | 462 | Box Corer | 60 | 54.196  |          |        |    |        | -2       | 53.881 | У  | У  | У | 0.1 m2   |
| 53741#1    | 19/07/96 | 1858 | E4         | у  | 296 | Box Corer | 60 | 49.373  | -2       | 42.676 | 60 | 54.238 | -2       | 42.724 | У  | У  | У | 0.1 m2   |
| 53741#1    | 19/07/96 | 1941 | E4         | n  | 302 |           |    |         | -2       | 37 794 | 60 | 49.383 | -2       | 37.797 |    |    |   |          |
| 53741#2    |          | 2011 |            | n  |     | Box Corer | 60 | 49.678  | -2       | 38.107 | 60 | 49.684 | -2       | 38.127 |    |    |   |          |
|            | 19/07/96 |      | E4         | y  | 300 | Day Grab  | 60 | 49.559  | -2       | 38.028 |    |        |          |        | У  | y  | У |          |
| 53741#4    | 19/07/96 | 2041 | E4         | n  | 299 | Day Grab  | 60 | 49.530  | -2       | 38 006 |    |        |          |        |    |    |   |          |
| 53741#5    | 19/07/96 | 2105 | E4         | У  | 299 | Day Grab  | 60 | 49.515  | -2       | 37.931 |    |        |          |        |    |    |   | 0.1 m2   |
| 53741#6    | 19/07/96 | 2133 | E4         | У  | 299 | Day Grab  | 60 | 49.508  | -2       | 37.963 |    |        |          |        |    |    |   | 0.1 m2   |
| 53742#1    | 19/07/96 | 2226 | E5         | У  | 249 | Day Grab  | 60 | 49.072  | -2       | 34.453 |    |        |          |        | у  | y  | У |          |
| 53742#2    | 19/07/96 | 2249 | E5         | У  | 249 | Day Grab  | 60 | 49.062  | -2       | 34.477 |    |        |          |        |    |    |   | 0.1 m2   |
| 53743#1    | 20/07/96 | 0003 | В3         | У  | 147 | Day Grab  | 60 | 44.026  | -2       | 35.468 |    |        |          |        | У  | У  | У |          |
| 53743#2    | 20/07/96 | 0023 | B3         | n  | 148 | Day Grab  | 60 | 44.002  | -2       | 35.504 |    |        |          |        |    |    |   |          |
| 53743#3    | 20/07/96 | 0038 | В3         | n  | 148 | Day Grab  | 60 | 44.050  | -2       | 35.520 |    |        |          |        |    |    |   |          |
| 53743#4    | 20/07/96 | 0054 | B3         | У  | 148 | Day Grab  | 60 | 44.031  | -2       | 35.488 |    |        |          |        |    |    |   | 0.1 m2   |
| 53744#1    | 20/07/96 | 0202 | B2         | у  | 120 | Day Grab  | 60 | 38.018  | -2       | 32.995 |    |        |          |        | у  | у  | у |          |
| 53744#2    | 20/07/96 | 0221 | B2         | n  | 120 | Day Grab  | 60 | 38.006  | -2       | 32.976 |    |        |          |        |    |    |   |          |
| 53744#3    | 20/07/96 | 0234 | B2         | n  | 120 | Day Grab  | 60 | 38.014  | -2       | 33.026 |    |        |          |        |    |    |   |          |
| 53744#4    | 20/07/96 | 0247 | B2         | n  | 120 | Day Grab  | 60 | 38.011  | -2       | 33.095 |    |        |          |        |    |    |   |          |
| 53744#5    | 20/07/96 | 0257 | B2         | n  | 120 | Day Grab  | 60 | 38.014  | -2       | 33.108 |    |        |          |        |    |    |   |          |
| 53744#6    | 20/07/96 | 0309 | B2         | n  | 120 | Day Grab  | 60 | 38.019  | -2       | 33.097 |    |        |          |        |    |    |   |          |
| 53744#7    | 20/07/96 | 0321 | B2         | n  | 120 | Day Grab  | 60 | 38.017  | -2       | 33.094 |    |        |          |        |    |    |   |          |
| 53744#8    | 20/07/96 | 0332 | B2         | n  | 120 | Day Grab  | 60 | 38.013  | -2       | 33.087 |    |        |          |        |    |    |   |          |
| 53745#1    | 20/07/96 | 0457 | <b>B4</b>  | n  | 138 | Day Grab  | 60 | 43.589  | -2       | 15.630 |    |        |          |        |    |    |   |          |
| 53745#2    | 20/07/96 | 0507 | <b>B4</b>  | n  | 138 | Day Grab  | 60 | 43.606  | -2       | 15.561 |    |        |          |        |    |    |   |          |
| 53745#3    | 20/07/96 | 0516 | B4         | n  | 140 | Day Grab  | 60 | 43.567  | -2       | 15.502 |    |        |          |        |    |    |   |          |
| 53745#4    | 20/07/96 | 0527 | B4         | n  | 140 | Day Grab  | 60 | 43.566  | -2       | 15.477 |    |        |          |        |    |    |   |          |
| 53745#5    | 20/07/96 | 0537 | <b>B</b> 4 | у  | 143 | Day Grab  | 60 | 43.509  | -2       | 15.388 |    |        |          |        | у  | у  | y |          |
| 53745#6    | 20/07/96 | 0551 | B4         | y  | 143 | Day Grab  | 60 | 43.493  | -2       | 15.508 |    |        |          |        | ,  | J  | , | 0.1 m2   |
| 53746#1    | 20/07/96 | 0702 | B5         | y  | 134 | Day Grab  | 60 | 49.564  | -2       | 19.931 |    |        |          |        | у  | у  | v | 0.1 mz   |
| 53746#2    | 20/07/96 | 0718 | B5         | n  | 134 | Day Grab  | 60 | 49.485  | -2       | 19 986 |    |        |          |        | y  | J  | У |          |
| 53746#3    | 20/07/96 | 0730 | B5         | n  | 134 | Day Grab  | 60 | 49.453  | -2       | 20.081 |    |        |          |        |    |    |   |          |
| 53746#4    | 20/07/96 | 0740 | B5         | y  | 133 | Day Grab  | 60 | 49.451  | -2       | 20.017 |    |        |          |        |    |    |   | 0.1 m2   |
| 53747#1    | 20/07/96 | 0849 | Tr200      | n  | 202 | Day Grab  | 60 | 52.370  | -2       | 19.551 |    |        |          |        |    |    |   | 0.1 1112 |
| JU, 1111 L | 20,07,70 | 0017 |            | •• |     | 20,0100   | ~~ | J24,J10 | ~        | 17.001 |    |        |          |        |    |    |   |          |

33.510

-2

59 631

53733#5

19/07/96 0132

207

Day Grab

| 53747#2            | 20/07/96 | 0904 | Tr200     | n      | 204 | Day Grab   | 60 | 52.394 | -2         | 19.651 |                                         |        |          |                  |        |    |    |          |
|--------------------|----------|------|-----------|--------|-----|------------|----|--------|------------|--------|-----------------------------------------|--------|----------|------------------|--------|----|----|----------|
| 53747#3            | 20/07/96 | 0918 | Tr200     | n      | 202 | Day Grab   | 60 | 52.376 | -2         | 19 641 |                                         |        |          |                  |        |    |    |          |
| 53747#4            | 20/07/96 | 0931 | Tr200     | у      | 202 | Day Grab   | 60 | 52 369 | -2         | 19 602 |                                         |        |          |                  | У      | у  | у  |          |
| 53747#5            | 20/07/96 | 0950 | Tr200     | n      | 202 | Day Grab   | 60 | 52 364 | -2         | 19.629 |                                         |        |          |                  | y      | y  | У  |          |
| 53747#6            | 20/07/96 | 1006 | Tr200     | y      | 202 | Day Grab   | 60 | 52 365 | -2         | 19.580 |                                         |        |          |                  |        |    |    | 0.1 m2   |
| 53748#1            | 20/07/96 | 1055 | Tr250     | n      | 248 | Day Grab   | 60 | 53.165 | -2         | 20 822 |                                         |        |          |                  |        |    |    | 0.1 1112 |
| 53748#2            | 20/07/96 | 1112 | Tr250     | y      | 248 | Day Grab   | 60 | 53.173 | -2         | 20 816 |                                         |        |          |                  |        |    |    |          |
| 53748#3            | 20/07/96 | 1138 | Tr250     | y<br>n | 247 | Day Grab   | 60 | 53.175 | -2<br>-2   | 20 773 |                                         |        |          |                  | У      | У  | У  |          |
| 53748#4            | 20/07/96 | 1153 | Tr250     | n      | 247 | Day Grab   | 60 | 53.171 | -2<br>-2   | 20 773 |                                         |        |          |                  |        |    |    |          |
| 53748#5            | 20/07/96 | 1211 | Tr250     | y      | 248 | Day Grab   | 60 | 53.171 | -2<br>-2   | 20 772 |                                         |        |          |                  |        |    |    | 0.10     |
| 53749#1            | 20/07/96 | 1300 | Tr300     | n<br>n | 292 | Day Grab   | 60 | 53.175 |            | 20 793 |                                         |        |          |                  |        |    |    | 0.1 m2   |
| 53749#1            | 20/07/96 | 1324 | Tr300     |        |     | •          |    |        | -2         |        |                                         |        |          |                  |        |    |    |          |
| 53749#2            | 20/07/96 | 1400 | Tr300     | n      | 292 | Day Grab   | 60 | 53.975 | -2         | 21.915 |                                         |        |          |                  |        |    |    |          |
| 53749#3<br>53749#4 |          |      |           | n      | 290 | Day Grab   | 60 | 53 945 | -2         | 21.933 |                                         |        |          |                  |        |    |    |          |
|                    | 20/07/96 | 1422 | Tr300     | n      | 290 | Day Grab   | 60 | 53.947 | -2         | 21.913 |                                         |        |          |                  |        |    |    |          |
| 53749#5            | 20/07/96 | 1443 | Tr300     | n      | 290 | Day Grab   | 60 | 53.952 | -2         | 21.854 |                                         |        | _        |                  |        |    |    |          |
| 53750#1            | 20/07/96 | 1547 | Tr350     | У      | 348 | Box Corer  | 60 | 55.582 | -2         | 24.193 | 60                                      | 55.589 | -2       | 24.192           | y      | y  | У  | 0 1 m2   |
| 53751#1            | 20/07/96 | 1713 | L5        | y      | 413 | Box Corer  | 60 | 57.658 | -2         | 25.087 | 60                                      | 57.666 | -2       | 25.070           | У      | у  | У  | 0.1 m2   |
| 53752#1            | 20/07/96 | 1904 | Tr450     | У      | 454 | Box Corer  | 60 | 58.399 | -2         | 28.265 | 60                                      | 58 410 | -2       | 28.259           | y      | У  | У  | 0.1 m2   |
| 53753#1            | 20/07/96 | 2040 | L4        | n      | 502 | Box Corer  | 60 | 59.330 | -2         | 29.687 | 60                                      | 59.338 | -2       | 29.675           |        |    |    |          |
| 53753#2            | 20/07/96 | 2122 | L4        | У      | 502 | Box Corer  | 60 | 59.344 | -2         | 29.628 | 60                                      | 59.352 | -2       | 29.613           | y      | y  | У  | 0.1 m2   |
| 53754#1            | 20/07/96 | 2310 | P4        | У      | 560 | Box Corer  | 60 | 59.353 | -2         | 39.355 | 60                                      | 59.386 | -2       | 39.307           | У      | у  | У  | 0.1 m2   |
| 53755#1            | 21/07/96 | 0119 | Tr550     | n      | 553 | Box Corer  | 61 | 1.004  | -2         | 31.949 | 61                                      | 1.040  | -2       | 31.906           |        |    |    |          |
| 53755#2            | 21/07/96 | 0212 | Tr550     | у      | 554 | Box Corer  | 61 | 1.030  | -2         | 31 926 | 61                                      | 1.052  | -2       | 31.907           | y      | у  | у  | 0.1 m2   |
| 53756#1            | 21/07/96 | 0404 | Tr600     | у      | 601 | Box Corer  | 61 | 2.498  | -2         | 34.120 | 61                                      | 2.525  | -2       | 34.109           | y      | y  | y  | 0.1 m2   |
| 53757#1            | 21/07/96 | 0559 | Tr650     | У      | 649 | Box Corer  | 61 | 4.477  | -2         | 36.831 | 61                                      | 4.495  | -2       | 36.827           | y      | y  | y  | 0.1 m2   |
| 53758#1            | 21/07/96 | 0728 | S2        | У      | 710 | Box Corer  | 61 | 5,570  | -2         | 40.932 | 61                                      | 5.564  | -2       | 40.982           | y      | y  | ÿ  | 0.1 m2   |
| 53759#1            | 21/07/96 | 1010 | 500       | у      | 506 | Fish Trap  | 60 | 59.492 | -2         | 29.914 |                                         |        |          |                  | -      | •  | •  |          |
| 53760#1            | 21/07/96 | 1114 | P5        | y      | 518 | Box Corer  | 60 | 59.687 | -2         | 30.988 | 60                                      | 59.705 | -2       | 30.977           | у      | у  | у  | 0.1 m2   |
| 53761#1            | 21/07/96 | 1330 | Tr800     | У      | 806 | Box Corer  | 61 | 8.056  | -2         | 41.779 | 61                                      | 8.070  | -2       | 41.767           | y      | y  | у  | 0.1 m2   |
| 53762#1            | 21/07/96 | 1516 | Tr900     | у      | 916 | Box Corer  | 61 | 9.557  | -2         | 43.975 | 61                                      | 9.569  | -2       | 43.978           | y      | y  | Y  | 0.1 m2   |
| 53763#1            | 21/07/96 | 1721 | Tr1000    | n      | 998 | Box Corer  | 61 | 10.497 | -2         | 45.284 | 61                                      | 10.517 | -2       | 45.239           | •      | •  | •  |          |
| 53764#1            | 21/07/96 | 2123 | Tr550     | у      | 551 | Mega Corer | 61 | 0.967  | -2         | 31.872 | 61                                      | 0.996  | -2       | 31.862           | у      | у  | у  |          |
| 53764#2            | 21/07/96 | 2227 | Tr550     | у      | 552 | Mega Corer | 61 | 0.958  | -2         | 31.912 | 61                                      | 0.974  | -2       | 31.900           | •      | •  | •  | 8 cores  |
| 53765#1            | 21/07/96 | 2350 | Tr650     | у      | 650 | Mega Corer | 61 | 4.484  | -2         | 36.823 | 61                                      | 4.497  | -2       | 36,822           | у      | у  | y  |          |
| 53765#2            | 22/07/96 | 0056 | Tr650     | y      | 650 | Mega Corer | 61 | 4.513  | -2         | 36.808 | 61                                      | 4.548  | -2       | 36,799           | ,      | ,  | ,  | 8 cores  |
| 53766#1            | 22/07/96 | 0257 | S2        | у      | 709 | Mega Corer | 61 | 5.551  | -2         | 40.939 | 61                                      | 5.572  | -2       | 40.942           | у      | y  | у  | 0 00.40  |
| 53766#2            | 22/07/96 | 0357 | <b>S2</b> | y      | 709 | Mega Corer | 61 | 5,548  | -2         | 40,952 | 61                                      | 5,568  | -2       | 40.957           | J      | ,  | ,  | 8 cores  |
| 53767#1            | 22/07/96 | 0533 | Tr600     | y      | 600 | Mega Corer | 61 | 2,615  | -2         | 33.993 | 61                                      | 2,635  | -2       | 33.984           | у      | у  | у  | 5 00103  |
| 53767#2            | 22/07/96 | 0631 | Tr600     | y      | 601 | Mega Corer | 61 | 2.519  | -2         | 33.941 | 61                                      | 2,553  | -2       | 33.973           | ,      | ,  | ,  | 8 cores  |
| 53768#1            | 22/07/96 | 0817 | 800       | y      | 796 | Fish Trap  | 61 | 7.726  | -2         | 42.223 | • • • • • • • • • • • • • • • • • • • • | 2,000  | -        | 05.515           |        |    |    | 0 00103  |
| 53769#1            | 22/07/96 | 0925 | Tr800     | y      | 804 | Mega Corer | 61 | 8.031  | <u>-2</u>  | 41.750 | 61                                      | 8.021  | -2       | 41.775           |        |    |    | 8 cores  |
| 53769#2            | 22/07/96 | 1027 | Tr800     | y      | 803 | Mega Corer | 61 | 8.019  | - <b>2</b> | 41.729 | 61                                      | 8.052  | -2       | 41.744           | 7,     | ., | ٠, | 9 00103  |
| 53770#1            | 22/07/96 | 1157 | Tr900     | y      | 915 | Mega Corer | 61 | 9.532  | -2         | 44.022 | 61                                      | 9,539  | -2<br>-2 | 44.040           | y<br>V | y  | y  |          |
| 53770#2            | 22/07/96 | 1311 | Tr900     | y      | 919 | Mega Corer | 61 | 9.588  | -2         | 44.009 | 61                                      | 9.593  | -2<br>-2 | 44.040           | У      | У  | У  | 8 cores  |
| 53771#1            | 22/07/96 | 1448 | Tr1000    | y      | 999 | Mega Corer | 61 | 10.510 | -2         | 45.306 | 61                                      | 10.522 | -2<br>-2 | 45.293           | •      | ., | ., |          |
| 53771#2            | 22/07/96 | 1553 | Tr1000    | y      | 998 | Mega Corer | 61 | 10.310 | -2<br>-2   | 45.292 | 61                                      | 10.522 | -2<br>-2 | 45.293<br>45.288 | У      | У  | У  | 3 cores  |
| 53771#3            | 22/07/96 | 1704 | Tr1000    | n<br>n | 998 | Box Corer  | 61 | 10.489 | -2<br>-2   | 45.292 | 61                                      |        | -2<br>-2 |                  |        |    |    | 5 cores  |
| כחזווככ            | 22/01/70 | 1/04 | 111000    | 11     | 770 | BOX COICI  | 01 | 10,409 | -4         | 43 320 | 01                                      | 10.513 | -2       | 45.367           |        |    |    |          |

| 53772#1            | 22/07/96 | 1833 | UI       | n  | 940        | Box Corer  | 61 | 12.212 | -2       | 37.053           | 61 | 12,226 | -2 | 37 071 |    |    |    |           |
|--------------------|----------|------|----------|----|------------|------------|----|--------|----------|------------------|----|--------|----|--------|----|----|----|-----------|
| 53773#1            | 22/07/96 | 2143 | UI       | у  | 939        | Mega Corer | 61 | 12.211 | -2       | 37.023           | 61 | 12,226 | -2 | 37 036 | у  | у  | у  |           |
| 53773#2            | 22/07/96 | 2249 | Ul       | у  | 940        | Mega Corer | 61 | 12,229 | -2       | 36.968           | 61 | 12,242 | -2 | 36 979 | ,  | ,  | J  | 8 cores   |
| 53774#1            | 23/07/96 | 0037 | S1       | y  | 727        | Mega Corer | 61 | 8.063  | -2       | 34.778           | 61 | 8 100  | -2 | 34,770 |    |    |    | 8 cores   |
| 53774#2            | 23/07/96 | 0134 | S1       | y  | 729        | Mega Corer | 61 | 8.054  | -2       | 34.927           | 61 | 8.082  | -2 | 34.917 | 1/ | 1/ | 1/ | o cores   |
| 53775#1            | 23/07/96 | 0403 | NI       | y  | 551        | Box Corer  | 61 | 3.248  | -2       | 24,105           | 61 | 3 262  | -2 | 24 086 | У  | y  | y  | 0.1 m2    |
| 53776#1            | 23/07/96 | 0541 | K1       | y  | 466        | Box Corer  | 61 | 2.122  | -2       | 16.213           | 61 | 2.131  | -2 | 16.200 | y  | У  | У  |           |
| 53777#1            | 23/07/96 | 0701 | Gl       | y  | 352        | Box Corer  | 60 | 59.389 | -2       | 9 403            | 60 | 59 396 | -2 | 9.373  | у  | у  | У  | 0.1 m2    |
| 53778#1            | 23/07/96 | 0858 | 300      | ý  | 289        | Fish Trap  | 60 | 53.809 | -2       | 22.097           | 00 | 39 390 | -2 | 9.313  | У  | У  | У  | 0.1 m2    |
| 53779#1            | 23/07/96 | 1005 | Tr350    | ý  | 346        | Day Grab   | 60 | 55 519 | -2       | 24 187           |    |        |    |        |    |    |    |           |
| 53779#2            | 23/07/96 | 1031 | Tr350    | 'n | 345        | Day Grab   | 60 | 55.514 | -2       | 24.183           |    |        |    |        | У  | У  | у  |           |
| 53779#3            | 23/07/96 | 1052 | Tr350    | n  | 346        | Day Grab   | 60 | 55.522 | -2       | 24.183           |    |        |    |        |    |    |    |           |
| 53779#4            | 23/07/96 | 1114 | Tr350    | y  | 346        | Day Grab   | 60 | 55 528 | -2       | 24,163           |    |        |    |        |    |    |    |           |
| 53780#1            | 23/07/96 | 1211 | L5       | y  | 414        | Day Grab   | 60 | 57.713 | -2       | 24.103           |    |        |    |        |    |    |    | 0.1 m2    |
| 53780#2            | 23/07/96 | 1252 | L5       | y  | 414        | Day Grab   | 60 | 57.714 | -2<br>-2 | 24.989           |    |        |    |        | У  | У  | У  |           |
| 53781#1            | 23/07/96 | 1404 | Tr450    | y  | 455        | Day Grab   | 60 | 58.393 | -2<br>-2 | 24.989<br>28.240 |    |        |    |        |    |    |    | 0.1 m2    |
| 53781#2            | 23/07/96 | 1448 | Tr450    | y  | 454        | Day Grab   | 60 | 58.390 | -2<br>-2 |                  |    |        |    |        | У  | у  | У  |           |
| 53782#1            | 23/07/96 | 1551 | L4       | n  | 501        | Day Grab   | 60 | 59.319 |          | 28.200           |    |        |    |        |    |    |    | 0.1 m2    |
| 53782#2            | 23/07/96 | 1631 | L4       | n  | 500        | Day Grab   |    |        | -2       | 29.635           |    |        |    |        |    |    |    |           |
| 53782#3            | 23/07/96 | 1704 | L4       |    | 500        | •          | 60 | 59.351 | -2       | 29.343           |    |        |    |        |    |    |    |           |
| 53782#4            | 23/07/96 | 1742 | L4<br>L4 | у  | 498        | Day Grab   | 60 | 59.345 | -2       | 29.368           |    |        |    |        |    |    |    | 0.1 m2    |
| 53782#4            | 23/07/96 | 1855 | Tr600    | y  |            | Day grab   | 60 | 59.332 | -2       | 29.157           |    |        |    |        | у  | У  | У  |           |
| 53784#1            | 23/07/96 | 2150 | Tr300    | n  | 601<br>289 | Day Grab   | 61 | 2.624  | -2       | 34.163           |    |        |    |        |    |    |    |           |
| 53784#2            | 23/07/96 | 2217 | Tr300    | y  |            | Day Grab   | 60 | 53.915 | -2       | 21.851           |    |        |    |        | У  | у  | У  |           |
| 53784#2            | 23/07/96 | 2242 | Tr300    | n  | 290        | Day Grab   | 60 | 53.927 | -2       | 21.812           |    |        |    |        |    |    |    |           |
| 53784#4            | 23/07/96 | 2304 |          | n  | 289        | Day Grab   | 60 | 53.933 | -2       | 21.947           |    |        |    |        |    |    |    |           |
| 53785#1            |          |      | Tr300    | у  | 290        | Day Grab   | 60 | 53.947 | -2       | 21.903           |    |        |    |        |    |    |    | 0.1 m2    |
| 53785#1<br>53785#2 | 24/07/96 | 0053 | Al       | n  | 117        | Day Grab   | 60 | 52.397 | -1       | 59.518           |    |        |    |        |    |    |    |           |
| 53785#2            | 24/07/96 | 0106 | A1       | n  | 117        | Day Grab   | 60 | 52 397 | -1       | 59.552           |    |        |    |        |    |    |    |           |
|                    | 24/07/96 | 0119 | Al       | n  | 117        | Day Grab   | 60 | 52.384 | -1       | 59.459           |    |        |    |        |    |    |    |           |
| 53785#4            | 24/07/96 | 0131 | Al       | У  | 117        | Day Grab   | 60 | 52.397 | -1       | 59.522           |    |        |    |        | у  | y  | У  |           |
| 53785#5            | 24/07/96 | 0143 | A1       | n  | 117        | Day Grab   | 60 | 52.379 | -1       | 59.506           |    |        |    |        |    |    |    |           |
| 53785#6            | 24/07/96 | 0156 | A1       | n  | 117        | Day Grab   | 60 | 52.418 | -1       | 59.515           |    |        |    |        |    |    |    |           |
| 53785#7            | 24/07/96 | 0209 | Al       | У  | 117        | Day Grab   | 60 | 52.433 | -1       | 59.450           |    |        |    |        |    |    |    | 0.1 m2    |
| 53785#8            | 24/07/96 | 0223 | A1       | n  | 117        | Day Grab   | 60 | 52.423 | -1       | 59.514           |    |        |    |        |    |    |    |           |
| 53786#1            | 24/07/96 | 0317 | A2       | n  | 147        | Day Grab   | 60 | 56.564 | -2       | 0.386            |    |        |    |        |    |    |    |           |
| 53786#2            | 24/07/96 | 0329 | A2       | n  | 148        | Day Grab   | 60 | 56.584 | -2       | 0.444            |    |        |    |        |    |    |    |           |
| 53786#3            | 24/07/96 | 0342 | A2       | n  | 147        | Day Grab   | 60 | 56.565 | -2       | 0.430            |    |        |    |        |    |    |    |           |
| 53786#4            | 24/07/96 | 0354 | A2       | n  | 148        | Day Grab   | 60 | 56.574 | -2       | 0.391            |    |        |    |        |    |    |    |           |
| 53786#5            | 24/07/96 | 0409 | A2       | у  | 148        | Day Grab   | 60 | 56.590 | -2       | 0.413            |    |        |    |        | У  | y  | у  |           |
| 53786#6            | 24/07/96 | 0425 | A2       | n  | 147        | Day Grab   | 60 | 56.596 | -2       | 0.271            |    |        |    |        | ,  | ,  | ,  |           |
| 53786#7            | 24/07/96 | 0438 | A2       | У  | 146        | Day Grab   | 60 | 56.573 | -2       | 0.146            |    |        |    |        |    |    |    | 0.1 m2    |
| 53786#8            | 24/07/96 | 0451 | A2       | n  | 148        | Day Grab   | 60 | 56 587 | -2       | 0.420            |    |        |    |        |    |    |    | 0,1 1112  |
| 53787#1            | 24/07/96 | 0523 | A3       | У  | 160        | Day Grab   | 60 | 57.661 | -1       | 58.457           |    |        |    |        | у  | у  | у  |           |
| 53787#2            | 24/07/96 | 0537 | A3       | y  | 158        | Day Grab   | 60 | 57,558 | -1       | 58.310           |    |        |    |        | ,  | ,  | 3  | 0.1 m2    |
| 53788#1            | 24/07/96 | 0658 | A4       | n  | 133        | Day Grab   | 60 | 57.943 | -1       | 40.035           |    |        |    |        |    |    |    | J. 1 1112 |
| 53788#2            | 24/07/96 | 0711 | A4       | n  | 133        | Day Grab   | 60 | 58.035 | -1       | 40.062           |    |        |    |        |    |    |    |           |
| 53788#3            | 24/07/96 | 0722 | A4       | У  | 133        | Day Grab   | 60 | 57.982 | -1       | 39 905           |    |        |    |        | у  | у  | у  |           |
|                    |          |      |          |    |            | •          |    |        |          |                  |    |        |    |        | J  | ,  | J  |           |
|                    |          |      |          |    |            |            |    |        |          |                  |    |        |    |        |    |    |    |           |

| 53788#4            | 24/07/96 | 0735 | A4       | n      | 133 | Day Grab  | 60 | 58 027 | -1         | 40.115 |           |        |     |               |    |    |    |             |
|--------------------|----------|------|----------|--------|-----|-----------|----|--------|------------|--------|-----------|--------|-----|---------------|----|----|----|-------------|
| 53788#5            | 24/07/96 | 0746 | A4       | n      | 133 | Day Grab  | 60 | 58.044 | -1         | 40.239 |           |        |     |               |    |    |    |             |
| 53788#6            | 24/07/96 | 0757 | A4       | n      | 133 | Day Grab  | 60 | 58.060 | -1         | 40.103 |           |        |     |               |    |    |    |             |
| 53788#7            | 24/07/96 | 0807 | A4       | у      | 133 | Day Grab  | 60 | 58 037 | -1         | 40.017 |           |        |     |               |    |    |    | 0.1 m2      |
| 53789#1            | 24/07/96 | 0931 | D1       | n      | 227 | Box Corer | 61 | 1.582  | -Ì         | 54.992 | 61        | 1.582  | -1  | 54.977        |    |    |    | 0.1 1112    |
| 53789#2            | 24/07/96 | 1003 | D1       | n      | 226 | Box Corer | 61 | 1.591  | -Ì         | 54,937 | 61        | 1.587  | -1  | 54.926        |    |    |    |             |
| 53789#3            | 24/07/96 | 1028 | D1       | n      | 228 | Day Grab  | 61 | 1.606  | -Î         | 54,962 | 01        | 1,507  |     | 54.520        |    |    |    |             |
| 53789#4            | 24/07/96 | 1044 | Di       | n      | 227 | Day Grab  | 61 | 1.592  | -1         | 54.966 |           |        |     |               |    |    |    |             |
| 53789#5            | 24/07/96 | 1100 | Di       | y      | 226 | Day Grab  | 61 | 1.572  | -1         | 54.929 |           |        |     |               | 1/ | 1/ | 7, |             |
| 53789#6            | 24/07/96 | 1127 | DI       | n      | 226 | Day Grab  | 61 | 1.592  | -1         | 54.888 |           |        |     |               | у  | у  | У  |             |
| 53789#7            | 24/07/96 | 1141 | DI       | y      | 225 | Day Grab  | 61 | 1.601  | -1<br>-1   | 54.856 |           |        |     |               |    |    |    | 0.1 2       |
| 53799#1            | 24/07/96 | 1300 | D2       | n<br>n | 274 | Box Corer | 61 | 6.700  | -1<br>-1   | 48.328 | 61        | 6.708  | -1  | 48.311        |    |    |    | 0.1 m2      |
| 53790#1            | 24/07/96 | 1300 | D2<br>D2 |        | 274 | Day Grab  | 61 | 6.705  | _          | 48.316 | 01        | 0.708  | -1  | 48.311        |    |    |    |             |
| 53790#2<br>53790#3 |          | 1349 | D2<br>D2 | n      |     | •         |    |        | -1         |        |           |        |     |               |    |    |    |             |
|                    | 24/07/96 |      |          | n      | 274 | Day Grab  | 61 | 6.719  | -1         | 48.348 |           |        |     |               |    |    |    |             |
| 53790#4            | 24/07/96 | 1410 | D2       | у      | 274 | Day Grab  | 61 | 6.713  | -1         | 48.338 |           |        |     |               |    |    |    | 0.1 m2      |
| 53790#5            | 24/07/96 | 1435 | D2       | у      | 274 | Day Grab  | 61 | 6.707  | -1         | 48.306 | <b>~1</b> |        |     | <b>50.400</b> | У  | У  | У  |             |
| 53791#1            | 24/07/96 | 1544 | G2       | y      | 367 | Box Corer | 61 | 6.988  | -1         | 53.422 | 61        | 6.990  | -1  | 53.400        | y  | У  | У  | 0.1 m2      |
| 53792#1            | 24/07/96 | 1729 | K2       | у      | 436 | Box Corer | 61 | 7.979  | -1         | 55.748 | 61        | 7.976  | -1  | 55.720        | у  | У  | У  | 0.1 m2      |
| 53793#1            | 24/07/96 | 1910 | N2       | у      | 563 | Box Corer | 61 | 9.579  | -2         | 8.491  | 61        | 9.557  | -2  | 8.417         | у  | у  | У  | 0.1 m2      |
| 53794#1            | 24/07/96 | 2049 | R1       | y      | 657 | Box Corer | 61 | 15.983 | -2         | 4.630  | 61        | 15.991 | -2  | 4.613         | y  | у  | y  | 0.1 m2      |
| 53795#1            | 24/07/96 | 2253 | К3       | у      | 489 | Box Corer | 61 | 15.807 | -1         | 47.474 | 61        | 15.810 | -1  | 47.460        | y  | У  | У  | 0.1 m2      |
| 53796#1            | 25/07/96 | 0043 | D3       | n      | 248 | Box Corer | 61 | 10.418 | -1         | 38.127 | 61        | 10.425 | -1  | 38.120        |    |    |    |             |
| 53796#2            | 25/07/96 | 0113 | D3       | n      | 247 | Box Corer | 61 | 10.403 | -1         | 38.136 | 61        | 10.413 | -1  | 38.136        |    |    |    |             |
| 53796#3            | 25/07/96 | 0144 | D3       | n      | 248 | Box Corer | 61 | 10.422 | -1         | 38.114 | 61        | 10.432 | -1  | 38.115        |    |    |    |             |
| 53796#4            | 25/07/96 | 0208 | D3       | n      | 251 | Box Corer | 61 | 10.442 | -1         | 38.170 | 61        | 10.452 | -1  | 38.162        |    |    |    |             |
| 53796#5            | 25/07/96 | 0247 | D3       | у      | 250 | Day Grab  | 61 | 10.447 | -1         | 38.137 |           |        |     |               |    |    |    | 0.1 m2      |
| 53796#6            | 25/07/96 | 0308 | D3       | у      | 249 | Day Grab  | 61 | 10.472 | -1         | 38.138 |           |        |     |               | у  | у  | у  |             |
| 53797#1            | 25/07/96 | 0450 | G3       | n      | 333 | Box Corer | 61 | 18.294 | -i         | 32.160 | 61        | 18.301 | -1  | 32.186        |    |    |    |             |
| 53797#2            | 25/07/96 | 0535 | G3       | n      | 330 | Box Corer | 61 | 18.185 | - <b>i</b> | 32.161 | 61        | 18.196 | -1  | 32.148        |    |    |    |             |
| 53797#3            | 25/07/96 | 0605 | G3       | n      | 333 | Day Grab  | 61 | 18.238 | -1         | 32.261 |           |        |     |               |    |    |    |             |
| 53797#4            | 25/07/96 | 0624 | G3       | n      | 332 | Day Grab  | 61 | 18.211 | -1         | 32.256 |           |        |     |               |    |    |    |             |
| 53797#5            | 25/07/96 | 0641 | G3       | n      | 331 | Day Grab  | 61 | 18.230 | -1         | 32.089 |           |        |     |               |    |    |    |             |
| 53797#6            | 25/07/96 | 0700 | G3       | у      | 324 | Day Grab  | 61 | 18.245 | -1         | 31.653 |           |        |     |               | у  | у  | у  |             |
| 53797#7            | 25/07/96 | 0728 | G3       | y      | 331 | Day Grab  | 61 | 18.203 | -1         | 32.207 |           |        |     |               | •  | •  | •  | 0.1 m2      |
| 53798#1            | 25/07/96 | 0901 | K4       | n      | 453 | Box Corer | 61 | 25.859 | -1         | 29.030 | 61        | 25.874 | -1  | 29.029        |    |    |    |             |
| 53798#2            | 25/07/96 | 0934 | K4       | у      | 452 | Box Corer | 61 | 25.849 | -1         | 28.993 | 61        | 25.858 | -1  | 28.993        | у  | у  | у  | 0.1 m2      |
| 53799#1            | 25/07/96 | 1044 | 500      | y      | 516 | Fish Trap | 61 | 26.653 | -1         | 31 548 |           |        |     |               | •  | •  | •  |             |
| 53800#1            | 25/07/96 | 1334 | N4       | y      | 558 | Box Corer | 61 | 27.295 | -1         | 34.007 | 61        | 27.306 | -1  | 34.009        | y  | у  | у  | 0 1 m2      |
| 53801#1            | 25/07/96 | 1548 | 570      | y      | 570 | Wasp      | 61 | 23.555 | -1         | 41.612 |           |        |     |               | •  | •  | •  |             |
| 53802#1            | 25/07/96 | 1830 | N3       | n      | 594 | Box Corer | 61 | 27.827 | -1         | 36.887 | 61        | 27.837 | -1  | 36.887        |    |    |    |             |
| 53802#2            | 25/07/96 | 1941 | N3       | у      | 595 | Box Corer | 61 | 27.792 | -1         | 36,952 | 61        | 27.808 | -1  | 36.963        | у  | у  | у  | 0 1 m2      |
| 53803#1            | 25/07/96 | 2110 | R4       | y      | 649 | Box Corer | 61 | 28.470 | -1         | 41.146 | 61        | 28.474 | -1  | 41.121        | y  | y  | y  | 0.1 m2      |
| 53804#1            | 25/07/96 | 2244 | R5       | y      | 683 | Box Corer | 61 | 30.381 | -1         | 41.536 | 61        | 30.377 | -1  | 41.494        | y  | y  | y  | 0.1 m2      |
| 53805#1            | 26/07/96 | 0053 | N5       | y      | 580 | Box Corer | 61 | 36.619 | ī-         | 22,892 | 61        | 36.631 | -î  | 22.859        | y  | y  | y  | 0.1 m2      |
| 53806#1            | 26/07/96 | 0233 | K5       | 'n     | 467 | Box Corer | 61 | 34,234 | -1         | 17.513 | 61        | 34.254 | -1  | 17.486        | J  | ,  | ,  | V.1 III.2   |
| 53806#2            | 26/07/96 | 0340 | K5       | y      | 467 | Box Corer | 61 | 34.234 | -1         | 17.504 | 61        | 34,253 | -1  | 17.468        | у  | y  | v  | see comment |
| 53807#1            | 26/07/96 | 0523 | G4       | n      | 361 | Box Corer | 61 | 32.648 | -î         | 13.231 | 61        | 32 675 | -1  | 13.209        | 3  | J  | y  | See comment |
| >=== <b>.</b>      |          |      |          |        |     |           | ٠. | J=.0.0 | •          | 15.25  | 0.1       | 52 015 | - 4 | 13.20)        |    |    |    |             |

| 53807#2  | 26/07/96 | 0603 | G4  | n      | 361  | Day Grab     | 61 | 32 633 | -1       | 13 292 |    |        |          |        |    |   |    |          |
|----------|----------|------|-----|--------|------|--------------|----|--------|----------|--------|----|--------|----------|--------|----|---|----|----------|
| 53807#3  | 26/07/96 | 0624 | G4  | у      | 361  | Day Grab     | 61 | 32.664 | -1       | 13.248 |    |        |          |        | у  | y | у  |          |
| 53807#4  | 26/07/96 | 0656 | G4  | у      | 368  | Day Grab     | 61 | 32.629 | -1       | 13.744 |    |        |          |        | ,  | , | ,  | 0 1 m2   |
| 53808#1  | 26/07/96 | 0750 | G5  | n      | 347  | Day Grab     | 61 | 34.267 | -Î       | 10 194 |    |        |          |        |    |   |    | O I IIIZ |
| 53808#2  | 26/07/96 | 0816 | G5  | y      | 351  | Day Grab     | 61 | 34.236 | -Î       | 10.233 |    |        |          |        | */ | • | 1/ |          |
| 53808#3  | 26/07/96 | 0838 | G5  | y      | 348  | Day Grab     | 61 | 34 253 | -i       | 10.210 |    |        |          |        | У  | у | y  | 0.1 m2   |
| 53808#4  | 26/07/96 | 0859 | G5  | n      | 347  | Day Grab     | 61 | 34.264 | -1       | 10.210 |    |        |          |        |    |   |    | 0.1 1112 |
| 53808#4  | 26/07/96 | 0923 | G5  | n      | 346  | Day Grab     | 61 | 34.208 | -1<br>-1 | 10.161 |    |        |          |        |    |   |    |          |
| 53809#1  | 26/07/96 | 1327 | 300 |        | 297  | Fish Trap    | 61 | 32.392 | -1<br>-1 | 9.016  |    |        |          |        |    |   |    |          |
| 53810#1  | 26/07/96 | 1428 | 300 | У      | 299  | Wasp         | 61 | 31.498 | -1<br>-1 | 10.716 | 61 | 31.522 |          | 10 697 |    |   |    |          |
| 53810#1  | 26/07/96 | 1721 | 500 | у      | 499  | Wasp         | 61 | 26.853 |          | 31,234 |    | 26.873 | -i       | 10.687 |    |   |    |          |
| 53812#1  | 26/07/96 | 2022 | 800 | y      |      | •            |    |        | -1       |        | 61 |        | -1       | 31.190 |    |   |    |          |
|          |          |      | -   | У      | 794  | Wasp         | 61 | 24.759 | -1       | 57.495 | 61 | 24.783 | -1       | 57.449 |    |   |    |          |
| 53813#1  | 27/07/96 | 0115 | G5  | n      | 346  | Day Grab     | 61 | 34.223 | -1       | 10.191 |    |        |          |        |    |   |    |          |
| 53813#2  | 27/07/96 | 0140 | G5  | У      | 352  | Day Grab     | 61 | 34.237 | -1       | 10.268 |    |        |          |        |    |   |    | 0.1 m2   |
| 53814#1  | 27/07/96 | 0317 | D5  | n      | 248  | Day Grab     | 61 | 39.730 | 0        | 54 380 |    |        |          |        |    |   |    |          |
| 53814#2  | 27/07/96 | 0338 | D5  | n      | 248  | Day Grab     | 61 | 39 740 | 0        | 54.490 |    |        |          |        |    |   |    |          |
| 53814#3  | 27/07/96 | 0358 | D5  | У      | 247  | Day Grab     | 61 | 39.757 | 0        | 54.436 |    |        |          |        | у  | у | у  |          |
| 53814#4  | 27/07/96 | 0419 | D5  | n      | 248  | Day Grab     | 61 | 39.815 | 0        | 54.419 |    |        |          |        |    |   |    |          |
| 53814#5  | 27/07/96 | 0434 | D5  | У      | 249  | Day Grab     | 61 | 39.871 | 0        | 54.419 |    |        |          |        |    |   |    | 0.1 m2   |
| 53815#1  | 27/07/96 | 0645 | A5  | n      | 181  | Day Grab     | 61 | 25.987 | 0        | 49.999 |    |        |          |        |    |   |    |          |
| 53815#2  | 27/07/96 | 0657 | A5  | n      | 181  | Day Grab     | 61 | 26.041 | 0        | 49.981 |    |        |          |        |    |   |    |          |
| 53815#3  | 27/07/96 | 0732 | A5  | У      | 180  | Day Grab     | 61 | 26.119 | 0        | 49.912 |    |        |          |        | у  | у | у  |          |
| 53815#4  | 27/07/96 | 0753 | A5  | y      | 180  | Day Grab     | 61 | 26.070 | 0        | 49.162 |    |        |          |        |    |   |    | 0.1 m2   |
| 53815#5  | 27/07/96 | 8080 | A5  | У      | 180  | Day Grab     | 61 | 26.108 | 0        | 49.145 |    |        |          |        |    |   |    | 0.1 m2   |
| 53816#1  | 27/07/96 | 0945 | D4  | n      | 237  | Day Grab     | 61 | 29.632 | -1       | 7.013  |    |        |          |        |    |   |    |          |
| 53816#2  | 27/07/96 | 0959 | D4  | n      | 237  | Day Grab     | 61 | 29.589 | -1       | 7.069  |    |        |          |        |    |   |    |          |
| 53816#3  | 27/07/96 | 1014 | D4  | у      | 235  | Day Grab     | 61 | 29.530 | -1       | 6.862  |    |        |          |        |    | у | у  | -        |
| 53816#4  | 27/07/96 | 1037 | D4  | у      | 235  | Day Grab     | 61 | 29.536 | -1       | 6.879  |    |        |          |        |    |   |    | 0.1 m2   |
| 53816#5  | 27/07/96 | 1057 | D4  | у      | 236  | Day Grab     | 61 | 29.505 | -1       | 7.023  |    |        |          |        | у  |   |    |          |
| 53817#1  | 27/07/96 | 1606 | 800 | у      | 789  | Fish Trap    | 61 | 24.809 | -1       | 57.177 |    |        |          |        | •  |   |    |          |
| 53818#1  | 27/07/96 | 1734 | U4  | у      | 955  | Mega Corer   | 61 | 25.985 | -2       | 1.676  | 61 | 26.000 | -2       | 1.641  |    |   |    | 7 cores  |
| 53818#2  | 27/07/96 | 1857 | U4  | у      | 952  | Mega Corer   | 61 | 26.320 | -2       | 0.871  | 61 | 26.347 | -2       | 0.827  | y  | у | y  |          |
| 53819#1  | 27/07/96 | 2123 | W4  | y      | 1091 | Mega Corer   | 61 | 35.376 | -1       | 49.749 | 61 | 35.380 | -1       | 49.750 | y  | y | ý  |          |
| 53819#2  | 27/07/96 | 2237 | W4  | n      | 1095 | Mega Corer   | 61 | 35.391 | -i       | 49.887 | 61 | 35.396 | -1       | 49.897 | ,  | • | ,  |          |
| 53819#3  | 27/07/96 | 2348 | W4  | у      | 1094 | Mega Corer   | 61 | 35 384 | -i       | 49.911 | 61 | 35.396 | -I       | 49.844 |    |   |    | 8 cores  |
| 53820#1  | 28/07/96 | 0134 | W5  | y      | 1090 | Mega Corer   | 61 | 37.335 | -1       | 47.080 | 61 | 37.328 | -1       | 47,076 | у  | у | у  |          |
| 53820#2  | 28/07/96 | 0254 | W5  | y      | 1093 | Mega Corer   | 61 | 37.333 | -1       | 47.122 | 61 | 37.337 | -1       | 47.115 | ,  | , | ,  | 8 cores  |
| 53821#1  | 28/07/96 | 0432 | U5  | y      | 880  | Mega Corer   | 61 | 38.966 | -1       | 38 994 | 61 | 38,972 | -1       | 38.989 | у  | y | у  | 0 00,00  |
| 53821#2  | 28/07/96 | 0543 | U5  | ý      | 878  | Mega Corer   | 61 | 38.962 | -1       | 38.932 | 61 | 38.946 | -1       | 38.902 | ,  | , | ,  | 8 cores  |
| 53822#1  | 28/07/96 | 0831 | R2  | y      | 685  | Mega Corer   | 61 | 23.287 | -1       | 52.947 | 61 | 23.294 | -1       | 52.945 | у  | у | y  | 1 core   |
| 53822#2  | 28/07/96 | 0923 | R2  | y      | 685  | Mega Corer   | 61 | 23.323 | -1       | 52.950 | 61 | 23.326 | -1       | 52.952 | J  | , | J  | 7 cores  |
| 53823#1  | 28/07/96 | 1038 | R3  | y      | 738  | Mega Corer   | 61 | 24.502 | -i       | 54.913 | 61 | 24 503 | -1       | 54.936 | у  | у | у  | , 00103  |
| 53823#2  | 28/07/96 | 1141 | R3  | n      | 737  | Mega Corer   | 61 | 24.482 | -1       | 54.918 | 61 | 24.484 | -1       | 54.922 | y  | J | y  |          |
| 53823#3  | 28/07/96 | 1232 | R3  | y<br>y | 735  | Mega Corer   | 61 | 24.433 | -1       | 54.916 | 61 | 24.432 | -1<br>-1 | 54.947 |    |   |    | 8 cores  |
| 53824#1  | 28/07/96 | 1544 | U3  | y      | 842  | Mega Corer   | 61 | 19.960 | -2       | 10.055 | 61 | 19.958 | -2       | 10.064 |    |   |    | 8 cores  |
| 53824#2  | 28/07/96 | 1649 | U3  | y      | 840  | Mega Corer   | 61 | 19.668 | -2       | 10.651 | 61 | 19.676 | -2<br>-2 | 10.675 | v  | v | v  | o cores  |
| 53825#1  | 28/07/96 | 1838 | U2  | y      | 882  | Mega Corer   | 61 | 19.395 | -2<br>-2 | 13.658 | 61 | 19.070 | -2<br>-2 | 13.649 | У  | У | у  | 8 cores  |
| JJ025# 1 | 20101170 | 1020 | 02  | J      | 002  | 1.1064 00101 | 01 | 17.575 | -2       | 15.050 | 01 | 17 373 | -2       | 13.043 |    |   |    | 8 cores  |
|          |          |      |     |        |      |              |    |        |          |        |    |        |          |        |    |   |    |          |

| 53825#2 | 28/07/96 | 1949 | U2         | у      | 876  | Mega Corer | 61 | 19 336           | -2             | 13.473 | 61 | 19.336 | -2         | 13.485 | у      | у | у      |             |
|---------|----------|------|------------|--------|------|------------|----|------------------|----------------|--------|----|--------|------------|--------|--------|---|--------|-------------|
| 53826#1 | 28/07/96 | 2136 | 1100       | у      | 1091 | Fish Trap  | 61 | 18.036           | -2             | 29.828 |    |        |            |        |        |   |        |             |
| 53827#1 | 28/07/96 | 2348 | Y3         | у      | 1238 | Mega Corer | 61 | 22.375           | <b>-</b> 2     | 42 636 | 61 | 22.366 | -2         | 42.650 |        |   |        | 8 cores     |
| 53827#2 | 29/07/96 | 0116 | Y3         | y      | 1237 | Mega Corer | 61 | 22.344           | -2             | 42.401 | 61 | 22.336 | -2         | 42.464 | у      | у | у      |             |
| 53828#1 | 29/07/96 | 0322 | Y4         | y      | 1350 | Mega Corer | 61 | 26,126           | <del>-</del> 2 | 37.033 | 61 | 26,131 | -2         | 37.048 | •      | • | •      | 8 cores     |
| 53828#2 | 29/07/96 | 0453 | Y4         | y      | 1352 | Mega Corer | 61 | 26.204           | -2             | 36.916 | 61 | 26.216 | -2         | 36.915 | у      | у | у      |             |
| 53829#1 | 29/07/96 | 0725 | W3         | y      | 1186 | Mega Corer | 61 | 26,449           | -2             | 15,515 | 61 | 26,446 | -2         | 15.527 | ,      | , | •      | 8 cores     |
| 53829#2 | 29/07/96 | 0856 | W3         | y      | 1191 | Mega Corer | 61 | 26.500           | -2             | 15.930 | 61 | 26.552 | -2         | 15 895 | у      | у | у      | 0 00700     |
| 53830#1 | 29/07/96 | 1127 | W2         | y      | 1057 | Mega Corer | 61 | 17.795           | -2             | 27.338 | 01 | 20.332 | -2         | 13 075 | J      | , | 3      | 8 cores     |
|         | 29/07/96 | 1252 | W2         |        | 1057 | Mega Corer | 61 | 17.805           | -2             | 27.344 | 61 | 17.791 | -2         | 27.385 | **     | • | .,     | o cores     |
| 53830#2 |          |      |            | y      | 1037 | -          |    | 17.803           |                | 30.167 | 61 |        |            | 30.166 | у      | y | у      | 0           |
| 53831#1 | 29/07/96 | 1546 | Wi         | У      |      | Mega Corer | 61 |                  | -2             |        |    | 17.963 | -2         |        |        |   |        | 8 cores     |
| 53831#2 | 29/07/96 | 1706 | W1         | у      | 1090 | Mega Corer | 61 | 17.898           | -2             | 30.034 | 61 | 17.917 | -2         | 30.070 | У      | y | у      |             |
| 53832#1 | 29/07/96 | 1953 | Y5         | У      | 1388 | Mega Corer | 61 | 27.578           | -2             | 36.137 | 61 | 27.582 | -2         | 36.223 |        |   |        | 8 cores     |
| 53832#2 | 29/07/96 | 2127 | Y5         | У      | 1389 | Mega Corer | 61 | 27.601           | -2             | 36.387 | 61 | 27.625 | -2         | 36.383 | У      | У | У      |             |
| 53833#1 | 30/07/96 | 0003 | <b>Z4</b>  | У      | 1513 | Mega Corer | 61 | 36.157           | -2             | 26.562 | 61 | 36 158 | -2         | 26.561 |        |   |        | 8 cores     |
| 53833#2 | 30/07/96 | 0151 | Z4         | у      | 1514 | Mega Corer | 61 | 36.218           | -2             | 26.503 | 61 | 36.191 | -2         | 26.528 | у      | У | у      |             |
| 53834#1 | 30/07/96 | 0357 | <b>Z</b> 5 | y      | 1542 | Mega Corer | 61 | 39.498           | -2             | 26.514 | 61 | 39.478 | <b>-</b> 2 | 26.543 |        |   |        | 8 cores     |
| 53834#2 | 30/07/96 | 0546 | <b>Z5</b>  | y      | 1547 | Mega Corer | 61 | 39.543           | -2             | 26.137 | 61 | 39.535 | -2         | 26.209 | У      | у | у      |             |
| 53835#1 | 30/07/96 | 0846 | <b>Z</b> 3 | у      | 1517 | Mega Corer | 61 | 37.729           | -2             | 51.977 | 61 | 37.782 | -2         | 51.943 |        |   |        | 8 cores     |
| 53835#2 | 30/07/96 | 1032 | Z3         | y      | 1517 | Mega Corer | 61 | 37.726           | -2             | 51.982 | 61 | 37.772 | -2         | 51.939 | у      | у | у      |             |
| 53836#1 | 30/07/96 | 1317 | <b>Z2</b>  | n      | 1415 | Mega Corer | 61 | 27.430           | -3             | 0.239  | 61 | 27.359 | -3         | 0.404  | •      | • | •      |             |
| 53836#2 | 30/07/96 | 1502 | <b>Z</b> 2 | у      | 1416 | Mega Corer | 61 | 27.472           | -3             | 0.189  | 61 | 27,410 | -3         | 0.193  | у      | у | у      | 7 cores     |
| 53837#1 | 30/07/96 | 1731 | Z1         | n      | 1439 | Mega Corer | 61 | 29.851           | -3             | 7.925  | 61 | 29 832 | -3         | 7.950  | ,      | , | •      |             |
| 53837#2 | 30/07/96 | 1918 | Z1         | у      | 1439 | Box Corer  | 61 | 29.836           | -3             | 7.854  |    |        |            |        | y      | у | у      | 0.1 m2      |
| 53838#1 | 30/07/96 | 2219 | Ϋ́I        | y      | 1355 | Box Corer  | 61 | 25,996           | -3             | 21.951 | 61 | 26.062 | -3         | 21,955 | y      | y | y      | 0.1 m2      |
| 53839#1 | 31/07/96 | 0039 | Ŷ2         | y      | 1366 | Box Corer  | 61 | 24.197           | -3             | 17.301 | 61 | 24.201 | -3         | 17.235 | y      | y | y      | o.1 m2      |
| 53840#1 | 31/07/96 | 0514 | V5         | y<br>y | 985  | Mega Corer | 61 | 7.070            | -2             | 57.546 | 61 | 7.052  | -3<br>-2   | 57.597 | y<br>y | - | y<br>Y | 8 cores     |
| 53841#1 | 31/07/96 | 1313 | MI         | -      | 481  | Box Corer  | 60 | 25.075           | -4             | 6,973  | O1 | 7.032  | -2         | 31.391 |        | y | •      |             |
|         | 31/07/96 | 1503 | QI         | у      | 533  | Box Corer  | 60 | 24.039           | -4             | 13.349 | 60 | 24.049 | -4         | 13,364 | у      | y | у      | y<br>0.1 m2 |
| 53842#1 |          |      |            | y      |      | Box Corer  |    | 24.733           | -4<br>-4       | 16.942 | 60 |        |            |        | У      | У | У      |             |
| 53843#1 | 31/07/96 | 1647 | T2         | y      | 601  |            | 60 | 24.733<br>16.497 |                | 27.533 |    | 24.732 | -4         | 16.948 | У      | y | y      | 0.1 m2      |
| 53844#1 | 31/07/96 | 1912 | Q2         | У      | 538  | Box Corer  | 60 |                  | -4             |        | 60 | 16.505 | -4         | 27.544 | У      | У | У      | 0.1 m2      |
| 53845#1 | 31/07/96 | 2113 | M2         | n      | 492  | Box Corer  | 60 | 11.767           | -4             | 35.884 | 60 | 11.779 | -4         | 35.867 |        |   |        |             |
| 53845#2 | 31/07/96 | 2159 | M2         | n      | 493  | Box Corer  | 60 | 11.750           | -4             | 36.070 | 60 | 11.765 | -4         | 36.043 |        |   |        |             |
| 53845#3 | 31/07/96 | 2322 | 500        | У      | 500  | Hornet     | 60 | 12.211           | -4             | 35.478 |    |        |            |        |        |   |        |             |
| 53845#4 | 01/08/96 | 0113 | M2         | У      | 496  | Box Corer  | 60 | 11.936           | -4             | 35.921 | 60 | 11.936 | -4         | 35.918 | У      | У | У      | 0.1 m2      |
| 53846#1 | 01/08/96 | 0316 | M4         | у      | 467  | Box Corer  | 60 | 6.750            | -4             | 45.743 | 60 | 6.751  | -4         | 45.778 | у      | У | У      | 0.1 m2      |
| 53847#1 | 01/08/96 | 0456 | Q5         | у      | 520  | Box Corer  | 60 | 5.470            | -4             | 53.086 | 60 | 5.456  | -4         | 53.089 | у      | у | У      | 0.1 m2      |
| 53848#1 | 01/08/96 | 0652 | M5         | у      | 421  | Box Corer  | 60 | 2.147            | -4             | 54.593 | 60 | 2.153  | -4         | 54.564 | y      | У | У      | 0.1 m2      |
| 53849#1 | 01/08/96 | 0815 | J5         | n      | 341  | Box Corer  | 60 | 1.292            | -4             | 50.688 | 60 | 1.306  | -4         | 50.639 |        |   |        |             |
| 53849#2 | 01/08/96 | 0907 | J5         | у      | 341  | Day Grab   | 60 | 1.293            | -4             | 50.688 |    |        |            |        | y      | у | y      |             |
| 53849#3 | 01/08/96 | 0940 | J5         | y      | 341  | Day Grab   | 60 | 1.276            | -4             | 50.702 |    |        |            |        | •      | • | •      | 0.1 m2      |
| 53849#4 | 01/08/96 | 1009 | J5         | n      | 342  | Day Grab   | 60 | 1.321            | -4             | 50.737 |    |        |            |        |        |   |        |             |
| 53849#5 | 01/08/96 | 1030 | J5         | y      | 342  | Day Grab   | 60 | 1.281            | -4             | 50.765 |    |        |            |        |        |   |        | 0.1 m2      |
| 53850#1 | 01/08/96 | 1122 | F5         | n      | 267  | Day Grab   | 60 | 0.596            | -4             | 47.940 |    |        |            |        |        |   |        |             |
| 53850#2 | 01/08/96 | 1140 | F5         | n      | 266  | Day Grab   | 60 | 0.571            | -4             | 47.970 |    |        |            |        |        |   |        |             |
| 53850#2 | 01/08/96 | 1156 | F5         | n      | 266  | Day Grab   | 60 | 0.611            | -4             | 47.988 |    |        |            |        |        |   |        |             |
|         | 01/08/96 | 1216 | F5         | n      | 265  | Day Grab   | 60 | 0.572            | -4             | 48.017 |    |        |            |        |        |   |        |             |
| 53850#4 | 01/00/30 | 1210 | ĽJ         | 11     | 203  | Day Glau   | 00 | 0.372            | -4             | 40.01/ |    |        |            |        |        |   |        |             |

| • |
|---|
|   |

| 53850#5  | 01/08/96 | 1240 | F5  | n | 268 | Day Grab | 60       | 0.558            | -4       | 47.962 |  |   |   |   |  |
|----------|----------|------|-----|---|-----|----------|----------|------------------|----------|--------|--|---|---|---|--|
| 53850#6  | 01/08/96 | 1303 | F5  | n | 268 | Day Grab | 60       | 0.541            | -4       | 47.984 |  |   |   |   |  |
| 53850#7  | 01/08/96 | 1325 | F5  | n | 264 | Day Grab | 60       | 0.564            | -4       | 48.039 |  |   |   |   |  |
| 53851#1  | 01/08/96 | 1448 | C14 | у | 152 | Day Grab | 59       | 53.201           | -4       | 50.608 |  | у | y | у |  |
| 53851#2  | 01/08/96 | 1530 | C14 | n | 153 | Day Grab | 59       | 53.168           | -4       | 50.516 |  | - | - | - |  |
| 53851#3  | 01/08/96 | 1544 | C14 | у | 152 | Day Grab | 59       | 53.194           | -4       | 50.589 |  |   |   |   |  |
| 53852#1  | 01/08/96 | 1621 | C15 | n | 154 | Day Grab | 59       | 53.009           | -4       | 51.206 |  |   |   |   |  |
| 53852#2  | 01/08/96 | 1636 | C15 | у | 155 | Day Grab | 59       | 53.014           | -4       | 51,210 |  |   |   |   |  |
| 53852#3  | 01/08/96 | 1649 | C15 | n | 155 | Day Grab | 59       | 53.040           | -4       | 51.247 |  |   |   |   |  |
| 53852#4  | 01/08/96 | 1702 | C15 | у | 156 | Day Grab | 59       | 53.015           | -4       | 51 235 |  | у | у | у |  |
| 53853#1  | 01/08/96 | 1856 | C10 | n | 111 | Day Grab | 59       | 43.717           | -4       | 53 507 |  | , | , | , |  |
| 53853#2  | 01/08/96 | 1905 | C10 | n | 112 | Day Grab | 59       | 43.684           | -4       | 53,484 |  |   |   |   |  |
| 53853#3  | 01/08/96 | 1914 | C10 | n | 112 | Day Grab | 59       | 43 721           | -4       | 53 597 |  |   |   |   |  |
| 53853#4  | 01/08/96 | 1926 | C10 | n | 112 | Day Grab | 59       | 43.651           | -4       | 53,453 |  |   |   |   |  |
| 53853#5  | 01/08/96 | 1936 | C10 | n | 112 | Day Grab | 59       | 43.686           | -4       | 53 525 |  |   |   |   |  |
| 53853#6  | 01/08/96 | 1945 | C10 | n | 112 | Day Grab | 59       | 43.673           | -4       | 53.471 |  |   |   |   |  |
| 53853#7  | 01/08/96 | 1953 | C10 | n | 112 | Day Grab | 59       | 43.648           | -4       | 53.473 |  |   |   |   |  |
| 53854#1  | 01/08/96 | 2125 | C2  | n | 100 | Day Grab | 59       | 37.497           | -4       | 37.481 |  |   |   |   |  |
| 53854#2  | 01/08/96 | 2135 | C2  | n | 99  | Day Grab | 59       | 37.457           | -4       | 37.468 |  |   |   |   |  |
| 53854#3  | 01/08/96 | 2144 | C2  | n | 101 | Day Grab | 59       | 37.487           | -4       | 37.564 |  |   |   |   |  |
| 53854#4  | 01/08/96 | 2152 | C2  | y | 100 | Day Grab | 59       | 37.456           | -4       | 37.558 |  |   |   |   |  |
| 53854#5  | 01/08/96 | 2207 | C2  | n | 100 | Day Grab | 59       | 37.430           | -4       | 37.678 |  | у | У | у |  |
| 53854#6  | 01/08/96 | 2216 | C2  | n | 100 | Day Grab | 59       | 37.463           | -4       | 37.610 |  |   |   |   |  |
| 53854#7  | 01/08/96 | 2226 | C2  | n | 100 | Day Grab | 59       | 37.463<br>37.452 | -4       | 37.010 |  |   |   |   |  |
| 53854#8  | 01/08/96 | 2236 | C2  | n | 100 | Day Grab | 59       | 37.432           | -4<br>-4 | 37.596 |  |   |   |   |  |
| 53854#9  | 01/08/96 | 2245 | C2  |   | 100 |          | 59<br>59 |                  |          |        |  |   |   |   |  |
|          | 01/08/96 | 2254 | C2  | n |     | Day Grab |          | 37.495           | -4       | 37.600 |  |   |   |   |  |
| 53854#10 | 01/08/96 | 2328 | 100 | n | 100 | Day Grab | 59<br>50 | 37.507           | -4       | 37.638 |  |   |   |   |  |
| 53854#11 |          |      |     | y | 100 | Hornet   | 59       | 37.538           | -4       | 37.586 |  |   |   |   |  |
| 53855#1  | 02/08/96 | 0053 | C3  | n | 106 | Day Grab | 59       | 35.797           | -4       | 39.851 |  |   |   |   |  |
| 53855#2  | 02/08/96 | 0103 | C3  | n | 106 | Day Grab | 59       | 35.767           | -4       | 39.860 |  |   |   |   |  |
| 53855#3  | 02/08/96 | 0116 | C3  | n | 107 | Day Grab | 59       | 35.786           | -4       | 39.966 |  |   |   |   |  |
| 53855#4  | 02/08/96 | 0127 | C3  | n | 106 | Day Grab | 59       | 35.792           | -4       | 39.928 |  |   |   |   |  |
| 53855#5  | 02/08/96 | 0139 | C3  | n | 106 | Day Grab | 59       | 35.776           | -4       | 39.946 |  |   |   |   |  |
| 53855#6  | 02/08/96 | 0151 | C3  | n | 106 | Day Grab | 59       | 35.788           | -4       | 39.965 |  |   |   |   |  |
| 53855#7  | 02/08/96 | 0203 | C3  | n | 106 | Day Grab | 59       | 35.759           | -4       | 39.962 |  |   |   |   |  |
| 53855#8  | 02/08/96 | 0213 | C3  | n | 106 | Day Grab | 59       | 35.782           | -4       | 39.996 |  |   |   |   |  |
| 53856#1  | 02/08/96 | 0312 | C4  | n | 110 | Day Grab | 59       | 30.574           | -4       | 41.385 |  |   |   |   |  |
| 53856#2  | 02/08/96 | 0324 | C4  | n | 111 | Day Grab | 59       | 30.571           | -4       | 41.439 |  |   |   |   |  |
| 53856#3  | 02/08/96 | 0335 | C4  | у | 110 | Day Grab | 59       | 30.562           | -4       | 41.460 |  | у | у | у |  |
| 53856#4  | 02/08/96 | 0352 | C4  | у | 110 | Day Grab | 59       | 30.578           | -4       | 41.479 |  | • | • | • |  |
| 53857#1  | 02/08/96 | 0438 | C5  | n | 128 | Day Grab | 59       | 31.438           | -4       | 48.156 |  |   |   |   |  |
| 53857#2  | 02/08/96 | 0446 | C5  | у | 127 | Day Grab | 59       | 31.374           | -4       | 48.152 |  | у | у | у |  |
| 53857#3  | 02/08/96 | 0503 | C5  | n | 128 | Day Grab | 59       | 31.243           | -4       | 48,122 |  | , | • | • |  |
| 53857#4  | 02/08/96 | 0512 | C5  | у | 127 | Day Grab | 59       | 31.165           | -4       | 48.123 |  |   |   |   |  |
| 53857#5  | 02/08/96 | 0522 | C5  | y | 127 | Day Grab | 59       | 31 039           | -4       | 48.201 |  |   |   |   |  |
| 53858#1  | 02/08/96 | 0646 | C9  | n | 103 | Day Grab | 59       | 39 223           | -4       | 41.262 |  |   |   |   |  |
| 22020H I |          |      |     |   |     |          |          |                  |          |        |  |   |   |   |  |

language and the contract of t

|   | ÷ |   |
|---|---|---|
| 1 | · | • |
| 1 | J | J |
|   | ŧ |   |
|   |   |   |

| 53858#3            | 02/08/96 | 0705 | C9  | n      | 103        | Day Grab | 59       | 39.199           | -4        | 41 373           |  |    |    |    |          |
|--------------------|----------|------|-----|--------|------------|----------|----------|------------------|-----------|------------------|--|----|----|----|----------|
| 53858#4            | 02/08/96 | 0713 | C9  | n      | 103        | Day Grab | 59       | 39.175           | -4        | 41.445           |  |    |    |    |          |
| 53858#5            | 02/08/96 | 0721 | C9  | n      | 104        | Day Grab | 59       | 39.173           | -4        | 41.485           |  |    |    |    |          |
| 53858#6            | 02/08/96 | 0731 | C9  | n      | 104        | Day Grab | 59       | 39.176           | -4        | 41.485           |  |    |    |    |          |
| 53858#7            | 02/08/96 | 0736 | C9  | n      | 104        | Day Grab | 59       | 39.149           | -4        | 41 474           |  |    |    |    |          |
| 53859#1            | 02/08/96 | 0852 | C1  | n      | 108        | Day Grab | 59       | 41,908           | -4        | 24.983           |  |    |    |    |          |
| 53859#2            | 02/08/96 | 0902 | CI  | у      | 107        | Day Grab | 59       | 41.903           | -4        | 24.940           |  | y  | у  | y  |          |
| 53859#3            | 02/08/96 | 0916 | Ci  | n      | 108        | Day Grab | 59       | 41.905           | -4        | 25.026           |  | ,  | •  | ,  |          |
| 53859#4            | 02/08/96 | 0925 | CI  | y<br>y | 108        | Day Grab | 59       | 41 913           | -4        | 25.053           |  |    |    |    | 0.1 m2   |
| 53860#1            | 02/08/96 | 1108 | C8  | n      | 111        | Day Grab | 59       | 47.398           | -4        | 37 054           |  |    |    |    |          |
| 53860#1            | 02/08/96 | 1116 | C8  | n      | 110        | Day Grab | 59       | 47.401           | -4        | 37.150           |  |    |    |    |          |
|                    | 02/08/96 | 1124 | C8  |        | 110        | Day Grab | 59       | 47.427           | <b>-4</b> | 37.166           |  |    |    |    |          |
| 53860#3            |          |      |     | n      |            | Day Grab | 59       | 47.433           | -4        | 37.100           |  | ٠, | 1, | */ |          |
| 53860#4            | 02/08/96 | 1132 | C8  | у      | 110<br>110 | Day Grab | 59<br>59 | 47.433           | -4<br>-4  | 37.233<br>37.227 |  | У  | у  | У  |          |
| 53860#5            | 02/08/96 | 1144 | C8  | n      |            | •        |          | 47.372<br>47.398 |           | 37.227<br>37.349 |  |    |    |    |          |
| 53860#6            | 02/08/96 | 1152 | C8  | n      | 109        | Day Grab | 59       |                  | -4        |                  |  |    |    |    | 0.1 m2   |
| 53860#7            | 02/08/96 | 1206 | C8  | У      | 110        | Day Grab | 59       | 47.453           | -4        | 37.234           |  |    |    |    | 0.1 1112 |
| 53861#1            | 02/08/96 | 1333 | C7  | У      | 123        | Day Grab | 59       | 51.495           | -4        | 22.601           |  | У  | У  | У  | 0.10     |
| 53861#2            | 02/08/96 | 1355 | C7  | У      | 123        | Day Grab | 59       | 51.469           | -4        | 22.673           |  |    |    |    | 0.1 m2   |
| 53862#1            | 02/08/96 | 1600 | F4  | у      | 226        | Day Grab | 60       | 4.517            | -4        | 37.312           |  |    |    |    | 0.1 m2   |
| 53862#2            | 02/08/96 | 1620 | F4  | n      | 227        | Day Grab | 60       | 4.544            | -4        | 37.379           |  |    |    |    |          |
| 53862#3            | 02/08/96 | 1634 | F4  | n      | 224        | Day Grab | 60       | 4.509            | -4        | 37.276           |  |    |    |    |          |
| 53862#4            | 02/08/96 | 1650 | F4  | n      | 225        | Day Grab | 60       | 4.464            | -4        | 37.379           |  |    |    |    |          |
| 53862#5            | 02/08/96 | 1706 | F4  | у      | 227        | Day Grab | 60       | 4.537            | -4        | 37.444           |  | У  | У  | У  |          |
| 53863#1            | 02/08/96 | 1849 | F2  | у      | 254        | Day Grab | 60       | 9.838            | -4        | 24.480           |  | У  | У  | У  |          |
| 53863#2            | 02/08/96 | 1913 | F2  | у      | 245        | Day Grab | 60       | 9.749            | -4        | 24.220           |  |    |    |    | 0.1 m2   |
| 53864#1            | 02/08/96 | 2036 | F1  | у      | 234        | Day Grab | 60       | 14.410           | -4        | 8.676            |  | У  | У  | У  |          |
| 53864#2            | 02/08/96 | 2102 | F1  | n      | 235        | Day Grab | 60       | 14.400           | -4        | 8.770            |  |    |    |    |          |
| 53864#3            | 02/08/96 | 2118 | F1  | n      | 236        | Day Grab | 60       | 14.425           | -4        | 8.729            |  |    |    |    |          |
| 53864#4            | 02/08/96 | 2132 | F1  | у      | 238        | Day Grab | 60       | 14.425           | -4        | 8.772            |  |    |    |    | 0.1 m2   |
| 53864#5            | 02/08/96 | 2147 | Fi  | n      | 236        | Day Grab | 60       | 14.459           | -4        | 8.643            |  |    |    |    |          |
| 53864#6            | 02/08/96 | 2203 | F1  | n      | 236        | Day Grab | 60       | 14.435           | -4        | 8.720            |  |    |    |    |          |
| 53864#7            | 02/08/96 | 2215 | FI  | n      | 231        | Day Grab | 60       | 14.381           | -4        | 8.579            |  |    |    |    |          |
| 53865#1            | 02/08/96 | 2309 | C13 | n      | 169        | Day Grab | 60       | 13.231           | -4        | 1.358            |  |    |    |    |          |
| 53865#2            | 02/08/96 | 2321 | C13 | у      | 170        | Day Grab | 60       | 13.184           | -4        | 1.356            |  | У  | у  | У  |          |
| 53865#3            | 02/08/96 | 2341 | C13 | n      | 169        | Day Grab | 60       | 13.259           | -4        | 1,387            |  |    |    |    |          |
| 53865#4            | 02/08/96 | 2355 | C13 | у      | 170        | Day Grab | 60       | 13.210           | -4        | 1.323            |  |    |    |    | 0.1 m2   |
| 53866#1            | 03/08/96 | 0132 | C6  | y      | 123        | Day Grab | 60       | 2 659            | -3        | 56.736           |  | у  | у  | у  |          |
| 53866#2            | 03/08/96 | 0149 | C6  | ý      | 123        | Day Grab | 60       | 2.663            | -3        | 56.756           |  | •  | •  | •  | 0.1 m2   |
| 53867#1            | 03/08/96 | 0353 | CH  | 'n     | 134        | Day Grab | 60       | 14.143           | -3        | 37.876           |  |    |    |    |          |
| 53867#2            | 03/08/96 | 0406 | CII | n      | 135        | Day Grab | 60       | 14.131           | -3        | 37.910           |  |    |    |    |          |
| 53867#2            | 03/08/96 | 0417 | CII | n      | 135        | Day Grab | 60       | 14.143           | -3        | 38.032           |  |    |    |    |          |
| 53867#4            | 03/08/96 | 0426 | CII | n      | 135        | Day Grab | 60       | 14.102           | -3        | 38.053           |  |    |    |    |          |
| 53867#4            | 03/08/96 | 0436 | Cll | n      | 137        | Day Grab | 60       | 14.094           | -3        | 38 313           |  |    |    |    |          |
| 53867#6            | 03/08/96 | 0448 | CH  | y      | 140        | Day Grab | 60       | 13.961           | -3        | 38.915           |  | у  | у  | у  |          |
| 53867#0<br>53867#7 | 03/08/96 | 0503 | CH  | y<br>n | 138        | Day Grab | 60       | 14.130           | -3        | 39.281           |  | ,  | 3  | J  |          |
| 53867#7            | 03/08/96 | 0503 | CH  |        | 139        | Day Grab | 60       | 14.096           | -3        | 39.379           |  |    |    |    | 0 1 m2   |
| 53867#8            | 03/08/96 | 0526 | CII | y<br>y | 139        | Day Grab | 60       | 14.075           | -3        | 39.491           |  |    |    |    | 0.1 m2   |
| 2200/#9            | 03100130 | 0320 | CII | У      | 137        | Day Grau | 00       | 14.073           | -3        | 37,771           |  |    |    |    | U.I HIL  |

| 53868#1            | 03/08/96 | 0630 | C12        | n       | 180        | Day Grab   | 60 | 17.258 | -3        | 50 000           |    |        |    |        |        |        |        |                  |
|--------------------|----------|------|------------|---------|------------|------------|----|--------|-----------|------------------|----|--------|----|--------|--------|--------|--------|------------------|
| 53868#2            | 03/08/96 | 0641 | C12        | n       | 179        | Day Grab   | 60 | 17 260 | -3        | 49 831           |    |        |    |        |        |        |        |                  |
| 53868#3            | 03/08/96 | 0654 | C12        | у       | 181        | Day Grab   | 60 | 17.200 | -3        | 49.983           |    |        |    |        | у      | У      | У      |                  |
| 53868#4            | 03/08/96 | 0718 | C12        | n       | 181        | Day Grab   | 60 | 17.208 | -3        | 49.973           |    |        |    |        |        |        |        |                  |
| 53868#5            | 03/08/96 | 0729 | C12        | у       | 178        | Day Grab   | 60 | 17.136 | -3        | 49.788           |    |        |    |        |        |        |        | 0.1 m2           |
| 53868#6            | 03/08/96 | 0745 | C12        | у       | 176        | Day Grab   | 60 | 17 015 | -3        | 49 423           |    |        |    |        |        |        |        | 0.1 m2           |
| 53869#1            | 03/08/96 | 0942 | J1         | У       | 390        | Box Corer  | 60 | 24.775 | -3        | 44.778           | 60 | 24 781 | -3 | 44.769 | У      | у      | У      | 0.1 m2           |
| 53870#1            | 03/08/96 | 1124 | J2         | n       | 335        | Box Corer  | 60 | 22 090 | -3        | 51.322           | 60 | 22 104 | -3 | 51.290 |        |        |        |                  |
| 53870#2            | 03/08/96 | 1154 | J2         | у       | 332        | Box Corer  | 60 | 22 036 | -3        | 51.355           | 60 | 22 047 | -3 | 51.342 | у      | у      | у      | 0.1 m2           |
| 53871#1            | 03/08/96 | 1459 | J3         | n       | 355        | Box Corer  | 60 | 16 376 | -4        | 13.535           | 60 | 16.382 | -4 | 13.540 |        |        |        |                  |
| 53871#2            | 03/08/96 | 1530 | J3         | n       | 356        | Box Corer  | 60 | 16.357 | -4        | 13 592           | 60 | 16.372 | -4 | 13.609 |        |        |        |                  |
| 53871#3            | 03/08/96 | 1555 | J3         | n       | 358        | Box Corer  | 60 | 16.322 | -4        | 13 615           | 60 | 16.338 | -4 | 13.639 |        |        |        |                  |
| 53871#4            | 03/08/96 | 1639 | J3         | у       | 354        | Day Grab   | 60 | 16.397 | -4        | 13.594           |    |        |    |        | у      | у      | у      |                  |
| 53871#5            | 03/08/96 | 1710 | J3         | 'n      | 352        | Day Grab   | 60 | 16.254 | -4        | 13.343           |    |        |    |        | •      | •      | •      |                  |
| 53871#6            | 03/08/96 | 1733 | J3         | у       | 340        | Day Grab   | 60 | 16.187 | -4        | 13.211           |    |        |    |        |        |        |        | 0.1 m2           |
| 53872#1            | 03/08/96 | 2018 | 800        | y       | 816        | Fish Snack | 60 | 18.676 | -4        | 43.138           |    |        |    |        |        |        |        |                  |
| 53873#1            | 03/08/96 | 2150 | Т3         | ý       | 788        | Mega Corer | 60 | 19.403 | -4        | 38.870           | 60 | 19,446 | -4 | 38.820 | у      | у      | у      |                  |
| 53873#2            | 03/08/96 | 2247 | T3         | y       | 783        | Mega Corer | 60 | 19.439 | -4        | 38.677           | 60 | 19.447 | -4 | 38.656 | •      | •      | •      | 8 cores          |
| 53874#1            | 04/08/96 | 0114 | <b>T</b> 4 | 'n      | 721        | Mega Corer | 60 | 17.150 | -4        | 40.757           | 60 | 17.169 | -4 | 40.726 |        |        |        |                  |
| 53874#2            | 04/08/96 | 0205 | T4         | n       | 719        | Mega Corer | 60 | 17.049 | -4        | 40 878           | 60 | 17,053 | -4 | 40.883 |        |        |        |                  |
| 53874#3            | 04/08/96 | 0306 | T4         | y       | 721        | Mega Corer | 60 | 17 057 | -4        | 40.977           | 60 | 17.063 | -4 | 40.988 | у      | у      | у      | 2 cores          |
| 53874#4            | 04/08/96 | 0411 | T4         | y       | 721        | Mega Corer | 60 | 17.018 | -4        | 41.025           | 60 | 17.034 | -4 | 41.036 | •      | •      | •      | 6 cores          |
| 53875#1            | 04/08/96 | 0711 | Ĵ4         | n       | 375        | Day Grab   | 60 | 15.855 | -4        | 16.783           |    |        |    |        |        |        |        |                  |
| 53875#2            | 04/08/96 | 0733 | J4         | n       | 375        | Day Grab   | 60 | 15.937 | -4        | 16.488           |    |        |    |        |        |        |        |                  |
| 53875#3            | 04/08/96 | 0756 | J4         | n       | 375        | Day Grab   | 60 | 15.916 | -4        | 16.461           |    |        |    |        |        |        |        |                  |
| 53875#4            | 04/08/96 | 0815 | J4         | y<br>y  | 375        | Day Grab   | 60 | 15.961 | <u>-4</u> | 16.370           |    |        |    |        | у      | у      | y      |                  |
| 53875#5            | 04/08/96 | 0845 | J4         | y       | 374        | Day Grab   | 60 | 15.737 | -4        | 16.594           |    |        |    |        | ,      | ,      | ,      | 0.1 m2           |
| 53875#6            | 04/08/96 | 0912 | J4         | n       | 377        | Day Grab   | 60 | 15.709 | -4        | 16.976           |    |        |    |        |        |        |        | 372              |
| 53875#0            | 04/08/96 | 0912 | J4         | n       | 379        | Day Grab   | 60 | 15.675 | -4        | 17.141           |    |        |    |        |        |        |        |                  |
| 53875#8            | 04/08/96 | 0948 | J4         | y       | 380        | Day Grab   | 60 | 15.623 | -4        | 17.278           |    |        |    |        |        |        |        | 0.1 m2           |
| 53875#6            | 04/08/96 | 1304 | F3         | y       | 212        | Day Grab   | 60 | 5.474  | -4        | 34.026           |    |        |    |        | у      | у      | у      | VII              |
| 53876#2            | 04/08/96 | 1332 | F3         | y<br>n  | 217        | Day Grab   | 60 | 5.478  | <u>-4</u> | 34.164           |    |        |    |        | ,      | ,      | ,      |                  |
| 53876#3            | 04/08/96 | 1349 | F3         |         | 215        | Day Grab   | 60 | 5.451  | -4        | 34.163           |    |        |    |        |        |        |        |                  |
| 53876#3<br>53876#4 | 04/08/96 | 1404 | F3         | n       | 213        | Day Grab   | 60 | 5.409  | -4        | 34.166           |    |        |    |        |        |        |        | 0.1 m2           |
| 53876#4            | 04/08/96 | 1423 | F3         | y       | 212        | Day Grab   | 60 | 5.447  | -4        | 34.086           |    |        |    |        |        |        |        | 0.1 1112         |
|                    | 04/08/96 | 1550 | M3         | n       | 447        | Box Corer  | 60 | 9.563  | -4        | 37.941           | 60 | 9.582  | -4 | 37.920 | у      | у      | у      | 0.1 m2           |
| 53877#1<br>53878#1 | 05/08/96 | 1142 | T5         | у       | 687        | Mega Corer | 60 | 14.281 | -4        | 45.773           | 00 | 7.502  |    | 37.720 | y      | y      | y      | 0.1 1112         |
|                    | 05/08/96 | 1249 | T5         | y       | 689        | Mega Corer | 60 | 14.339 | -4        | 45.833           | 60 | 14.362 | -4 | 45.857 | J      | J      | 3      | 8 cores          |
| 53878#2<br>53879#1 | 05/08/96 | 1514 | Q4         | y       | 543        | Mega Corer | 60 | 14.892 | -4        | 31.741           | 60 | 14.900 | -4 | 31.727 |        |        |        | 7 cores          |
|                    | 05/08/96 | 1605 | Q4<br>Q4   | у<br>•- | 543<br>542 | Mega Corer | 60 | 14.855 | -4        | 31.833           | 60 | 14.860 | -4 | 31.818 | 37     | */     | у      | 7 00103          |
| 53879#2            |          |      |            | У       | 534        | Mega Corer | 60 | 15.679 | -4<br>-4  | 29.760           | 60 | 15.696 | -4 | 29.775 | y<br>y | y<br>y | y<br>y |                  |
| 53880#1            | 05/08/96 | 1729 | Q3         | У       |            | _          | 60 | 15.627 | -4        | 29.700           | 60 | 15.631 | -4 | 29.453 | У      | y      | y      | 7 cores          |
| 53880#2            | 05/08/96 | 1818 | Q3         | y       | 530        | Mega Corer |    |        |           |                  | 00 | 13.031 | -4 | 29.433 |        |        |        | 7 00103          |
| 53881#1            | 06/08/96 | 0007 | H3         | n       | 318        | Day Grab   | 60 | 32.024 | -3<br>2   | 17.716<br>17.672 |    |        |    |        |        |        |        | 0.1 m2           |
| 53881#2            | 06/08/96 | 0029 | H3         | У       | 318        | Day Grab   | 60 | 32.027 | -3<br>2   |                  |    |        |    |        |        |        |        | 0.1 m2<br>0.1 m2 |
| 53881#3            | 06/08/96 | 0057 | H3         | у       | 317        | Day Grab   | 60 | 32.105 | -3<br>2   | 17.572           |    |        |    |        |        |        |        |                  |
| 53881#4            | 06/08/96 | 0122 | H3         | У       | 314        | Day Grab   | 60 | 32 059 | -3        | 17.389           |    |        |    |        | •.     |        | .,     | 0.1 m2           |
| 53882#1            | 06/08/96 | 0247 | El         | У       | 239        | Day Grab   | 60 | 26 572 | -3        | 23.022           |    |        |    |        | у      | У      | У      |                  |

| 53882#2 | 06/08/96 | 0314         | El       | n      | 239 | Day Grab   | 60 | 26 572 | -3             | 23.071 |    |                  |                |        |   |   |    |          |
|---------|----------|--------------|----------|--------|-----|------------|----|--------|----------------|--------|----|------------------|----------------|--------|---|---|----|----------|
| 53882#3 | 06/08/96 | 0333         | E1       | у      | 240 | Day Grab   | 60 | 26.557 | -3             | 23,102 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53882#4 | 06/08/96 | 0356         | El       | n      | 239 | Day Grab   | 60 | 26.539 | -3             | 23,079 |    |                  |                |        |   |   |    |          |
| 53882#5 | 06/08/96 | 0416         | E1       | у      | 235 | Day Grab   | 60 | 26.490 | -3             | 22,833 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53882#6 | 06/08/96 | 0433         | ΕI       | n      | 235 | Day Grab   | 60 | 26.593 | -3             | 22,316 |    |                  |                |        |   |   |    |          |
| 53882#7 | 06/08/96 | 0446         | E1       | n      | 235 | Day Grab   | 60 | 26.702 | -3             | 21,905 |    |                  |                |        |   |   |    |          |
| 53883#1 | 06/08/96 | 0732         | В1       | у      | 168 | Day Grab   | 60 | 22.574 | -2             | 52,036 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53883#2 | 06/08/96 | 0748         | BI       | ý      | 168 | Day Grab   | 60 | 22.607 | -2             | 51,860 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53883#3 | 06/08/96 | 0801         | B1       | y      | 167 | Day Grab   | 60 | 22,551 | -2             | 52,044 |    |                  |                |        | y | у | у  |          |
| 53884#1 | 06/08/96 | 0952         | E2       | n      | 209 | Day Grab   | 60 | 33.526 | -2             | 59,452 |    |                  |                |        | • | • | •  |          |
| 53884#2 | 06/08/96 | 1004         | E2       | n      | 210 | Day Grab   | 60 | 33.502 | -2             | 59,475 |    |                  |                |        |   |   |    |          |
| 53884#3 | 06/08/96 | 1016         | E2       | y      | 211 | Day Grab   | 60 | 33.531 | -2             | 59.376 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53884#4 | 06/08/96 | 1010         | E2       | -      | 208 | Day Grab   | 60 | 33.469 | -2             | 59.329 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53884#5 | 06/08/96 | 1032         | E2       | y<br>n | 207 | Day Grab   | 60 | 33.441 | -2             | 59.382 |    |                  |                |        |   |   |    | 0.1 1112 |
|         | 06/08/96 | 1103         | E2       |        | 206 | Day Grab   | 60 | 33.448 | -2             | 59.256 |    |                  |                |        | у | у | у  |          |
| 53884#6 |          | 1303         | B2       | У      | 120 | Day Grab   | 60 | 38.081 | -2             | 32.927 |    |                  |                |        | y | y | y  |          |
| 53885#1 | 06/08/96 |              | B2       | n      | 120 | Day Grab   | 60 | 38.081 | -2<br>-2       | 32.952 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53885#2 | 06/08/96 | 1314         | B2<br>B2 | у      | 120 | Day Grab   | 60 | 38.076 | -2<br>-2       | 32,952 |    |                  |                |        |   |   |    | 0.1 1112 |
| 53885#3 | 06/08/96 | 1324         | B2<br>B2 | n      | 119 | Day Grab   | 60 | 38.080 | -2<br>-2       | 32,905 |    |                  |                |        |   |   |    |          |
| 53885#4 | 06/08/96 | 1335<br>1345 | B2<br>B2 | n      | 120 | Day Grab   | 60 | 38.072 | -2<br>-2       | 32,767 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53885#5 | 06/08/96 |              |          | у      |     |            | 60 | 43.187 | -2<br>-2       | 50,310 |    |                  |                |        |   |   |    | 0.1 III2 |
| 53886#1 | 06/08/96 | 1520         | E3       | n      | 225 | Day Grab   |    | 43.167 |                | 50.179 |    |                  |                |        |   |   |    | 0.1 m2   |
| 53886#2 | 06/08/96 | 1538         | E3       | y      | 225 | Day Grab   | 60 | 43,103 | <del>-</del> 2 | 8.877  | 60 | 43,429           | -3             | 8.945  |   |   | ., | 0.1 1112 |
| 53887#1 | 06/08/96 | 1728         | AA3      | y      | 449 | Mega Corer | 60 |        | -3<br>2        |        |    | 43.429           | -3<br>-3       | 8.614  | у | У | y  |          |
| 53887#2 | 06/08/96 | 1814         | AA3      | n      | 446 | Mega Corer | 60 | 43.319 | -3<br>2        | 8.568  | 60 | 43.257           |                | 9.092  |   |   |    |          |
| 53887#3 | 06/08/96 | 1904         | AA3      | n      | 445 | Mega Corer | 60 | 43.259 | -3             | 9.079  | 60 |                  | <b>-3</b>      |        |   |   |    |          |
| 53888#1 | 06/08/96 | 2045         | AA5      | n      | 621 | Mega Corer | 60 | 48.654 | -3             | 19.867 | 60 | 48.654<br>48.693 | -3             | 19.880 |   |   |    | 2        |
| 53888#2 | 06/08/96 | 2136         | AA5      | у      | 627 | Mega Corer | 60 | 48.687 | -3             | 20.230 | 60 |                  | <b>-</b> 3     | 20.250 | У | у | у  | 2 cores  |
| 53888#3 | 06/08/96 | 2225         | AA5      | y      | 624 | Mega Corer | 60 | 48.679 | -3             | 19,945 | 60 | 48.674           | -3             | 19.962 |   |   |    | 5 cores  |
| 53889#1 | 07/08/96 | 0942         | F1       | y      | 235 | Day Grab   | 60 | 14.437 | -4             | 8.747  |    |                  |                |        |   |   |    | 0.1 m2   |
| 53889#2 | 07/08/96 | 0959         | F1       | у      | 231 | Day Grab   | 60 | 14.373 | -4             | 8.719  |    |                  |                |        |   |   |    | 0.1 m2   |
| 53890#1 | 07/08/96 | 1120         | AB2      | n      | 150 | Day Grab   | 60 | 7.358  | -4             | 1.357  |    |                  |                |        |   |   |    |          |
| 53890#2 | 07/08/96 | 1130         | AB2      | n      | 150 | Day Grab   | 60 | 7.361  | -4             | 1.358  |    |                  |                |        |   |   |    |          |
| 53890#3 | 07/08/96 | 1138         | AB2      | n      | 151 | Day Grab   | 60 | 7.294  | -4             | 1.333  |    |                  |                |        |   |   |    |          |
| 53891#1 | 07/08/96 | 1157         | AB2      | n      | 150 | Day Grab   | 60 | 7.174  | -4             | 1.221  |    |                  |                |        |   |   |    |          |
| 53891#2 | 07/08/96 | 1210         | AB2      | n      | 150 | Day Grab   | 60 | 7.166  | -4             | 1.211  |    |                  |                |        |   |   |    |          |
| 53891#3 | 07/08/96 | 1222         | AB2      | у      | 150 | Day Grab   | 60 | 7.115  | -4             | 1.177  |    |                  |                |        | У | У | У  |          |
| 53891#4 | 07/08/96 | 1506         | AB2      | y      | 150 | Day Grab   | 60 | 7.072  | -4             | 1.372  |    |                  | _              |        |   |   |    | 0.1 m2   |
| 53892#1 | 07/08/96 | 1824         | AAI      | y      | 452 | Box Corer  | 60 | 29.637 | -3             | 43.887 | 60 | 29.644           | -3             | 43.890 | у | у | У  | 0.1 m2   |
| 53893#1 | 07/08/96 | 2028         | AA2      | у      | 461 | Box Corer  | 60 | 36.565 | -3             | 25.130 | 60 | 36.586           | <b>-</b> 3     | 25.173 | у | у | У  | 0.1 m2   |
| 53894#1 | 07/08/96 | 2234         | AA3      | у      | 445 | Box Corer  | 60 | 43.257 | -3             | 9.244  | 60 | 43.251           | <del>-</del> 3 | 9.262  | у | У | У  | 0.1 m2   |
| 53895#1 | 08/08/96 | 0004         | AA4      | у      | 538 | Box Corer  | 60 | 46.201 | -3             | 15.085 | 60 | 46.199           | -3             | 15.085 | y | y | y  | 0.1 m2   |
| 53896#1 | 08/08/96 | 0224         | AA6      | у      | 640 | Mega Corer | 60 | 43.696 | -3             | 35.095 | 60 | 43.702           | -3             | 35.086 | y | y | у  | 1 core   |
| 53896#2 | 08/08/96 | 0316         | AA6      | у      | 639 | Mega Corer | 60 | 43.651 | -3             | 35.057 |    |                  |                |        |   |   |    | 6 cores  |
| 53897#1 | 08/08/96 | 0513         | AA7      | y      | 735 | Mega Corer | 60 | 51.328 | -3             | 24.704 | 60 | 51.321           | -3             | 24 760 |   |   |    | 8 cores  |
| 53897#2 | 08/08/96 | 0619         | AA7      | У      | 738 | Mega Corer | 60 | 51.277 | -3             | 25.105 | 60 | 51.256           | -3             | 25.165 | У | У | у  |          |
| 53898#1 | 08/08/96 | 0809         | AA8      | у      | 642 | Mega Corer | 60 | 54.442 | -3             | 6.697  | 60 | 54.450           | -3             | 6.681  |   |   |    | 8 cores  |
| 53898#2 | 08/08/96 | 0908         | AA8      | y      | 641 | Mega Corer | 60 | 54.457 | -3             | 6.353  | 60 | 54.452           | -3             | 6.341  | У | у | у  |          |
|         |          |              |          |        |     |            |    |        |                |        |    |                  |                |        |   |   |    |          |

.

| 52000#1            | 00/00/07             | 1101         | 4.40       |    | (2)        |              |    | 50 541 | _        | -1 -1 - |    |        |    |        |   |   |   |          |
|--------------------|----------------------|--------------|------------|----|------------|--------------|----|--------|----------|---------|----|--------|----|--------|---|---|---|----------|
| 53899#1<br>53899#2 | 08/08/96             | 1101<br>1159 | AA9        | y  | 635        | Mega Corer   | 60 | 59 561 | -2       | 51.644  | 60 | 59 570 | -2 | 51.644 |   |   |   | 8 cores  |
| 53900#1            | 08/08/96<br>08/08/96 | 1427         | AA9<br>800 | y  | 636<br>798 | Mega Corer   | 60 | 59.626 | -2       | 51.712  | 60 | 59.620 | -2 | 51 699 | у | У | у |          |
| 53900#1            | 08/08/96             | 1621         | Tr650      | n  | 645        | Wasp         | 61 | 8.024  | -2       | 41.271  | 61 | 8.015  | -2 | 41.407 |   |   |   |          |
| 53901#1            | 08/08/96             | 1905         |            | y  |            | Mega Corer   | 61 | 4.389  | -2       | 36.777  | 61 | 4.407  | -2 | 36.796 |   |   |   |          |
|                    |                      |              | AC1        | У  | 584        | Box Corer    | 61 | 1.813  | -2       | 33.312  | 61 | 1.836  | -2 | 33.353 | y | У | У | 0.1 m2   |
| 53903#1            | 08/08/96             | 2042         | AC2        | у  | 548        | Box Corer    | 61 | 0.532  | -2       | 33.972  | 61 | 0.527  | -2 | 34 006 | y | У | У | 0.1 m2   |
| 53904#1            | 08/08/96             | 2231         | AC3        | У  | 541        | Box Corer    | 61 | 0.236  | -2       | 34.091  | 61 | 0.242  | -2 | 34.119 | y | У | У | 0.1 m2   |
| 53905#1            | 09/08/96             | 0004         | AC4        | у  | 546        | Box Corer    | 61 | 0.428  | -2       | 34.038  | 61 | 0.436  | -2 | 34.062 | y | у | У | 0.1 m2   |
| 53905#2            | 09/08/96             | 0131         | 550        | У  | 547        | Wasp         | 61 | 0.471  | -2       | 33.865  |    |        |    |        |   |   |   |          |
| 53906#1            | 09/08/96             | 0248         | AC5        | у  | 546        | Box Corer    | 61 | 0.440  | -2       | 33.902  | 61 | 0.440  | -2 | 33.916 | y | у | у | 0.1 m2   |
| 53907#1            | 09/08/96             | 0406         | AC6        | У  | 546        | Box Corer    | 61 | 0.406  | -2       | 34.079  | 61 | 0.402  | -2 | 34.086 | y | У | У | 0.1 m2   |
| 53908#1            | 09/08/96             | 0612         | ADI        | У  | 328        | Box Corer    | 60 | 57.930 | -2       | 11.539  | 60 | 57.930 | -2 | 11.552 | y | y | у | 0 l m2   |
| 53909#1            | 09/08/96             | 0726         | AD2        | У  | 333        | Box Corer    | 60 | 58.092 | -2       | 11.968  | 60 | 58.098 | -2 | 11.980 | y | y | y | 0.1 m2   |
| 53910#1            | 09/08/96             | 0857         | AD3        | y  | 330        | Box Corer    | 60 | 58.040 | -2       | 11.329  | 60 | 58 048 | -2 | 11.346 | y | у | у | 0.1 m2   |
| 53911#1            | 09/08/96             | 1006         | AD4        | n  | 335        | Box Corer    | 60 | 58 238 | -2       | 11.484  | 60 | 58.239 | -2 | 11.493 |   |   |   |          |
| 53911#2            | 09/08/96             | 1032         | AD4        | У  | 336        | Box Corer    | 60 | 58.268 | -2       | 11.444  | 60 | 58.260 | -2 | 11.464 | y | y | у | 0.1 m2   |
| 53912#1            | 09/08/96             | 1211         | AD5        | У  | 332        | Box Corer    | 60 | 58.114 | -2       | 11.379  | 60 | 58.111 | -2 | 11.393 | y | y | у | 0.1 m2   |
| 53913#1            | 09/08/96             | 1413         | 300        | У  | 290        | Wasp         | 60 | 53 957 | -2       | 22.057  | 60 | 53.959 | -2 | 22.076 | · | • | • |          |
| 53914#1            | 09/08/96             | 1645         | 400        | У  | 410        | Wasp         | 60 | 57.736 | -2       | 24.989  | 60 | 57.738 | -2 | 24.998 |   |   |   |          |
| 53915#1            | 09/08/96             | 2050         | AA10       | у  | 642        | Mega Corer   | 61 | 9.242  | -2       | 19.555  | 61 | 9.247  | -2 | 19.591 |   |   |   | 8 cores  |
| 53915#2            | 09/08/96             | 2139         | AA10       | у  | 639        | Mega Corer   | 61 | 9.196  | -2       | 19.402  | 61 | 9.209  | -2 | 19.439 | y | y | y |          |
| 53916#1            | 10/08/96             | 0009         | 600        | У  | 595        | Wasp         | 61 | 2.493  | -2       | 33.917  | 61 | 2.499  | -2 | 33,953 | • | • | • |          |
| 53917#1            | 10/08/96             | 0348         | Al         | n  | 116        | Day Grab     | 60 | 52,429 | -1       | 59.527  |    |        |    |        |   |   |   |          |
| 53917#2            | 10/08/96             | 0358         | Al         | n  | 116        | Day Grab     | 60 | 52.462 | -1       | 59.512  |    |        |    |        |   |   |   |          |
| 53917#3            | 10/08/96             | 0408         | A1         | n  | 116        | Day Grab     | 60 | 52.409 | -1       | 59.516  |    |        |    |        |   |   |   |          |
| 53917#4            | 10/08/96             | 0417         | A1         | y  | 116        | Day Grab     | 60 | 52.365 | -1       | 59.387  |    |        |    |        | y | y | у |          |
| 53917#5            | 10/08/96             | 0428         | A1         | n  | 116        | Day Grab     | 60 | 52.310 | -1       | 59.148  |    |        |    |        | , | , | , |          |
| 53917#6            | 10/08/96             | 0437         | A1         | у  | 116        | Day Grab     | 60 | 52.282 | -1       | 59.065  |    |        |    |        | y | у |   |          |
| 53918#1            | 10/08/96             | 0728         | AE1        | n  | 160        | Day Grab     | 61 | 8.119  | -1       | 24.715  |    |        |    |        | , | , |   |          |
| 53918#2            | 10/08/96             | 0739         | AEI        | у  | 160        | Day Grab     | 61 | 8.029  | -1       | 24.719  |    |        |    |        | y | у | у |          |
| 53918#3            | 10/08/96             | 0759         | AE1        | y  | 160        | Day Grab     | 61 | 8.147  | -1       | 25.071  |    |        |    |        | , | , | J | 0.1 m2   |
| 53918#4            | 10/08/96             | 0815         | AE1        | ý  | 160        | Day Grab     | 61 | 8.124  | -1       | 24.817  |    |        |    |        |   |   |   | 0.1 m2   |
| 53919#1            | 10/08/96             | 0959         | AE2        | ý  | 169        | Day Grab     | 61 | 17.152 | -1       | 6.438   |    |        |    |        | y | у | y | 0.1 1112 |
| 53919#2            | 10/08/96             | 1018         | AE2        | ý  | 168        | Day Grab     | 61 | 17.074 | -1       | 6.515   |    |        |    |        | , | , | , | 0.1 m2   |
| 53919#3            | 10/08/96             | 1033         | AE2        | ý  | 168        | Day Grab     | 61 | 17.048 | -1       | 6.477   |    |        |    |        |   |   |   | 0.1 m2   |
| 53920#1            | 10/08/96             | 1241         | 300        | y  | 296        | Wasp         | 61 | 17.802 | -1       | 30 356  | 61 | 17.805 | -1 | 30.375 |   |   |   | 0.1 1112 |
| 53921#1            | 10/08/96             | 1533         | 500        | ý  | 496        | Wasp         | 61 | 15.966 | -1       | 48.011  | 61 | 15.963 | -Î | 48.028 |   |   |   |          |
| 53922#1            | 10/08/96             | 1839         | 800        | y  | 810        | Wasp         | 61 | 19.055 | -2       | 10.850  | 61 | 19.040 | -2 | 11.009 |   |   |   |          |
| 53923#1            | 10/08/96             | 2313         | 1100       | y  | 1089       | Wasp         | 61 | 12.877 | -2       | 49 424  | 61 | 12.853 | -2 | 49.410 |   |   |   |          |
| 53924#1            | 11/08/96             | 0237         | 800        | ý  | 799        | Wasp         | 61 | 7.997  | -2       | 41.843  | 61 | 7.993  | -2 | 42.002 |   |   |   |          |
| 53925#1            | 11/08/96             | 0536         | 500        | y  | 508        | Wasp         | 60 | 59.559 | -2       | 29 702  | 60 | 59,542 | -2 | 29.789 |   |   | - |          |
| 53926#1            | 11/08/96             | 0826         | 300        | y  | 293        | Wasp         | 60 | 53.951 | -2       | 22.138  | 60 | 53.964 | -2 | 22.150 |   |   |   |          |
| 53927#1            | 11/08/96             | 1108         | 450-600    | y  | 413        | Photo Sledge | 60 | 57.338 | -2       | 26.772  | 00 | 33,904 | -2 | 22.130 |   |   |   |          |
| 53928#1            | 11/08/96             | 1653         | 400        | y  | 383        | Wasp         | 60 | 56.702 | -2       | 25.904  | 60 | 56,701 | -2 | 25.911 |   |   |   |          |
| 53929#1            | 11/08/96             | 2141         | AF1        | n  | 151        | Day Grab     | 60 | 31.721 | -2       | 47.393  | UU | 30,701 | -2 | 23.711 |   |   |   |          |
| 53929#2            | 11/08/96             | 2157         | AFI        | n  | 151        | Day Grab     | 60 | 31.726 | -2<br>-2 | 47.442  |    |        |    |        |   |   |   |          |
| 53929#3            | 11/08/96             | 2211         | AF1        | n  | 151        | Day Grab     | 60 | 31.750 | -2<br>-2 | 47.474  |    |        |    |        |   |   |   |          |
| JJJ2711J           | 11/00/70             | 2211         | Au I       | 11 | 131        | Day Grav     | υυ | 21./30 | -2       | 47.474  |    |        |    |        |   |   |   |          |

and the control of the control of the protection of the control of the control of the control of the control of

|          |                      |      |     |       |          |           |          |                  | _         | 10.000 |    |        |    |        |   |   |     |          |
|----------|----------------------|------|-----|-------|----------|-----------|----------|------------------|-----------|--------|----|--------|----|--------|---|---|-----|----------|
| 53930#1  | 11/08/96             | 2231 | AF1 | n     | 152      | Day Grab  | 60       | 31.383           | -2        | 47 323 |    |        |    |        |   |   |     |          |
| 53930#2  | 11/08/96             | 2242 | AF1 | у     | 153      | Day Grab  | 60       | 31.341           | -2        | 47.432 |    |        |    |        | У | У | у ' |          |
| 53930#3  | 11/08/96             | 2300 | AF1 | У     | 152      | Day Grab  | 60       | 31.252           | -2        | 47.284 |    |        |    |        |   |   |     | 0.1 m2   |
| 53931#1  | 12/08/96             | 0130 | AF2 | у     | 144      | Day Grab  | 60       | 16.421           | -3        | 14 146 |    |        |    |        | у | У | У   |          |
| 53931#2  | 12/08/96             | 0149 | AF2 | у     | 144      | Day Grab  | 60       | 16.411           | -3        | 14.112 |    |        | _  |        |   |   |     | 0 I m2   |
| 53932#1  | 12/08/96             | 0518 | AGI | у     | 402      | Box Corer | 60       | 28.198           | -3        | 39.899 | 60 | 28.207 | -3 | 39.894 | У | у | У   | 0.1 m2   |
| 53933#1  | 12/08/96             | 0728 | AH1 | у     | 416      | Box Corer | 60       | 22.999           | -4        | 0.865  | 60 | 23.005 | -4 | 0.854  | У | У | У   | 0.1 m2   |
| 53934#1  | 12/08/96             | 0848 | AH2 | у     | 417      | Box Corer | 60       | 23 204           | -4        | 1.316  | 60 | 23.217 | -4 | 1.323  | у | y | У   | 0.1 m2   |
| 53935#1  | 12/08/96             | 1012 | AH3 | у     | 418      | Box Corer | 60       | 23.081           | -4        | 0.855  | 60 | 23.092 | -4 | 0.845  | У | y | y   | 0.1 m2   |
| 53936#1  | 12/08/96             | 1427 | AH4 | у     | 416      | Box Corer | 60       | 23.030           | -4        | 0.640  | 60 | 23.028 | -4 | 0.661  | у | у | у   | 0.1 m2   |
| 53937#1  | 12/08/96             | 1554 | AH5 | n     | 412      | Box Corer | 60       | 22.884           | -4        | 1.166  | 60 | 22.890 | -4 | 1.149  |   |   |     |          |
| 53937#2  | 12/08/96             | 1626 | AH5 | n     | 414      | Box Corer | 60       | 22.913           | -4        | 1.009  | 60 | 22.916 | -4 | 1 044  |   |   |     |          |
| 53938#1  | 12/08/96             | 1710 | AH6 | у     | 416      | Box Corer | 60       | 23.071           | -4        | 1.215  | 60 | 23.078 | -4 | 1.250  | у | у | y   | 0.1 m2   |
| 53939#1  | 12/08/96             | 2005 | AG2 | y     | 388      | Box Corer | 60       | 12.587           | -4        | 25,747 | 60 | 12 640 | -4 | 25.688 | y | y | у   | 0.1 m2   |
| 53940#1  | 12/08/96             | 2120 | AJ1 | y     | 298      | Day Grab  | 60       | 10.013           | -4        | 26.452 |    |        |    |        | y | y | y   |          |
| 53940#2  | 12/08/96             | 2148 | AJI | n     | 296      | Day Grab  | 60       | 9.991            | -4        | 26.464 |    |        |    |        | • | • | •   |          |
| 53941#1  | 12/08/96             | 2234 | F6  | n     | 245      | Day Grab  | 60       | 7.636            | -4        | 30.778 |    |        |    |        |   |   |     |          |
| 53941#2  | 12/08/96             | 2245 | F6  | n     | 246      | Day Grab  | 60       | 7.613            | -4        | 30.724 |    |        |    |        |   |   |     |          |
| 53941#3  | 12/08/96             | 2258 | F6  | n     | 243      | Day Grab  | 60       | 7.565            | -4        | 30.793 |    |        |    |        |   |   |     |          |
| 53941#4  | 12/08/96             | 2310 | F6  | n     | 245      | Day Grab  | 60       | 7.591            | -4        | 30,860 |    |        |    |        |   |   |     |          |
| 53941#5  | 12/08/96             | 2323 | F6  | n     | 244      | Day Grab  | 60       | 7.583            | -4        | 30,753 |    |        |    |        |   |   |     |          |
| 53941#6  | 12/08/96             | 2339 | F6  | n     | 244      | Day Grab  | 60       | 7.594            | -4        | 30.815 |    |        |    |        |   |   |     |          |
| 53941#7  | 12/08/96             | 2351 | F6  | у     | 242      | Day Grab  | 60       | 7.567            | -4        | 30.755 |    |        |    |        |   |   |     | 0.1 m2   |
| 53941#8  | 13/08/96             | 0009 | F6  | y     | 242      | Day Grab  | 60       | 7.546            | -4        | 30.802 |    |        |    |        | у | у | у   | 011 1112 |
| 53942#1  | 13/08/96             | 0245 | AB1 | y     | 143      | Day Grab  | 59       | 58.513           | -4        | 27.558 |    |        |    |        | y | y | y   |          |
| 53942#2  | 13/08/96             | 0302 | AB1 | y     | 143      | Day Grab  | 59       | 58.480           | <u>-4</u> | 27.553 |    |        |    |        | , | , | ,   | 0.1 m2   |
| 53943#1  | 13/08/96             | 0450 | C18 | n     | 123      | Day Grab  | 59       | 54.973           | -4        | 8.463  |    |        |    |        |   |   |     | 0.1 1112 |
| 53943#2  | 13/08/96             | 0500 | C18 | n     | 123      | Day Grab  | 59       | 54.979           | -4        | 8.526  |    |        |    |        |   |   |     |          |
| 53943#2  | 13/08/96             | 0511 | C18 | y     | 123      | Day Grab  | 59       | 54.947           | -4        | 8.448  |    |        |    |        | у | у | у   |          |
| 53943#4  | 13/08/96             | 0525 | C18 | y     | 123      | Day Grab  | 59       | 55.009           | -4        | 8.379  |    |        |    |        | , | , | ,   | 0.1 m2   |
| 53944#1  | 13/08/96             | 0621 | C17 | y     | 122      | Day Grab  | 59       | 51.686           | -4        | 12,863 |    |        |    |        |   |   |     | 0.1 m2   |
| 53944#2  | 13/08/96             | 0633 | C17 | y     | 123      | Day Grab  | 59       | 51.706           | -4        | 12.910 |    |        |    |        | у | у | y   | 0.1 mz   |
| 53945#1  | 13/08/96             | 0852 | C16 | n     | 92       | Day Grab  | 59       | 37.501           | -4        | 31.926 |    |        |    |        | , | , | ,   |          |
| 53945#2  | 13/08/96             | 0856 | C16 | n     | 92       | Day Grab  | 59       | 37.489           | -4        | 31,921 |    |        |    |        |   |   |     |          |
| 53945#3  | 13/08/96             | 0903 | C16 | n     | 92       | Day Grab  | 59       | 37.483           | -4        | 31.962 |    |        |    |        |   |   |     |          |
| 53945#4  | 13/08/96             | 0908 | C16 | n     | 92       | Day Grab  | 59       | 37.490           | -4        | 31.964 |    |        |    |        |   |   |     |          |
| 53945#4  | 13/08/96             | 0914 | C16 | n     | 92       | Day Grab  | 59       | 37.506           | -4        | 31.928 |    |        |    |        |   |   |     |          |
| 53945#6  | 13/08/96             | 0919 | C16 | n     | 92       | Day Grab  | 59       | 37.517           | -4        | 31.942 |    |        |    |        |   |   |     |          |
| 53945#7  | 13/08/96             | 0924 | C16 | n     | 92<br>92 | Day Grab  | 59       | 37.517           | -4        | 31.965 |    |        |    |        |   |   |     |          |
| 53945#8  | 13/08/96             | 0932 | C16 |       | 92       | Day Grab  | 59       | 37.526           | -4        | 31.966 |    |        |    |        |   |   |     |          |
|          |                      | 0932 | C16 | n     | 92<br>92 | Day Grab  | 59       | 37.526<br>37.526 | -4<br>-4  | 31.951 |    |        |    |        |   |   |     |          |
| 53945#9  | 13/08/96<br>13/08/96 | 0939 | C16 | n     | 92<br>92 | Day Grab  | 59       | 37.526<br>37.526 | -4<br>-4  | 31.955 |    |        |    |        |   |   |     |          |
| 53945#10 |                      |      |     | n<br> |          |           | 59<br>59 |                  |           |        |    |        |    |        |   |   |     | 0.12     |
| 53946#1  | 13/08/96             | 1019 | C2  | у     | 98       | Day Grab  |          | 37.412           | -4<br>1   | 37.428 |    |        |    |        |   |   |     | 0 l m2   |
| 53946#2  | 13/08/96             | 1028 | C2  | n     | 98<br>96 | Day Grab  | 59<br>50 | 37.399<br>37.304 | -4<br>4   | 37 433 |    |        |    |        |   |   |     | 0.12     |
| 53946#3  | 13/08/96             | 1034 | C2  | у     |          | Day Grab  | 59<br>50 | 37.394           | -4<br>1   | 37 431 |    |        |    |        |   |   |     | 0 1 m2   |
| 53946#4  | 13/08/96             | 1042 | C2  | n     | 98       | Day Grab  | 59<br>50 | 37.381           | -4<br>-4  | 37.464 |    |        |    |        |   |   |     |          |
| 53946#5  | 13/08/96             | 1047 | C2  | n     | 98       | Day Grab  | 59       | 37.384           | -4        | 37.493 |    |        |    |        |   |   |     |          |

| 53946#6 | 13/08/96 | 1053 | C2     | n | 98   | Day Grab   | 59 | 37.390 | -4         | 37.458 |    |         |          |        |        |        |        |
|---------|----------|------|--------|---|------|------------|----|--------|------------|--------|----|---------|----------|--------|--------|--------|--------|
| 53946#7 | 13/08/96 | 1059 | C2     | n | 98   | Day Grab   | 59 | 37.397 | -4         | 37,467 |    |         |          |        |        |        |        |
| 53947#1 | 13/08/96 | 1145 | 100    | у | 102  | Wasp       | 59 | 38.041 | -4         | 40.017 | 59 | 38.048  | -4       | 40.008 |        |        |        |
| 53948#1 | 13/08/96 | 2004 | 300    | ý | 302  | Wasp       | 60 | 10.574 | -4         | 25 635 | 60 | 10 608  | -4       | 25.577 |        |        |        |
| 53949#1 | 13/08/96 | 2248 | 500    | ý | 512  | Wasp       | 60 | 12 161 | -4         | 36.706 | 00 | 10 000  | •        | 23.377 |        |        |        |
| 53950#1 | 14/08/96 | 0157 | 800    | ý | 816  | Wasp       | 60 | 18.410 | -4         | 44,105 | 60 | 18.420  | -4       | 44.090 |        |        |        |
| 53951#1 | 14/08/96 | 1034 | 1000   | ý | 978  | Wasp       | 60 | 50.292 | -3         | 45.895 | 60 | 50 301  | -3       | 45.873 |        |        |        |
| 53952#1 | 14/08/96 | 1953 | AK1    | y | 556  | Mega Corer | 61 | 23.937 | -l         | 39.523 | 61 | 23.945  | -Î       | 39.515 | у      | y      | у      |
| 53952#2 | 14/08/96 | 2036 | AK1    | ý | 556  | Mega Corer | 61 | 23.866 | -1         | 39 675 | 61 | 23.875  | -Î       | 39.638 | y      | y      | y      |
| 53953#1 | 14/08/96 | 2119 | AK2    | ý | 557  | Mega Corer | 61 | 23.858 | -1         | 40.006 | 61 | 23.859  | -Î       | 40 017 | y      | y      | y      |
| 53953#2 | 14/08/96 | 2157 | AK2    | y | 557  | Mega Corer | 61 | 23.838 | -1         | 39.971 | 61 | 23.846  | -Î       | 39.967 | y      | y      | y      |
| 53954#1 | 14/08/96 | 2244 | AK3    | y | 561  | Mega Corer | 61 | 24.037 | -Î         | 40.033 | 01 | 25.040  | -1       | 33.707 | y      | y      |        |
| 53954#2 | 14/08/96 | 2324 | AK3    | y | 562  | Mega Corer | 61 | 24 047 | -Î         | 40.156 | 61 | 24.053  | -1       | 40.152 | y      | y      | у<br>У |
| 53955#1 | 15/08/96 | 0009 | AK4    | y | 559  | Mega Corer | 61 | 24.058 | -1         | 39.742 | 61 | 24.079  | -1       | 39.733 | y      | y      |        |
| 53955#2 | 15/08/96 | 0053 | AK4    | y | 558  | Mega Corer | 61 | 24.053 | - <b>1</b> | 39.682 | 61 | 24.069  | -1       | 39.686 | y      | y      | y<br>y |
| 53956#1 | 15/08/96 | 0144 | AK5    | y | 560  | Mega Corer | 61 | 24.170 | -1         | 39.430 | 61 | 24.177  | -1       | 39.412 | y      | y      | y<br>y |
| 53956#2 | 15/08/96 | 0230 | AK5    | y | 560  | Mega Corer | 61 | 24.191 | -1         | 39.500 | 61 | 24,195  | -1       | 39.514 | W      | 1/     | y      |
| 53957#1 | 15/08/96 | 0437 | AK9    | y | 557  | Mega Corer | 61 | 23.971 | -1         | 39.997 | 61 | 23.973  | -1       | 40.015 | y<br>y | y<br>y | ₹,     |
| 53957#2 | 15/08/96 | 0519 | AK9    | y | 558  | Mega Corer | 61 | 23.993 | -Î         | 40.069 | 61 | 24.001  | -1       | 40.084 | y<br>y | y      | У      |
| 53958#1 | 15/08/96 | 0626 | AK7    | y | 560  | Mega Corer | 61 | 25.577 | -1         | 37.292 | 61 | 25.565  | -i       | 37.321 | y      | y      | У      |
| 53958#2 | 15/08/96 | 0704 | AK7    | y | 560  | Mega Corer | 61 | 25.555 | - <u>î</u> | 37.191 | 61 | 25.563  | -1       | 37.222 | y<br>Y | y<br>Y | У      |
| 53959#1 | 15/08/96 | 0816 | AK8    | y | 562  | Mega Corer | 61 | 28.194 | -1         | 33.018 | 61 | 28.214  | -1       | 33.019 | y<br>y | y      | У      |
| 53959#2 | 15/08/96 | 0855 | AK8    | y | 563  | Mega Corer | 61 | 28.172 | -1         | 33.056 | 61 | 28.178  | -1       | 33.073 | y      | y<br>Y | У      |
| 53960#1 | 15/08/96 | 1014 | AK6    | y | 563  | Mega Corer | 61 | 24.558 | -1         | 38.787 | 61 | 24.554  | -1<br>-1 | 38.765 | y<br>Y | y      | y      |
| 53960#2 | 15/08/96 | 1051 | AK6    | y | 563  | Mega Corer | 61 | 24.556 | - <b>1</b> | 38.857 | 61 | 24.560  | -1<br>-1 | 38.840 | -      | -      | У      |
| 53961#1 | 15/08/96 | 1139 | AK5    | y | 562  | Mega Corer | 61 | 24.221 | -Î         | 39.605 | 61 | 24.240  | -1<br>-1 | 39.621 | y<br>y | y<br>Y | y      |
| 53962#1 | 15/08/96 | 1254 | 570    | у | 580  | Wasp       | 61 | 23.760 | -1         | 42 211 | 61 | 23.792  | -1<br>-1 | 42.242 | У      | У      | У      |
| 53963#1 | 15/08/96 | 1545 | 490    | y | 488  | Wasp       | 61 | 15.799 | -1         | 46.344 | 61 | 15.807  | -1       | 46.351 |        |        |        |
| 53964#1 | 15/08/96 | 2045 | B5     | n | 203  | Van Veen   | 60 | 52.397 | -2         | 19 527 | 0. | 15.667  | •        | 10.551 |        |        |        |
| 53964#2 | 15/08/96 | 2109 | B5     | n | 204  | Mega Corer | 60 | 52.429 | -2         | 19 597 | 60 | 52.437  | -2       | 19.598 |        |        |        |
| 53964#3 | 15/08/96 | 2128 | B5     | n | 202  | Mega Corer | 60 | 52.394 | -2         | 19.529 | 60 | 52.399  | -2       | 19.537 |        |        |        |
| 53964#4 | 15/08/96 | 2200 | B5     | n | 203  | Van Veen   | 60 | 52 415 | -2         | 19.577 | •  | 02.555  | 2        | 17.557 |        |        |        |
| 53965#1 | 15/08/96 | 2238 | Tr250  | n | 250  | Mega Corer | 60 | 53.245 | -2         | 20.712 | 60 | 53.250  | -2       | 20.722 |        |        |        |
| 53965#2 | 15/08/96 | 2258 | Tr250  | n | 250  | Mega Corer | 60 | 53.229 | -2         | 20.707 | 60 | 53.235  | -2       | 20.713 |        |        |        |
| 53966#1 | 15/08/96 | 2336 | Tr300  | n | 290  | Mega Corer | 60 | 53.921 | -2         | 21.836 | 60 | 53.929  | -2       | 21.846 |        |        |        |
| 53967#1 | 16/08/96 | 0022 | Tr350  | у | 345  | Mega Corer | 60 | 55.519 | -2         | 24.070 | 60 | 55.527  | -2       | 24 079 |        |        |        |
| 53968#1 | 16/08/96 | 0121 | L5     | ý | 415  | Mega Corer | 60 | 57,734 | -2         | 25.040 | 60 | 57.738  | -2       | 25.049 |        |        |        |
| 53969#1 | 16/08/96 | 0218 | Tr450  | y | 454  | Mega Corer | 60 | 58.414 | -2         | 28.204 | 60 | 58,424  | -2       | 28.202 |        |        |        |
| 53970#1 | 16/08/96 | 0312 | L4     | ý | 498  | Mega Corer | 60 | 59.328 | -2         | 29.407 | 60 | 59.334  | -2       | 29,422 |        |        |        |
| 53971#1 | 16/08/96 | 0413 | Tr550  | y | 553  | Mega Corer | 61 | 1 045  | -2         | 31.857 | 61 | 1.056   | -2       | 31.869 |        |        |        |
| 53972#1 | 16/08/96 | 0519 | Tr600  | ý | 600  | Mega Corer | 61 | 2.563  | -2         | 34 020 | 61 | 2.570   | -2       | 34.021 |        |        |        |
| 53973#1 | 16/08/96 | 0627 | Tr650  | y | 649  | Mega Corer | 61 | 4 525  | -2         | 36.874 | 61 | 4.522   | -2       | 36 902 |        |        |        |
| 53974#1 | 16/08/96 | 0741 | S2     | y | 708  | Mega Corer | 61 | 5.644  | -2         | 40.848 | 61 | 5.640   | -2       | 40.895 |        |        |        |
| 53975#1 | 16/08/96 | 0858 | Tr800  | y | 798  | Mega Corer | 61 | 8.024  | -2         | 41,550 | 61 | 8.037   | -2       | 41.565 |        |        |        |
| 53976#1 | 16/08/96 | 1017 | Tr900  | y | 915  | Mega Corer | 61 | 9,595  | -2         | 43.981 | 61 | 9.621   | -2       | 43.953 |        |        |        |
| 53977#1 | 16/08/96 | 1147 | Tr1000 | y | 998  | Mega Corer | 61 | 10.519 | -2         | 45.429 | 61 | 10.533  | -2       | 45.432 |        |        |        |
| 53978#1 | 16/08/96 | 1317 | Tr1100 | y | 1088 | Mega Corer | 61 | 12.884 | -2         | 50.162 | 61 | 12.868  | -2       | 50.184 |        |        |        |
|         |          |      |        | , |      |            |    |        | -          | 20.102 |    | . 2.000 | 4        | 20.107 |        |        |        |

| 53980#1 16/08/96 1816 1400 y 1407 Wasp 61 26.660 -3 0.070 61 26.650 -3 0.108<br>53981#1 16/08/96 2221 1200 y 1208 Wasp 61 19.155 -2 58.302 61 19.200 -2 58.230 |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| SSYCHAI TOTOTYO MARI 1250 )                                                                                                                                    |        |
|                                                                                                                                                                |        |
| 53982#1 17/08/96 0234 1000 n 1001 Wasp 61 10.520 -2 45.588 61 10.524 -2 45.512                                                                                 |        |
| 53983#1 17/08/96 1006 OTSB14 y 1401 OTSB14 61 35.620 -2 10.713                                                                                                 |        |
| 53984#1 17/08/96 1951 900 y 911 Wasp 61 9.572 -2 43.880 61 9.567 -2 43.902                                                                                     |        |
| 53985#1 17/08/96 2250 700 y 681 Wasp 61 5.374 -2 38 113 61 5.399 -2 38.121                                                                                     |        |
| 53986#1 18/08/96 0715 380 y 389 Wasp 60 22.062 -3 59 911 60 22.067 -3 59.895                                                                                   |        |
| 53987#1 18/08/96 1338 C19 n 104 Day Grab 59 41.093 -4 29.039                                                                                                   |        |
| 53987#2 18/08/96 1346 C19 n 104 Day Grab 59 41.075 -4 28.982                                                                                                   |        |
| 53987#3 18/08/96 1355 C19 y 104 Day Grab 59 41.080 -4 29.010                                                                                                   | 0.1 m2 |
| 53987#4 18/08/96 1406 C19 n 104 Day Grab 59 41.075 -4 29.018                                                                                                   |        |
| 53987#5 18/08/96 1416 C19 n 104 Day Grab 59 41.072 -4 29.047                                                                                                   |        |
| 53987#6 18/08/96 1424 C19 n 104 Day Grab 59 41.085 -4 28.994                                                                                                   |        |
| 53987#7 18/08/96 1432 C19 y 104 Day Grab 59 41.069 -4 29.002 y y y                                                                                             |        |

•

- 1

# -70

## RRS Charles Darwin cruise 101 C leg 2 station list

## STATION COMMENT

| 53713#1 | 6/12 Good cores                                                                      |
|---------|--------------------------------------------------------------------------------------|
| 53713#2 | 10/12 Good cores                                                                     |
| 53714#1 | 9/12 Good cores                                                                      |
| 53714#2 | 8/8 Good cores                                                                       |
| 53715#1 | 11/12 Good cores                                                                     |
| 53716#1 | 12/12 Good cores                                                                     |
| 53717#1 | 12/12 Good cores                                                                     |
| 53718#1 | 0/12 cores; failed; no samples                                                       |
| 53718#2 | 11/12 Good cores                                                                     |
| 53719#1 | 10/12 Good cores                                                                     |
| 53720#1 | 10/12 Good cores; one lost in handling                                               |
| 53720#2 | 8/8 Good cores                                                                       |
| 53721#1 | 11/12 Good cores                                                                     |
| 53722#1 | 0/12 cores; a little gravel in tubes; complete bottom closer unit lost by warp catch |
| 53722#2 | 0/12 cores, hard ground                                                              |
| 53722#3 | Good core                                                                            |
| 53723#1 | Short slanting core, top water lost, discarded                                       |
| 53723#2 | Good core                                                                            |
| 53724#1 | Good core                                                                            |
| 53725#1 | Good core                                                                            |
| 53726#1 | Good core                                                                            |
| 53727#1 | Good core                                                                            |
| 53728#1 | Good core                                                                            |
| 53729#1 | Failed; a little sand only                                                           |
| 53729#2 | Good core; note insert could not be used - too many obstructions                     |
| 53730#1 | Failed; not fully fired -? fouled by warp                                            |
| 53730#2 | Box of rocks only                                                                    |
| 53730#3 | Pebble in jaws                                                                       |
| 53730#4 | Surface 6 cm from inner top                                                          |
| 53730#5 | Stones only                                                                          |
| 53731#1 | Rocks only                                                                           |
| 53731#2 | Pebble in jaws                                                                       |
| 53731#3 | Stone in jaws                                                                        |
| 53732#1 | Pebble in jaws                                                                       |
| 53732#2 | Pebble in jaws                                                                       |
| 53732#3 | Pebble in jaws                                                                       |
| 53732#4 | Short slanted core, top water not held, discarded                                    |
| 53732#5 | Short slanted core, top water not held, discarded                                    |
| 53733#1 | Pebble in jaws                                                                       |
| 53733#2 | 8 cm below inner top, drained on stand                                               |
| 53733#3 | Sample too small                                                                     |
| 53733#4 | Rock in Jaws                                                                         |
|         |                                                                                      |

53733#5 Rock in jaws 53733#6 Failed; not triggered 53733#7 Short core, top water lost, discarded 53734#1 Good core 53735#1 Pebbles in jaws 53735#2 Short core, top water not held, discarded Short core, top water not held, discarded 53735#3 53735#4 9 cm below inner top 53735#5 Grab empty 53735#6 Grab empty Short core, top water not held, discarded 53735#7 53736#1 Good core 53737#1 Good core 53738#1 Good core Good core (rope round gear - got caught tin prop.) 53739#1 53740#1 Good core Short core, top water not held, discarded 53741#1 53741#2 Short core, top water not held, discarded 53741#3 9 cm below inner top 53741#4 Rock in jaws 53741#5 9.5 cm below inner top; 3 litres 53741#6 5.5 cm below inner top; 5 litre sample 53742#1 5.5 cm below inner top 53742#2 3.5 cm below inner top; approx 5 litres 53743#1 2 cm below inner top 53743#2 Failed 53743#3 Rock in jaws 53743#4 3.5 cm below inner top, 5 litres approx 4 cm below inner top 53744#1 53744#2 Pebbles in jaws 53744#3 Pebbles in jaws 53744#4 Small sample; discarded 53744#5 Rock in jaws 53744#6 Pebbles in jaws 53744#7 Rock in jaws 53744#8 Grab empty 53745#1 Pebbles in jaws 53745#2 Pebbles in jaws 53745#3 Large rock in jaws 53745#4 Rock in jaws 53745#5 5 cm below inner top 53745#6 4.5 cm below inner top; 5 litres 53746#1 6 cm below inner top 53746#2 Stone in jaws Small sample of gravel only; discarded 53746#3 Sample of 5 litres 53746#4

53747#1 Small sample only; discarded

```
-12
```

```
53747#2 Rock in jaws
53747#3 Grab empty
53747#4 9 cm below inner top
53747#5 Large rock only
53747#6 Sample of 5 litres
53748#1 Pebbles in jaws
53748#2 7 cm below inner top
53748#3 Small sample; discarded
53748#4 Rock in jaws
53748#5 4.5 cm below inner top, approx 5 litres
53749#1 Failed, swivel hung up on frame
53749#2 Rock in jaws
53749#3 Rock in jaws
53749#4 Rock in jaws
53749#5 Rock in jaws
53750#1 Good core
53751#1 Good core
53752#1 Good core
53753#1 Short core, top water not held; discarded
53753#2 Good core
53754#1 Good core
53755#1 No sample: gear fell over?
53755#2 Good core
53756#1 Good core
53757#1 Good core
53758#1 Good core
53759#1 Soak time 9:28
53760#1 Good core
53761#1 Good core
53762#1 Good core - with 5 cm lateral compression at door side
53763#1 Short core, top water not held; discarded
53764#1 6/8 good cores
53764#2 8/8 good cores
53765#1 7/8 good cores
53765#2 8/8 good cores
53766#1 7/8 good cores
53766#2 8/8 good cores
53767#1 7/8 good cores
53767#2 8/8 good cores
53768#1 Soak time 11:02
53769#1 8/8 good cores
53769#2 8/8 short but good cores
53770#1 8/8 good cores
53770#2 8/8 good cores
53771#1 8/8 good cores. 3 macrobenthos cores combined with 5 from 53771#2
53771#2 6/8 good cores, one lost on deck. 5 macrobenthos cores combined with 3 from 53771#1
53771#3 Short core, top water not held, discarded
```

```
-/3-
```

```
53772#1 Short core, top water not held; discarded
53773#1 7/8 good cores
53773#2 8/8 good cores
53774#1 8/8 good cores
53774#2 8/8 good cores
53775#1 Good core
53776#1 Good core
53777#1 Good core
53778#1 Soak time 11:38
53779#1 5 cm below inner top
53779#2 Pebbles in jaws
53779#3 Rock in jaws
53779#4 2 cm below inner top
53780#1
53780#2 Full grab, one top flap not fully closed (rock in the way), 15 litres
53781#1
         Full grab
53781#2 Full grab
53782#1 Cloudy top water; discarded
53782#2 Small sample, discarded
53782#3 3 cm below inner top
53782#4
53783#1 Rock in jaws
53784#1 Good sample
53784#2 Pebbles in jaws
53784#3 Grab empty
53784#4 5 cm below inner top, not quite 5 litre sample
53785#1 Pebbles in jaws
53785#2 Pebbles in jaws
53785#3 Pebbles in jaws
53785#4
53785#5 Rock in jaws
53785#6 Rock in jaws
53785#7 2 cm below inner top, 5 litres
53785#8 Grab empty
53786#1 Pebbles in jaws
53786#2 Rock in jaws
53786#3 Rock in jaws
         Rock in jaws
53786#4
53786#5 Good sample
53786#6 Pebbles in jaws
53786#7 Sample of 4.5 litres
53786#8 Pebbles in jaws
53787#1 1 cm below inner top
53787#2 Sample of 6 litres
         Pebbles in jaws
53788#1
53788#2 Pebbles in jaws
53788#3 2 5 cm below inner top
```

```
53788#4
           Pebbles in jaws
53788#5
          Pebbles in jaws
53788#6
          Pebbles in jaws
53788#7
          Sample of 5 litres
53789#1
          Short core, top water not held; discarded
53789#2
          Short core, top water not held; discarded
53789#3
          Pebbles in iaws
53789#4
           Rock in jaws
53789#5
53789#6
          Pebbles in jaws
53789#7
           Sample of 5 litres
53790#1
           Short core, top water not held; discarded
53790#2
          Pebbles in jaws
53790#3
           Rock in jaws
53790#4
          7 cm below inner top, sample of 4 litres
53790#5
          7 cm below inner top
53791#1
           Good core
53792#1
           Good core
53793#1
           Good core
53794#1
          Good core
53795#1
           Good core
53796#1
           Short core, top water not held; discarded
53796#2
           Short core, top water not held; discarded
53796#3
          Failed; warp fouled on lifting shackle
53796#4
           Short core, top water not held; discarded
53796#5
          4 cm below inner top, sample of 4 litres
53796#6
          4 cm below inner top
53797#1
           Hard ground; damage to door of box
53797#2
          Not fired; ground too hard
53797#3
           Small sample; discarded
53797#4
          Pebbles in jaws
53797#5
           Rock in jaws
53797#6
          3 cm below inner top
53797#7
           Sample of 3 litres
53798#1
          Failed; activating warp hung on lifting shackle
53798#2 Good core
53799#1
          Soak time 24:14
53800#1
          Good core
53801#1
           12 m B & W
53802#1
          Failed; warp hung up on lifting shackle
53802#2
          Good core
53803#1
          Good core
53804#1
          Good core
53805#1
          Good core
53806#1
          Sample thought to have artefact topography (unlikely, BJB) - discarded
53806#2
          Macrobenthos sample: 0-5 cm 0.08 m2, 5-10 cm 0.1 m2
53807#1
          Short core, top water not held; discarded
```

```
'n
```

```
53807#2 Rock in jaws
53807#3 2.5 cm below inner top
53807#4 2 cm below inner top, sample of 6 litres
53808#1 Cloudy top water; discarded
53808#2 7 cm below inner top
53808#3 Sample of 3 litres
53808#4
         Failed to close fully, swivel hung on frame
53808#5 Scallop shell in jaws
         Soak time 22.12
53809#1
53810#1 12 m colour
53811#1 10 m colour
53812#1 10 m colour
53813#1 Rock in jaws
53813#2 Sample of 5 litres
         Rock in jaws
53814#1
53814#2 No sample
53814#3 9 cm below inner top
53814#4 Water only
53814#5 5 cm below inner top, sample of 4 litres
53815#1
          Rocks only
53815#2 Failed, warp hung on grab
53815#3
          9 cm below inner top
53815#4 Sample of 3.5 litres, note combined with 53815#5
53815#5 Sample of 3.5 litres, note combined with 53815#4
53816#1 Rock in jaws
53816#2 Pebbles in jaws
53816#3 Hydrocarbon sample taken but lost in lab
53816#4 Sample of 5.5 litres
53816#5
53817#1 Soak time 20:56
         8/8 good cores, one then lost on deck
53818#1
53818#2 8/8 good cores
53819#1 7/8 good cores
53819#2 7/10 short cores
53819#3 9/10 good cores
53820#1 9/10 good cores
53820#2 8/8 good cores
          7/8 good cores
53821#1
53821#2 8/8 good cores
53822#1
          6/8 good cores; one core tube broken; 1 core combined with 7 from 53822#2 for macrobenthos sample
53822#2 7/8 good cores; 7 cores combined with one from 53822#1 for macrobenthos sample
53823#1
         5/8 good cores
53823#2 No samples, water only
53823#3 9/10 good cores
53824#1 9/10 good cores
53824#2 10/10 good cores
53825#1 9/10 good cores
```

53825#2 10/10 good cores 53826#1 Soak time 15:55 53827#1 9/10 good cores 53827#2 8/8 good cores 53828#1 8/10 good cores 53828#2 8/8 good cores 53829#1 10/10 good cores 53829#2 8/8 good cores

53830#2 8/8 good cores 53831#1 11/12 good cores 53831#2 8/8 good cores 53832#1 10/12 good cores 53832#2 8/8 good cores 53833#1 9/12 good cores 53833#2 8/8 good cores 53834#1 9/12 good cores

53835#1 10/12 good cores 53835#2 8/8 good cores

53836#2 11/12 good cores

53840#1 11/12 good cores

53842#1 Good core 53843#1 Good core 53844#1 Good core

53845#3 12 m B & W

Good core 53846#1 Good core 53847#1 Good core

Good core

53850#1 Pebbles in jaws 53850#2 Pebbles in jaws 53850#3 Pebbles in jaws 53850#4 Rock in jaws

Pebbles in jaws

53845#4

53848#1

53849#1

53849#2 53849#3

53849#4

53837#2 Good core: USBL down

53830#1 10/12 good cores; USBL down

53834#2 3/8 good cores, others with cloudy water

53845#1 Failed, no sample, (strong current running) 53845#2 Failed, no sample, (strong current running)

Sample of 5 litres - combined with 53849#5

53849#5 Sample of 2 litres - combined with 53849#3

53837#1 All disturbed: three bottom sliders snapped - gear on side or trawled

53841#1 Good core, though the box badly damaged by contact with rock (s); USBL down

Essentially no sample. Box bent and weld on lower frame fractured through

53838#1 Good core, a little resuspension from knock against ship's side 53839#1 Good core, a little resuspension from knock against ship's side

53836#1 11/12 cores all cloudy or disturbed

```
;
```

```
53850#5
          Pebbles in jaws
53850#6
          Rock in jaws
53850#7
          Pebbles in jaws
53851#1
53851#2
          Pebbles in jaws
53851#3
          4.5 cm below inner top, sample of 6 litres
53852#1
           Small samples - discarded
53852#2
           4 cm below inner top, sample of 6 litres
53852#3
          Small sample - discarded
53852#4
53853#1
          Pebbles in jaws
53853#2
           Rock in jaws
53853#3
           Pebbles in jaws
53853#4
           Rock in jaws
53853#5
           Rock in jaws
53853#6
          Rock in jaws
53853#7
           Rock in jaws
53854#1
           Pebbles in jaws
53854#2
           Failed, not fired
53854#3
           Pebbles in jaws
53854#4
53854#5
           Rock in jaws
53854#6
          Grab empty
53854#7
           Pebbles in jaws
53854#8
          Gravel
53854#9
           Rocks only
53854#10
          Gravel
53854#11
          5 m B & W
53855#1
          Rock in jaws
53855#2
          Empty
53855#3
          Pebbles in jaws
53855#4
          Pebbles in jaws
53855#5
          Small sample - discarded
53855#6
          Rocks only
53855#7
           Rocks only
53855#8
           Rocks only
53856#1
           Pebbles in jaws
53856#2
           Pebbles in jaws
53856#3
53856#4
           Sample of 8 litres
53857#1
          Grab empty
53857#2
53857#3
          Rock in jaws
53857#4
          Small sample of 1.5 litres - combined with 53857#5
53857#5
          Sample of 4 litres - combined with 53857#4
53858#1
          Stones only
53858#2
          Rock in jaws
```

The Control of the state of the

```
-/8
```

```
53858#3 Stones only
53858#4
          Grab almost empty
53858#5 Rocks only
53858#6 Failed, grab not closed
53858#7 Stones only
53859#1 Grab empty
53859#2
53859#3
          Grab empty
53859#4
          Sample of 6 litres
53860#1
          Gravel
53860#2 Small sample - discarded
53860#3
          Rock in jaws
53860#4
53860#5 Pebbles in jaws
53860#6 Small sample - discarded
53860#7
          4 cm below inner top, sample of 6 litres
53861#1
53861#2 1 cm below inner top, sample of 8 litres
53862#1 5 cm below inner top, sample of 7 litres
53862#2 Rock in jaws
53862#3
          Pebbles in jaws
53862#4 Pebbles in jaws
53862#5
53863#1
53863#2 3 cm below inner top, sample of 8 litres
53864#1
53864#2 Pebbles in jaws
53864#3 Pebbles in jaws
53864#4 Sample of 3 litres
53864#5 Rock in jaws
53864#6 Rock in jaws
53864#7
          Grab empty
53865#1 Pebbles in jaws
53865#2
53865#3 Rock in jaws
53865#4
          Sample of 5 litres
53866#1
53866#2
          Sample of 5 litres
53867#1
          Failed, not fired
53867#2 No sample
53867#3 No sample
53867#4 Rock in jaws
53867#5
          Rock in jaws
53867#6
53867#7 No sample
53867#8 Sample of 3 litres - combined with 53867#9
53867#9 Sample of 2.5 litres - combined with 53867#8
```

· / / / /

```
53868#2 Stones only
53868#3
          6 cm below inner top
53868#4
          Grab empty
53868#5
          Sample of 4 litres - combined with 53868#6
53868#6
          Sample of 3 litres - combined with 53868#5
53869#1 Good core
53870#1
          Short core, top water not held - discarded
53870#2 Good core
53871#1
          Short core, top water not held - discarded
53871#2 Failed, not fired
53871#3
          Short core, top water not held - discarded
53871#4 5 cm below inner top
53871#5
          Disturbed sample
53871#6 Sample of 5 litres
53872#1
          Recovered by rig guard boat, 14 m colour
53873#1
          6/8 good cores
53873#2 8/8 cores, two shorter
53874#1
          Failed, fell over?
53874#2 Failed, gravel, no penetration
53874#3
          6/8 good cores. Macrobenthos sample combined with six cores from 53874#4
53874#4
          6/8 good cores. Macrobenthos sample combined with two cores from 53874#3
53875#1
          Pebbles in jaws
53875#2
          Pebbles in jaws
53875#3
          Rock in jaws
53875#4
53875#5
          Sample of 2 5 litres - combined with 53875#8
53875#6 Failed, did not fire
53875#7 Pebbles in jaws
53875#8
          Sample of 2.5 litres - combined with 53875#5
53876#1
53876#2
          Stones only
53876#3
          Rock in jaws
53876#4
          7 cm below inner top, sample of 6.5 litres
53876#5 Pebbles in jaws
53877#1
          Good core. Corer damaged - spade arm split at pivot point
53878#1
          6/8 good cores, USBL down
53878#2 8/8 good cores
53879#1
          8/8 good cores, one then lost on deck
53879#2 8/8 good cores
          3/8 good cores
53880#1
53880#2 7/8 good cores
53881#1
          Pebbles in jaws
53881#2 Sample of 1.5 litres - combined with 53881#3 and 4
53881#3
          Sample of 2 litres - combined with 53881#2 and 4
53881#4
          Sample of 2.5 litres - combined with 53881#2 and 3
53882#1
```

53868#1 Grab empty

```
ģ
```

```
53882#2 Small sample - discarded
53882#3 Sample of 2.5 litres - combined with 53882#5
53882#4 Pebbles in jaws
53882#5 Sample of 1 litre - combined with 53882#3
53882#6 Pebbles in jaws
53882#7 Rock in jaws
53883#1
          Sample of 2.5 litres - combined with 53883#2
53883#2 Sample of 2.5 litres - combined with 53883#1
53883#3
53884#1 Rock in jaws
53884#2 Grab empty
53884#3
          Sample of 3 litres - combined with 53884#4
53884#4 Sample of 4.5 litres - combined with 53884#3
53884#5 Grab empty
53884#6
53885#1
          Pebbles in jaws
53885#2 Sample of 2.5 litres (kept separate from 53885#5 as different substrate)
53885#3 Pebbles in jaws
53885#4 Rock in jaws
         Sample of 4 litres (kept separate from 53885#2 as different substrate)
53885#5
53886#1 Disturbed - discarded
53886#2 Sample of 4 litres
53887#1 4/8 good cores
53887#2 0/8 cores - hard ground
53887#3 0/8 hard ground. Damage to top end of bottom closer, warp bite
53888#1 7/8 cores all more-or-less with cloudy water - discarded
53888#2
          6/8 good cores. Macrobenthos cores combined with 5 from 53888#3
53888#3
          7/8 good cores, one then lost on deck. Macrobenthos sample combined with 2 cores from 53888#2
53889#1
          Sample of 4 litres
53889#2 Sample combined with 53889#1
53890#1 Rock in jaws
53890#2 Rock in jaws
53890#3 Pebbles in jaws
53891#1 Pebbles in jaws
53891#2 Pebbles in jaws
53891#3
53891#4 Sample of 5 litres
53892#1 Good core
53893#1 Good core
53894#1 Good core
53895#1 Good core
53896#1 5/8 good cores. Macrobenthos sample combined with 6 cores from 53896#2
53896#2 6/8 good cores. Macrobenthos sample combined with one core from 53896#1, USBL down
53897#1 8/10 good cores
53897#2 8/8 good cores
53898#1
          8/10 good cores
53898#2 7/8 good cores
```

```
-101-
```

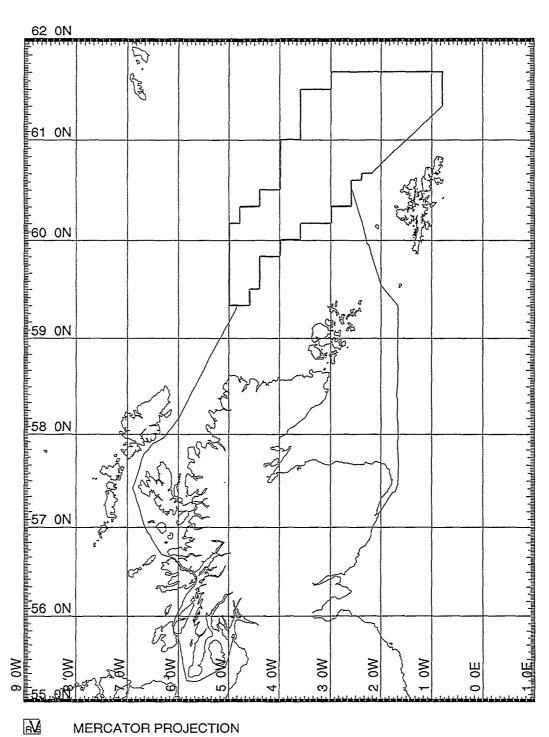
```
53899#1 8/10 good cores
53899#2 7/8 good cores
53900#1 No film run
53901#1
         8/8 good cores. One core frozen as archive
         Good core. Discount from AC group - use as an extra strategic station
53903#1
         Good core
53904#1
         Good core
53905#1
         Good core
53905#2
         Test strip (c. 1 m) B & W
53906#1
         Good core
53907#1
         Good core
53908#1
         Good core
53909#1
         Good core
53910#1
         Good core
53911#1
         Failed - main warp hung on corer
53911#2 Good core
53912#1
         Good core
53913#1 5 m colour
53914#1 7 m colour
53915#1 8/8 good cores
53915#2 8/8 good cores
53917#1 Pebbles in jaws
53917#2
         Pebbles in jaws
53917#3
         Pebbles in jaws
53917#4
         Some slumping at centre; samples taken as backup
53917#5 Pebbles in jaws
         Good, but small sample, insufficient for PSA
53917#6
53918#1
         Rock in jaws
53918#2
         5 cm below inner top
53918#3
         Sample of 3.5 litres - combined with 53918#4
         Sample of 3.5 litres - combined with 53918#3
53918#4
53919#1
53919#2
         Sample of 3 litres - combined with 53919#3
53919#3
         Sample of 3.5 litres - combined with 53919#2
53920#1 11 m colour
53921#1
         5 m colour
53922#1 12 m colour
53923#1
         12 m colour
53924#1 10 m colour
53925#1 12 m colour
53926#1 4 m colour
53927#1 14 m colour
53928#1
         7 m colour
53929#1
         Rock in jaws
53929#2
         Rocks only
```

53929#3

Pebbles in taws

- r 1 k

```
-82-
```


```
53930#1 Rock in jaws
53930#2
53930#3
          Sample of 6 litres
53931#1
53931#2 Sample of 6 litres
53932#1 Good core
53933#1 Good core
53934#1 Good core
53935#1
          Good core
53936#1
          Good core
         Short core, top water not held - discarded
53937#1
53937#2 Short core, top water not held - discarded
53938#1
          Good core
53939#1
          Good core
53940#1
53940#2
          Confirmation of (pea) gravel substrate - no samples taken
53941#1 Failed, not fired
53941#2 Rock in jaws
53941#3 Pebbles in jaws
53941#4
         Pebbles in jaws
53941#5 Rock in jaws
53941#6
          Rock in jaws
53941#7
          Sample of 5 litres
53941#8
53942#1
53942#2
          Sample of 5 litres
53943#1
          Rock in jaws
53943#2
          Poor sample - discarded
53943#3
53943#4
          Sample of 5 litres
53944#1
          Sample of 6.5 litres
53944#2
53945#1
          Rock in jaws
53945#2 Gravel only
53945#3 Rock in jaws
53945#4
          Rock in jaws
53945#5 Rock in jaws
53945#6
          Rock in jaws
53945#7 Gravel only
53945#8
          Rock in jaws
53945#9 Poor sample - discarded
53945#10 Grab empty
53946#1
          Sample of 1 litre - combined with 53946#3
53946#2
          Grab empty
53946#3
          Sample of 1 litre - combined with 53946#1
53946#4
          Rocks only
53946#5 One rock only
```

```
53946#6 Rocks only
53946#7
          Rocks only
53947#1 12 m colour
53948#1 9 m colour
53949#1 3 m colour, USBL down
53950#1 13 m colour
53951#1 5 m colour
53952#1
          4/4 good cores. Meiobenthos sample taken
53952#2
          4/4 good cores. Meiobenthos sample taken
53953#1
          4/4 good cores. Meiobenthos sample taken
53953#2
          4/4 good cores. Meiobenthos sample taken
53954#1
          4/4 good cores, meiobenthos sample taken. USBL down
53954#2
          4/4 good cores. Meiobenthos sample taken
          4/4 good cores. Meiobenthos sample taken
53955#1
53955#2
          4/4 good cores. Meiobenthos sample taken
53956#1
          2/4 good cores. Meiobenthos sample taken
          2/4 good cores
53956#2
53957#1
          4/4 good cores Meiobenthos sample taken
          4/4 good cores Meiobenthos sample taken
53957#2
53958#1
          4/4 good cores. Meiobenthos sample taken
53958#2
          4/4 good cores. Meiobenthos sample taken
          4/4 good cores. Meiobenthos sample taken
53959#1
          4/4 good cores. Meiobenthos sample taken
53959#2
          4/4 good cores. Meiobenthos sample taken
53960#1
53960#2
          4/4 good cores. Meiobenthos sample taken
          3/4 good cores. Meiobenthos sample taken
53961#1
53962#1
         4 m colour
53963#1 12 m colour
53964#1 Failed.
53964#2
          Water only - hard sand?
53964#3
          Water only - hard sand?
53964#4
          Failed
53965#1
          Water only - hard sand?
53965#2
         Two very short cores - discarded
          Two short cores - discarded
53966#1
53967#1
          4/4 good cores: 1 meiob, 1 foram, 2 freeze
53968#1
          4/4 good cores: 1 meiob, 1 foram, 1 geol, 1 frozen
53969#1
          4/4 good cores: 1 meiob, 1 foram, 2 freeze
53970#1
          4/4 good cores: 1 meiob, 1 foram, 2 freeze
          3/4 good cores: 1 meiob, 1 foram, 1 freeze
53971#1
53972#1
          4/4 good cores: 1 meiob, 1 foram, 2 freeze
53973#1
          4/4 good cores: 1 meiob, 1 foram, 2 freeze
53974#1
          4/4 good cores: 1 meiob, 1 foram, 2 freeze
          6/6 good cores: 1 meiob, 1 foram, 2 freeze, 1 geol
53975#1
53976#1
          6/6 good cores: 1 meiob, 1 foram, 2 freeze, 1 geol
53977#1
          5/6 good cores: 1 meiob, 1 foram, 2 freeze, 1 geol
          6/6 good cores: 1 meiob, 1 foram, 2 freeze, 1 geol
```

| 53979#1 | Soak time 23:04                    |
|---------|------------------------------------|
| 53980#1 | 12 m colour                        |
| 53981#1 | 10 m colour                        |
| 53982#1 | Failed, no film run                |
| 53983#1 | A catch, but net totally destroyed |
| 53984#1 | 12 m colour                        |
| 53985#1 | Film run unknown at present        |
| 53986#1 | Film run unknown at present        |
| 53987#1 | Pebbles in jaws                    |
| 53987#2 | Pebbles in jaws                    |
| 53987#3 | Sample of 6.5 litres               |
| 53987#4 | Rock in jaws                       |
| 53987#5 | Rock in jaws                       |
| 53987#6 | Rock in jaws                       |
| 53987#7 | The end of CD 101 c leg 2          |
|         |                                    |

#### 12. CHARTS

- 1. Passage to and from survey area
- 2. Survey cruise track
- 3. Large-scale survey stations
- (a) Full survey area
- (b) North zone
- (c) Mid zone
- (d) South zone
- 4. Transect survey stations
- 5. WASP stations
- 6. Fish trap stations
- 7. Other survey stations
- 8. Extra transect stations
- 9-40. Individual towed gear tracks



MERCATOR PROJECTION

SCALE 1 TO 3500000 (NATURAL SCALE AT LAT. 60)

INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

Chart 1. RRS Charles Darwin cruise 101 C (leg 2) cruise track to and from survey area.

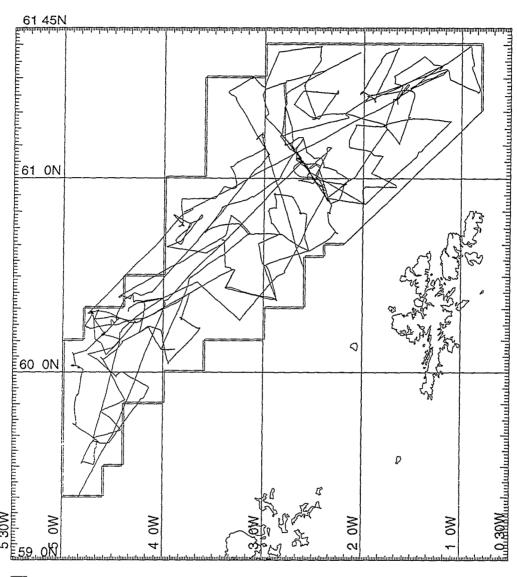



Chart 2. RRS Charles Darwin cruise 101 C (leg 2) cruise track within the survey area.

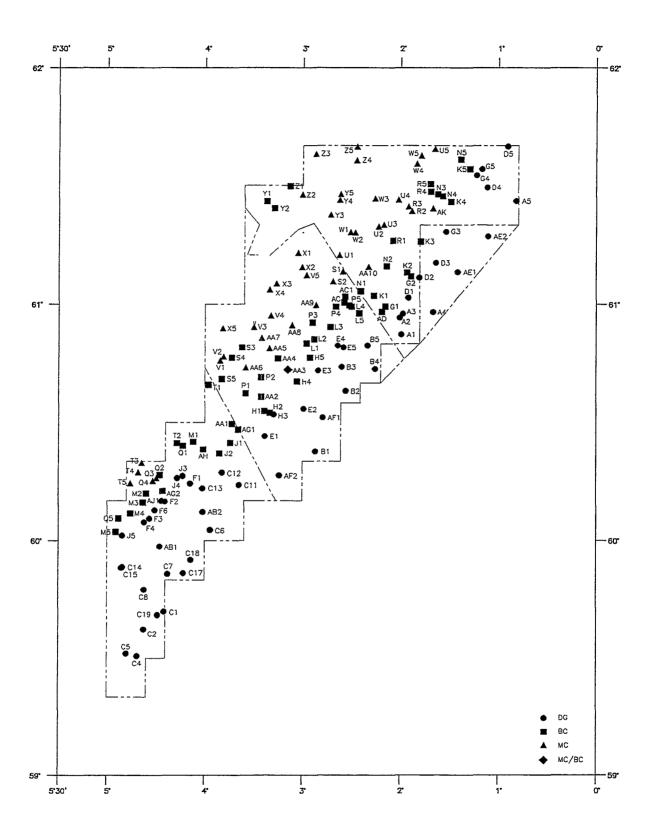



Chart 3(a). Atlantic Margin Environmental Survey: large-scale survey stations - full survey area. (DG Day grab, BC Box corer, MC Megacorer).

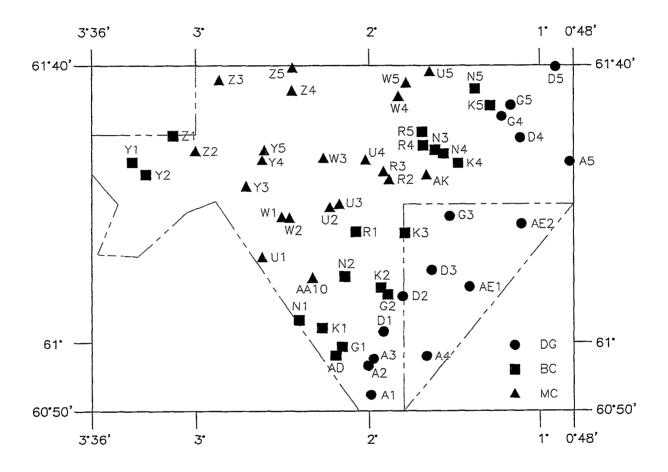



Chart 3(b). Atlantic Margin Environmental Survey: large-scale survey stations - north zone. (DG Day grab, BC Box corer, MC Megacorer).

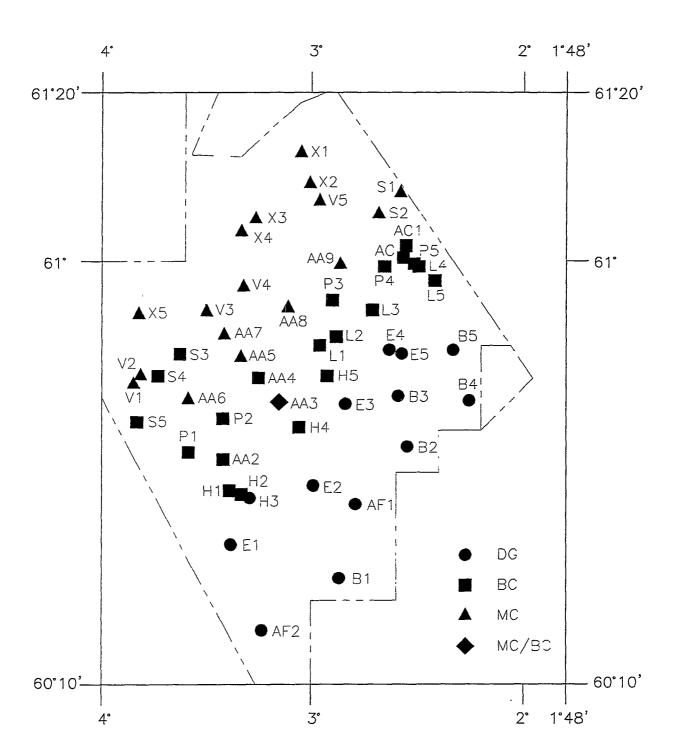



Chart 3(c). Atlantic Margin Environmental Survey: large-scale survey stations - mid zone. (DG Day grab, BC Box corer, MC Megacorer).

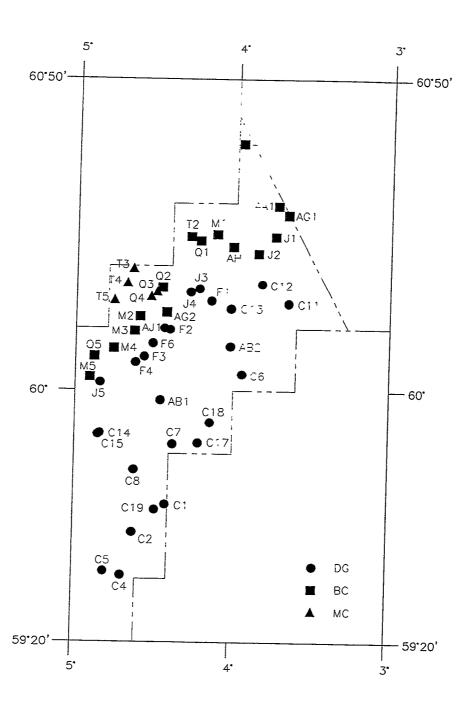



Chart 3(d). Atlantic Margin Environmental Survey: large-scale survey stations - south zone. (DG Day grab, BC Box corer, MC Megacorer).

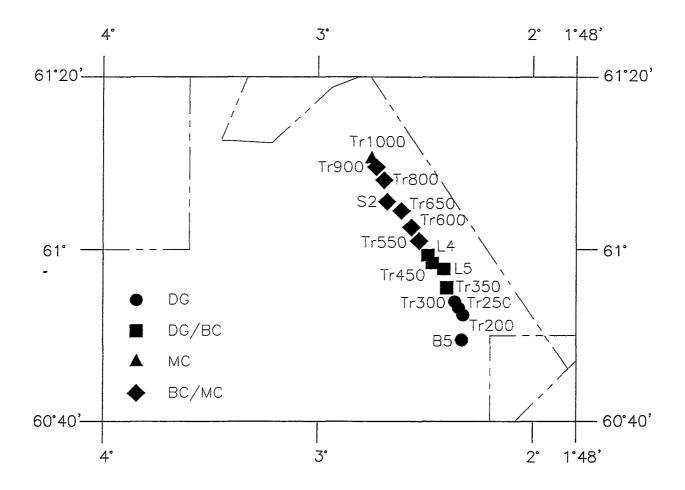



Chart 4. Atlantic Margin Environmental Survey: transect survey stations. (DG Day grab, BC Box corer, MC Megacorer).

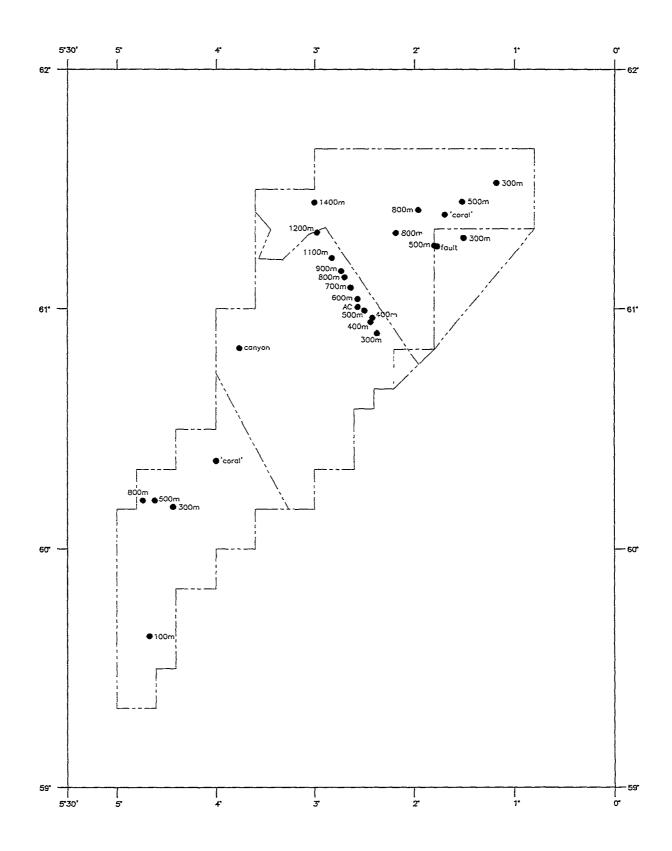



Chart 5. Atlantic Margin Environmental Survey: WASP stations.

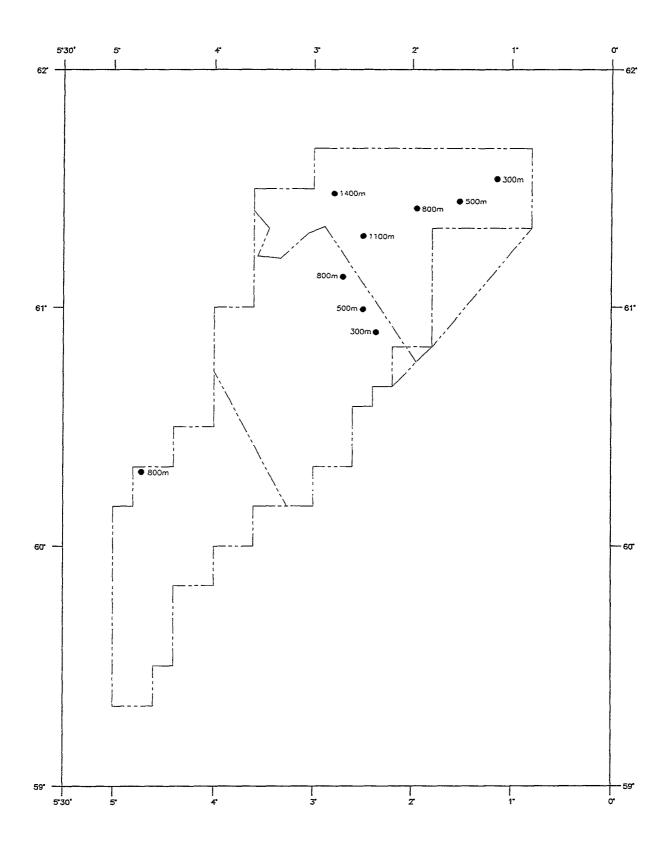



Chart 6. Atlantic Margin Environmental Survey: fish trap stations.

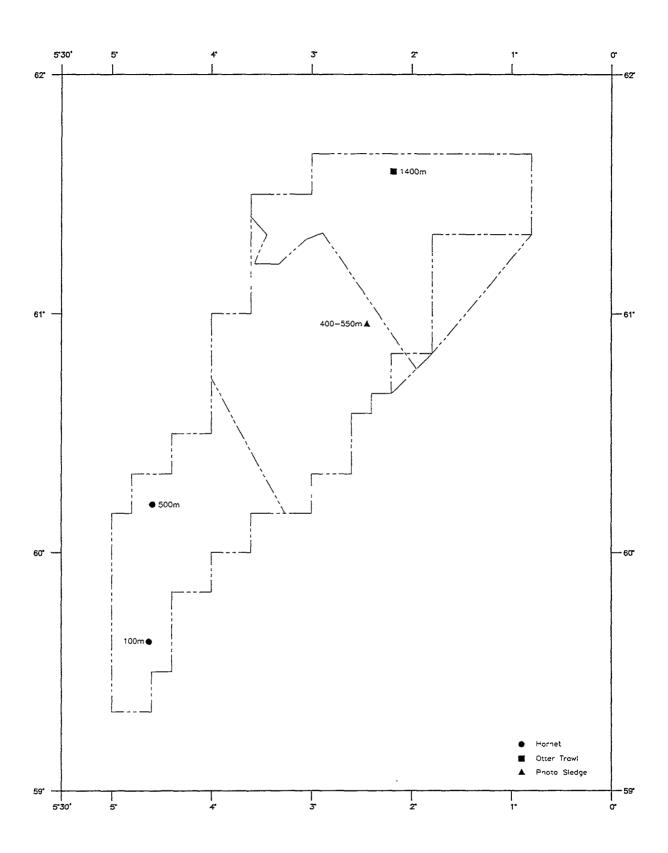



Chart 7. Atlantic Margin Environmental Survey: other survey stations.

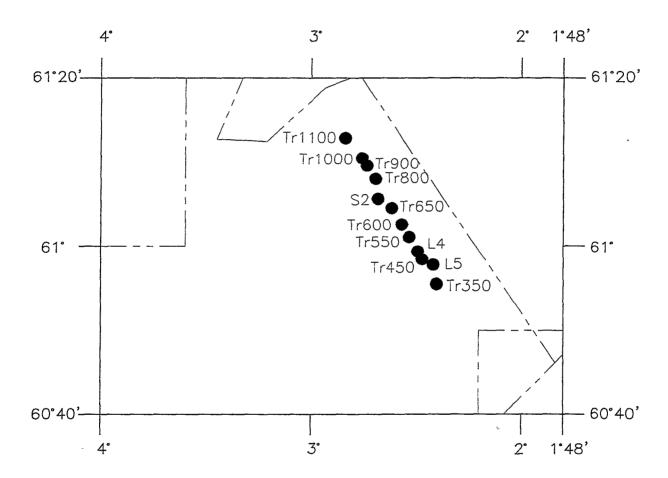
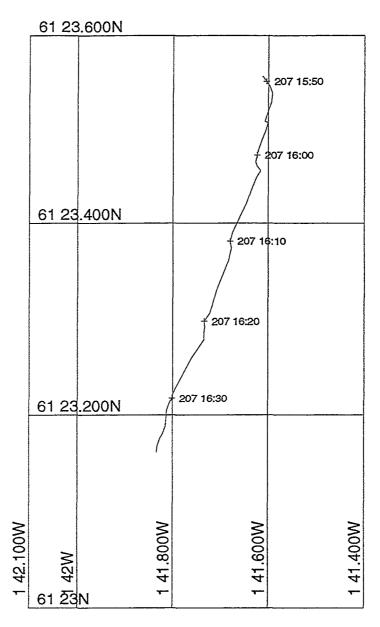




Chart 8. Atlantic Margin Environmental Survey: extra transect stations.



MERCATOR PROJECTION

Chart 9. WASP track, station 53801#1

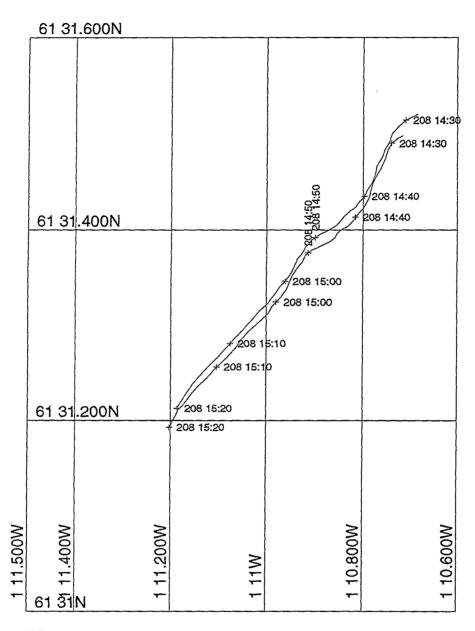



Chart 10. WASP track, station 53810#1

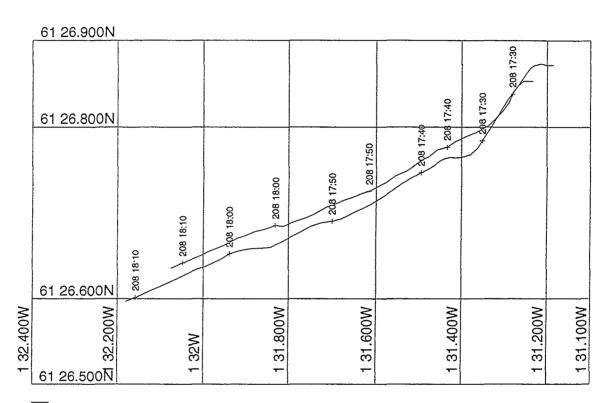
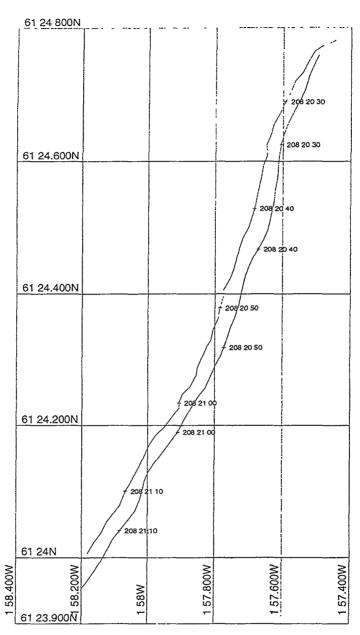
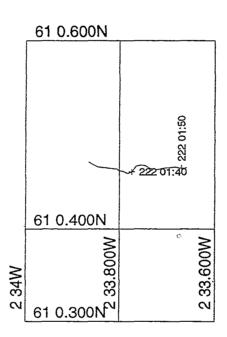




Chart 11. WASP track, station 53811#1




MERCATOR PROJECTION

SCALE 1 TO 7500 (NATURAL SCALE AT LAT 60)

INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

Chart 12. WASP track, station 53812#1



# FV.

### MERCATOR PROJECTION

SCALE 1 TO 7500 (NATURAL SCALE AT LAT. 60)
INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

Chart 13. WASP track, station 53905#2

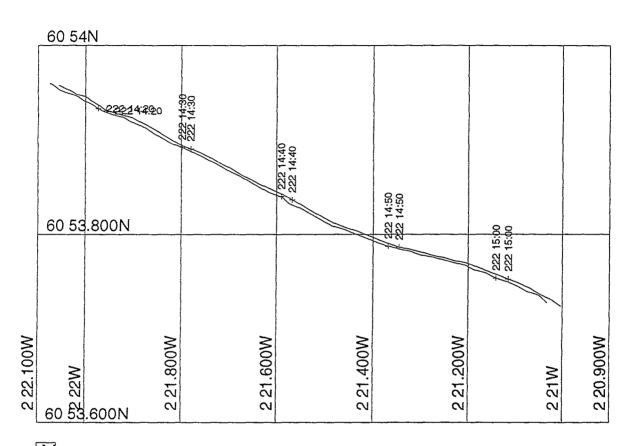
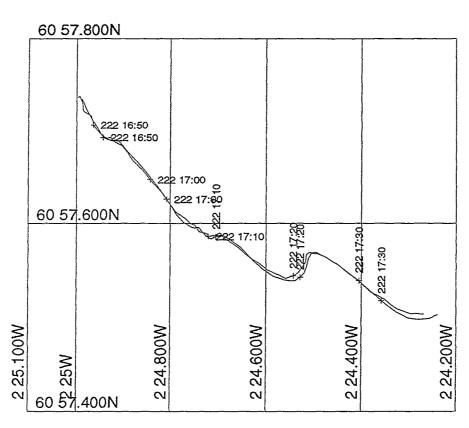




Chart 14. WASP track, station 53913#1





SCALE 1 TO 7500 (NATURAL SCALE AT LAT. 60)
INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

Chart 15. WASP track, station 53914#1

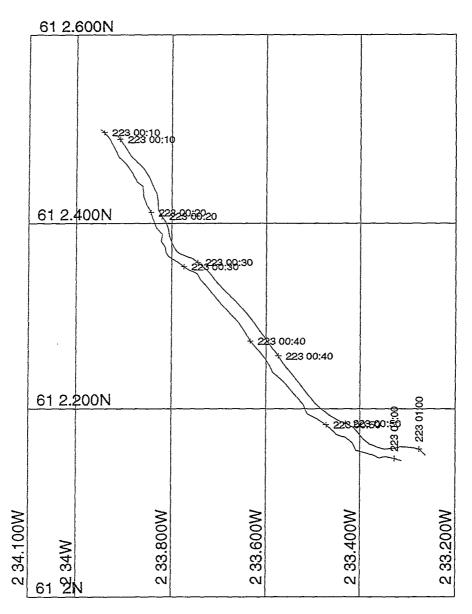



Chart 16. WASP track, station 53916#1

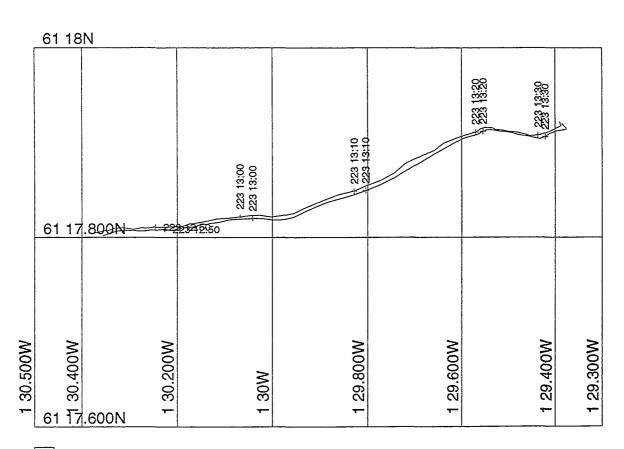



Chart 17. WASP track, station 53920#1

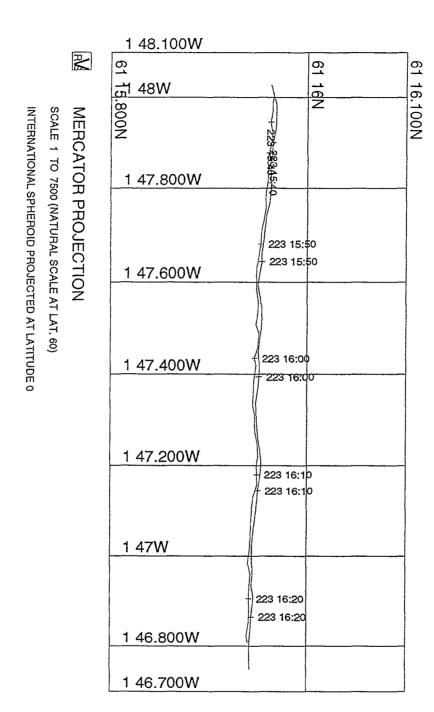



Chart 18. WASP track, station 53921#1

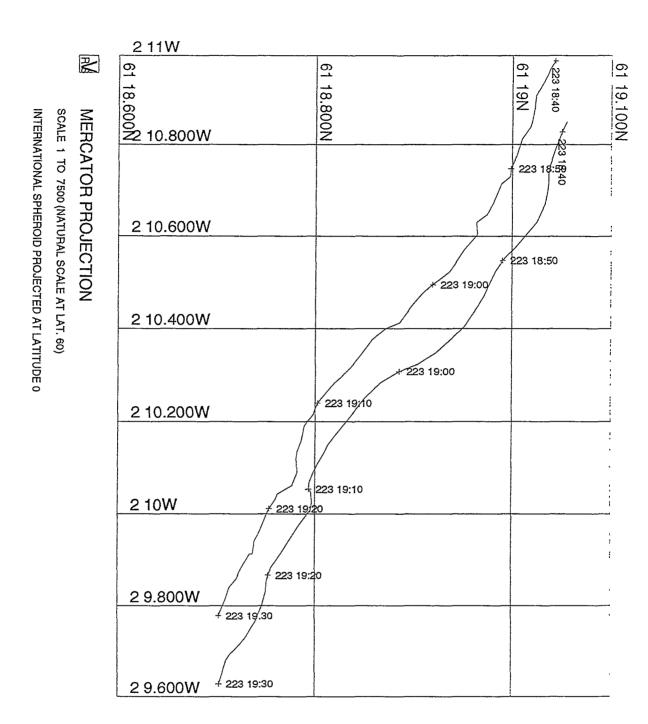
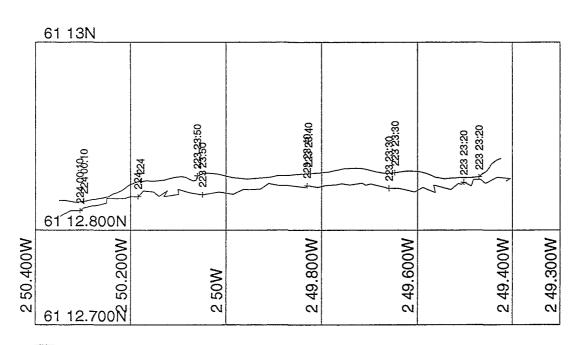




Chart 19. WASP track, station 53922#1



# RV

### MERCATOR PROJECTION

SCALE 1 TO 7500 (NATURAL SCALE AT LAT. 60)

INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

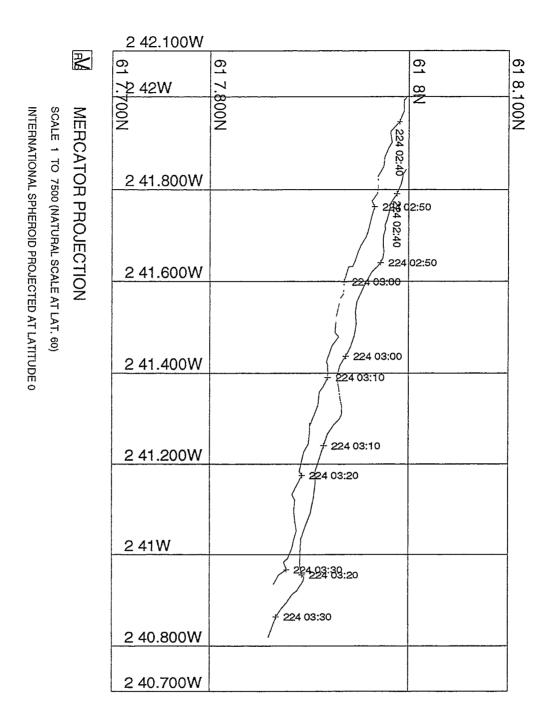
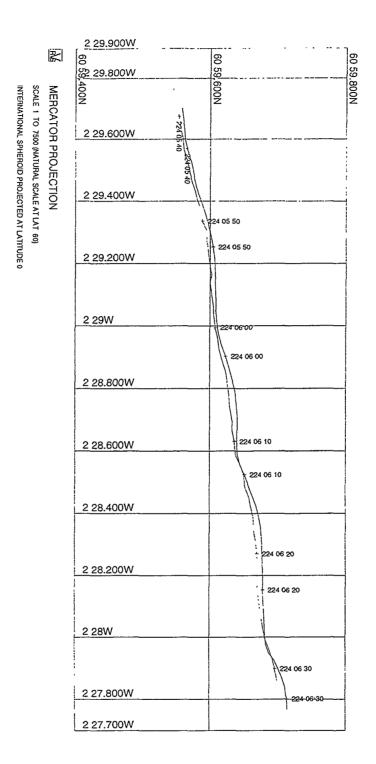
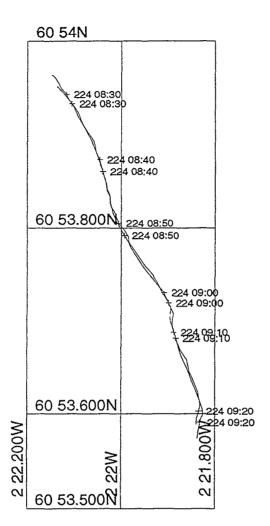
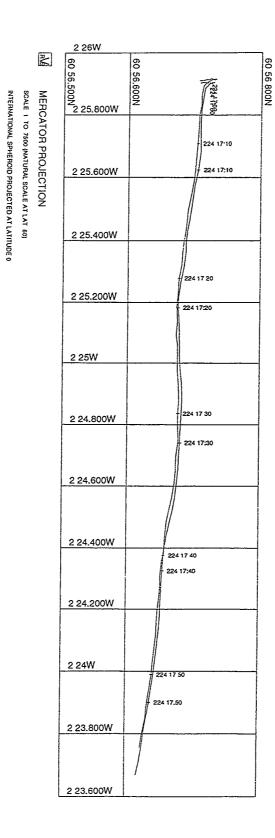
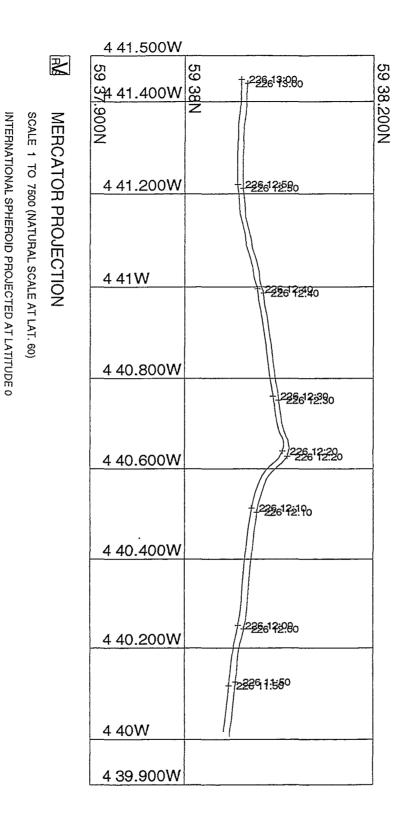
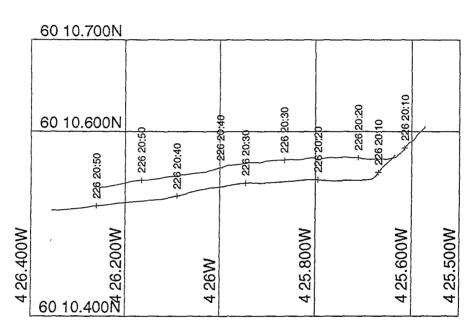
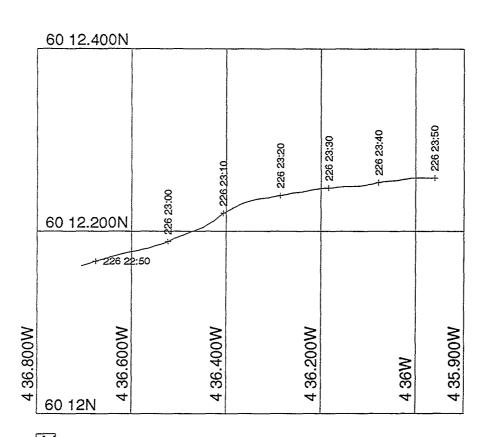





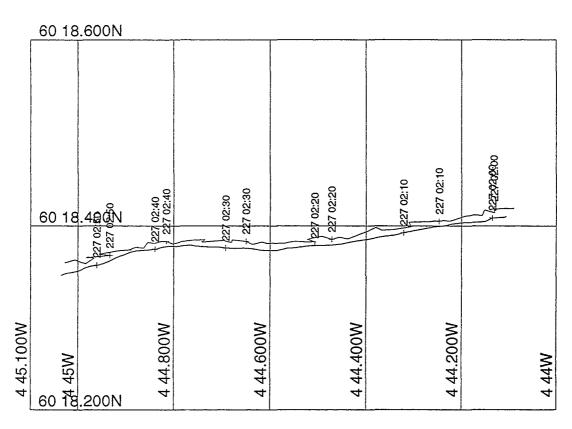

Chart 21. WASP track, station 53924#1

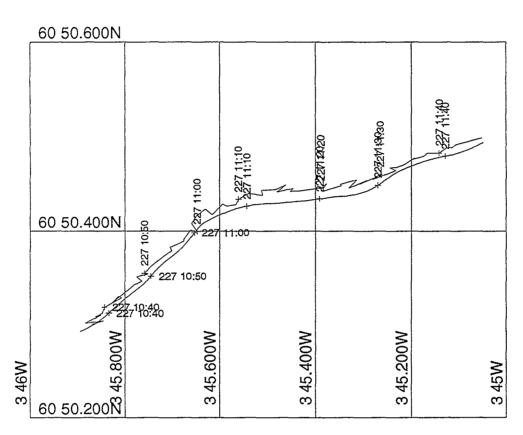


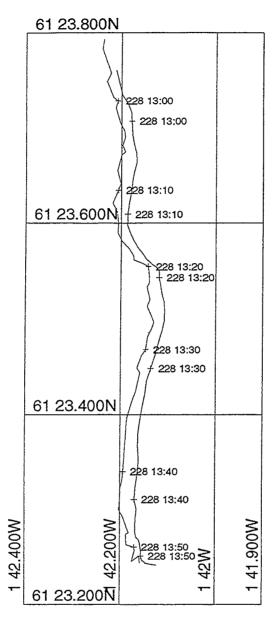






Chart 25. WASP track, station 53947#1

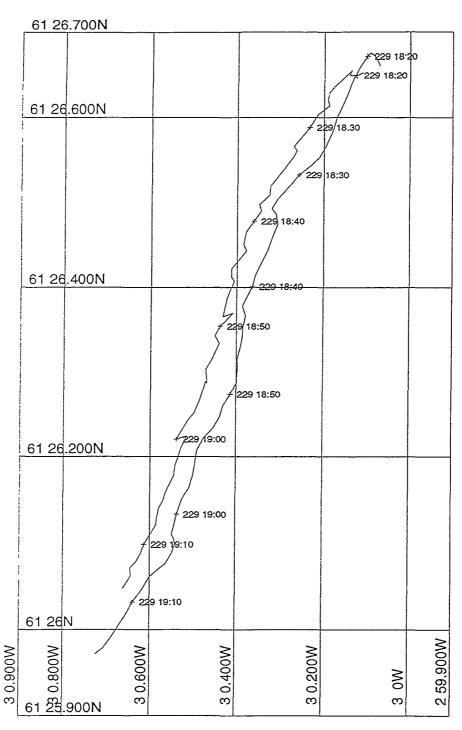




# R**V**

## MERCATOR PROJECTION












MERCATOR PROJECTION

Chart 31. WASP track, station 53963#1



MERCATOR PROJECTION

SCALE 1 TO 7500 (NATURAL SCALE AT LAT. 60)

INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

Chart 32. WASP track, station 53980#1

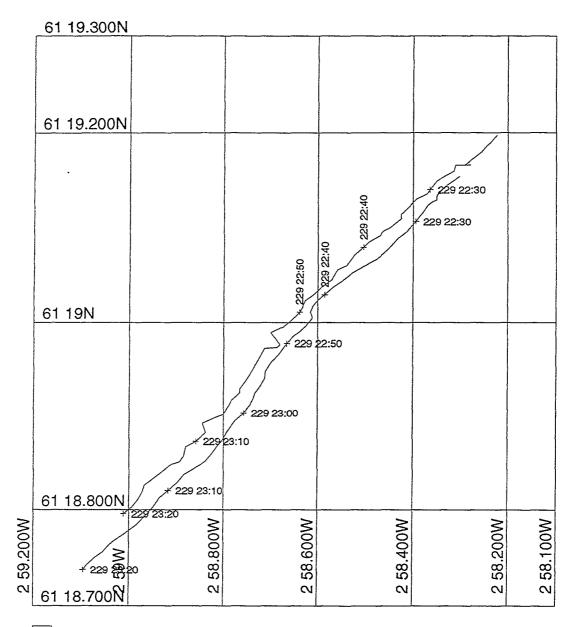
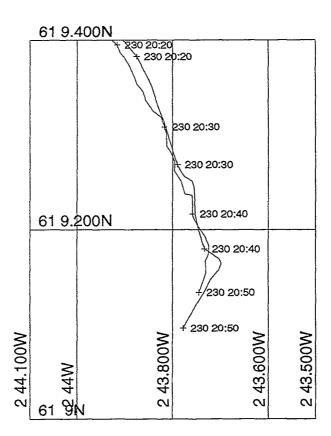
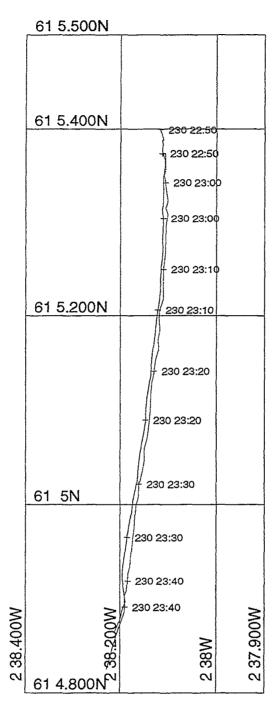
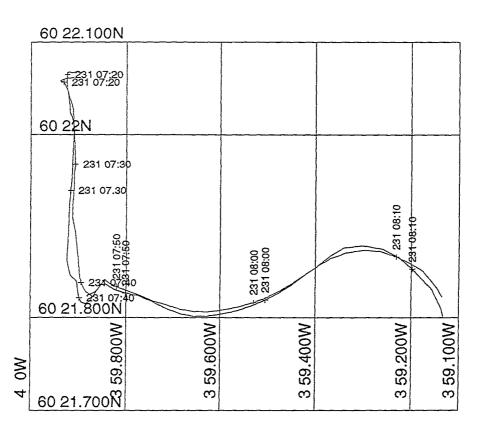
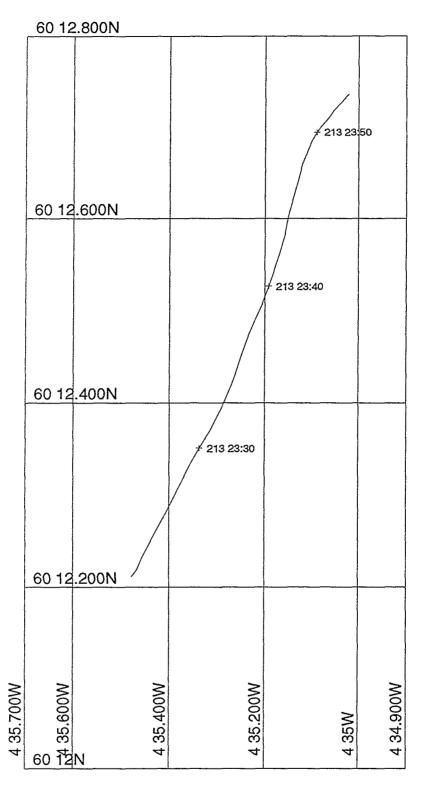
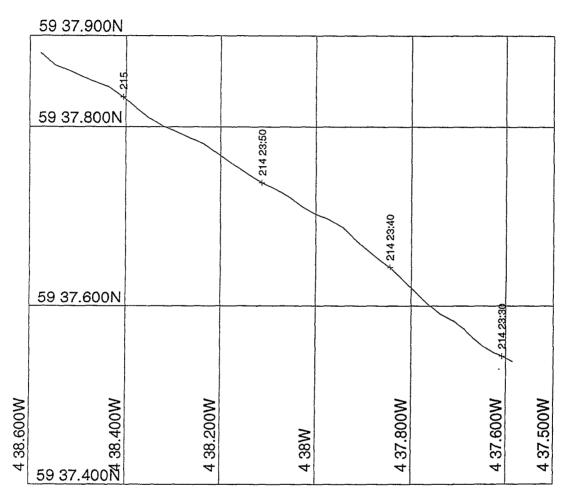




Chart 33. WASP track, station 53981#1



MERCATOR PROJECTION



Chart 35. WASP track, station 53985#1





MERCATOR PROJECTION

Chart 37. Hornet track, station 53845#3



# R**V**

## MERCATOR PROJECTION

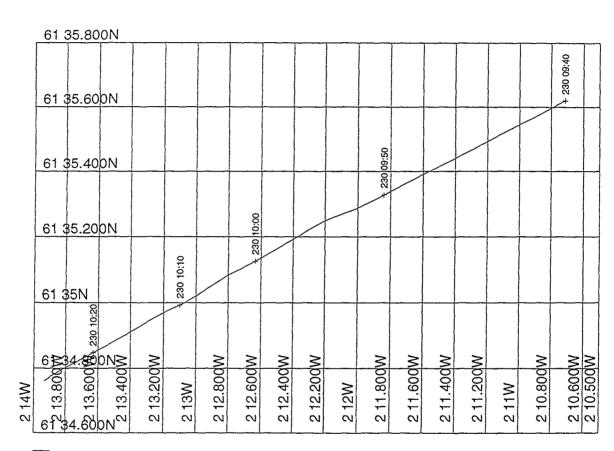
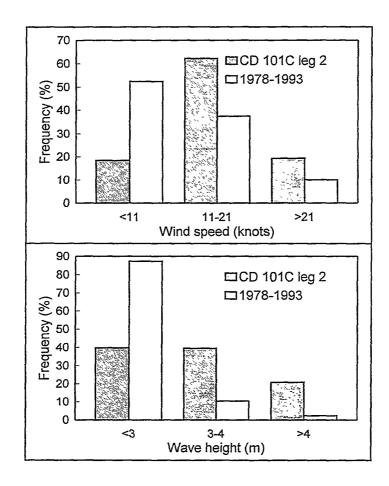




Chart 39. Otter trawl (OTSB14) track, station 53983#1

## 13. APPENDIX 1.

Summary of wind speed and swell height during RRS *Charles Darwin* cruise 101 C (leg 2) compared with corresponding averaged values for the month of August over the years 1978-1993. Report prepared by Robin Plumley (Master RRS *Charles Darwin*).



## 14. APPENDIX 2.

Report of geological observations made during RRS *Charles Darwin* cruise 101 C (leg 2). Report prepared by Colin Graham (British Geological Survey, Edinburgh).

## Geological Observations - Charles Darwin Cruise 101C

#### 1. Introduction

The following geological descriptions are based on visual examination of cores collected using either a Multicorer or a Box Corer, and grab samples collected using a Day Grab.

For Multicorer samples, the core was extruded from the core tube into a length of plastic pipe, while for Box Core samples, the plastic pipe was pushed vertically into the Box Corer box. The length of pipe containing the core consisted of two split lengths held together with tape. This allowed the core to be split vertically using a thin wire and opened for examination and testing (although for muddy sediments, this tended to smear the fine detail). The maximum length obtained for cores by these methods was about 0.43m. For Day Grab samples, a subsample was collected from the grab on recovery. Subsamples of the superficial sediment from the Multicorer were taken from a separate sample tube, and from the Box Corer, from the top surface of the open box.

For each core, one half of the split sample was transferred to an open length of guttering, sealed in polythene tubing and transferred to cardboard boxes for storage. These core have been retained for further examination and testing onshore. In a small number of cases, however, it was not possible to transfer the core to the guttering due to the physical properties of the core which caused too much damage to the core. In these cases, no core material has been retained (apart from moisture content subsamples). For grab samples, a small amount of the sample was used for examination, while the remainder was retained in polythene bags for further examination and analysis onshore.

The visual examination, using a microscope in most cases, included the following for each interval:

Folk classification (modified version with trace gravel put at 1%) colour (using a Munsell Colour chart) range of grain size (using a standard for comparison) sorting (using a standard for comparison) foraminfera content (subjective assessment) carbonate content (using a standard for comparison) depth of any oxidation band evidence for bioturbation thickness any sedimentary or other features visible in the interval.

The resulting descriptions based on the visual examination are preliminary. Each sample was examined at the time of collection (not more than 12hours after collection) and where possible a standard was used for comparison. However, it is likely that variations in assessment have occurred over the five weeks of the sampling operations. Also, coarse-grained sandy sediments are easier to describe than fine-grained muddy sediments. Each sample was examined only once. No attempt has been made to re-examine samples collected earlier in the cruise. With hindsight, a useful parameter not recorded on a regular basis was the predominant grain size of the sand fraction.

The following test were conducted:

compressive strength of muds (using a hand-held penetrometer) shear strength of muds (using a hand-held shear vane) temperature of the base of the core (by insertion of a thermometer into the base of the core).

In some cases the above tests were conducted on the horizontal or vertical surfaces of the Box Core sample while still in the box.

In addition, subsamples were collected using bulk density rings to determine bulk density and moisture content. These were sealed in taped, air tight metal tins for analysis onshore.

In total, 55 Day Grab samples and 131 cores were examined. Most of these have been retained for further examination and analysis. In addition, moisture contents subsamples were collected from 110 cores, and 177 superficial samples were collected from the cores and grabs.

#### 2. Summary of Geology

Shelf and shelf margin sea-bed sediments from the survey area consist of pebbly shelly sands and sandy gravels. These have not been penetrated by the sampling equipment on board although a scraping from a failed box core attempt proved to be a stiff glaciomarine diamicton. Slope and basin sediments are mainly a thin veneer of pebbly sands with increasing mud content and decreasing carbonate content with increasing water depth. These are underlain generally by very soft, massive muds with dropstones. In a few areas of the slope, layering and/or coarsening-upwards of superficial sandy deposits indicate possible current activity and may be associated with bedforms. In some areas, especially towards the lower part of the slope, the subsurface muds are subject to bioturbation, with sand-filled burrows to depths of over 0.40m locally. Additionally, some of the mud contained 1-2mm diameter open burrows to a depth of over 0.40m. Some cores from the lower slope contained intervals of very disturbed deposits consisting of a mixture of superficial sandy sediment and subsurface mud. The cause of the disturbance is uncertain at present, however, it may result from intense bioturbation or some form of slope failure.

## 3. Sea-bed Sediments

#### a) Sediment type

North Region: Sands occur on the outer shelf and upper slope to a depth of about 350m (A, D and part of G). Mixed sands and slightly pebbly sands extend down to about 650m (G, K, N and part R). Below this the sediments generally contain a significant mud fraction and consist of muddy sands and slightly pebbly muddy sands down to about 1000m (R and U). Between 1000m and 1200m the samples are all muddy sands (W). Below 1200m muddy sands and slightly pebbly muds occur down to 1400m (Y). Below 1400m the sediments are sandy muds (Z).

Mid Region: Sands and slightly pebbly to pebbly sands occur on the shelf and slope to a depth of about 800m (B, E, H, L, P and S) with occasional patches of muddy sands and slightly pebbly to pebbly muddy sand. Below this, the sediments are a mixture of muddy sands and slightly pebbly to pebbly muddy sands to beyond 1200m (V and X) with occasional patches of sand between 800 and 900m (S).

South Region: Sands, slightly pebbly sands and sandy gravels occur on the shelf (C, C1 and C2). Sands and slightly pebbly to pebbly sands also extend downslope to beyond 800m (F, J, M, Q and T) with rare muddy sediments.

#### b) Sorting

North Region: All the sediments are generally moderate to well sorted from the shelf to the base of the slope (A, D, G, K, N, R, U, W, Y, Z). Occasional patches of poorly sorted sediment, however, occur down to about 1000m (A, D, G, K, N, R and U)

Mid Region: Sediments above 200m are moderate to well sorted (B). Below this, to a depth of 500m (E, H and L), the sorting is very mixed, ranging from poor to well sorted with no obvious trend. At greater depths (P, S, V and X), the sediments are generally well sorted with occasional patches of moderately sorted sediment. Patches of poorly sorted sediment, however, occur bewteen 800 and 1000m (V).

South Region: Sediments are generally moderate to well sorted above 400m (C, and F) then moderate to poor to beyond 800m (J, M, Q and T). Significant amounts poorly sorted sediment occurs between 400 and 500m (M).

#### c) Grain size of the sand fraction

North region: Although there is a general decrease in grain size with increasing depth, the range of grain size in the samples is very variable at all depths. Further analysis is required to determine the median grain size of the samples to quantify the change.

Mid Region: Although there is a general decrease in grain size with increasing depth, the range of grain size in the samples is very variable at all depths. Further analysis is required to determine the median grain size of the samples to quantify the change.

South Region: Sands are medium to very coarse above 300m (C to F). Below this, although there is a general decrease in grain size with increasing depth, the range of grain size in the samples is very variable at all depths. Further analysis is required to determine the median grain size of the samples to quantify the change.

#### d) Colour

North Region: The sediments above 200m (A) are a mixture of light yellowish brown and light live brown. Below this, the sediments are mainly light olive brown to about 1400m (D, G, K, N, R, U, W and Y), then olive brown (Z). Rare patches of yellowish brown sediment occurs below 900m (U, Y and Z).

Mid Region: The sediments are light olive brown apart from: i) patches of light yellowish brown at the southern end, ii) patches of light yellowish brown at the northern end in depths above 500m (B to L), iii) patches of olive between 500 and 800m (P to S).

South Region: Above 400m (C and F), the sediments are generally light yellowish to yellowish brown with some light olive brown patches. Some of the sediments have no overall colour and are described as speckled. Below this, the sediments are generally light olive brown with patches of light yellowish brown and rare, olive and olive greys.

#### e) Thickness

The thickness is very variable in all regions although in general is about 10cm, and is about 5cm below 1200m (Y to Z). Maximum thicknesses of greater than 20cm occur in water depths of between 800 and 1200m (U, W and V).

#### f) Carbonate content

North Region: Maximum values are about 75% on the shelf (A) with average values of about 50%. The average decreases from over 50% to less then 10% below 800m (U, W, Y and Z).

Mid Region: Maximum values are about 98% on the shelf (B) although the average value is about 50%. The average decreases downslope to less than 10% below 800-1200m (V and X).

South Region: Maximum values of greater than 90% occur in depths down to 300m (C and F) with averaged values above 70%. The average remains at about 50% down to 500m (J and M), then decreases to 20% at greater depth (T).

#### g) Forminiferal content

Forams, are ubiquitous in the sand fraction. Foram, rich sediments occur in water depths of 300 to 600m in the north (N, K and N), 300 to 800m in the mid region (H, L, P and S) and 300 to 500m in the south (J to M).

Foram poor sediments are retricted to water depths of 800 to 1200m in the mid region (V and X) and local patches in depths of 400 to 800m in the north region (K and R).

#### 3. Subsurface sediments

## a) Sediment type

Generally the sediments are massive muds and fine sandy muds with dropstones. At a few locations, sandy layers occur above the muds and at one location there are interbedded sands and muds.

## b) Colour

North Region: Sediments are greyish brown down to 600m (Ato N), then are olive grey to 1200m (Y) and grey/dark grey to below 1400m (Y to Z).

Mid Region: Sediments are greyish brown to below 500m (L), then olive grey to 1200m (X). Grey/dark grey sediments occur below 1200m (X) and as a lobe extending upslope to about 400m (H) in part of the region.

South Region: Greyish brown sediments occur downslope to 600m (C to Q) then are olive grey to below 800m (Q to T).

#### c) Oxidation

North Region: A brown colour band occurs at the top of the mud in water depths greater than 800m (R) and extends to beyond 1400m (Z). The thickness of the band increases with increasing water depths. One of the cores from Z was multi-banded.

Mid Region: The colour band occurs locally below 800m (S).

South Region: The banding occurs below 400m down to below 800m (M, Q and T).

## d) Sediment temperature

North Region: Temperatures range from greater than 10C above 300m (A and D), 4 to 8C between 300 and 500m (G and K), and are mostly less than 4C to below 1400m (N to Z). The lowest temperature recorded, so far, was 0C at 1360m (Y).

Mid Region: Temperatures range from greater than 8C above 400m (F and H), 4 to 8C between 400 and 600m (L and P), and less than 4C to below 1200m (S to X). The second lowest temperature recorded, so far, was 0.5C at 650m (S).

South Region: Temperatures range from greater than 8C above 300m (C to F), then are 4 to 8C down to below 800m (J to T).

#### e) Bioturbation (mostly sand-filled burrows)

North Region: The deepest burrowing occurs above 600m (D to N) then decreases towards 1200m (Y). Burrows are absent from the cores below 1200m.

Mid Region: Burrowing occurs at the northern and southern ends of the region. The deepest burrowing occurs at about 600-700m (S).

South Region: The deepest burrows occur above 600m (F to Q) with a decrease in depth down to below 600m (Q to T). They are absent below 600m (T).

. :

Colin Graham 18th August, 1996

#### Downslope Transect #1

Five grabs and twenty cores were examined from the main transect line. This extends downslope from a water depth of 200m to over 1000m. Due to the nature of the geology, no core samples were collected above 350m.

| Sea-bed: | sediments   |                        |                     |          |                 |             |           |
|----------|-------------|------------------------|---------------------|----------|-----------------|-------------|-----------|
| Sample   | Water Depth | Sediment type          | Colour              | Sorting  | Grain size      | Carbonate   | Thickness |
| No       | (m)         |                        |                     | _        |                 | Content (%) | (m)       |
| 53747    | 203         | Shell sand             | Lt.Yellowish brown  | Moderate | Fine-v.coarse   | 50          | -         |
| 53748    | 248         | SI pebbly shell sand   | Lt.Yellowish brown  | Poor     | Fine-v.coarse   | 60          | _         |
| 53784    | 290         | SI pebbly shelly sand  | Lt.Olive brown      | Moderate | Fine-v.coarse   | 40          | -         |
| 53779    | 346         | Sl. pebbly sand        | Lt.Olive brown      | Poor     | Fine-v.coarse   | 20          | -         |
| 53750    | 348         | Sl. pebbly shelly sand | Lt.Olive brown      | Poor     | Fine-v.coarse   | 50          | 80.0      |
| 53751    | 413         | Sl. pebbly sand        | Olive               | Moderate | Fine-coarse     | 40          | 0.33      |
| 53780    | 414         | SI. pebbly sand        | Lt.olive brown      | Moderate | Fine-v.coarse   | 40          | -         |
| 53968    | 415         | Sl. pebbly sand        | Lt.olive brown      | Moderate | Medium-v.coarse | e 40        | 0.13      |
| 53752    | 454         | Sl. pebbly sand        | Lt.yellowish brown  | Moderate | Fine-medium     | 40          | 0.03      |
| 53753    | 502         | SI. pebbly sand        | Lt. yellowish brown | Well     | Fine-medium     | 3           | 0.13      |
| 53760    | 519         | Sand                   | Olive               | Well     | V.finefine      | 15          | 0.30      |
| 53755    | 553         | Sl. pebbly sand        | Lt.yellowish brown  | Well     | Fine-medium     | 15          | 0.09      |
| 53756    | 600         | Sl. pebbly sand        | Olive               | Well     | V.fine-medium   | 20          | 0.06      |
| 53767    | 600         | Sl. pebbly sand        | Lt.olive brown      | Moderate | V.fine-medium   | 5           | 0.06      |
| 53901    | 645         | Sand                   | Lt. olive brown     | Well     | V.fine-medium   | 40          | 0.07      |
| 53757    | 650         | SI muddy sand          | Olive               | Well     | V.fine-medium   | 10          | 0.05      |
| 53765    | 650         | Sl. muddy sand         | Olive brown         | Well     | V.fine-medium   | 20          | 0.10      |
| 53766    | 709         | Sand                   | Lt. yellowish brown | Well     | V.fine-medium   | 10          | 0.10      |
| 53975    | 798         | Muddy sand             | Olive               | Well     | V.fine-fine     | 20          | 0.30      |
| 53769    | 805         | Sand                   | Olive               | Well     | V.fine-fine     | 5           | -         |
| 53761    | 807         | Sand                   | Olive brown         | Moderate | V.fine-coarse   | 25          | 0.10      |
| 53762    | 916         | Sand                   | Olive brown         | Well     | V.fine-medium   | 10          | 0.15      |
| 53976    | 916         | Muddy sand             | Olive               | Well     | V.fine-medium   | 20          | 0.17      |
| 53977    | 998         | Muddy sand             | Lt. olive brown     | Well     | V.fine-medium   | 20          | >0.33     |
| 53978    | 1089        | Sandy mud              | Lt.olive brown      | Poor     | V.fine-v.coarse | 2           | 0.01      |

Shelly sands and slightly pebbly sands extend downslope from the top end of the transect to about 650m. Below this, mixed sands and muddy sands occur down to about 1000m, with sandy mud at the deepest end of the transect. Above 450m, the sediments are mainly moderate to poorly sorted, have an upper sand-grain size of coarse/v.coarse and a biogenic carbonate content of 40-60%. Below this, they are mainly well sorted, have an upper sand-grain size of medium/fine (decreasing with increasing depth) and a low but variable biogenic carbonate content.

The thickness is very variable, however, the sediments tend to be thicker on the upper and lower parts of the slope (upwards of 0.1m) and thinnest between about 500 and 650m. The maximum and minimum thicknesses of >0.33 and 0.01m respectively occur at adjacent sites at the lower end of the transect in water depths of 1000-1100m.

Colour varies from light yellowish brown at the top of the transect, in water depths above 250m, to light olive brown, olive brown and olive at greater depths. The only sedimentary features of note were an anomalous 0.30m thick interval of coarsening upwards sand at 519m on the mid slope and finely bedded sands from 998m at the base of the slope. An oxidised band was visible in several cores from various depths.

| rface sediments |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sediment type   | Colour        | Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bioturbation                  | Disturbance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Oxidation | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth (m)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth (m) | (Ć)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -               | •             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Brown         | V. soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ÷               | -             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sandy mud       | Greyish brown | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.32                          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Greyish brown | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sandy mud       | Greyish brown | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Grey          | V. soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Olive brown   | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sandy mud       | Grey          | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sandy mud       | Dark grey     | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.26                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sandy mud       | Dark grey     | V. soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >0.34                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sandy mud       | Dark grey     | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.25                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Olive grey    | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.29                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bioturbated     | Olive grey    | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >0.37                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04      | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Olive grey    | V. soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >0.40                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Dark grey     | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bioturbated     | -             | V.soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >0.29                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Greyish brown | V. soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >0.34                         | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mud             | Grey          | V. soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07                          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | Sediment type | Sediment type  Colour  Colour | Sediment type Colour Hardness | Sediment type         Colour         Hardness Depth (m)           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           Mud         Brown         V. soft         0           -         -         -         -           Sandy mud         Greyish brown         V. soft         0           Mud         Greyish brown         V. soft         0           Sandy mud         Greyish brown         V. soft         0           Mud         Olive brown         V. soft         0           Sandy mud         Grey         V. soft         0.26           Sandy mud         Dark grey         V. soft         0.26           Sandy mud         Dark grey         V. soft         0.25           Mud         Olive grey         V. soft         0.25           Mud         Olive grey         V. soft         >0.40           -         -         -         -           Mud         Dark grey         V. soft         >0.40           -         -         -         - | Colour    | Sediment type         Colour         Hardness Depth (m)         Bioturbation Depth (m) Depth (m)         Oxidation Depth (m)           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -< | Sediment type         Colour         Hardness Depth (m)         Bioturbation Disturbance Depth (m)         Oxidation Depth (m)         Temperature Depth (m)           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""></td<> |

All the sediments are essentially very soft, olive/brownish grey glaciomarine, massive muds with dropstones.

Evidence of bioturbation in the form of sand-filled burrows was visible in a number of cores from 414 to 1089m and was best developed below 600m where the depth to the base of the burrowing was greater than 0.40m below the sea bed. About half the cores below this depth also had intervals of heavily disturbed material, consisting partly of superficial sands and underlying muds. This could be the result of intense bioturbation. The temperature of the muds varied from about 9C at the top end of the transect to 2-3 degrees at the base. The coldest temperatures of 0.5C was recorded at 650m.

#### Downslope Transect #2 (AF1, H4, AA3, AA4, AA5, AA7, V3)

#### Sea-bed sediments

| Sample      | Water Depth | Sediment type             | Colour              | Sorting  | Grain size      | Carbonate   | Thickness |
|-------------|-------------|---------------------------|---------------------|----------|-----------------|-------------|-----------|
| No          | (m)         |                           |                     |          |                 | Content (%) | (m)       |
| AF1 (53930) | ) 153       | Sand                      | Lt. olive brown     | Poor     | Medium-v.coarse | 25          | -         |
| H4(53734)   | 333         | Pebbly sand               | Lt. yellowish brown | Moderate | V.fine-coarse   | 15          | 0.09      |
| AA3 (53894  | ) 445       | Muddy sand                | Yellowish brown     | Well     | Fine-medium     | 25          | 0.02      |
| AA4 (53895  | ) 538       | Pebbly, shelly muddy sand | Lt. olive brown     | Poor     | Fine-v.coarse   | 50          | 0.10      |
| AA5 (53888  | ) 622       | Sand                      | Olive brown         | Well     | Fine-medium     | 5           | 0.05      |
| AA7 (53897  | ) 738       | Sand                      | Olive brown         | Well     | V.fine-medium   | 10          | 0.05      |
| V3 (53718)  | 919         | Sl. pebbly muddy sand     | Lt. olive brown     | Poor     | V.fine-v.coarse | 2           | 0.08      |

All the sediments are essentially sands, the majority of which also contain minor amounts of mud and gravel grade material. They vary in thickness from 2-10cm with both the maximum and minimum occurring between 400-600m. The sediments in depths of 300-500m are yellowish brown while the rest are olive brown.

At the top of the slope, current activity would appear to decrease sufficiently below about 400m to prevent the winnowing of mud grade material. This results in a zone of muddy sediment extending down to about 600m. Below this, well sorted fine sands occur down to about 800m. This may indicate that, although in general there is an overall decrease in the mean grain size with depth, increased current activity in the 600-900m zone, prevents the deposition of mud grade material, compared with shallower depths.

Biogenic carbonate content rises to a peak of about 50% at about 500m before falling sharply at greater depths. This may be related to greater production on the upper slope and outer shelf compared to the lower slope. However, the fact that the peak concentration consists mainly of medium/fine grain size foraminifera suggests that the distribution may be related to current activity. On the slope above about 600m, low current strengths allow the settling of foraminifera, with the peak deposition occurring at the greatest depth. At greater depths, the increase in current activity reduces significantly carbonate deposition

#### Subsurface sediments

| Sample<br>No. | Sediment type         | Colour        | Hardness | Bioturbation<br>Depth (m) | Disturbance | Oxidation<br>Depth (m) | Temperature<br>(C) | Comments          |
|---------------|-----------------------|---------------|----------|---------------------------|-------------|------------------------|--------------------|-------------------|
| H4            | Mud                   | Greyish brown | V. soft  | 0.0                       | No          | 0.0                    | -                  |                   |
| AA3           | Sandy mud             | Greyish brown | V. soft  | 0.3                       | No          | 0.08                   | 9                  |                   |
| AA4           | Sandy mud             | Greyish brown | V. soft  | >0.43                     | No          | 0.0                    | 6                  |                   |
| AA5           | Sl.gravelly sandy mud | Grey          | V. soft  | 0.23                      | No          | 0.0                    | 9                  | Sand layers above |
| AA7           | Sandy mud             | Grevish brown | V. soft  | >0.37                     | Yes         | 0.03                   | 0.5                | •                 |
| V3            | Sandy mud             | Olive grey    | V. soft  | 0.0                       | No          | 0.0                    | -                  |                   |

All the sediments are essentially very soft, greyish-brown, glaciomarine, massive muds with dropstones. The majority show evidence of bioturbation in the form of sand-filled burrows which reach maximum depths beneath the surface of at least 20cm and extend to greater than 43cm locally. Sand burrows, however, are absent in the cores from the shallowest and deepest sites. Most of the core sections appeared very similar visually, however, the two cores from the 600-900m zone described above showed significant differences from the rest and from each other.

The upper core from the 600-900m zone (AA5) has three distinct sand layers above the mud (including the sea-bed sediment), each between 3-5cm thick. The lower pair suggest a fining upwards sequence from poor to well sorted, very coarse/fine to medium/fine and sand to muddy sand. It is possible that the modern sea-bed sediments are the winnowed top of the upper sand layer as they are very similar in the composition of the sand fraction. This winnowing may mark the onset of the modern pattern of along slope current activity in this zone as noted in the sea-bed sediments. It is also possible that these sand layers form a sandy contourite or a mobile sand bedform related to either the modern or relict sedimentary environment.

A sharp drop in temperature was noted in lower core from the 600-900m zone (AA7), which may reflect the influence in the pore water of the cold, deep-water current environment. This core also showed significant disturbance. A 19cm thick section of mixed sands and muds beneath the surface sediment and above the glaciomarine mud. It is possible that this has resulted from particularly intense bioturbation.

## **Detailed Sampling Areas**

Subsurface sediments
Sample Sediment type

Mud Mud

Mud

Mud

Sandy mud

No. AH1

AH2

AH3

AH4

AH6

Colour

Greyish brown Greyish brown

Greyish brown

Greyish brown Greyish brown V. soft

V. soft

V. soft

V. soft-soft

0.2

0.2

0

## 1. AC1-AC6

| Sea-be     | d sediments      |                 |          |                                       |              |                  |               |                            |
|------------|------------------|-----------------|----------|---------------------------------------|--------------|------------------|---------------|----------------------------|
| Sample     |                  | Sediment type   | Cole     | our                                   | Sorting      | Grain size       | Carbonate     | Thickness                  |
| No         | (m)              | ••              |          |                                       | Ũ            |                  | Content (%)   | (m)                        |
| AC1        | 584              | Sand            | Lt. o    | live brown                            | Moderate     | Fine-coarse      | 30            | 0.1                        |
| AC2        | 549              | Sand            | Lt. o    | live brown                            | Well         | V. fine -medium  | ı 30          | 0.05                       |
| AC4        | 546              | Muddy sand      | Lt. o    | live brown                            | Moderate     | V.fine-coarse    | 25            | 0.09                       |
| AC5        | 547              | Sl. pebbly sand | Lt. c    | live brown                            | Moderate     | Fine-coarse      | 25            | 0.06                       |
| AC6        | 547              | Sand            | Lt. o    | live brown                            | Well         | Fine-coarse      | 40            | 0.07                       |
| Subsur     | rface sediment   | te              |          |                                       |              |                  |               |                            |
|            | Sediment type    | Colour          | Hardr    | ecc Rioturba                          | tion Dieturi | bance Oxidation  | Tomperatur    | e Comments                 |
| No.        |                  |                 |          | Depth (n                              | 1)           | Depth (m)        | ) (Ĉ)         |                            |
| AC1        | Mud              | Greyish brov    |          |                                       | No           | 0.0              | 7.0           | Muddy sand layer above     |
| AC2        | Sandy mud        | Grey            | V. soft  |                                       | No           | 0.0              | 8.0           |                            |
| AC4        | Sandy mud        | Greyish brow    |          | · · · · · · · · · · · · · · · · · · · | No           | 0.0              | 6.0           |                            |
| AC5        | Sandy mud        | Greyish brow    |          |                                       | No           | 0.04             | 5.0           |                            |
| AC6        | Mud              | Grey            | V. sof   | t 0.37                                | No           | 0.0              | 5.5           |                            |
| 2. AD1     | -AD5             |                 |          |                                       |              |                  |               |                            |
| Sea-be     | d sediments      |                 |          |                                       |              |                  |               |                            |
| Sample     |                  | Sediment type   | Colo     | ur                                    | Sorting      | Grain size       | Carbonate     | Thickness                  |
| No         | (m)              |                 |          |                                       | J            |                  | Content (%)   | (m)                        |
| AD1        | 329              | Sand            | Lt. y    | ellowish brown                        | Poor         | Fine-v.coarse    | 50            | 0.22                       |
| AD2        | 334              | Sand            | Lt. o    | live brown                            | Moderate     | Medium-coarse    | 25            | 0.09                       |
| AD3        | 330              | Sand            | Lt. y    | ellowish brown                        | Poor         | Fine-v.coarse    | 50            | 0.18                       |
| AD4        | 336              | Sand            | Lt. y    | ellowish brown                        | Poor         | Medium-coarse    | e 40          | 0.10                       |
| AD5        | 332              | Sand            | Lt. o    | live brown                            | Moderate     | Fine-v.coarse    | 10            | 0.06                       |
| Cubana     | rfo o o o dimond | ·-              |          |                                       |              |                  |               |                            |
|            | face sediment    | _               | YY3      | Distantant                            | D:           | . O              |               | C                          |
| -          | Sediment type    | Colour          | Hardness |                                       | Disturbanc   | e Oxidation Te   | ~             | Comments                   |
| No.<br>ADI | Sandy mud        | Greyish brown   | V. soft  | Depth (m)<br>0.26                     | No           | Depth (m)<br>0.0 | (C)<br>9.0 Be | dded sand unit above       |
| AD1<br>AD2 | Sandy mud        | Greyish brown   | V. soft  | 0.32                                  | Yes          |                  | 9.0 Bei       | dued saild tillt above     |
| AD2<br>AD3 | Mud              | Greyish brown   | V. soft  |                                       | No No        |                  |               | nd fines downwards         |
| AD3<br>AD4 | Sandy mud        | Greyish brown   | V. soft  | 0.19                                  | No           |                  |               | elly gravel under the sand |
| AD4<br>AD5 | Mud              | Greyish brown   | V. soft  | 0.20                                  | No           |                  | 10            | ony graver under the said  |
|            |                  | <b>,</b>        |          |                                       |              |                  |               |                            |
| 3. AH1     | -AH6             |                 |          |                                       |              |                  |               |                            |
|            |                  |                 |          |                                       |              |                  |               |                            |
| Sea-be     | d sediments      |                 |          |                                       |              |                  |               |                            |
| Sample     |                  | Sediment type   | Colo     | ur                                    | Sorting      | Grain size       | Carbonate     | Thickness                  |
| No         | (m)              | <del></del>     |          |                                       |              |                  | Content (%)   | (m)                        |
| AH1        | 417              | Sl. pebbly sand | Lt. ye   | llowish brown                         | Moderate     | Medium-coarse    | 60            | 0.07                       |
| AH2        | 418              | Pebbly sand     | Lt. ye   | llowish brown                         | Poor         | Medium-v.coar    | se 75         | 0.07                       |
| AH3        | 417              | Sl. pebbly sand | •        | llowish brown                         | Moderate     | Fine-v.coarse    | 60            | 0.08                       |
| AH4        | 417              | Sl. pebbly sand | -        | llowish brown                         | Poor         | Fine-v.coarse    | 75            | 0.09                       |
| AH6        | 416              | Sl. pebbly sand | Lt. ye   | llowish brown                         | Poor         | Fine-v.coarse    | 50            | 0.07                       |

No

No

No

No

0.13

0.10

0.08

0.13

9.0

9.5

10 10 Soft,dk.grey sandy mud at td

#### Alongslope Transect (AA6, AA5, AA8, AA9, ST AA10)

| Sea-bed s   | <u>ediments</u> |                       |                 |          |                  |             |         |       |
|-------------|-----------------|-----------------------|-----------------|----------|------------------|-------------|---------|-------|
| Sample      | Water Depth     | Sediment type         | Colour          | Sorting  | Grain size       | Carbonate   | Thickne | ess   |
| No          | (m)             |                       |                 | _        |                  | Content (%) | (m)     |       |
| AA6 (53896  | ) 640           | Sl. pebbly muddy sand | Lt. olive brown | Moderate | Fine-medium      | 20          | 0.1     | South |
| AA5 (53888  | ) 622           | Sand                  | Olive brown     | Well     | Fine-medium      | 5           | 0.05    |       |
| AA8 (53898  | ) 641           | SI, pebbly sand       | Olive brown     | Well     | Fine-medium      | 5           | 0 12    |       |
| AA9 (53899  | ) 637           | Sand                  | Olive brown     | Well     | Fine             | 40          | 0.15    |       |
| ST1 (53901) | ) 645           | Sand                  | Lt. olive brown | Well     | Fine             | 40          | 0.07    |       |
| ST2 (53757) | ) 650           | Sl. muddy sand        | Olive           | Well     | Very fine-fine   | 20          | 0.05    |       |
| ST3 (53765) | ) 650           | Sl. muddy sand        | Lt. olive brown | Well     | Very-fine medium | n 10        | 1.0     |       |
| AA10 (5391. | 5) 640          | Sand                  | Olive brown     | Well     | Fine-medium      | 10          | 0.06    | North |

Samples ST1-ST3 are from the same area and are included to show the amount of local variation.

The sediments along this part of the slope in water depths of 620-650m are very similar in character. All are essentially sands, the majority of which also contain minor amounts of mud and gravel grade material. They are olive brown in colour and vary in thickness from 5-15cm. They are mostly well sorted, with a grain size ranging from very fine/fine to fine/medium. The sediments at these depths coincide with the 600-900m zone of well sorted fine sands described from Downslope Transect #2. The sample at the extreme souther end (AA6) differs, however in terms of grain size and sorting.

Biogenic carbonate content is very variable. At these depths the most common constituent are foraminifera and the variations in overall content are due to changes in their abundance. While some variation may be due to errors in the visual estimation, the differences are large enough to suggest that significant variation does occur. Most of the concentrations are typical for the 600-900m zone, however, apart form the two samples from the centre of the transect (AA9 and ST1). The amount of local variation from the ST (10-40%) area suggests that these high value may be due to local variability rather than any regional pattern.

| Sul    | osu | <u>rfa</u> | <u>ce</u> | <u>sediments</u> |
|--------|-----|------------|-----------|------------------|
| $\sim$ |     | _          | ••        |                  |

| Sample<br>No. | Sediment type        | Colour        | Hardness | Bioturbation<br>Depth (m) | Disturbance | Oxidation<br>Depth (m) | Temperature (C) | Comments          |
|---------------|----------------------|---------------|----------|---------------------------|-------------|------------------------|-----------------|-------------------|
| AA6           | Sl. pebbly sandy mud | Grey          | V. soft  | 0.25                      | Yes         | 0.0                    | 4.5             |                   |
| AA5           | Sl. pebbly sandy mud | Grey          | V. soft  | 0.23                      | No          | 0.0                    | 9               | Sand layers above |
| AA8           | Sandy mud            | Greyish brown | V. soft  | 0.25                      | No          | 0.15                   | 2               |                   |
| AA9           | Sandy mud            | Olive grey    | V. soft  | >0.38                     | Yes         | 0.0                    | 6               |                   |
| ST I          | Sandy mud            | Olive grey    | V. soft  | >0.34                     | Yes         | 0.04                   | 5               |                   |
| ST2           | Sandy mud            | Dark grey     | V. soft  | 0.25                      | No          | 00                     | 0.5             |                   |
| ST3           | Mud                  | Olive grey    | V.soft   | 0.29                      | Yes         | 0.0                    | 6               |                   |
| OIAA          | Sandy mud            | Grey          | V.soft   | 0.17                      | Yes         | 0.0                    | 6.5             |                   |

All the sediments are essentially very soft, olive/brownish grey, glaciomarine, massive muds with dropstones.

The majority show evidence of bioturbation in the form of sand-filled burrows which reach maximum depths beneath the surface of almost 20cm and extend to greater than 38cm in the central part of the transect. The majority of the cores show significant disturbance of the sediments underlying the surface sediment and overlying the glaciomarine mud. It is possible that this has resulted from particularly intense bioturbation as the disturbed sediment overlies sand filled burrows. However, it could also signify some form of slope failure. In general, sediment disturbance is common from this part of the slope (Middle Sector, Strata S) compared with other areas and depths.

Core AA5 was the only core with sand layering above the mud, with three layers (including the sea-bed sediment) each between 3-5cm thick. This core has been described in the Downslope Transect #2. A coarsening upwards sandy sequence similar to that in AA5 was identified in core AA9 further along the slope to the north, suggesting that bedforms may extend along this section of the slope.

Core temperatures are very variable ranging from 0.5 up to 9. The reasons for these large differences are unexplained at present, although it could be that much of the variability is caused by differences in the time taken to recover and process core material. The temperature data are being examined in more detail. Also, the presence or absence and the thickness of an oxidised band layer within the upper section of the sediment is unexplained at present.

## **Geological Description Sheet**

| Sector:              | North                                                |
|----------------------|------------------------------------------------------|
| Stratum:             | A                                                    |
| Samples examined:    | A1-A5, AE1, AE2 (Day Grabs)                          |
| Water depths:        | 117 - 179m                                           |
| Sea-bed sediments    |                                                      |
| Sediment type:       | Shell sands/slightly pebbly shell sands/sandy gravel |
| Sorting:             | Poor to well sorted                                  |
| Grain size:          | Fine/medium to coarse/very coarse                    |
| Colour:              | Light yellowish to light olive brown                 |
| Carbonate content:   | 40 - 75% Average 59% (7)                             |
| Foram. content:      | Common                                               |
| Sediment thickness:  | Unknown                                              |
| Subsurface sediments | s                                                    |
| Sediment type:       | No data                                              |
| Colour:              |                                                      |
| Hardness:            |                                                      |
| Oxidation depth:     |                                                      |
| Bioturbation depth:  |                                                      |
| Soil Disturbance:    |                                                      |
| Temperature:         |                                                      |

Colin Graham BGS 18th August, 1996

Comments:

# **Geological Description Sheet**

|                      | 300               | ogical Descripen   |
|----------------------|-------------------|--------------------|
| Sector:              | North             |                    |
| Stratum:             | D                 |                    |
| Samples examined:    | D2-D5 (Day Gra    | bs)                |
| Water depths:        | 236 - 275m        |                    |
| Sea-bed sediments    |                   |                    |
| Sediment type:       | Sands             |                    |
| Sorting:             | Moderate          |                    |
| Grain size:          | Fine/medium to    | coarse/very coarse |
| Colour:              | Light olive brown | n                  |
| Carbonate content:   | 20 - 40%          | Average 27.5% (4)  |
| Foram. content:      | Poor to abundant  |                    |
| Sediment thickness:  | Unknown           |                    |
| Subsurface sediments | 5                 |                    |
| Sediment type:       | No data           |                    |
| Colour:              |                   |                    |
| Hardness:            |                   |                    |
| Oxidation depth:     |                   |                    |
| Bioturbation depth:  |                   |                    |
| Soil Disturbance:    |                   |                    |
| Temperature:         |                   |                    |
| Comments:            |                   |                    |
|                      |                   |                    |

Colin Graham BGS 18th August, 1996

## **Geological Description Sheet**

Sector:

North

Stratum:

G

Samples examined:

G1-G5, AD1-5 (Day Grabs except Box Cores at G1, G2 and AD1-5)

Water depths:

329 - 373m

#### Sea-bed sediments

Sediment type:

Sand/shell sand/slightly pebbly shelly sands

Sorting:

Moderate/poor

Grain size:

Very fine/medium to coarse/very coarse

Colour:

Light olive brown/light yellowish brown

Carbonate content:

10 - 60%

Average 41.5% (10)

Foram. content:

Poor/common/abundant

Sediment thickness:

0.06 - 0.22m

Average 0.11m (7)

## Subsurface sediments

Sediment type:

Mud/sandy mud

Colour:

Greyish brown

Hardness:

Very soft

Oxidation depth:

None

Bioturbation depth:

0.19 - 0.35m

Average 0.26m (7)

Soil Disturbance:

0.16m in G2 and 0.03m in AD2

Temperature:

9 - 10C

Average 9.3C (7)

Comments:

Box Core failed at G3. Scraping of stiff, pebbly diamicton recovered.

Superficial bedded sands in the AD cores

Colin Graham BGS 18th August, 1996

## **Geological Description Sheet**

Sector:

North

Stratum:

K

Samples examined:

K1-K5 (Box Cores)

Water depths:

436 - 489m

## Sea-bed sediments

Sediment type:

Sands/slightly pebbly sands

Sorting:

Mostly moderate to well sorted but K5 poorly sorted

Grain size:

Mostly fine to coarse/very coarse

Colour:

Light olive brown

Carbonate content:

15 - 50%

Average 37% (5)

Foram. content:

Mostly abundant

Sediment thickness:

0.06 - 0.09m

Average 0.08m (5)

## Subsurface sediments

Sediment type:

Muds

Colour:

Greyish to dark greyish brown

Hardness:

Mostly very soft but K5 soft

Oxidation depth:

None

Bioturbation depth:

0.19 - 0.26m

Average 0.23m (5)

Soil Disturbance:

None

Temperature:

8 - 10C

Average 8.8C (5)

Comments:

Colin Graham BGS

18 August, 1996

## **Geological Description Sheet**

Sector:

North

Stratum:

N

Samples examined:

N1-N5 (Box Cores)

Water depths:

555 - 595m

#### Sea-bed sediments

Sediment type:

Sand/slightly pebbly to pebbly sands

Sorting:

Mostly moderate to well sorted

Grain size:

Very fine/fine to medium/very coarse

Colour:

Light olive brown/olive

Carbonate content:

10 - 30%

Average 24% (5)

Foram. content:

Abundant

Sediment thickness:

0.03 - 0.09m

Average 0.06m (5)

## Subsurface sediments

Sediment type:

Muds

Colour:

Grey to dark greyish brown/grey/olive grey

Hardness:

Very soft

Oxidation depth:

None

Bioturbation depth:

0.18 - 0.27m

Average 0.22m (5)

Soil Disturbance:

None

Temperature:

4 - 8C

Average 5.8C (5)

Comments:

Colin Graham BGS 18 August, 1996

## **Geological Description Sheet**

Sector:

North

Stratum:

R

Samples examined:

R1-R5, AA10 (Box Cores except multicores at R2, R3 and AA10)

Water depths:

640 - 738m

#### Sea-bed sediments

Sediment type:

Sands/slightly pebbly sands/slightly pebbly muddy sand

Sorting:

Predominantly well sorted but R4 poorly sorted

Grain size:

Very fine/fine to medium

Colour:

Light olive brown

Carbonate content:

3 - 12%

Average 11.8% (6)

Foram. content:

Abundant

Sediment thickness:

0.02 - 0.12m

Average 0.07m (6)

## Subsurface sediments

Sediment type:

Sands/slightly pebbly sands/slightly pebbly muddy sands

Colour:

Olive grey/grey/dark grey

Hardness:

Very soft

Oxidation depth:

0.00 - 0.05m

Average 0.04m (2)

Bioturbation depth:

0.18 - 0.30m

Average 0.22 (4)

Soil Disturbance:

0.09m in R3 and 0.11m in AA10

Temperature:

1 - 7C

Average 4.8C (6)

Comments:

R2 contains interbedded sandy muds and muddy sands

Colin Graham BGS 18th August, 1996

## **Geological Description Sheet**

Sector:

North

Stratum:

U

Samples examined:

U1-U5 (Multicores)

Water depths:

842 - 952m

Sea-bed sediments

Sediment type:

Muddy sands/slightly pebbly muddy sand

Sorting:

Mostly well sorted

Grain size:

Very fine to medium/coarse

Colour:

Light olive brown/olive brown

Carbonate content:

3 - 10%

Average 6.2% (5)

Foram. content:

Common

Sediment thickness:

0.06 - 0.09m

Average 0.075m (4)

## Subsurface sediments

Sediment type:

Sandy muds/muds

Colour:

Olive grey

Hardness:

Very soft. U4 very soft to soft.

Oxidation depth:

0.00 - 0.12m

Average 0.10m (2)

Bioturbation depth:

0.3m

Average 0.21m (4)

Soil Disturbance:

0.09 in U2, 0.08m in U3 and 0.11m in U5

Temperature:

4 - 9C

Average 7.25C (4)

Comments:

U1 core was logged

Colin Graham BGS 18th August, 1996

## **Geological Description Sheet**

Sector:

North

Stratum:

R

Samples examined:

R1-R5, AA10 (Box Cores except multicores at R2, R3 and AA10)

Water depths:

640 - 738m

Sea-bed sediments

Sediment type:

Sands/slightly pebbly sands/slightly pebbly muddy sand

Sorting:

Predominantly well sorted but R4 poorly sorted

Grain size:

Very fine/fine to medium

Colour:

Light olive brown

Carbonate content:

3 - 12%

Average 11.8% (6)

Foram. content:

Abundant

Sediment thickness:

0.02 - 0.12m

Average 0.07m (6)

## Subsurface sediments

Sediment type:

Sands/slightly pebbly sands/slightly pebbly muddy sands

Colour:

Olive grey/grey/dark grey

Hardness:

Very soft

Oxidation depth:

0.00 - 0.05m

Average 0.04m (2)

Bioturbation depth:

0.18 - 0.30m

Average 0.22 (4)

Soil Disturbance:

0.09m in R3 and 0.11m in AA10

Temperature:

1 - 7C

Average 4.8C (6)

Comments:

R2 contains interbedded sandy muds and muddy sands

## **Geological Description Sheet**

Sector:

North

Stratum:

W

Samples examined:

W1-W5 (Multicores)

Water depths:

1090 - 1192m

Sea-bed sediments

Sediment type:

Muddy sands

Sorting:

Moderate to well sorted

Grain size:

Very fine to medium

Colour:

Light olive brown/olive brown/dark grey

Carbonate content:

2 - 15%

Average 7% (5)

Foram. content:

Common

Sediment thickness:

0.03 - 0.24m

Average 0.075m (5)

## Subsurface sediments

Sediment type:

Sandy muds/muds

Colour:

Olive grey/grey

Hardness:

Very soft

Oxidation depth:

0.00 - 0.18m

Average 0.12m (4)

Bioturbation depth:

0.13m in W4

Soil Disturbance:

None

Temperature:

4 - 9C

Average 6.5C (5)

Comments:

Superficial, 0.18m thick layer of fining downwards sand in W2

Colin Graham BGS

## **Geological Description Sheet**

Sector:

North

Stratum:

Y

Samples examined:

Y1-Y5 (Multicores except Box Cores at Y1 and Y2)

Water depths:

1238 - 1953m

#### Sea-bed sediments

Sediment type:

Muddy and slightly pebbly muddy sands

Sorting:

Moderate to well sorted but Y3 poorly sorted

Grain size:

Very fine to medium but in Y3 to very coarse

Colour:

Light olive brown, dark greyish brown, yellowish brown

Carbonate content:

3 - 10%

Average 4.8% (5)

Foram. content:

Common

Sediment thickness:

0.02 - 0.04m

Average 0.032m (5)

## Subsurface sediments

Sediment type:

Muds/sandy muds

Colour:

Olive grey/grey

Hardness:

Very soft but soft in oxidised bands

Oxidation depth:

0.1 - 0.21m

Average 0.15m (5)

Bioturbation depth:

None

Soil Disturbance:

None

Temperature:

0 - 6C

Average 3.8C (5)

Comments:

Colin Graham BGS

## **Geological Description Sheet**

Sector:

North

Stratum:

Z

Samples examined:

Z1- Z5 (Multicores except Box Core at Z1)

Water depths:

1416 - 1548m

## Sea-bed sediments

Sediment type:

Sandy muds/mud

Sorting:

Mostly moderate but Z2 well sorted

Grain size:

Very fine to fine/medium

Colour:

Light olive brown, light yellowish brown, yellowish brown

Carbonate content:

3 - 10%

Average 5.2% (5)

Foram. content:

Common

Sediment thickness:

0.02 - 0.09m

Average 0.06m (5)

## Subsurface sediments

Sediment type:

Muds/sandy mud

Colour:

Dark grey/very dark grey

Hardness:

Very soft

Oxidation depth:

0.13 - 0.21m

Average 0.176m (5)

Bioturbation depth:

None

Soil Disturbance:

None

Temperature:

1.5 - 6C

Average 3.0C (5)

Comments:

Multiple colour banding in the mud in Z5

Colin Graham BGS

## **Geological Description Sheet**

| Sector:              | Mid                                                                    |  |
|----------------------|------------------------------------------------------------------------|--|
| Stratum:             | В                                                                      |  |
| Samples examined:    | B1-B5, AF1, AF2 (All are Day Grabs)                                    |  |
| Water depths:        | 124 - 168m                                                             |  |
| Sea-bed sediments    |                                                                        |  |
| Sediment type:       | Shelly sand/slightly pebbly shelly sands to sands/slightly pebbly sand |  |
| Sorting:             | Mostly moderate to well sorted                                         |  |
| Grain size:          | Fine/medium to coarse/very coarse                                      |  |
| Colour:              | Light olive brown/olive/light yellowish brown                          |  |
| Carbonate content:   | 10 - 98% Average 41.1% (7)                                             |  |
| Foram. content:      | Common. Abundant in B1 and AF2                                         |  |
| Sediment thickness:  | Unknown                                                                |  |
| Subsurface sediments |                                                                        |  |
| Sediment type:       | No data                                                                |  |
| Colour:              |                                                                        |  |
| Hardness:            |                                                                        |  |
| Oxidation depth:     |                                                                        |  |
| Bioturbation depth:  |                                                                        |  |
| Soil Disturbance:    |                                                                        |  |
| Temperature:         |                                                                        |  |
| Comments:            |                                                                        |  |

## **Geological Description Sheet**

| Sector | • |
|--------|---|
| SCOLUL |   |

Mid

Stratum:

Ε

Samples examined:

E1, E2 plus 3 Transect samples (Day Grabs)

Water depths:

203 - 290m

#### Sea-bed sediments

Sediment type:

Shelly slightly pebbly sands/sands

Sorting:

Poorly/moderately sorted

Grain size:

Fine to coarse/very coarse

Colour:

Light olive brown/light yellowish brown

Carbonate content:

40-60%

Average 48.0% (5)

Foram. content:

Common/abundant

Sediment thickness:

Unknown

## Subsurface sediments

Sediment type:

No data

Colour:

Hardness:

Oxidation depth:

Bioturbation depth:

Soil Disturbance:

Temperature:

Comments:

## **Geological Description Sheet**

Sector:

Mid

Stratum:

Η

Samples examined:

H1-H5 plus 2 Transect cores (Box Cores except Day Grab at H3 and 1 of the Transect

sites)

Water depths:

Sea-bed sediments

Sediment type:

Pebbly sands to slightly pebbly shelly sands/sands

Sorting:

Poor to moderate

Grain size:

Very fine/fine to very coarse

Colour:

Light yellowish brown/light olive brown

Carbonate content:

15 - 50%

Average 30.7% (7)

Foram. content:

Common. Abundant in H5

Sediment thickness:

0.08 - 0.1m

Average 0.09m (5)

Subsurface sediments

Sediment type:

Muds/slightly pebbly mud

Colour:

Brown/light yellowish brown/greyish brown/olive grey/grey

Hardness:

Very soft

Oxidation depth:

None

Bioturbation depth:

0.19m in (H2)

Soil Disturbance:

None

Temperature:

10 - 11C

Average 10.3C (3)

Comments:

Two overlying superficial sand layers

## **Geological Description Sheet**

Sector:

Mid

Stratum:

L

Samples examined:

L1-L5, AA2, AA3 plus 2 Transect Sites (Box Cores except Day Grab and Multicore

at L5)

Water depths:

413 - 502m

Sea-bed sediments

Sediment type:

Slightly pebbly shelly sands/muddy sand

Sorting:

Mostly moderate to well

Grain size:

Fine/medium to medium/coarse/very coarse

Colour:

Light olive brown/light yellowish brown/olive

Carbonate content:

3 - 50% Average 36.1% (7)

Foram. content:

Common to abundant but rare in L4

Sediment thickness:

0.02 - 0.13m

Average 0.09m (9)

## Subsurface sediments

Sediment type:

Muds/sandy mud

Colour:

Olive/olive grey/greyish brown

Hardness:

Very soft

Oxidation depth:

0.08 - 0.11m

Average 0.095m (2)

Bioturbation depth:

0.23 - 0.32m

Average 0.28m (3)

Soil Disturbance:

None

Temperature:

7 - 10C

Average 8.8C (9)

Comments:

## **Geological Description Sheet**

Sector:

Mid

Stratum:

Р

Samples examined:

P1-P5, AC1-AC6, AA4 plus 3 Transect sites (Box cores except Multicores at P5 and

one of the Transect sites)

Water depths:

530 - 600m

Sea-bed sediments

Sediment type:

Pebbly muddy sand/muddy sand to slightly pebbly sands/sands

Sorting:

Mostly moderate to well sorted

Grain size:

Very fine/fine to medium/coarse/very coarse

Colour:

Olive/olive brown/light olive brown/light yellowish brown

Carbonate content:

5 - 50%

Average 23.0 (14)

Foram. content:

Mostly common to abundant

Sediment thickness:

0.05 - 0.3m

Average 0.08m (14)

## Subsurface sediments

Sediment type:

Muds/slightly pebbly muds/sandy muds

Colour:

Dark greyish brown/greyish brown/light olive brown/grey/olive grey/dark grey

Hardness:

Very soft

Oxidation depth:

0.01 - 0.04

Average 0.03m (3)

Bioturbation depth:

0.06 - > 0.43

Average >0.32m (10)

Soil Disturbance:

None

Temperature:

3 - 9C

Average 6.0C (13)

Comments:

Fining downwards superficial sands in P2, P5 and AC1. Sand horizon interbedded

with the muds in P2

Colin Graham BGS

## **Geological Description Sheet**

Sector:

Mid

Stratum:

S

Samples examined:

S1, S2, S5, AA5-AA9, plus 5 Transect sites (Multicores except Box Cores at S2, S5

and I of the Transect sites)

Sea-bed sediments

Sediment type:

Sands/pebbly sand to muddy sands/pebbly muddy sands

Sorting:

Mostly well sorted

Grain size:

Very fine/fine to fine/medium/very coarse

Colour:

Light olive brown/olive/light brownish grey

Carbonate content:

1 - 40%

Average 17.9% (14)

Foram. content:

Common to abundant

Sediment thickness:

0.03 - 0.15m

Average 0.11m (14)

## Subsurface sediments

Sediment type:

Mud/sandy mud/slightly pebbly sandy mud

Colour:

Greyish brown/Olive grey/grey/dark grey

Hardness:

Very soft

Oxidation depth:

0.03 - 0.15m

Average 0.06m (5)

Bioturbation depth:

0.23 - >0.40m

Average > 0.30m (13)

Soil Disturbance:

0.15m in AA6, 0.19m in AA7, >0.23m in AA9, 0.10 - >0.27m in 4 Transect sites

Temperature:

0.5 - 9C

Average 3.5C (13)

Comments:

Bedded superficial sands above the muds in AA5. Entire sequence in the 700m

Transect site bioturbated

Colin Graham BGS

## **Geological Description Sheet**

Sector:

Mid

Stratum:

V

Samples examined:

V1-V5, plus 5 Transect sites (Multicores except Box Cores at 2 Transect Sites)

Water depths:

805 - 919m

Sea-bed sediments

Sediment type:

Sands/muddy sands/pebbly muddy sands

Sorting:

Poor to well sorted

Grain size:

Very fine/fine to fine/medium/coarse/very coarse

Colour:

Light olive brown/olive brown/olive

Carbonate content:

1 - 25%

Average 8.4% (10)

Foram. content:

Poor to abundant

Sediment thickness:

0.06 - > 0.33m

Average > 0.14m (7)

## Subsurface sediments

Sediment type:

Mud/muddy sand/slightly pebbly to pebbly mud

Colour:

Greyish brown/olive grey/grey/dark grey

Hardness:

Very soft

Oxidation depth:

0.04m - 0.15m Average 0.10m (4)

Bioturbation depth:

>0.29 - >0.34m Average >0.31m (2)

Soil Disturbance:

>0.14m in the 800m Transect site

Temperature:

2.0 - 4.0C

Average 2.9C (5)

Comments:

>0.33m of superficial, thinly bedded sands in the 1000m Transect site

# **Geological Description Sheet**

| Stratum:             | Inner Shelf 1      |                   |  |
|----------------------|--------------------|-------------------|--|
| Samples examined:    | C1, C2, C4, C5 (   | Day Grabs)        |  |
| Water depths:        | 98 - 128m          |                   |  |
| Sea-bed sediments    |                    |                   |  |
| Sediment type:       | Sand/sandy grave   | els               |  |
| Sorting:             | Poor to well sorte | ed                |  |
| Grain size:          | Medium to coars    | e/very coarse     |  |
| Colour:              | Speckled/light ol  | ive brown         |  |
| Carbonate content:   | 15 - 50%           | Average 35.0% (4) |  |
| Foram. content:      | Common to poor     |                   |  |
| Sediment thickness:  | Unknown            |                   |  |
| Subsurface sediments |                    |                   |  |
| Sediment type:       | No Data            |                   |  |
| Colour:              |                    |                   |  |
| Hardness:            |                    |                   |  |
| Oxidation depth:     |                    |                   |  |
| Bioturbation depth:  |                    |                   |  |
| Soil Disturbance:    |                    |                   |  |
| Temperature:         |                    |                   |  |
| Comments:            |                    |                   |  |

South

Sector:

## **Geological Description Sheet**

Sector:

Mid

Stratum:

X

Samples examined:

X1-X5 plus 1 Transect site (Multicores)

Water depths:

1067 - 1102m

#### Sea-bed sediments

Sediment type:

Slightly pebbly sand/slightly pebbly muddy sand/muddy sand/sandy mud

Sorting:

Mostly moderate to well sorted

Grain size:

Very fine to fine/medium/very coarse

Colour:

Light olive brown/olive brown

Carbonate content:

2 - 15% Average 9.25% (4)

Foram. content:

Poor to abundant

Sediment thickness:

0.01 - 0.08m

Average 0.0475m (4)

## Subsurface sediments

Sediment type:

Muds

Colour:

Olive grey/grey/dark grey

Hardness:

Very soft

Oxidation depth:

0.11 - 0.13m

Average 0.12 (2)

Bioturbation depth:

0.07 - 0.25m

Average 0.16m (2)

Soil Disturbance:

None

Temperature:

3 - 12C

Average 7.5C (2)

Comments:

Planolites trace fossil in the Transect site sample

Colin Graham BGS

18 August, 1996

## **Geological Description Sheet**

| Sector:              | South            |                        |
|----------------------|------------------|------------------------|
| Stratum:             | Inner Shelf 2    |                        |
| Samples examined:    | C6-C8 (Day Gra   | bs)                    |
| Water depths:        | 110 -124m        |                        |
| Sea-bed sediments    |                  |                        |
| Sediment type:       | Sands            |                        |
| Sorting:             | Moderate to well | sorted                 |
| Grain size:          | Medium to coars  | e/very coarse          |
| Colour:              | Yellowish brown  | /light yellowish brown |
| Carbonate content:   | 70 - 97%         | Average 85.6% (3)      |
| Foram. content:      | Common           |                        |
| Sediment thickness:  | Unknown          |                        |
| Subsurface sediments |                  |                        |
| Sediment type:       | No data          |                        |
| Colour:              |                  |                        |
| Hardness:            |                  |                        |
| Oxidation depth:     |                  |                        |
| Bioturbation depth:  |                  |                        |
| Soil Disturbance:    |                  |                        |
| Temperature:         |                  |                        |

Colin Graham BGS 18th August, 1996

Comments:

# **Geological Description Sheet**

| Sector:              | South                                                            |  |  |  |
|----------------------|------------------------------------------------------------------|--|--|--|
| Stratum:             | С                                                                |  |  |  |
| Samples examined:    | C11-C18, AB1, AB2 (Day Grabs)                                    |  |  |  |
| Water depths:        | 93 - 181m                                                        |  |  |  |
| Sea-bed sediments    |                                                                  |  |  |  |
| Sediment type:       | Shell sands/slightly pebbly sand/pebly shelly sand, sandy gravel |  |  |  |
| Sorting:             | Poor to well sorted                                              |  |  |  |
| Grain size:          | Medium to coarse/very coarse                                     |  |  |  |
| Colour:              | Light olive brown/light yellowish brown                          |  |  |  |
| Carbonate content:   | 5 - 95% Average 71.3% (10)                                       |  |  |  |
| Foram. content:      | Common                                                           |  |  |  |
| Sediment thickness:  | Unknown                                                          |  |  |  |
| Subsurface sediments |                                                                  |  |  |  |
| Sediment type:       | No data                                                          |  |  |  |
| Colour:              |                                                                  |  |  |  |
| Hardness:            |                                                                  |  |  |  |
| Oxidation depth:     |                                                                  |  |  |  |
| Bioturbation depth:  |                                                                  |  |  |  |
| Soil Disturbance:    |                                                                  |  |  |  |
| Temperature:         |                                                                  |  |  |  |
| Comments:            |                                                                  |  |  |  |

## **Geological Description Sheet**

| Sector:             | South                                        |  |  |
|---------------------|----------------------------------------------|--|--|
| Stratum:            | F                                            |  |  |
| Samples examined:   | F1-F4, F6, AJ1 (Day Grabs)                   |  |  |
| Water depths:       | 212 - 295m                                   |  |  |
| Sea-bed sediments   |                                              |  |  |
| Sediment type:      | Shell sands/slightly pebbly sand/pebbly sand |  |  |
| Sorting:            | Moderately to poorly sorted                  |  |  |
| Grain size:         | Medium/coarse to very coarse                 |  |  |
| Colour:             | Light yellowish brown/speckled               |  |  |
| Carbonate content:  | 75 - 98% Average 77.2% (6)                   |  |  |
| Foram. content:     | Abundant/common                              |  |  |
| Sediment thickness: | Unknown                                      |  |  |
|                     |                                              |  |  |
| Subsurface sediment | S                                            |  |  |
| Sediment type:      | No data                                      |  |  |
| Colour:             |                                              |  |  |
| Hardness:           |                                              |  |  |
| Oxidation depth:    |                                              |  |  |
| Bioturbation depth: |                                              |  |  |
| Soil Disturbance:   |                                              |  |  |
| Temperature:        |                                              |  |  |

Colin Graham BGS 18th August, 1996

Comments:

## **Geological Description Sheet**

Sector:

South

Stratum:

J

Samples examined:

J1-J5, AG1, AG2 (Day Grabs except Box Cores at J1, J2, AG1 and AG2)

Water depths:

332 - 408m

Sea-bed sediments

Sediment type:

Shelly sand/pebbly sands/pebbly muddy sand

Sorting:

Moderate/poorly sorted

Grain size:

Very fine/fine to coarse/very coarse

Colour:

Light olive brown/light yellowish brown

Carbonate content:

50 - 70%

Average 57.1% (7)

Foram. content:

Abundant

Sediment thickness:

0.09 - 0.18m

Average 0.12m (4)

## Subsurface sediments

Sediment type:

Mud/sandy mud

Colour:

Greyish brown/dark greyish brown

Hardness:

Very soft

Oxidation depth:

None

Bioturbation depth:

>0.30m -> 0.33m (3)

Soil Disturbance:

None

Temperature:

9 - 10C

Average 9.5C (4)

Comments:

## **Geological Description Sheet**

Sector:

South

Stratum:

M

Samples examined:

M1-M5, AA1 (Box Cores)

Water depths:

422 - 497m

## Sea-bed sediments

Sediment type:

Sands/pebbly sands

Sorting:

Poorly sorted

Grain size:

Very fine/fine to coarse/very coarse

Colour:

Light olive brown

Carbonate content:

50 - 60%

Average 53.3% (6)

Foram. content:

Abundant

Sediment thickness:

0.07 - 0.19m

Average 0.11m (6)

## Subsurface sediments

Sediment type:

Muds/sandy muds

Colour:

Greyish brown

Hardness:

Very soft

Oxidation depth:

0.13 - 0.15m

Average 0.14m (5)

Bioturbation depth:

0.12 - >0.35m

Average >0.26m (5)

Soil Disturbance:

None

Temperature:

7 - 10C

Average 8.4C (5)

Comments:

Colin Graham BGS

## **Geological Description Sheet**

Sector:

South

Stratum:

Q

Samples examined:

Q1, Q2, Q4, Q5 (Box Cores except Multicore at Q4)

Water depth:

521 - 539m

## Sea-bed sediments

Sediment type:

Sands/slightly pebbly sands

Sorting:

Poor/moderately sorted

Grain size:

Very fine/fine to coarse/very coarse

Colour:

Light olive brown/olive

Carbonate content:

10 - 50%

Average 31.2% (4)

Foram. content:

Abundant

Sediment thickness:

0.06 - 0.14m

Average 0.09m (4)

## Subsurface sediments

Sediment type:

Sandy muds

Colour:

Light olive brown

Hardness:

Very soft

Oxidation depth:

0.15 - 0.2m

Average 0.175m (2)

Bioturbation depth:

0 - >0.24m

Average >0.23m (3)

Soil Disturbance:

None

Temperature:

6 - 10C

Average 7.75C (4)

Comments:

Buried brachiopod layer in the mud in Q5

## **Geological Description Sheet**

Sector:

South

Stratum:

Т

Samples examined:

T1-T5 (Multicores except Box Cores at T1 and T2)

Water depths:

602 - 784m

#### Sea-bed sediments

Sediment type:

Sands/slightly pebbly sand

Sorting:

Poor to well sorted

Grain size:

Fine/medium to coarse/very coarse

Colour:

Light yellowish brown/light olive brown/olive

Carbonate content:

1 - 40% Average 20.2% (5)

Foram. content:

Common/abundant

Sediment thickness:

0.03 - 0.14m

Average 0.09m (5)

## Subsurface sediments

Sediment type:

Mud/sandy mud/slightly pebbly mud

Colour:

Olive grey/greyish brown

Hardness:

Very soft

Oxidation depth:

0.09m in T2

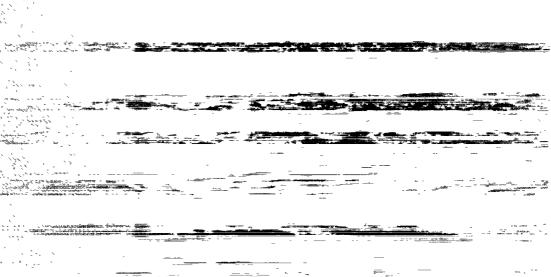
Bioturbation depth:

0.09 - 0.3m

Average 0.22m (3)

Soil Disturbance:

Yes in T4 (?bioturbation)


Temperature:

3 - 11C

Average 7.25C (4)

Comments:

Muddy sandy layer above the muds in T3 and T4



Southampton Oceanography Centre European Way Southampton SOI4 3ZH — United Kingdom

Tel: +44 (0)1703 596666 Fax: +44 (0)1703 596667