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ABSTRACT

We present a study of the energetic zonal band at 34oN in the North Atlantic using a wavelet analysis of

more than 8 years of TOPEX/POSEIDON altimeter data. It is already well-established in the literature

that this zonal ‘waveguide’ is dominated by large-scale propagating features. The wavelet analysis yields

sea surface height variance at a range of periods and wavelengths, allowing us to observe and quantify

evolution of the features in space and time. Signal variance west of the mid-Atlantic ridge at 34oN is

larger than to the east of the ridge: by a factor of ~2 in the period band 0.5-0.9 years, in which baroclinic

Rossby waves and eddies propagate. The period of the peak energy is reduced crossing the ridge from ~1

year to ~7-9 months, before rising again to the annual cycle on the other side. There is also evidence of

energy peaks at periods of ~2-4 years in the Gulf Stream region and east of the ridge.
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1.  INTRODUCTION

Several recent studies have revealed particularly interesting ocean dynamics in a zonal strip around 34
o
N

in the northeast Atlantic, in the vicinity of the subtropical front/Azores Current. These features are

thought to be baroclinic Rossby waves [Cipollini et al., 1997], [Cipollini et al., 1999] or periodic eddies

known as STORMs (SubTropical Oceanic Rings of Magnitude) [Pingree and Sinha, 1998]. A recent

theoretical study examining the role of bathymetry on baroclinic Rossby wave propagation yields a

concentration of propagating energy in a zonal band at, or near, near this latitude [Killworth and

Blundell, 1999]. The objective of the present paper is not to settle the question of whether propagating

signals in the 34
o
N waveguide are Rossby waves or STORMs (or both), but to quantify the variance in

sea surface height (SSH); in particular, variations in space and time.

Time series analysis of SSH anomalies have typically been based upon Fourier analysis or related

methods such as the Radon transform [Deans, 1983]. However, interpretation of such analysis assumes

stationarity in the dataset under investigation, an assumption which is almost certainly not valid. Indeed,

propagating features are likely to change their characteristics as they traverse an ocean basin, varying

with depth of thermocline, bathymetry, local density profile, and so on. In order to detect and quantify

such changes within a data series, we require a technique that can analyse local variations within a data

series. The wavelet transform is such a method. In section 2, we discuss the processing and analysis of

TOPEX/POSEIDON SSH data, including the use of wavelet analysis (in both space and time) in

determining local power spectra. Section 3 presents the results of the wavelet analysis of the altimeter

data and, in section 4, we draw conclusions and make some suggestions for future work.

2. DATA PROCESSING AND ANALYSIS

2.1 TOPEX/POSEIDON Data

The TOPEX/POSEIDON (hereafter T/P) satellite, launched in August 1992, lays down a ground track of

passes 2.7o apart in longitude, repeated every 9.92 days. We applied a standard set of corrections for

orbit errors, atmospheric delays, tides and sea state effects to collocated data (see [Cipollini et al., 1997]).
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Sea surface height (SSH) anomalies are computed over the global ocean relative to the mean SSH

calculated from the data for 1993-1995. (This 3-year mean was chosen to reduce any bias resulting from

active El Niño years). The accuracy of the SSH retrieval with T/P is of the order of 2 cm [Cheney et al.,

1994]. Each cycle of data is then interpolated onto a 1o by 1o grid. The interpolation, which uses a

Gaussian weighted mean of all the data within 200 km of a grid point, reduces the instrument and

correction errors whilst leaving the larger scale signal relatively unaffected. In this study we use 306 T/P

cycles, spanning October 1992 –  January 2001.

2.2 Wavelet analysis

The wavelet method allows one to analyse localised power variations within a discrete series at various

scales [Foufoula-Georgiou and Kumar, 1994]. Wavelets can be considered as building blocks in a

decomposition or series expansion, using dilated and translated versions of a mother wavelet, each

multiplied by an appropriate coefficient [Farge, 1992]. The local wavelet power spectrum is the square

of the wavelet coefficients [Torrence and Compo, 1998]. The global wavelet spectrum is the average

spectrum over all time, equivalent to the Fourier spectrum. We make the usual choice here of adopting

the Morlet wavelet, which is a complex-valued, modulated Gaussian plane wave, widely used in the

study of geophysical processes. It is given by ( ) = −1 / 4ei e− 2 / 2, where  is the nondimensional

frequency which must be equal to, or greater than, 5 to satisfy the wavelet admissibility condition

[Farge, 1992].

3. ANALYSIS

3.1 Wavelet spectra at point locations in the ‘34oN waveguide’

In this paper, we restrict attention to the previously reported zonal band of high-energy propagating

features near 34oN in the northeast Atlantic which, for convenience, we here term the ‘34oN waveguide’.

We apply a wavelet analysis in this waveguide for the first time, as far as we are aware, to try to detect

and quantify changes in variance, frequency and wavenumber content of the SSH signals. We examine

T/P time series data at grid points separated by 1o in longitude along the zonal waveguide at 34oN. At
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each location we calculate from the time series data: the local wavelet spectrum, the global wavelet

spectrum and a scale-averaged time series (in order to home in on specific periodic features of interest).

We also perform a wavelet analysis in space, along the longitude dimension, to examine possible

chnages in wavenumber content. From previous studies in this region (e.g. [Cipollini et al., 1997] and

[Pingree and Sinha, 1998]), it is known that propagating features, whether eddies or baroclinic Rossby

waves, occur at periodicities of ~6-10 months. We therefore perform scale-averaging in the period band

0.5-0.9 years. Examples are given in Figure 1 for the locations 43
o
W and 28

o
W in the 34

o
N waveguide.

The dashed contours in Figures 1b and 1f indicate the cone of influence, below which edge effects may

be important [Torrence and Compo, 1998]. Note from Figures 1b and 1f that the frequency content

changes with time: something which a conventional Fourier analysis would not detect. The solid contour

in Figures 1b and 1f indicates the 98% confidence level, assuming a white-noise background spectrum

defined by the variance and number of points of the original time series. Dashed contours in Figures

1c,d,g and h indicate the 98% confidence level. At 28
o
W the strongest peak occurs at, or close to, the

annual period, corresponding to the seasonal steric effect (Fig 1g). Secondary peaks occur at ~7 months,

corresponding to known propagating Rossby waves and/or eddies, and a tertiary peak at ~20 months.

There is also a peak at ~4 years, though this must be treated with caution because of the limited length of

the time series. The time series of the scale-average wave power in the period range 0.5-0.9 years (Fig

1h) have maxima around February 1993, April 1995, August 1997 and August 2000. Further west, at

43
o
W, the strongest peak now occurs close to 8 months, again consistent with known properties of

propagating Rossby waves and/or eddies, with the second strongest peak at the annual cycle (Fig 1c).

There is a tertiary peak around 18 months, and longer-period peaks that, once again, are probably not

well-defined due to the finite length of the time series. In the 0.5-0.9 year scale-average band, there are

peaks in June 1996 and September 1998 (Fig 1d). Examining time series of scale-average wave power at

many successive locations, similar to Figures 1d and 1h, shows westward propagation of features.

Objective estimation of speed in a particular period band can be done using the Radon transform  (e.g.

[Chelton and Schlax, 1996 ], [Polito and Cornillon, 1997 ] and [Cipollini et al., 1999]) applied to the real

part of the wavelet transform for that period band. This is analogous to bandpass filtering with the

passband corresponding to the period band of interest (G. Compo, pers. comm., 2001). In the eastern
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basin (between 38
o
-8

o
W) the estimated speed is ~2.9 cm/s; in the western basin (75

o
-39

o
W), the speed is

higher at ~4.1 cm/s, consistent with the deeper thermocline there. These speeds tally with previously

reported findings (e.g. [Chelton and Schlax, 1996] and [Cipollini et al., 1997]).

3.2 Peaks in the global wavelet spectra

Let us now examine the global wavelet spectra at 34
o
N, as plotted in Figure 2a, with the corresponding

bathymetric section from [Smith and Sandwell, 1997] shown in Figure 2b. Note that each vertical

(constant-longitude) slice in Figure 2a corresponds to a global wavelet spectrum at a particular location,

as plotted in Figures 1c,f. The solid contour indicates the 98% confidence level. At 34
o
N, the strength of

variance in signals west of the mid-Atlantic ridge is larger than to the east of the ridge: approximately

twice as large in the period band 0.5-0.9 years, corresponding to first-mode baroclinic Rossby waves

and/or eddies. In particular, wavelet power rises on the west-facing downward slope of the ridge (~38
o
-

48
o
W).

The dominant period, i.e. the period of the peak energy, is reduced crossing the ridge, from the annual

cycle to a period of ~7-9 months, before rising again to the annual period. There is also evidence of

longer-period energy at periods 2-4 years between ~65
o
 - 75

o
W (Gulf Stream region) and east of the

ridge (25
o
 - 35

o
W). Applying wavelet analysis in space (along the longitude axis) at different times (T/P

cycles), yields power spectra as a function of wavelength (Figure 2c). This confirms the location where

variance changes abruptly: between ~38
o
-48

o
W, on the west-facing downward slope of the ridge. Peak

energy occurs at wavelengths in a band of ~500-1000 km. This is consistent with reported observations

that the dominant propagating features at 34
o
N have wavelengths of ~500 km ( [Cipollini et al., 1997]

and [Pingree and Sinha, 1998]).

3.3 Power Hovmöller plots (longitude-time diagrams)

If we scale-average the wavelet power spectra of sea surface height anomaly data at a number of

locations, we can examine the temporal and spatial variability of the SSH features. Figure 3a shows such

a ‘power Hovmöller’ plot [Torrence and Compo, 1998] for 34oN in the period band from 0.5-0.9 years,
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corresponding to the propagating features of interest. Figure 3b is the zonal average of the data field in

Figure 3a. The time-averaged field is shown in Figure 3c. Note that wavelet power west of the ridge

(~0.005 m2) is more than twice that on the east of the ridge (~0.002 m2), with peak values on the west-

facing downward slope of the ridge (0.007 m2). The maximum power in this period range occurs in

October 1995, perhaps because of enhanced atmospheric forcing or baroclinic instability of the Azores

Current around this time. However, a thorough analysis is outside the scope of this paper. Edge effects

reduce the wavelet power over a few months at the start and end of the time series.

Note that it is not appropriate to use wavelet power Hovmöller plots to estimate propagation speeds of

single travelling waves. This can be understood by considering the idealised case of a perfect sine wave

at each longitude (similar to a narrow bandpass plot). In this case, and neglecting edge effects, the

wavelet power will just be a constant with time, regardless of longitude. No propagation would therefore

be observed in the power Hovmöller plot. On the other hand, packets of waves moving with a particular

group velocity would appear as diagonal alignments in a power Hovmöller plot. Since it is not always

clear whether one is observing quasi-continuous single Rossby wave events, or groups of Rossby waves,

one should avoid inferring propagation speeds from power Hovmöller plots. Indeed, applying the Radon

transform to the data in Figure 3a, in the expectation of estimating propagation speeds, yields speeds that

are significantly too low: speeds of ~ 0.9 cm/s in the eastern basin and ~1.3 cm/s in the western basin. In

short, wavelet power Hovmöller plots are useful for analysing changes in power with space or in time

(applying the usual caution at the start/end of the time series) but do not tell us how fast travelling waves

are moving (C. Torrence, pers. comm., 2001).

4. SUMMARY AND CONCLUDING REMARKS

We have investigated a zonal ‘waveguide’ of enhanced sea surface height variance at 34oN in the north

Atlantic using a wavelet analysis of more than 8 years of TOPEX/POSEIDON altimeter data. Use of the

wavelet method allows analysis of the temporal and frequency characterisation of non-stationary signals.

It is not generally understood why there should be a band of enhanced energy at this latitude, through

baroclinic instability of the Azores Current [Alves and Colin de Verdière, 1998] and the effect of
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bathymetry (e.g. [Killworth and Blundell, 1999] and [Tailleux and McWilliams, 2000]) may both play a

role.

The strength of variance in signals west of the mid-Atlantic ridge at 34
o
N is greater than to the east of the

ridge: approximately twice as great in the period band 0.5-0.9 years, corresponding to first-mode

baroclinic Rossby waves and/or eddies. A change in Rossby wave amplitude crossing the ridge has been

reported by [Polito and Cornillon, 1997], who suggest that a conversion of some energy from baroclinic

to barotropic mode may be responsible. The period of peak energy is reduced crossing the ridge, from the

annual cycle to a period of ~7-9 months, before rising again to the annual period. There is evidence of

energy peaks at periods of ~2-4 years in the Gulf Stream region the (65
o
-75

o
W) and east of the ridge (35

o

-45
o
W ). However, variance at periods greater than ~3 years falls below the cone of influence, and should

probably be disregarded. Large-scale feature propagation (Rossby waves or eddies) occurs in the period

range 0.5-0.9 years at speeds of ~ 2.9 cm/s in the eastern basin and ~4.1 cm/s in the western basin,

consistent with previous estimates at this latitude. We intend to extend the scope of this work to a

wavelet analysis of the global ocean using not just SSH data, but sea surface temperature and ocean

colour data.
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FIGURE CAPTIONS

Figure 1. Wavelet analysis of TOPEX/POSEIDON sea surface height anomaly data in the northeast

Atlantic at two sample locations: 34oN, 43oW (a-d) and 34oN, 28oW (e-h). (a) time series of height

anomaly data. (b) wavelet power spectrum. Dashed line indicates the cone of influence, below which

edge effects become important, and the solid contour is the 98% confidence level. (c) the global wavelet

power spectrum; dashed contour is the 98% confidence level. (d) the scale-average time series for the

period-band 0.5 – 0.9 years; (e)-(h): as for (a)-(d), respectively.

Figure 2. (a) Global wavelet spectrum in the zonal waveguide at 34oN. The solid contour is the 98%

confidence level. Note the dominant period drops from 1 year to ~7-9 months between ~48o-40oW. (b)

bathymetric section at 34oN. The mid-Atlantic ridge  is between ~45o-25oW. (c) Local power spectrum as

function of wavelength. Note the strong variance in the wavelength band 500-1000 km on the westward-

facing downward slope of the ridge, cf. (a).

Figure 3. (a) A power Hovmöller plot at 34oN of 0.5-0.9-yr averaged wavelet power in sea surface

height. The solid contour is the 98% confidence level; (b) the average of (a) over all longitudes; (c) the

time-average of (a).
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