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ABSTRACT

This paper examines the implications for eddy parameterisations of expressing them in terr
quasi-Stokes velocity. Another definition of low-passed time averaged mean density (the m
mean) must be used, which is the inversion of the mean depth of a given isopycnal. This de
naturally yields lighter (denser) fluid at the surface (floor) than the Eulerian mean, since flui
these densities occasionally occurs at these locations. The difference between the two r
second-order in perturbation amplitude, and so small, in the fluid interior (where formu
connect the two exist). Near horizontal boundaries, the differences become first order, and
severe. Existing formulae for quasi-Stokes velocities and streamfunction also break down he
shown that the low-passed time mean potential energy in a closed box is incorrectly comput
modified mean density, the error term involving averaged quadratic variability.

The layer in which the largest differences occur between the two mean densities is the
excursion of a mean isopycnal across a deformation radius, at most about 20 m thick. Most
models would have difficulty in resolving such a layer. We show here that extant parameteri
appear to reproduce the Eulerian, and not modified mean, density field and so do not yield &
layer at surface and floor either. Both these features make the quasi-Stokes streamfunctio
to be non-zero right up to rigid boundaries. It is thus unclear whether more accurate result:
be obtained by leaving the streamfunction non-zero on the boundary — which is smoc
resolvable — or by permitting a delta-function in the horizontal quasi-Stokes velocity by forcii
streamfunction to become zero exactly at the boundary (which it formally must be), but at tl
of small and unresolvable features in the solution.

This paper then uses linear stability theory and diagnosed values from eddy-resolving 1
to ask the questionf climate models cannot or do not resolve the difference between Eulerian and
modified mean density, what are the relevant surface and floor quasi-Stokes streamfunction
conditions, and what are their effects on the density fields?

The linear Eady problem is used as a special case to investigate this, since terms

explicitly computed. A variety of eddy parameterisations is employed for a channel probler
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the time-mean density is compared with that from an eddy-resolving calculation. Curi
although most of the parameterisations employed are formally valid only in terms of the mu
density, they all reproduce only the Eulerian mean density successfully. This is desp
existence of (numerical) delta-functions near the surface. The parameterisations wel
successful if the vertical component of the quasi-Stokes velocity was required to vanish at
bottom. A simple parameterisation of Eulerian density fluxes was, however, just as accur:

avoids delta-function behaviour completely.
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1. Introduction

During the last decade, oceanographers have realised that coarse-resolution ocean mode
adequately represent the ocean in a coupled climate model without some modifications to r
eddies. There has been a variety of schemes suggested to include eddy effects. These
divide into two categories. The first, which we shall be examining here, involves adding te
represent the additional thickness flux by baroclinic eddies (Gent and McWilliams,
Greatbatch and Lamb, 1990; Gent et al, 1995; Visbeck et al, 1997; Treguier et al, 1997; Kil
1997, 1998; Greatbatch, 1998). The second (Neptune) involves a representation of the s
properties of eddies on the mean flow (Eby and Holloway, 1994; Merryfield and Holloway, !
and is not discussed here.

The effects of thickness flux can be written in a variety of ways which should formal
identical. One way is always a simple average of the product of two varying quantities. If iso
co-ordinates are employed, this term is the divergenaghbfwhereu is the horizontal velocity
andh the thickness between two neighbouring isopycnals (proportiozgl wherez is the height

of an isopycnal and the density). Analytically,

R+ Vy-@+uh)=h+Vy- - {(@+u)h} =0 (11)
where the average is a low-pass time average on a density surface, and th¢ deiffotes purely

horizontal terms. In (1.1) the thickness flux is written as an additional, horizontal ‘bolus’ ve

u* = Uh/h, which advects the mean thickness. An eddy parameterisation in an isopycnic
would supply a form for this term, which would vanish on vertical sidewalls.
If zco-ordinates are employed, however, the situation is somewhat more awkward. The

equivalent of thickness flux divergence becomes the divergengg of

pp+V-@)+V.@Up)=0 (1.2)

where averages are now Eulerian, and the divergence is fully three-dimensionalVWHilé")
(a scalar) can be parameterised, the more usual approach is to seek parameterisations

equivalent of the bolus velocityThis turns out to be neither easy nor straightforward due

1 One such parameterisation is suggested and tested later; in general the problems associated with diapycn:
have caused researchers to avoid this approach.
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number of technical issues relating to the intrinsic differences between averages on density
and on level surfaces (i.e., between pseudo-Lagrangian and Eulerian means). The mos
approach to date is the transient-residual-mean (TRM) theory introduced by McDougall (19¢
earlier references therein; hereafter M); McDougall and Mcintosh (submitted, hereafter MV
more detail on the same material. Another, highly related, approach is to use density-w
averaging (cf. Greatbatch, submitted ms; de Szoeke and Bennett, 1993). The TRM theory a
low-pass temporally averaged quantities, and deduces a quasi-Stokes veladiigh is related,
but not identical, to the bolus velocity. (The two are not identical because the backgrount
flow involves averages on two different surfaces, though they are frequently similar.) For
have been derived for small perturbations by M and MM, involving only averages at ca

depth. The gquasi-Stokes vector streamfunction is given to second order in amplitude by

eulséf CIIE ﬁ@
pz Pz \P:

where the suffiH denotes the horizontal component, gne: ﬁ:mvw. The vertical derivative of

¥ is the horizontal component of.

Two other fundamental differences are (a) that the two-dimensional bolus veloc
intrinsically divergent, while the quasi-Stokes velocity is (by construction) non-divergent, ai
that the bolus velocity has no diapycnal component while the quasi-Stokes velocity does.
there is no completely adiabatic expression involving a quasi-Stokes streamfunction.

Since eddying motions are believed to conserve density, this implies that the definit
density must be modified. M shows that rather than using the Eulerian mean pensitgvertical)
point (EMD for short), one should interpret density as being the inversion of the mean deg
given density (termed the ‘modified mean densstydbr MMD for short). The difference betwee
these two field® andp is again of second order in small quantities and is thus very small whe
TRM theory is formally valid. However, the time derivatives of EMD and MMD differChil)
amounts because of the above discussion. The MMD is advected by the (Eulerian) mean f

by the quasi-Stokes velocity:

o+ V.[(@+u)p] = 0. (1.4
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We shall see that near horizontal boundaries, the small-amplitude formulae of M and |
convert EMD to MMD break down. In fact, the two fields differ at first, not second, order i
small quantities. (This is nothing to do with the question of neutrally stable and mixed |
which are beyond the scope of this paper.)

Indeed, other questions about horizontal boundaries exist even for finite amplitude motio
this paper will be mainly devoted to such questions, especially as they relate to
parameterisations. For example, the quasi-Stokes streamfunction requires boundary conc
rigid surfaces. The horizontal componenubfis related to the horizontal componentsioanda,
and so vanishes on vertical sidewalls. The valuetothe vertical component aff, at surface or
floor is less obvious. (Unlike the horizontal component of the quasi-Stokes velocity, there
kinematic reason fow" to vanish, since/* exists to satisfy continuity.)

The problems are best seen by considering recent direct eddy-resolving computations
Rix and Willebrand (1996) did not discuss the shape of either bolus or quasi-Stokes veloci
an eddy-permitting calculation (FRAM, analyzed by Mcintosh and McDougall, 1996).

The three eddy-resolving calculations used a re-entrant channel geometry; all used long t
space averages, and so differ subtly — but probably not in any important manner — from tl
pass time average of the TRM theory (indeed, M does not define the averaging process
way). Values of the equivalent total streamfunctipnwere diagnosed from this average a
presented om-co-ordinates by superimposing them on the EMD.

An immediate problem ensues, generic to this type of activity, caused by the different ¢
for ‘mean’ density, and indicated schematically in HigTreguier, Held and Larichev, 1997 gi
some discussion on this but mainly from the perspective of diabatic surface effects). Supp
the surface (or bottom) density varies over the averaging period as shown in Fig. 1la. Th
mean isp(0). The densities lighter thgs(0) are shown shaded. In Fig. 1b, the streamfunctol
for the total (mean plus eddy) flow is shown as a function of density. If ‘density’ is taken to |

EMD, then the fluxes associated with the shaded fluid are ignored, producing an apparen
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zero streamfunction at the surfdc@here is, simply, nowhere to ‘put’ the extra fluxes in
Eulerian sense.

The streamfunction is clearly zero at the minimum density: no fluid ever enters at |
densities. Equally true is that the streamfunction is nonzero at the get®itfhe question, whicl
is far from just philosophical, is how to interpret mean ‘density’ in a non-eddy-permitting moc

Some readers may be surprized at this statement. After all, M has argued cogently
definition to be MMD. This causes both the total and quasi-Stokes streamfunctions to vanis
surface and floor. For realistic finite amplitude fluctuations, however, the streamfunction ct
rapidly very close to the surface, as we shall show. Most non-eddy-resolving models are unl
resolve the scale over which this changes, so that they would fail to reproduce the lightest
layers, and act as if the streamfunction had something approximating to a delta-functiol
surface. If this layer is not resolved, the quasi-Stokes streamfunction cannot vanish at wha
the surface, inducing an apparent flux through the surface to represent the ‘missing’ flux on
density surfaces. In other words, there may well be a difference — which will be addressec
paper — between the correct description, using MMD, and the description in an under-re
model or one using an eddy parameterisation, which may for numerical or physical reas
using a density field truncated near surface and floor and so resembling the EMD.

In confirmation of this discussion, Killworth (1998) found it impossible to produc
streamfunction which vanished at top and bottom. Indeed, the streamfunction atdiese
values at the surface and floor. If other simple numerical inaccuracies were disguising a tr
value at surface and floor, or there were a damping down near surface and floor as suggest
one would expect a reduction in its value from the interior as the horizontal boundari
approached; this is not seen.

Treguier (1999) used an extensive eddy-resolving channel computation to diagnogealnok!
w* eddy-induced velocities on density surfaces, as well as the quasi-geostrophic vevsiand
w*. The two sets of velocities were found to be very similar except near the surface, inc

2 This problem is not, of course, unique to oceanography; Held and Schneider (1999) have discussed a
atmospheric solution.
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confirming M. However, Treguier's Fig, 7b shows clearly thatreaches extreme values at t
surface and floor, rather than vanishing. Gille and Davis (1999) ran channel models, bott
Eady problem and of a wind-forced problem, and diagnosed the eddy terms. In their Fig.
show what is the majority of the TRM streamfunction, which again does not vanish at the ¢
(it is small at depth, so that no conclusions can be drawn from their figure as to whett
streamfunction vanishes at the floor). Mcintosh and McDougall (1996) plotted overtt
streamfunction, computed from FRAM, on MMD (their Fig. 4) and on EMD (their Fig. 5).
clear that the latter case — albeit computed with M’s interior formulae and so in error near-st
does not capture the additional near-surface and floor fluxes which their Fig. 4 does.

These direct calculations, then, indicate that the boundary conditions applied to quasi
vertical velocities in parameterisations, which historically are consistently those of zero fi
rigid surfaces, need investigation. Particularly, what differences are produced in simulation
requirement of vanishing/" at surface and floor are relaxed? To reiterate, if the physics o
model being employed — e.g. some eddy parameterisation — fails to reproduce the fine
structure, it is not clear we would wish to vanish.

Following a discussion of the small amplitude theory used by M and MM, the behaviour
MMD near horizontal boundaries is discussed (section 2). We show that the differences k
EMD and MMD becomdirst order in small quantities in such regions, suggesting that forrr
such as M’s, based on small-amplitude theory, will first become invalid for finite amplitude
horizontal boundaries. For finite amplitude, the depth range over which these larger diffe
occurs is a vertical isopycnal excursion in a deformation radius, and remains too small for
climate models to resolve. Thus EMD and MMD look similar within climate models. The mas
vertical column is the same using either definition of density, but the potential energy
column differs: the EMD is the low-pass filtered time mean of the potential energy, whil
MMD is consistently smaller. We then show that products of perturbations (e.g. fluxes) ex
decay to zero near the boundary using MMD, with the quasi-Stokes horizontal velocity exhit

delta-function behaviour.
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Small-amplitude theory (section 3) is used to evaluate the relevant expressions making u
the flux divergence or the vector streamfunction. Small-amplitude theory has its disadvanta(
it is at least an exact solution to the equations of motion in the limit of vanishingly
perturbations; it is also accurate to precisely the same order as the M and MM theory. W
specifically thaww* and the quasi-Stokes streamfunction do not vanish at surface or floor usi
M formulae. En route, two equivalents of the isopycnal co-ordinate parameterisation of Kill
(1997), which had been restated asca-ordinate version in that paper without proof, are prodc
(section 4). Section 5 then briefly discusses these results, comparing them with the Ki
(1997), showing how the delta-functions at surface and floor present in that theory b
precisely the vertical quasi-Stokes velocity computed at surface and floor from the second-c
formulae. Section 6 evaluates closed-form solutions for the Eady (1949) problem. We
(section 7) more generally that mass and energy conservation holds for the EMD formulati
energy conservation does not hold for the MMD formulation even if exact expressions ar
through the entire water column, for reasons described earlier.

Section 8 asks the question: given that current climate models cannot resolve the diff
between densities, can current eddy parameterisations? We revisit a test of paramete
(Killworth, 1998), run both with and without the vertical quasi-Stokes velocity vanishing &
surface and floor in two parameterisation schemes. We find that the non-zero surface vertic:
Stokes velocity results are uniformly poor compared with zero values. However, an alte
parameterisation, using a direct estimate of the density flux divergezaminrdinates, perform:
just as well, and would be relevant for an Eulerian definition of mean density. We concluc
parameterisations using quasi-Stokes formulations — which should formally reproduce the I

do apparently perform better with no advection through surface and floor, but reproduce the

2. Eulerian and modified mean densities near a horizontal boundary
(a) Small amplitude
Both M and MM have derived formulae connecting Eulerian and isopycnic averages for tk

when perturbations are of small amplitude. In particular, the MMD and EMD are connected k
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p=p+p 2D
where
p=-(2) 22)
Pz)z
andg is half the density variance:
1
= - . 2.3
$=5 23)
Thus ifa is a representative amplitude of the small perturbations,
p=p+ 0@ (2.4

although (examples will be given later) the rate of change of the two densitiesQeif)gcan be
quite different.

The relationship (2.1) has been tested by various authors using output from numerical
and (2.4) holds quite well. Both the relationship (2dd the deduction (2.4) break down neal
horizontal surface. That they must break down is of course clear for finite amplitude excu
and M suggests modifications to turbulent diffusions [but not to (2.1) or (2.4)] accord
However, the relationshiplso breaks down at small amplitude (i.e., for which the formulae
formally accurate), but with a much larger error than in the interior. The manner of this brea
is as follows.

Suppose that near some horizontal surfaee z,, the relationship between density and deptl
given by

z-2 =F( - p) +aGlp - po 1 (25
wherep, is some measure of the density ‘near’ the surflids, some function of density whos
gradient is negative for stably stratified fluid, aBdof amplitude order unity, represents the tii
variation of the depth surfaédVe assumé& (0) = 0 without loss of generality. The use of dens
co-ordinates means that MMD can be calculated exactly. Define a low-pass average c

quantityK on a density surface as

3 This variation is produced by unspecified three-dimensional motions; the dependence on horizontal po
irrelevant for the current discussion.
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_ 1,7
K== rx%
and sinceG is a perturbation,

G=0.
Then, providingz is ‘some way belowz, (assuming this is the upper surface) a time average g
z2-2 = F(p - po)
or, inverting,
p-po=F'(z-2
where we have used the definition of MMD in the inversion. Since we have from M
p — p = O(ad, tofirst orderp andp are identical.
Now suppose is within O (a) of z,. We write
z-2z =ak, p-po=ar
and substitute into (2.5):
at = F(ar) + aG(ar, t)

= arF, + Wammﬂ% + o+ aGo(t) + WQNQ ) + .. (2.6)
where a suffix denotes derivativels, derivatives are evaluated at= pyp and Gy = G(0, t),

G: = G,(0, t), etc. To leading order this gives
g = rF, + Go(t). 2.7

Suppose now thd, varies betweels,, and Gy for someGpin < 0, G > 0 of order unity.
Then wherp (or equivalentlyr) becomes sufficiently light becomes negative and a region ab
the fluid surface is predicted from (2.7). Thus the averaging over time must be taken onl
¢ < 0. But there will be an averadefor any density which ever occurs in the fluid column; ¢
the range of density variation@(a).*

This immediately means that the least density which ever occurs [which v@illzhé is O (a)
less tham, [which will in turn be shown to bg(zy) to leading order], so that near surface and fl
g::v\ a choice whether to compute the average vdlwlyfduring the time that density is presel

or to compute the full average, definingp be at the surface or floor at other times. Surprisingly, the former ct
yields multivalued, i.e. two mean densities with the same depth.
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EMD and MMD differ byO (a), much larger than th® (a?) they differ by in the interior. Thus th
locations where the M and MM formulae first break down are near surface and floor, and i
places the errors are likely to be much higher than the third order predicted by theory.

To proceed, we have

. 1
¢ = T onT._u»e + Go(t)] dt (2.8)

where the range of densities where the integration is restricted is

G ¢ ¢ G
_nn _nn
Defining
AX) = m_ dt; B(x) = m.— Go(t) dt (2.9)
T T lemex T T Jognex ’
we have immediately
A(Grin) = 0; A(Grag = 1
B(Grin) = 0; B(Grax) = 0
and so
¢ = IEA(-IF,) + B(—F). (2.10)
Straightforward evaluation shows the following:
= = Grin . .
£=07¢ =0, whenr = - 5 (the lightest fluid ever present)
P
¢ = rF, whenr = |O_n|§x (the lightest fluid which never outcrops at the surfac€.11)

P

Thus the lightest fluid has a zero-thickness layer at the surface, and the densest fluid

outcrop at the surface blends smoothly into the interior solution.

The EMD is computed by settirg= 7, in (2.5), and expanding for small perturbations,
Flo—po) + aG(p —po, 1) = 0, i.e,

arfF, + ... + aGy(t) + ... = Oto leading order
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givingr (z) = 0. Thus

As stated, the two densities differfast, notsecond, order in small quantities.

This is indicated schematically in Fig. 2, which also shows a specific example, for
F, = =1 and Go(t) = sin(t). To reiteratep andp are very similar in the interior (for sma
amplitude) but differ much more strongly near surface and floor, in a manner similar to a

function.

(b) Finite amplitude

At finite amplitude the difference between EMD and MMD become more important. Note th
depth over which this difference is large is proportional to the amplitude of the perturbations
amplitude density fluctuations will equilibrate at abaVit,p, wherea is the deformation radius an

Vu the horizontal gradient operator. This implies that the vertical scale is
Z ~ p'lp, ~ alVup/pd (212)

as suggested by M. It is the typical vertical excursion made when moving a short hor
distance &) along a mean isopycnal which moves significantly vertically only on the gyre
(L >> a).

This scale is rather small for the ocean, though not for the atmosphere. Even with
optimistic estimates, it is hard to produce a vertical scale much larger than 20time.dBtance
over which the MMD and EMD differ significantly is not resolved in most climate models, being
concentrated in the last grid point. Thus the near-boundary differences between the tw
densities will probably appear to climate models as single grid-point effects, i.e. delta functio

Figure 3 shows this effect clearly (also cf. McIntosh and McDougall, 1996, for examp

shows a four-year along-channel average of Eulerian mean and modified mean temperatur
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eddy-permitting channel run. (A similar diagram for the previous four years is vis
indistinguishable from this.) The north and south boundaries are relaxed to specified
temperature gradients, and the surface heat flux is a relaxation to a linear function of latitu
grid spacing was 10 km horizontally, and 10 m vertically. The high lateral gradients and f
were designed to increase the depth over which the EMD and MMD differ significantly to a
which the model could resolve. In this case, an estimate of the horizontal length scale of va
is NH/f whereN is the buoyancy frequency. With the values here, (2.12) yields a depth of !
m. Fig. 3 confirms this approximately: the main differences are confined to the upper 100 |
‘pushing forward’ of the isotherms from further south at the surface is very clear. Differenc
very small at the lower boundary because eddy amplitudes were small there also.

The presence of a mixed layer (not treated here) makes no difference to this argument,
merely moves the region where EMD and MMD differ slightly lower (usually to worse resolut

Also shown in Fig. 3 is a typical two-dimensional parameterisation result, in this case us
Gent and McWilliams (1990) formulation, though as we shall see later, all extant parameteri
are similar in behaviour. While it is clear that the parameterisation fails to do a good job
upper southern portion, it is also obvious that there is no hint of the ‘pushing forward’ of s
isotherms present, despite — deliberately — there being ample vertical resolution. Thus unc
circumstances extant parameterisations cannot resolve the differences between EMD ant
and when they can, they do not reproduce the MMD structure. This will be discussed in mor

below.

(c) Mass and potential energy

The differences between the two densities have two important effects. The first is ¢
concerned with the interpretation of mean density. It is straightforward to see that the low-pa
filtered net mass in a water column, which is a uniquely defined value, is the same whethe

or MMD is used:

._.b dz = .—m dz (averaging at constant depth)
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= .—bNu do = .?Nn do = .—mQNﬁméqmm_:@ at constant density)

(As Fig. 2 suggestp,is lighter at the surface, but the shortfall is made up at the floor.)

The same doesot hold for potential energy, because of the noncommutative aver:
operators on products of quantities. For small amplitude, the differences between EMD anc
potential energies a@ (a?), and occur due t@(a?) differences in the interior over a depth ran

of order unity, and®(«) differences ove®(a) depth ranges. Formally, we write

Ap=p—p =—d4+ ad(2 (213
wherea?) is (¢/p,) and the second term is the surface decrement and floor increase in d
From its definition,A < 0. Egn. (2.13) does not include the small€(a?), corrections to the
formulae near surface and floor since these will be unimportant to the depth integrals. Si
total mass of the column is invariant,

F%QN =0= a[A]% = mxmﬁv% = %

floor

a(2dz + .— a(2)dz (2.19)

surface

where we split the integral into two sub-integrals at floor and surface. The first is positive
MMD is denser than EMD), the second negative.
The difference in potential energy, invariant to changes in vertical co-ordinate origin, is

.ﬁ: z(p — p)dz = .—w: ZAp dz

APE

.—w: 4-a*, + aa(z)] dz

= -d2[2)% + & M_\EN + n"@ [ a@dz+ -H) [ a@ i (2.15)

surface floor

where we have retained the multiplicand at the surface for clarity, and higher order ter
neglected.

Substituting for the floor integral from (2.14), (2.15) becomes

0
APE = —g?HAy + o Az~ aH {a (o ~ A4) - [ a@aw

surface

0
= —a’Hio + d” | Adz + aH a(dz < 0 (2.16)

surface
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since all three terms in the sum are negative.

The difference between the two PE expressions lies in the variability, fundamentally a
the MMD. It involves an integral in density space of the mean square depth fluctuations; thi
is straightforward, either from the M formulae or by direct evaluation, and is not given here.

Thus the low-pass filtered potential energy of a fluid column (a uniquely defined quantity) is
only correctly evaluated using EMD, and is consistently under estimated using the MMD; correction

terms can be derived, and involve knowledge of the variability.

3. Local instability theory in z-co-ordinates

In this section, we extend linear instability theory beyond the quasigeostrophic limit, using v
co-ordinates, using a local approach similar to that of Robinson and McWilliams (1974).
theory is not always a good predictor of the behaviour of a nonlinear eddying system, as E«
al. (1980) show clearly for the quasi-geostrophic limit. (Note that the TRM formulae of N
linear instability theory are both small amplitude, both evaluated to second order, and holc

same parameter ranges.) We begin by assuming that
a
== 31
e=1T (31)
is a small quantity, where

_@H”
==

remains the local deformation radius, dnthe horizontal length scalg, = gAp/ po is a reduced

a

gravity based on a typical top-to-bottom density chakgandH is a typical depth. The horizont:
variation of density may be less than or equal to the vertical variation. In subpolar gyres,
isopycnals outcrop at surface and floor, equality would be relevant. In quasigeost
circumstances, the horizontal variation would be much less than the vertical. We thus
horizontal variatiompy ~ oAp for what follows, where is either smaller, or much smaller, thi
1. We finally assume (following quasigeostrophic theory, but not bound by it),ttia Coriolis

parameter, changes little over a saalso that
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m|w ~ O€. (3.2
fo

Here the additional factar ensures that stretching of planetary vorticity does not dominate
vorticity balance [(3.2) is equivalent fia®/u ~ 1.]

From thermal wind, 0, and hence the phase speed defined below, scale witt
og’H/foL = eoafo. Then a basic background structure which is geostrophic, hydrostatic, etc.

the remaining scalings for the mean flow as

baq_._“sam_._

Po fo

0 (from vortex stretchingly ¢ 20°Hf .

What this will mean is tha terms are everywhere sufficiently small to be neglected, thougl
perturbationw” terms will be as important as the horizontalv’ terms.

We seek a small perturbation to background flows  proportional
expik (x cosf + ysind — ct), wherek will be O(a™). If the problem has a channel geomet
then € is zero in what follows. Scalings for the perturbation terms, and quantities de

therefrom, are given in Appendix A. The horizontal momentum equations become

ik(—cyu—-fv = |__Ao|owmv+ small
Po

ik( - cv + fu = |_EU+ small
Po

where “small” includes terms in, e.ggy, etc., which ar@® (&) smaller than the terms retained. T

density equation becomes, similarly,
ik(0 = c)p + up + vp, + Wp, = 0+ small
wherel = 0 cosf + vsing is usefully defined, and “small” again includes termgWu, etc®
Finally mass conservation and the hydrostatic relation give
U+ v+ w,=0
P = —go.

5 The confirmation that the neglected terms remain small even after the vorticity equation is created is tediou:
shown here.
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Cross-differentiating the momentum equations (the neglected terms remain small) and use

conservation, gives

K@—-c  .kcosh
i p+i

fw, = —
‘ pof pof

Bp.

Now density conservation implies

w = |_%§ - 0)p, - 0p} (33)

so that elimination of’ gives the familiar quasi-geostrophic equation

@- g: pv - _Ai +gp=0 (34)

with boundary conditions of zexd at top and bottom. Here

ﬁm
Gy = B cosd — A|mv
is the mean quasi-geostrophic potential vorticity gradient normal to the diréctibe subscripy
has been retained for historical purposes (in a channel geometry this would be precise). gt i:
times the along-isopycnal gradient of the mean Ertel potential vorticity. To see this, note th
planetary scalings, this vorticity is merdjy,. The gradient of this in (say) tlyedirection, holding

density constant, is
[913y - (py! p) 137 (Fp) = p.1B + T (py/ pdd = p.1B — (F°0,/N?)],

with a similar expression in the-direction. Combining these givel§ as the gradient of th

potential vorticity normal t@.

We first find expressions for the quantities necessaryVior(u’p’) from small-amplitude

theory. We have, by standard methods (e.g., Killworth, 1997):

1 'k sing P*v k sing
up" = - Re|l-i——p - —| = Re(i 3.
r=3 A o p 9 2oy (ipp) (39
1 _ [ kcos® Rv _k coss
Vp' = = Reli——p  —=| = Re(i 3.6
r=3 A 1o p 9 BT (i) (36)

;_ 1 —op - P
ssJigzLa Op, - 0 L
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= SalPf = oo Relipp). Ch)

Here an asterisk means a complex conjugate. The averages are over either one real peri

growing mode or, equivalently, over one horizontal cycle of the instability. The scalin

Appendix A show that the dominant terms acting to change the mean density are the ha

advection term&y - (uy’p’), though it will appear that the vertical term, formallfo) less, and
neglected in quasigeostrophic theory, acts to change the potential energy.

We can also compute expressions from the small-amplitude TRM theory which hold awa

horizontal boundaries. First, we have

¢ =

so that

>
Il

VN. (38)

For thex-component, we need

and for they-component

Vo,
P2 P QAsv

— +
Pz Pz \Pz

Appendix A shows that the second terms@iec) smaller than the first, and so can be neglec
under the assumptions here. However, in regions of weak vertical stability, e.g. the st
regime, this may not be the case. For completeness, we retain both terms in what follo

maintain the order of appearance of the terms for clarity. Then, from above,

k sin®

2
Vi = G RGP + 22 lpd (39)
k cosf
Ve = ~5anp REGPE) + ol (310)

For use in parameterisation schemes, we can calculate the following expression irRe{ipp).
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We begin from a restatement of the quasi-geostrophic equation,
Wv K0 = ) —
(% Fa-gc@-9-al

We then note that

ol - o) -
=~ R =R 21 =

0z © P N2 ﬁm_g - c?
after a little algebra. If we introduce the diffusivity

kei p I

220810 — ¢

’

then

M A_UPV || N
3 Rel = —2x,pp/ k.

Using the boundary condition at, say= 0, which yields

@-0p,=0p z=0-H

we can integrate the above to yield

%Nv _ _Gp’a

Ip* oy
N2) T NZjo - 2 ﬂ T

o
ot — ¢?

z=0 ﬂm

Then, returning to the quasi-Stokes velocities,

+
U = 91V = 9Py

giving
. _ ksing 9 Aﬁv FWA _P_Nv
U= gz el 4892\ ENT
_ _ksing_caylp® +PWA
T 2fpg 2|0 - o T 4030z
_ _xsindg, PWA _Pwv
=TT 1 T ago\Mne
and

Jo Koo#G 19
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(3.11)

(3.12)

(3.13)

(3.14)
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Recall that the second terms in (3.13), (3.14) are usually small compared with the first tel
that the quasi-Stokes velocities are simply proportional to the diffusivity (which is a functi
position) times the potential vorticity gradient. As shown by Killworth (1997), linear theory im
that potential vorticity is mixed (together with a possible rotation term), and not thickness.

The scalings in Appendix A show that the main term acting to change the mean density
the pseudo-vertical term*p,, with the horizontal terms smaller (o). Thus thehorizontal terms
dominate in the divergence formulation, but theetical term is important in the quasi-Stoke
formulation, as discussed in detail by Tregeieal. (1997).

It is enlightening to connect these two formulations formally. Let us denote the two terms

expression (3.7) faw'p” respectively a# andB. Then, noting that a time derivative of a quadrz

quantity involves multiplication bgkc;, we have immediately

o= A. (315
Similarly,
k . _
B = |% (0, cosf + v, sin) Re(ipp,)
ﬁ ’ ’ 7
= %?»\b - <~cbv
- S0 Vo
Unz _
= (¥ - gar) - Voo
=% .Vyp (316)

since the second term vanishes by thermal wind balance. Thus

(Wp), = A+ B,

P+~W-N.<IU+£.<IUN
=P+ Ui Vo + ¥ Vp,
Similarly, we can compute from (3.9), (3.10),

<I - ACI\E\V = |<I . A—W\UNV + <I . ACINWV
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where the scalings in Appendix A show that the second te@(essmaller than the first and so

neglected. Adding, we find

V-Wp)=p+Ui-Vap—pVu-¥ =p+u - Vp (3.17)
demonstrating for linear theory that the two approaches are identical.
At the surface (or floor) we can evaluagg and y,, and hencew’, using the interior

formulations, which as we have seen will be seriously in error near the boundary. Indeed,

k sing . pa;, " 0, 2
= —— Reli—— (0 - =0, -H
Y1 NﬂmeN mA__D — O_NA OvUv + Lﬁmzu__UN_ , Z >
_ |p? %_69 siné = 0 -H
T 208N2|0 — o f o
0, sinf fo2
_ NA4+%§'NH 0, -H (318)
and
2 ke, cos® V2
V2= m&zm_ﬂ_u = O_L Tt N_/NL“ 2= 0-H
0, cosd v2
_ %% . %v Z=0,-H, (319)

These expressions cannot be zero (else the solutipnifould be identically zero at all depths), :
that the quasi-Stokes streamfunction, using the M formulation for the interior of the fluid, do
vanish at surface or floor for linear theory. (The correct value goes to zero at surface and fl
delta-function-like manner.)

For a channel probleny; vanishes identically, and the surface and floor values oéduce to
xpy/p, = —x - (slope of isopycnals), which is precisely of the form suggested by Gen

McWilliams (1990), although it would be set to zero at such locations in their parameterisatic

4. Depth-co-ordinate eddy parameterisations
Linear theory using density co-ordinates was used by Killworth (1997) to create an
parameterisation which performed well in a channel model simulation (Killworth, 1998). How

that theory was converted from (e.g.) a formulation for bolus velocity into one for the quasi-:
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velocity, without regard for the differences in averaging involved between depth and dens
ordinates. This was done from the perspective that although the two approaches are differe
one approach to suggest an eddy parameterisation in the other remained useful. However, 1
co-ordinate approach was not formally justified by Killworth (1997), although Treguier (1
shows that simple conversions do in practice work rather well. The formulae of the pr
section can be used to produce two linked parameterisation schemes based entirely on ¢
ordinates.

Both approaches start by obtaining approximate solutions to the problem (3.4), yielding
guesses at the wavenumiieorientationd, the shape of the eigenvector in the vertical, and fin
its amplitude. These are given exactly as in sections 6 and 7 of Killworth (1997). Wavenur

estimated a8.51f / C, whereC is approximately

1 (0

- _.‘I N(2) dz,
(C is also used to estimate the deformation radius C/f), and orientation (not used in tt
channel problems to follow, where the orientation is identically zero) is given by an appro:
maximisation of growth rate. The shape of the eigenvector is given by either of
approximations; in this paper we use two cycles of the iterative procedure in Killworth (
section 7), converted directly to depth co-ordinates.

This iteration starts from an approximate formdor

(for nonzero orientation the formula is more complicated), where

gu m wxgo_u gmu ﬁm WIQNO_T iﬁ
are the mean and standard deviation of the mean flow respectively. An initial guess -
eigenvector is taken gs = 0 — co, or, redefiningy = p/(G — c), xo = 1. We express (3.4) ir
terms ofy and integrate either top-to-bottom or from bottom to some depth, resulting in iter

for ¢y, 1 andy, 4 1 in terms of their previous iterates., ; satisfies a simple quadratic
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0 0 cosé 0
&i:\_&xsﬁi + o_i%lw .—\I Oy dz + \wﬂ ._.\Ixii +
0, B cosf (0
_H-—.\I 0%n dz - q .—\I Oxn QNH_ = 0.
The eigenvectog,. 1 is given by

B cosé

K2 N?(2)dZ z
[ N@d @@ - 6 - 552 @) - )z

e =15 @) - aa?
This also gives a shape for the diffusivity, since this is proportiongttofrom (3.11). This
nondimensionally (and arbitrarily) has a value unity at the bottom. The scaling for diffusi
then taken to beA max(a, A)c;, where A is of order unity,max(a, A) is the larger of the
deformation radius and the grid spaéinand the inclusion of; ensures that there is no mixing

baroclinically stable regions. The diffusivity varies both vertically and horizontally.

The first parameterisation simply evaluat¥s- (u’p”) directly, using these scalings ar
formulae (3.5) to (3.7). This is intrinsically a scaling using EfICSince the eddy terms can |

evaluated to second order accuracy everywhere, questions of boundary conditions do not «

formulation:V - (u’p’) can be evaluated everywhere.

The second parameterisation uses the scalings and approximations to compute the qua
streamfunction from (3.9) and velocities from (3.13), (3.14), retaining only the first terms ir
cases (which M suggests is almost certainly sufficiently accurate). The top and bottom bc

conditions on streamfunction are temporarily left undefined, for reasons discussed below.

5. The connection with isopycnal co-ordinates

Although many features appear similar between depth and isopycnic co-ordinate appr
interpretations of means, etc. must of necessity differ, so that care must be taken in
conclusions from one co-ordinate system and applying them to another. A particular case
the delta-functions present at surface and floor in the lateral fluxes of Killworth (1997). Tt
was argued that delta-functions in the bolus velocity of magnikMg/ p, were required to

account for the implicit flattening of the isopycnal surfaces where outcrops impinge on tc

6 See Killworth (1997) for rationale. For the runs heris used consistently.
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bottom. This flattening represented precisely the near-surface and floor changes due to the |

It is useful to examine the role delta-functions near surface and floor possess in le!
ordinates. We show briefly the following: (a), a necessary condition on the diffusivity which
take the same form in vertical as in isopycnal co-ordinates; and (b), that the delta-fu
amplitudes are precisely those of the vertical quasi-Stokes velocity at the surface (compute
interior approximations), so that the ‘missing’ fluxes, which belong to no available EMD, r
precisely the values of the quasi-Stokes streamfunction evaluated using the M (interior) forrr
a. a necessary condition

We note from (3.13), (3.14) that, using interior formulae,

. _ xOy(-sind WWAF_P_NV

u = 7| coss + 3397\ N (5.0
so that, integrating both sides,

1% = 1A - [ x[YP) gz + pA .—o xdz + F:gN_p_ﬁo (52)
H H o\ P, 2]y 4oL\ N* /1w ’
where
sin? 6 — sinf cosé
A = (5.3

—sin@ cosh  cogo
is the turning matrix in Killworth (1997) and, its second column. Integrating the first term on-
r.h.s. by parts, use of (3.18), (3.19) on the l.h.s. together with thermal wind, and cancellatiol

last terms on both sides yields

Io Io o | O
3. Tﬁg u;. Tﬁg L>.5<.%Q_N+§N [ xdz aé
Pz 1H Pz -H

-H -H Pz
The first terms cancel, leaving Killworth's (1997 eqn. 41a), namely

° Kip . vipd * kAyd
._.IIM - Vppdz = ﬂ IIK 20z (5.5

Note that this only uses interior values, and neglects the unresolved boundary laye
parameterisations such as Killworth (1997), in whicks well-behaved at surface and floor, t

additional contributions are negligible. Using the Gent and McWilliams (1990) formulation v
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x is required to drop to zero at surface and floor would involve extra contributions to the b
(5.5). In all cases, though, some form of this condition is the direct consequence of theory
conserves potential vorticity, though the precise structure will depend on the assumption:

Green (1970), for example, derived a simplified form.

b. Surface and floor delta-functions

We write, more simply, still using the M formulation for small perturbations which ey

from boundaries,

_=0
1% = mx u'dz = fA - Tﬂj . (5.6)

Pz In
This expression is precisely the jump in delta-functions used by Killworth (1997) in the isof
formulation, but is now shown to be the jump in quasi-Stokes fluxes between surface and f
least for small-amplitude theory) which reduces to zero if the density range is extended to
the full range of MMD. Thus the values wf at surface and floassing the interior M theory are
precisely those needed to account for the divergence of the horizontal quasi-Stokes flux

play the same role as the delta-functions in isopycnal theory. The rapid changes near sur

floor only exist in terms of MMD, because they relateitoEMD is modified only bV - (u’p’),

which possesses no anomalous behaviour anywhere in the fluid.

6. A special case — the Eady problem
We consider, in parallel, two cases. The first considers what is essentially an infinitely
channel, in which the maximum growth rate is achieved by a wavenumber directed along-c
In this case the eddy amplitude is the same at all valugsTdfe second retains structure cro:
channel, as in the original Eady (1949) paper, and uses this to comgatevatives when
necessary. In both cases the problem becomes two-dimensional.

Setd = B = ¢, = 0, so that the vertical density gradieso/ H is uniform, and the horizonte
density gradient is also uniform and directed inyu#rection, of siz€po0,/ g from thermal wind,

whereg, is constant. For convenience, we nondimensionalise the problem. Scalinig, p on
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pod’H, whereg’ = gAp/ po, mean flona = z0, onog’H/fL, whereL is again the horizontal scal
of the mean flow and is the ratio of the horizontal to the vertical variation in mean derksin,
a', wherea is the deformation radiug/H)“?/f, gives the familiar equation for the perturbati

pressure as

Pz = Kp, p = y(coshkz + iA sinhkz) (6.1)

wherey is the (small) amplitude of the solutiéiere, for convenience, the surface and floor ar
z = +1/2. We denotéy|? by G [which is thusO (a?) in earlier notation]. In the wide casgwould

usually be independent gffor most extant parameterisations; each valugwbuld look similar.
In the case when channel walls are important (i.e., the original Eady proemnguld take the
form cogzy if the channel lies betwegn= *1/2, so that there is no perturbation at the verti

walls.
Applying the boundary conditions/(= 0 at surface and floor) gives the standard results the

1 k 2

.>H|AH jlllv 6.2
i anh; — (6.2)
, 1 2\(2

_A _A
Ol IM Aﬁmjjm | ﬂv Aﬂ | Ooﬁjmv Ame

Then
c=ig
is the purely imaginary phase velocity. For the fastest growing mode,

k = 1.6062, A = 15018, ¢c; = 0.1929. (6.4
We now compute all relevant quantities. We have

V =ikp, U = 0,0 = p, W = ike(p- (z- ©)p) (6.5)
SO

1 . K?GA
Vo' = = Re(ikp - -p) = —
r=3 e(ikp - —p;) >

(6.6)

which is independent af

7 The formulation in density co-ordinates looks almost identical, with the replacemeryofp and ofp by the
Bernoulli functionB = p + pgz. Interpretations of various quantities, of course, differ intrinsically. Near
surface, gquantities vary sinusoidally and the simple example in Fig. 2 is an approximate representatio
problem.
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Next,

ko
2

wp = Re(i[p- (z- op] - -B)

k2oG
2
whose terms are familiar from before. This, of course, vanishes at surface and floor frc

{kc (sintPkz + A% costfkz) — A} (6.7)

boundary condition.

Thus
KA
VPl = =G (68
Wp"), = ok'ci (1 + A) G sinhkz coshkz (6.9)
so that the eddy density flux terms are
o KA 4 2~ o
V. p) = |wo< + oK'ci (1 + A") G sinhkz coshkz (6.10)

In the quasi-geostrophic limit whenis small, thew'p” term is negligible and only cross-stree
variations in amplitude generate changes in the mean density. However, in the pli
geostrophic regime, the mean density can also change because of the (ageostrophic)
velocity.

We can also compute the terms in the TRM formulation away from the horizontal bot
layers. Here, the second term has no effect (it is oriented x the plane only). The remaining

term is simply

Vo' K2AG
W = L — vy = 52 (6.12)
Pz 2
which is uniform inz. Thus
V=9 =0 (6.12)

for this case. (Indeed, in density co-ordinaté¥, = 0 identically.) The pseudo-vertical velocity i

2
W= gy = _A|N>o< (6.13)

and the pseudo-vertical flux is
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K°A
Wp), = Wp, = -W" = |w0<. (6.14)

We now consider the temporal change terms. From M, these are given by (2.1) to (2.3); sub
gives

b= WQ_%OG + AY) sinhkz coshkz
which is of second order compared wgtrso that gradients @gfare also those @ However,

P = 2kcp = ak'c 1+ >NVO sinhkz coshkz (6.15)

which isnot small compared witj;, but the same (2nd) order.

If the effect of eddies is presented as an eddy flux divergence, then we have (respectively

p+ V- @Up)=0,ie

2
b — _%@ + ok’ (1 + A% G sinhkz coshkz = 0. (6.16)

If the effect of eddies is presented using a quasi-Stokes streamfunction, then (respectively)

p+V- WD =p+p+V-UP=0i

p- %@ = p, + ok'c (1 + A G sinhkz coshkz — _A|N>o< =0 (6.17)
Both expressions are identical, as they mustTee two formulations look very different. Suppo
the y-variation of the perturbation is weak. Then in the Eulerian interpretation, the hype
function term gives a decreasepimear-surface and an increase at depth. In the MMD formula
there is no change to interior mean density at all (the changes are confined to the bounda
discussed previously). The effect of the remaining term is uniform in depth, and gives (usu
increase in density at the southern (light) side of the channel and a decrease at the norther

side in both formulations. Fig. 4 shows how these quantities vary in the vertical.

We consider two possibilities in turn, which will demonstraiter alia a shortcoming in

locally-based eddy parameterisations.

8 In the quasi-geostrophic limit, only the termGgpsurvives,
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(a) the eddies have the same amplitude at all points
A local parameterisation would assume the eddies to have the same amplitude at each poi
the channel (alternatively, we can imagine the solution when the channel width be
asymptotically large and the cross-channel variation becomes small). Then the interior quas
velocity is everywhere zero, and changes in density structure are solely produced by
correction to the density trend. This is perhaps not a particularly helpful interpretation, sir
feel intuitively that the densitgoes change in the Eady problem due to the slumping induce
release of A.P.E. as the eddies grow. If our model density field is taken to repretbent it will
not change in the interior until the eddies become nonlinear (beyond the scope of the discus

Most parameterisations in this case yield a uniform (negative) value for the quasi-
streamfunction in the ocean interior, and so — correctly — no cross-channel TRM flow ther
streamfunction must be set to zero on all boundaries. The vertical wall conditions yield, as
5, a flow which contains two delta-functionsviri, with rising fluid at the warm wall and sinkin
fluid at the cold wall. These two circulations — which, as we have seen, are not present in tt
solution — will act to initiate a slumping of the fluid. Once this slumping begins, the problem ¢
to be purely Eady-like, and so is more complicated. Nonetheless, the behawmmitth&t observed
in the Eady solution near the vertical walls, but is acceptable for the EMD interpretation n
horizontal surfaces.

Settingy, to zero at the surface and floor creates additional delta-function fluxes horizc

which further aid the slumping process.

(b) the eddy amplitude varies across the channel

In the actual Eady problem, the amplitude varies across the channel. In such\d casains

zero, butw* is nonzero in both the interior and at surface and floor. Its pseudo-advection of

density contributes part of the change in density, with the M term contributing the remainder.
The solution here is indicated in Fig. 6. Here we assume that the ampBtudereases

monotonically from zero at the southern boundary to a maximum in the centre of the chanr

then decreases to zero again. The changdsnnduced by a quasi-Stokes velocity which upwe
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in the southern (light) half and downwells in the northern (dense) half of the channel, anc

functions in quasi-Stokes horizontal velocity at surface and floor.

No locally-based parameterisation produces the behaviour in (b), preferring instead that

showing that a fuller representation of eddy effects will have to take nonlocal factors into acc

7. Interactions between the two interpretations of density

We now return to the behaviour of the system with the two possible definitions of de

Formally, there are only two approaches: to use EMD, with the eddy termsWbeifgp’); and to
use MMD, with the quasi-Stokes streamfunction evaluated correctly everywhere. However
the M formulae have been used in the earlier cited calculations as if they held everywhere,
note how these formulae produce incorrect values if applied unwisely.

We consider first the change in the area-integrated density field in a channel geometry fc

theory. Now this must be zero: integrating (1.2) across the channel area means that the div.

(Vp")y and(wWp’), both integrate to zero. Thus using an Eulerian mean,

d

— |pdA =0 7.1

raLe )
wheredA represents an infinitesimal ardgdz, so that no mass can be gained or lost from
system. We have seen that the column integral of the NsNEDidentical, so that (7.1) must hol
for accurately evaluated MMD. This is also clear from integrating (1.4) across the domain ar

top to bottom:

W % pdA=0 (7.2)
since the quasi-Stokes streamfunction is zero on all boundaries. However, (7.2) does not hc
interior (M) formulation is used throughout the water column since the integral of density om
surface and floor contributions which are second order in amplitude (being of magnandeof
depth rangex) and so contribute to the same order as the interior differences. Thus compu
made with the interior formulations cannot be consistent. Mass conservation can only t

achieved by requiring, not to vanish at surface and floor.
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Calculations can also be made for the rate of change of potential &tergppendix B shows
that small-amplitude theory correctly conserves energy, s®Pthat KE; = 0. Both KE andPE
have well-defined interpretations, furthermore, as being rates of change of some integral
volume. Using the MMD formulatiorKE; should be identical, since evaluation of kinetic ene
changes under either density interpretation involves an integration over the fluid column
square of the amplitude of the fluctuations, and so further differences are at higher order
differences in the boundary layer near horizontal boundari&&, lis the same for either definitio
of mean density, thelRE; should take the same value also.

Now PE losses aréD(o) smaller than might be expected from scaling arguments, bec

horizontal fluxes Yy - (uy’0’) in the divergence formYy - (ufp) in the TRM form] do not
contribute to changes PE (as can be seen after an integration by parts in the horizontal dire
of the PE tendency terms). Only vertical (or pseudo-vertical) terms are left, plus tepn®ithe
TRM form.

For the Eady problem, we can compute potential energy changes directly. For the Euleria

PE, = % 7o dy dz (7.3)
nondimensionally. Integration across-channel eliminates the horizontal divergence in (6.16),
only the vertical flux alters theE, which from (6.9) is

12

PE, = —K'oci (1 + A) :O QL .— ,,Z Sinhkz coshkzdz

so that
PE, = —0.7180 [Gdy
for the fastest growing mode. HenBE, is negative, corresponding to a release of energ

perturbation kinetic energyE (dominated by the terms), since in this nondimensionalisation

Koc [Gdy (v2
2

1 )
KE = 2kg - ms.?\ Ydz = -

Ip?dz = +0.7180 g Gdy = —PE,
This balance, as noted, holds in general (see Appendix B).

Now we compute the equivalent using MMD. Again, this only yields sensible values if the
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formulae are used everywhere. We do not know how to do this calculation directly, b
contributions from within the boundary layers are small compared with the answer, althou
fact that there are rapid changes near the boundaries is vital to obtaining a non-zero ans

have
_.NE dA = - ._.NT<+®< + (W'p)] dzdy = ._.NASN%VN%QN =
- _.NAQSNVN%QN = -0 _.Nﬁw%% =0 ._.SN%QN

= -1.940 ._ Gady. (7.4)
The difference between the.94 and-0.718 values is precisely equal to the rate of changefof

computed using small perturbation Eady theory in density co-ordinates:

|.—NN. dydp = |H.NNQ.—O dy,
although this will not be pursued further. So estimateBEbthanges using MMD are larger |
magnitude (in this case) than their Eulerian equivalent.
We have already seen that the potential energy is not computed accurately within the
formulation; thus the time rate of change is also found inaccurately, and the energetics of th:

average remain inconsistent.

8. Experiments with channel models
The arguments in the previous sections are partly generic and partly specifically based o
theory. This section examines solutions to two-dimensional emulations of the three-dime
channel model of Killworth (1998), using a variety of formulations to represent the eddy
specifically to examine boundary conditions and interpretations. One example, with dit
physics, was given earlier (Fig. 3).

Briefly, the model covered a longitude range of 2.6°, a latitude range of 5.2°, centred on
and a shallow depth of 300 m. The grid spacings were 0.02° east-west, 0.018° north-sout

were incorrectly stated to be 10 times larger in Killworth 1998) and 20 m vertically,

-33- 27/7/00

viscosities 50 rhs? (horizontal) and 5 x I®vertically and diffusivities 10 fs? horizontally and
10* vertically. The vertical diffusivity was somewhat too large; analysis of the two-dimens
results below shows that vertical diffusion plays an important role in the temperature balance

Starting from a narrow temperature front with uniform salinity, relaxation towards the i
temperature values in bands at north and south of the channel provided a source of potentia
This method has the advantage that there are no regions of unstable or neutral stratificati
avoiding difficulties about parameterisations in such regions. Averages were computed ov
and longitude over 7.25 years between days 300 and 2950. For temperature and velocity th
computed on constant depth surfaces; for the eddy terms, on density (here temperature)
This choice of parameters was partly historical, and partly to avoid a nearly quasi-geos
situation, in which (for example) the Gent and McWilliams parameterisation reduces to cc
lateral diffusion plus two delta functions at top and bottom.

Two-dimensional (latitude-depth) simulations were then run on a Cartesian grid, as de
below, and the 4000-day computations (steady in almost all cases) compared with the &
from the three-dimensional run. Comparisons were made with the temperature field as a fun
y (north) andz, and with the barocliniai velocity® The comparisons are not ideal. Like otf
published work, they are of Eulerian means only, and over a period probably an order of ma
too short for a good statistical comparison. (However, the fields in Fig. 3 were visually unalte
averaging over another period of similar length, so the statistics may be better than we s
Comparisons can not sensibly be made with two-dimensional calculations over the same tin
since the intermediate time behaviour of the full eddying simulation and the two-dimen
calculations is invariably different. Thus only steady state two-dimensional results can be co
with the long-time average. The comparisons are shown in Table 1, and used both ¢
correlation between the fields, which is of little discriminatory use, and a more stringent mea

explained variance due to Visbeck et al. (1997), namely

9 As discussed by Killworth (1998), the two-dimensional runs have no depth-avarafigld, so that only the
baroclinicu can be compared. The barotropidield, as noted by Killworth, plays a not inconsiderable role in
dynamics.
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wherer represents either temperature or zonal velocity, the suffix whether a 2- or 3-dimer

c=1

field is considered (the 3-dimensional field being the zonal and time average above), and
representing a horizontal average. In practice, additional discriminatory power is gain
examining only thes measure, since to a large extent the temperature fields are constrained
relaxation conditions. Both measures exclude the forcing region. Both integration time and t
for averaging have been modified since Killworth (1998). No parameterisation reproduc
‘pushing forward’ of isopycnals in the MMD, so that direct comparisons with it are not useful.

Calculations were made using a variety of two-dimensional parameterisations, all writ
divergences numerically (an alternative would be to use the skew-symmetric tensor formula
Griffies 1998), which are to be compared with the averaged three-dimensional solution. |
shows the three-dimensional solution. To provide a yardstick for the various parameterisatio
7b shows the two-dimensional temperature field using only advection by the actual velocity
plus the horizontal and vertical diffusivities used in the three-dimensional calculation. The s
is radically different, with the stratification almost vanishing in the interior of the channel (d
the imposed vanishing of the vertical temperature gradient at surface and floor). A better y¢
(Fig. 7c) is the same diffusive calculation, but using a horizontal diffusivity of 208'nwhich
clearly gives results very close to the three-dimensional results.

The other parameterisations used were (in order of appearance in Fig. 7):

1 GM90 (Gent and McWilliams 1990, which has a constant diffusivity); Fig. 7d

2 K97 (more properly, the depth co-ordinate version of Killworth, 1997, discussed earlie
which computes a variable diffusivity); Fig. 7e

3 GMs (Gent and McWilliams 1990, but with the streamfunction non-zero at the surfact
Fig. 7f

4 Ks (Killworth 1997, adapted as discussed below); Fig. 79

5 VP (computing(v)p’), directly from small-amplitude formulae, also discussed below);
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Fig. 7h

6 VPWP (computing (Vp')y + (Wp), directly from small-amplitude formulae, also

discussed below); Fig. 7i

Before discussing the results, we briefly examine the rationales for the choici
parameterisations. The first two are straightforward. The GM parameterisation defi
streamfunction and deducesandw* therefrom, usingy, = xp,/p,, with y, = 0 at surface anc
floor; the delta-function changes are thus spread across the (relatively wide) top and botts
points. The diffusivityx is taken as a constant. The K97 parameterisation is as discussed

handling the delta-functions numerically as in Killworth (1998).

The third parameterisation, GMs, attempts to emulate a nonzero value of streamfunc
surface and floor. This is not an easy task numerically, since many apparently straightf
approaches generated numerical instabilities. These included extrapolation of either the is
slope or the streamfunction to the boundary, and computation of boundary values using or
interpolation formulae. A slightly unsatisfactory approach which set the streamfunction at <
(floor) to the values immediately below (above) was eventually used; the disadvantage be
thev* field vanished in the top and bottom grid points.

The fourth parameterisation, Ks, attempted to do the same thing for K97, which only spéc
but notw*. The small-amplitude theory was used to defjnedirectly at surface and floor fror
(3.19), and then/" [given by (3.14)] is integrated w.r.t. depth to obtain the streamfunc
everywhere. No stable scheme was found when Killworth's (1997) parafneésame larger thai

about 6, which was needed for a reasonably accurate representation of the three-dimension

The last two parameterisations, for the EMD, directly evaluate &if), or (Vp'), + (Wp'),
directly from small-amplitude theory, again using Killworth’s (1997) scalings. Neither calcul
requires unknown boundary conditions. Under quasi-geostrophic circumstances,
parameterisations would be identical, but in the channel model run here this is not necess
The former could contain some measure of the rotational flux, though the latter could not

from numerical approximations. Note that direct attempts to parameterise the flux dive
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usually suffer from Veronis effects (Veronis, 1975); however, this approach does not, sir
terms are derived from solutions to the equations of motion and so have the same cons
properties (for the flux terms) as the original system.

Table 1 shows the measures of fit for the solutions for each parameterisation, wi
coefficient (diffusivity ¥ for Gent-McWilliams, the scaling factok for Killworth) adjusted to
values which generate the best fit. Usually not all four fits can be optimised simultaneously,
values cited are slightly subjective (small changes affecting the second significant figure).

The most accurate version of the GM90 parameterisation for this problemcrafsl&0 n? s?,

a little lower than that cited in Killworth (1998). The results for the GM90 (Fig. 7d) are
similar to those of pure diffusion (6c), although slightly less accurate than this unfigld. The
similarity is surprising since the GM90 includes the strong northward (southward) advectio
the surface (floor) which is not present in the simple diffusive case.

The most accurate version of the K97 parameterisation (Fig. 78) ka8, as used in Killworth
(1998) for the same problem. As Fig. 7e shows, this parameterisation is the only one to proc
‘doming’ of the 15.5° isotherm near the northern boundary with any accuracy. It is, as T
shows, the most accurate of the parameterisations.

If w* is not required to vanish at surface and floor, then for this geometry the parameter
used hitherto are insufficient to reproduce the three-dimensional solution. This is because 1
northward advection near-surface is now lacking. For the GM90 parameterisation (Fig.
needed to be increased an order of magnitude (to 120GYnin order to reproduce a
approximation to the three-dimensional fields. Although the temperature field looks reasona
corresponding velocity is poorly reproduced, due to the strong surface front near the s
boundary. A similar finding holds for the K97 parameterisation (Fig. 7g; recall that this cou
be run with a sufficiently high value of for a proper parameterisation). Thus permitting non-z
w* at surface and floor has not achieved a higher accuracy than maintaining*zéoo this

problem and choice of parameterisations.

However, the final two parameterisations (VP, VPWP) do not usés/the) formulation, but
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simply insert a parameterisation for mixing directly. The results (Figs. 7h, 7i) are very similai
VPWP being slightly superior; both yield an accurate representation of the three-dimei
result.

In terms, then, of reproducing tiilerian mean density, most schemes were successful,
the K97 and VPWP schemes marginally superior to the others, and schemes which pe

nonzero quasi-Stokes streamfunctions at the surface were quite inferior.

9. Discussion

This paper has examined two forms of mean density: Eulerian and modified, particularl
respect to the effects their adoption could have on the boundary conditions on parameteris
surface and floor in practical applications.

We have shown that although the extant approximate formulae for the two mean de
suggest they are very similar (the M theory assumes small perturbations, as we do here), th
an order of magnitude more strongly in a thin layer near surface (floor), within which much |
(heavier) fluid occurs. This fluid represents the lighter (denser) fluid which is occasic
advected into the column by the eddies.

This paper has argued that within this narrow layer, quasi-Stokes streamfunctions, v
computed by inaccurate near-boundary second order formulae or exactly, possess a n
function behaviour, which can clearly not be well represented in numerical models. At
amplitude, this layer would still be very thin and almost certainly unresolvable by most
climate models. Thus it might well be that a better behaviour for parameterisations using the
Stokes formulation would be to permit the streamfunction to be nonzero on surface anc
Numerical experiments showed this not to be the case (the errors produced by nonzero
streamfunctions were far larger than one would expect to be produced by the differences |
definitions of mean density).

The remainder of the numerical tests showed that existing parameterisations, formally d

for MMD, proved capable of reproducing EMD well. In which case, does it matter which de
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we interpret a mean as being? One test is to see whether a quasi-Stokes parameterisati
steadily finer vertical resolution, can generate the additional boundary layer effects discusse
start of this paper, which discriminate between the two densities much more strongly than
changes. For finite amplitude eddies, the abnormal geometry used here implies a depth
about 50 m, so with adequate resolution, the differences between EMD and MMD sho
resolvable. Accordingly, and for simplicity, a GM model was run, doubling vertical resol
several times, for the same time periods, requiring the streamfunction to ramp to zero onl
last gridpoint. There were no noticeable changes in density structure near the surface, su
that if we are to distinguish the two forms of density, quite a subtle parameterisation n
needed. Put another way, the parameterisations were reproducing the EMD, despite theol
suggests they should reproduce the MMD. It should be noted, of course, that the calculatio
done with values tuned to fit the Eulerian mean, though wide investigations of paramete

yielded no solutions resembling the MMD.

Another result from the runs was that a direct parameterisation of the Eulerian mixing

V - (Up") appears to be highly accurate in reproducing the EMD, and avoids the Veronis
which usually causes difficulties about direct parameterisations. This is in contrast to sugc
by M, who argued that parameterizing quasi-Stokes streamfunctions would be
straightforward than parameterizing mixing effects directly. Nonetheless, it should be remet
that the (marginally) most accurate parameterisation for this problem was the K97 formt
which used a TRM formulation. Thus no unequivocal recommendation can be made regarc
form of parameterisations.

More direct comparisons clearly need to be made under a variety of forcings, geome
parameter ranges; those of Treguier (1999) and Gille and Davis (1999) would make a use
on the problem. These are solely two-dimensional, and gyre-scale computations using tirr

averaging operator would give valuable three-dimensional information for this problem.
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APPENDIX A: SCALINGS

The scalings should hold beyond the linear limit provided that the length scale remai
deformation radius. If the perturbation pressure is taken to be of pgdéty, wherey is

nondimensional, then from Section 3,

gHy pody
vV ~ W o~ Hfo o’ ~ ;
foa eoyrlo, p g )
2, 2 /\ 7
/\\ux ~ %|IO, S\\U\ - mqmbo@\|—|_ou A|\v\v< - m‘
foag a foag  (Wp), o
HG second term iV
¥ - : ~
foa ' first term in¥ i
s _ GHG . HgHG.
foa a fea'
wp 1
WP, ~ Vi - (W) ot ~ =
vpy o
p~ e, & oo
g B

whereG representy|°.

This demonstrates Treguietral.'s (1997) arguments for the quasigeostrophic regime. In ¢

cases (smalb), (Vp'), dominates ove(wp’), by an amount™. However, in terms of TRM
velocities,w'p, dominates ovev'p, by the same amount. In other words, while we think of lat
TRM motions as relaxing some originally stratified front, ziwo-ordinates the relaxation i
actually produced by pseudo-vertical motions. It is thus important that the pseudo-vertical n

are represented correctly in ocean model parameterisations.
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APPENDIX B: ENERGY CONVERSION

Here we demonstrate th@¢E + PE), = O for the linear theory here; | am not aware of any prc

beyond the quasigeostrophic regime. For simplicity, define again, following Killworth (1997),

%= ) (Bl)

Then the boundary conditions grarey, = 0, z = 0, —H, and the governing equation becomes

Eg ﬁ —o-Kao N@ _
ﬁ N N+ B - c) ﬁma o |x = 0. (B2)
Then we have, integrating only in the vertical,
K
,2 i
KE, = N_a_uorm u? + vA)dz = oo ?% I N&QL dzlgPla - c?.  (B3)

Similarly, again integrating only in the vertical, noting that the horizontal divergences gi

contribution when integrated across the domain,

0 . 0 .
PE. = —g [ 2(Wp)dz = g [ wp'dz (B4
where
W = a : a 0.}
= oZNA - O xes P Ilm (0 -0y, + 0,
so that
W k _N_HAQIovRNA u QNVH—
' = — Re|i———— -C)+
7= 5 (@ - c) g (B9

Hence, noting the second bracket is an exact differential, and using (B2), we have

k 0 (0 -0y N x
PE, = o mmﬁ_ ._.I{xg - ) ﬁL
k 0 « K? 2
= M xmﬁ_ .—‘Ix @ - ovﬁma -C) - me - QTGQL
after use of the boundary conditions. This can be further simplified to
PE; ||_um ’ dzy8| Elov_wlxlm_ (@ - )@ - c)
CT o LT i
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= % dz |xlo - o = —KE, (B6)
%o

as required.

TABLE 1

Agreement measures for various two-dimensional parameterisations

Parameterisation [Value T correlation T explainedu correlationju explained
Advection-diffusionx = 10 m? st 0.80 0.99 0.81 -0.72
Advection-diffusion[x = 200 n? st 0.99 1.00 0.96 0.84
GM90 x = 160 m? st 1.00 1.00 0.95 0.82
K97 A=3 1.00 1.00 0.99 0.97
GMs x = 1200 m? st 0.94 0.99 0.56 -1.46
Ks A =5; numerical 0.91 0.99 0.84 0.16

difficulties for largeA

VP A=3 0.99 1.00 0.96 0.84
VPWP A=3 0.99 1.00 0.97 0.87
—-42—- 27/7/00
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Captions

1. (a) time variation of surface density (assumed sinusoidal). The shaded area shows ¢

which are lighter than the Eulerian mea0). (b) Any eddy transport in density layers in tt
range does not appear if the streamfunction is plotted against Eulerian mean density
shaded area is lost) so that the streamfunction is nonzero at the ‘surface’ density. If
against modified density, streamfunction values are correctly recorded and the streamf
becomes zero at the surface.

. The differences between Eulerian mean and modified density. The upper diagram shows
densities are very close to each other in the fluid interior (differin® by?), wherea is the
small amplitude of the fluctuations). In a zone of sizgear surface and floor, the two densiti
differ by a much larger amoun®(a), as indicated in the exploded lower view (which
actually the exact solution for sinusoidal time variation and uniform interior density gradiel

. The Eulerian and modified mean density for a 4-year and along-channel average of a
permitting channel model discussed in the text. (The average over the previous 4 year
almost identical.) The problem was chosen to provide a larger vertical range over whi
EMD and MMD differ than would hold for the real ocean, so that the vertical resolution (:
was adequate. Also shown is a typical two-dimensional parameterisation steady-state r
this case following Gent and McWilliams (1990), using an eddy diffusion of 26G8.rVhile
the latter does not reproduce the EMD particularly well (true for a wide range of diffusiviti
does not reproduce the MMD at all where this differs from the EMD. This appears to hc

most extant parameterisations.

. Tendency terms for the linear Eady problem. Show/aféassumed independent of the cro:

stream direction for simplicity)y/p’, and the resulting.

Schematic of the quasi-Stokes streamfunction generated from linear Eady theory for
wide channel in which the eddy amplitude is the same at all points across the channel (a
be produced by most parameterisation schemes). No flow is generated save for twc

function vertical velocities at the vertical walls, and two more, this time horizontal, at st
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6.

and floor.

The correct solution of the linear Eady problem’s quasi-Stokes velocity when the
amplitude varies smoothly across the channel. Broad pseudo-vertical velotitiesproduced
with the signs as shown, acting to increase (decrease) the density of the light (heavy) we
additional delta-function horizontal velocities induced by setting the quasi-S
streamfunction to zero at top and bottom.

Contours of temperature (°C; contour interval 0.5°C) and baroclinlocity (m s'; contour
interval 0.004 m $ with negative contours dashed) for (a) the time- and along-cha
averaged three-dimensional eddy-resolving calculation. The remaining panels are all fi
dimensional parameterisations. These are: (b) simple advection and diffusion using the
used in the three-dimensional calculation; (c) as (b), but with a horizontal diffusivity of2(
s 1 (d) the Gent and McWilliams (1990) parameterisation, uging 160 n? si; (e) the
Killworth (1997) parameterisation using = 3; (f) the Gent and McWilliams parameterisatic
modified so that the streamfunction does not vanish at surface or floorxusin$200 m? s1;
(9) the Killworth (1997) parameterisation, similarly modified, but for= 5, which is too

small to reproduce the three-dimensional calculation accurately due to numerical insta

(h) parameterizing simplyp’), directly from linear theory, witlw = 3; (i) parameterizing

(Vp')y + (Wp'), directly from linear theory, wite = 3.
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