Natural Environment Research Council

Institute of Geological Sciences

Mineral Reconnaissance Programme Report

No. 4
Investigation of copper mineralisation at Vidlin, Shetland

This report relates to work carried out by the Institute of Geological Sciences on behalf of the Department of Industry. The information contained herein must not be published without reference to the Director, Institute of Geological Sciences.
S. H. U. Bowie Programme Manager Institute of Geological Sciences 64-78 Gray's Inn Road London WC1X 8NG

Mineral Reconnaissance Programme Report No. 4

Investigation of copper mineralisation

at Vidlin, Shetland

Geology:
F. May, BSc., PhD., D.I.C.
G. C. Clark, BSc., PhD.,
C. G. Smith, BSc.

Photogeology:
J. H. Bateson, BSc., M.I.M.M.

Geophysics:
A. J. Burley, BSc., PhD.
M. E. Parker, BSc.

Geochemistry:
J. S. Coats, BSc., PhD.

Mineralogy:
P. R. Simpson, M.A., MSc.
M. J. Cope

Discussion and Conclusions:
M. S. Garson, BSc., PhD., F.I.M.M.
with analytical contributions by Analytical and Ceramics Unit
and Mineralogy Unit

The Institute of Geological Sciences was formed by the incorporation of the Geological Survey of Great Britain and the Museum of Practical Geology with Overseas Geological Surveys and is a constituent body of the Natural Environment Research Council.
© NERC copyright 1976

It is recommended that reference to this report be made in the following form:
GARSON, M.S., MAY, F. and others. 1976. Investigation of copper mineralisation at Vidlin, Shetland. Miner. Reconnaissance
Rep. Inst. Geol. Sci., No. 4.
CONTIANTS Page
Summary v
INTPODUCTION 1
Location and Topography 1
GFOIOGY 3
Photogeology 3
General Geology 7
The Calcareous Unit 7
The Sulphide-Rich Horizon 9
Intrusive Igneous Rocks 11
GFOPHYSICAL SURVEYS 13
The Measurements 13
Description of Results 13
Assessment of Results 16
The Aeromagnetic Anomaly East of Vidlin 16
GEOCHEMICAL SURVEYS 16
Orientation Sampling 20
Method 21
Results 23
Conclusions 27
MINERAIOGY 29
Mineralogy of Outcrop Specimens 29
Electron Microprobe Analyses 30
Mineralogy of Drill-Cores 32
DRIILING RESULTS 34
DISCUSSION AND CONCLUSIONS 38
RHFERTNCES 44
APPENDIX .I Geophysical Survey Results A1. 1
Section 1. Magnetic field-profiles, resistivity and induced polarization pseudosections A1. 1
Section 2. Electromagnetic survey profiles A1. 2
APPENDIX II Geochemical Sample Numbers and Localities A1. 1
APPENDIX III Geochemical Survey Results A3. 1
Table 1. Soil samples, Vidlin A3. 1
Table 2. Panned till samples from Vidlin A3. 3
APPENDIX IV Drill-Core Logs A. 4
APPENDIX V Assay Results of Drill-Core Samples A5. 1

IILUSTRATIONS

Fig. 1. Map showing location of sulphide mineralization noted by D. Haldane in the Vidlin District, Shetland. 2
Fig. 2. Photogeological lineations in the Vidlin District. 4
Fig. 3. Geological map of the Vidlin District by F. May (based in part on the work of Dr D. Flinn). 5
Fig. 4. Geological map of Vidlin Ness (in back pocket).
Fig. 5. Geological map of part of the coast of Dury Voe (in back pocket).
Fig. 6. Sketch maps of mineralized localities at Vidlin Ness. 6
Fig. 7. Geophysical anomalies in the Vidlin District. 12
Fig. 8. Positions of sources of geophysical anomalies. 15
Fig. 9. The aeromagnetic anomaly east of Vidlin. 17
Fig. 10. Ground profile across the aeromagnetic anomaiy. 18
Fig. 11. Soil profiles at localities 1, 3 and 4 on Vidlin Ness with copper concentrations. 19
Fig. 12. Location of geochemical and geophysical traverses at Vidlin. 22
Fig. 13. Copper in base of till samples, Vidlin. 24
Fig. 14. Cu - Zn in till samples from Vidin. 26
Fig. 15. Geochemical variation on selected traverses, Vidlin. 28
Fig. 16. Drill-hole intersections at Vidlin Ness, localities 1 and 2. 36
Fig. 17. Drill-hole intersections at Vidin Ness, localities 3 and 4. 37

Summary

A co-ordinated geological-geochemical-geophysical investigation of copper mineralization in the area from Vidlin Ness to Dury Voe, Shetland was carried out in late 1974 and in 1975, followed by a drilling programme in early 1976. The mineralization which occurs within an amphibolitic belt (possibly metamorphosed tholeiitic lavas) consists of a strata-bound sulphide horizon outcropping at four localities at Vidlin Ness within a Dalradian succession of dominant calcsilicate granulites and minor marbles and semipelitic gneisses. The massive sulphides comprise mainly pyrrhotite and interesting amounts of chalcopyrite, sphalerite and galena associated with sulphide-bearing quartz-rock and tremoliterock.

A southern extension of the known mineralization is indicated by linear geophysical anomalies and occasional outcrops of sulphide-bearing amphibolite, and at the northern end well-defined $B M$ and magnetic anomalies suggest that the belt of massive sulphides at Vidin Ness has a strike length of at least 1000 m . A geochemical base of till anomaly, south of the outcropping massive sulphides at Vidlin Ness, strengthens the case for this strike length, and a second anomaly for copper, lead and zinc just north of Dury Voe on the line of weakly conductive and magnetic anomalies may indicate leakage from an additional body of subsurface massive sulphides.

An extension of the sulphide horizon to the north is indicated by a pronounced magnetic anomaly in Vidlin Voe on strike with the northernmost outcrop of the sulphide horizon (Dr D Flinn, pers. comm.)

Six drill-holes penetrated the sulphide horizon at Vidlin Ness confirming that it persists laterally for at least 500 m and in depth to probably at least 100 m . The horizon increases in thickness from just under 2 m in the southern drill-holes to about 10 m in the most northerly drill-holes. Average values across the sulphide intersection range from $0.46 \% \mathrm{Cu}$ and $0.12 \% \mathrm{Zn}$ in the south to $1.19 \% \mathrm{Cu}$ and $1.27 \% \mathrm{Zn}$ in the north.

The sulphide horizon at Vidlin is of comparable grade and thickess to stratabound sulphide depoits mined in Scandinavia which commonly form deposits of from 1,500,000 to $10,000,000$ tonnes of ore.

Investigation of copper mineralization at Vidlin, Shetland

INTRODUCTION

Vidin Ness was geologically surveyed in 1930 by D Haldane who noted sulphide mineralization (termed a "pyrites bed") at three localities on the Ness itself, and an additional occurrence east of Skeo Taing on Dury Voe to the south (Fig. 1). The sulphide occurrences were re-examined by R F Pomer (1961) and the possibility that these might be of economic interest was pointed out by Dr D Flinn in 1974 during his co-operative work with the Institute of Geological Sciences in the production of Sheet 128. $\mathrm{Dr} \mathrm{S} H \mathrm{U}$ Bowie considered that it would be worth following up these occurrences and in June 1974, he collected seventeen samples of mineralized rock and country rock from Vidlin Ness for mineralogical and chemical studies. His field examination confirmed the possible economic potential of the area, and analyses of his mineralized samples showed values of 0.13% to 12.2% copper, 0.01% to 1.7% zinc, up to 0.23% lead, and small amounts of cobalt, chromium and nickel. These results were considered to be of sufficient interest to warrant carrying out a co-ordinated geological/geochemical/geophysical investigation of the area from Vidlin Ness to Dury Voe during 1975, followed by a drilling programme in early 1976.

Location and Topography
The area investigated consists of a strip of country about 0.5 km wide extending over a distance of 4 km south-southwestwards from Vidlin Ness to Skeo Taing on Dury Voe. The land consists of rough peat moor, largely covered with heather, and indifferent grass pasture on which there is poor grazing for sheep. The rocky coastal sections on the north headland of Vidlin Ness and at Skeo Taing give way locally to small deeply-indented cliffs.

The area is poorly drained with virtually no streams in the northern part from Vidlin Ness to Vidlin village. Further south there is an ill-defined pattern of minor streams and channels which carry the drainage from the peat moors to a small loch south of Vidlin village and then into Vidlin Voe. North of Skeo Taing there is one well-defined stream course with minor tributaries rising in the Hill of Vidlin. The main topographic features are the low ridge $\mathbf{(2 0 - 4 0 m}$ above sea-level) formed of calc-silicate granulites which extend from just west of Vidlin Ness northwards to the Ness, and the rounded hill of resistant coarse-grained pelitic schists which rises to about 50 m north-northesast of Skelberry.

The population consisting of a few scores of people is concentrated mainly in Vidlin village which has a deep harbour for small boats and in scattered

Fig. 1. Map showing location of sulphide mineralization noted by D. Haldane in the Vidlin District, Shetland
farms in the Skelberry area. There are no habitations in the immediate area of the mineralization at Vidlin Ness.

GEOLOGY

Preliminary geological mapping was carried out by Dr G C Clark in early 1975 (Report dated 11/4/75), and this was followed by more detailed mapping in October, 1975 by Dr F May (Report dated 5/1/76).

The preliminary mapping indicated that the four northern outcrops formed part of a single stratabound zone stretching for at least 500 m and that the Skeo Taing pyritiferous zone was not part of a southern extension of the Vidin Ness mineralization. Descriptions of the mineralization at each locality are included with more detail in the section on the sulphide horizon below. An aeromagnetic anomaly on the promontory east of Vidlin Voe noted by Dr A J Burley and M E Parker was considered to be due probably to stauroliteschist bands in permeation gneiss.

Photogeology
The object of the photogeological investigation (Report dated 21/5/75 by $J H$ Bateson) was to identify and plot the main linear features of the area with a view to providing information for use in the further exploration of the mineralization on Vidlin Ness and at Skeo Taing.

The panchromatic photography (scale 1:10,000) available for this interpretation comprised:- Run 67-181, photos 604, 607, 610; Run 67-240, photos 6-576 to 6-578 and 6-583 to 6-585.

Linear features (Fig. 2) are of two main types. The majority (peckedlines) have been identified with the aid of the stereoscope; a smaller number (dotted lines) were inserted from a direct study of the photographs without the use of stereoscopic images.

The precise nature of these features is not clear from the photographic evidence but it seems that the main "grain" of the area is indicated by the continuous lineation pattern from Vidlin Voe to Skeo Taing which is in general accord with the stated strike of the rocks. Many of the lineations with an approximate E-W orientation could be faults but the data are inconclusive.

There are areas in which a relatively high density of lineations are recorded - these are interpreted as areas of rock outcrop and also areas in which bedrock is obscured by relatively thin overburden.

Limited observations on the rocky coastal areas indicate that the bedrock contains many lineations with NW-SE, N-S and approximately E-W being the most frequent directional trends.

Attempts to trace the known mineralized zone (extending from A to B on Fig.2) were not very successful. This study does however identify similar trending features which cross the road westwards from Vidlin and which could be related to the main features extending to the general area of Skeo Taing

Fig. 2. Photogeological lineations in the Vidlin District

Fig. 3. Geological map of the Vidlin District by F. May (based in part on the work of Dr D. Flinn)

Fig. 6. Sketch maps of mineralized localities at Vidlin Ness
where other mineralization has been reported (C on Fig.2).
From this examination it was apparent that further geophysical surveys to trace this mineralization were required in traverses up to 750 m long extending eastwards from the road between Grunna Voe and Skelberry.

General Geology

The general geology of the area is shown in Fig.3. In Figs. 4 and 5 the coast section of Vidlin Ness, the inland area around Vidlin village and part of the coast of Dury Voe are treated in detail. Sketch plans of the main exposures of the mineralized zone are shown in Fig.6.

The coast sections are only interrupted by a few shingle beaches but inland there is an almost continuous cover of boulder clay and peat. A number of small inland exposures known to occur north of Dury Voe were not examined during the present survey because it was thought advisable to concentrate most of the time available on the coast sections. Field identification of the rock types has been supplemented by petrographic examination of 14 thin sections.

The mineralized horizon lies within a steeply-inclined succession of medium to high grade metamorphic rocks lying to the east of the Nesting Fault which has a dextral displacement of 15 to 16 km (Flinn, 1967). The rocks immediately east of the fault are migmatites in which the host rock is of psammitic aspect. These have been correlated with the Moine of the Scottish Mainland (Flinn et al, 1972). The porphyroblast gneiss (see Fig. 3) which forms the most easterly unit of the Moine migmatites is a distinctive rock containing rounded microcline porphyroblasts up to several centimetres across. The rocks to the east of the porphyroblast gneiss are considered to be Dalradian and to young in an easterly direction. A basal psammitic unit up to 140 m thick is succeeded by a thick calcareous unit consisting mainly of flaggy calc-silicate rocks interbanded with semipelite, crystalline limestone, hornblende-schist and very minor pelite. The rocks are medium to fine-grained and the degree of migmatisation is generally low although towards the east, particularly on the shore of Dury Voe; narrow pelitic bands carry feldspar microaugen. The calcareous unit is succeeded to the east by coarse-grained micaceous gneiss of pelitic to semipelitic aspect containing a few bands of hornblende-schist. Certain bands within the gneiss give rise to the magnetic anomalies observed on the eastern extensions of the geophysical traverses south of line 1600 .

The metamorphic rocks are cut by a number of intrusions of pegmatite, granite, felsic porphyrite and lamprophyre.
The Calcareous Unit
A tectonite fabric which is evident in most of the rocks shows that the area has been affected by plastic deformation and that the present thickness of the calcareous unit of approximately 800 m is not necesaarily the original stratigraphic thickness. The fabric consists mainly of a schistosity.

A linear element can be detected in most places but except in the limestone at Vidlin village it is not conspicuous. The schistosity lies parallel to the lithological layering, the two planar structures forming the foliation shown on the maps and sketch plans (Figs. 3-6). Folds associated with the fabric are uncommon but later brittle-style folds occur for example on the headland south of Little Holm. Minor faults with a throw of a few metres are fairly common. Zones of intense crushing and shattering occur up to 170 m east of the Nesting Fault on the shore of Dury Voe.

More than half of the calcareous unit consists of striped calc-silicate rock and semipelite. Hard ribs 2 to 20 cm thick alternate with easily weathered carbonate-bearing ones of similar thickness. Individual ribs generally maintain a constant thickness for several metres along the strike but in the section south west of Little Holm the layers are lenticular, probably the result of more intense deformation in that area. The rocks have a dull greyish or greenish colour and it is not always easy to distinguish calc-silicate-bearing layers from semipelitic ones. Calc-silicate rock associated with hornblende-schist on the north coast of Vidlin Ness at HU 48126678 has been examined in thin section and found to contain abundant tremolite together with some plagioclase, phlogopite and zoisite. A band, 5 m thick, exposed on the shore of Dury Voe at locality B (Fig.5) contains, in addition, a colourless pyroxene, potash feldspar and disseminated iron sulphide. This band is of particular interest because it is probably responsible for the I.P. anomaly located along the strike to the north.

A few thin but well-defined pelitic bands are exposed on the shore of Dury Voe. They contain single-crystal microaugen of oligoclase and potashfeldspar, the former being the most abundant.

Crystalline limestone is particularly abundant in the Dury Voe section. Most of it is very impure owing to the presence of layers rich in calcsilicate minerals. It is interbanded on all scales with calc-silicate rock and semipelite and many of the bands have transitional boundaries. A thick limestone showing intense internal folding runs through Vidin village. Only two bands of limestone are exposed on Vidlin Ness. East of locality 1 (Figs. 4 and 6) a band of limestone averaging 1 m in thickness can be followed along the strike for 150 m and used to demonstrate the discordant nature of the sulphide horizon described below. The decrease in the amount of limestone when the calcareous unit is traced northwards from Dury Voe to Vidlin Ness is probably a sedimentary facies variation.

Quartzose bands are found among the calc-silicate rocks and semipelites. Well-bedded quartzite about 30 m thick and containing feldspar grains which are probably of detrital origin is exposed on the shore of Dury Voe at locality C (Fig.5). Quartzite is also a constituent of the sulphide horizon.

At Vidin Ness there is an important development of hormblende-schist. It is intimately interbanded with calc-silicate rock and it is this interbanded sequence which contains the sulphide horizon. West of locality 1 (Fig.4) the hornblende-schist bands, making up about 50% of the total rock, vary from a metre or so down to a few centimetres in thickness but to the east and south individual bands are much thicker. Much of the hornblende-schist probably dies out a short distance south of Vidiln village, and on the shore of Dury Voe although bands up to 5 m thick are common they constitute less than ten per cent of the calcareous unit.

The hornblende-schist is generally homogeneous but an internal foliation caused by variations in the proportions of hornblende and feldspar has been noted in places. Small garnets are present and in thin section the hornblende crystals are seen to have a characteristic pale-brown core and a narrow greenish rim. Minor amounts of iron sulphide occur and a band about 8 m thick on the shore of Dury Voe at locality A (Fig.5) contains about four to five per cent of the material, sufficient to cause a rusty-weathering crust.

Coarse-grained amphibolite, apparently unique in the calcareous unit, lies along the eastern side of the sulphide horizon between localities 2 and 3 and faulted lenticles of it are found at locality 1. In hand specimen it is black in colour with conspicuous randomly-orientated crystals of hornblende, biotite and chlorite. It has an ultrabasic appearance although in thin section it is found to have about 5% plagioclase and quartz. The Sulphide-Rich Horizon

A sulphide-rich zone reaching more than 10 m in thickness is exposed at several localities on the coast of Vidlin Ness (Figs. 3, 4 and 6). It runs approximately parallel to the regional strike for at least 550 m . In the north it extends under the sea for an unknown distance and in the south there is geophysical evidence to suggest that it may continue inland (Burley, July 1975). The contacts against the adjacent country rock are sharply defined but on the skerry at locality 1 (Fig. 6) the sulphide-bearing rocks appear to grade into hornblende-schist. In places the contact is discordant with respect to the foliation in the country rock although there is very little of the crushing that might be expected if this was due to faulting. At the south end of locality 4 the sulphide horizon abuts against a "nose" of hornblende-schist and appears to split into two branches. The western branch appears to pass inland where is covered by a thin deposit of drift but it could probably be exposed by trenching. The eastern branch follows the coast line just below low tide level and reappears 70 m south of locality 4 where it is at least 3 m thick. It probably dies out some distance further south because there are no indications of it where it would be expected to intersect the coast again at HU 47956609.

The foliation within the "nose" of hormblende-schist runs parallel to the contact which, superficially at least, resembles a fold closure.

Determination of the angle of dip presents a problem because all the exposures are at sea level and the sulphide horizon is only seen for a maximum of zm in a vertical direction. However it is reasonable to assume that it is sub-parallel to the foliation which dips to the west at 70° to 80°.

Confirmation of this is provided in the six drill-holes.
The sulphide horizon is made up of massive sulphides, sulphide-bearing tremolite-schist and quartz-rock. The internal relationships are difficult to determine owing to the presence of a thin ferruginous crust produced by weathering. The massive sulphides usually have gradational boundaries against the tremolite-schist but the quartz-rock has fairly sharp contacts. There are vague fold structures particularly at localities 1 and 4 and the quartz-rock bands are discontinuous.

The massive sulphides are non-foliated and have a patchy granular texture due to the uneven distribution of iron sulphide, chalcopyrite, carbonate, amphibole and quartz. Locally there are small amounts of sphalerite and galena, particularly at locality 3. The tremolite-schist varies from fine-grained and well-foliated to coarse-grained and non-foliated. In addition to the tremolite it also contains quartz, muscovite, phlogopite, plagioclase and sulphides. The quartz-rock consists of parallel-orientated blades of tremolite in a matrix of granular quartz. Minor amounts of phlogopite, sulphides and elongated aggregates of plagioclase are also present. A well-bedded siliceous rock exposed on the skerry at locality 1 has been identified as chert by M S Garson (October, 1975) but whatever its origin it is now in the condition of quartzite. Similar cherty material occurs at locality 4 where there are also some siliceous rocks of probable sedimentary origin.

Weathering of the sulphide-rich rocks and the consequent release of iron into water percolating downill has led to the formation of limonite-cemented drift preserved as erosion-resistant patches at localities 1, 2 and 3.

Two mineralized bands are exposed on the shore of Dury Voe. At locality A (Fig.5) hornblende-schist contains more than the average amount of iron sulphide but because it has not been detected geophysically to the north it is probably only of local significance. A band of calc-silicate rock 5 m thick at locality B (Fig. 4) contains disseminated iron-sulphide, and geophysical evidence (Burley, July 1975) suggests that it may be a southerly extension of the Vidlin Ness sulphide-rich horizon.

The mapping has shown that the copper-bearing sulphides at Vidin Ness occur within an interbanded sequence of calcareous metasediments and basic rocks (hornblende-schist) which may be of contemporaneous volcanic origin.

Locally at least the sulphide horizon is associated with an unusual coarsegrained amphibolite which has ultrabasic affinites. The sulphide horizon trends approximately parallel to the regional strike and is probably continuous between locality 1 and locality 4 where it appears to split into two branches, the easterly one pinching out within 250 metres. The internal folds and foliation show that it has suffered fairly intense plastic deformation and the local discordances noted along the margin are probably the result of shearing movements under deep-seated conditions during the regional metamorphism although later faulting under brittle conditions may also be a factor particularly at locality 1. The presence of tremolite-schist and quartzite show that the horizon is of sedimentary origin although the sulphides were not necessarily introduced at the time of deposition.

Much of the hornblende-schist wedges out south of Vidlin and in the same direction the proportion of crystalline limestone increases. These variations probably represent original facies changes and are significant in connection with possible extensions of the sulphide horizon. If the sulphides are genetically related to the basic rocks, which seems likely, then the sulphide horizon probably dies out towards the south. Conversely it would be expected to be more strongly developed under the sea to the north of Vidlin Ness. The line of I.P. anomalies stretching from Vidlin to the shore of Dury Voe may be caused by the sulphide horizon in a diminished condition. However on the shore of Dury Voe (locality B) it appears to contain only iron sulphides.

The geology of Vidin resembles, in some respects, that of the recently investigated area of mineralization near loch Tay where sulphides are associated with striped calcareous schists containing metavolcanic beds although at Loch Tay the rocks (Ben Lawers Schist) are much higher in the Dalradian Succession (North of Scotland Project, Central Perthshire Report). Intrusive Igneous Rocks

Several dykes of lamprophyre (spessartite) trending south-south-east and generally less than 1 m thick cut the metamorphic rocks at the north end of Vidlin Ness.

Numerous minor intrusions are exposed on the coast of Dury Voe. In order of emplacement the rock types are foliated pegmatite, felsic porphyrite and granite. There is also a later generation of pegmatite veins which cut the felsic porphyrite but their relation to the granite is not clear.

The felsic porphyrite is fine-grained with small oligoclase phenocrysts and occurs as discordant veins usually only a few centimetres thick. A weak internal foliation is evident in places and at Skeo Taing the veins have been folded and tectonically disrupted into lenticles.

Fig. 7. Geophysical anomalies in the Vidlin District

The granite mass north-east of Skeo Taing (Fig. 5) is a gently-inclined sheet made up of two distinct varieties; a pale coarse-grained granite and a darker fine-grained granite. The coarser variety contains biotite and hornblende and shows the effects of some granulitisation and recrystallisation. The faulted wedge of granite alongside the Nesting Fault is extensively shattered. The granite masses are associated with a plutonic complex (The Graven Complex) situated on the south side of Dury Voe.

All the intrusions probably post-date the mineralization. At locality A, felsic porphyrite veins which cut the sulphide-bearing hornblende-schist are not mineralized.

GEOPHYSICAL SURVEYS

The first geophysical surveys, including measurements of magnetic field, conductivity and induced polarisation (I.P.) effect vere carried out by A J Burley and M Parker over the northern part of Vidlin Ness (Report dated October 1974). The results indicated the location of the sulphide zone beneath peat cover and showed a strike length of at least 460 metres. After the detailed geological examination of the area and the photogeological interpretation by J H Bateson (described in the previous chapter) the geophysical surveys were extended to the coast of Dury Voe in June 1975.

The Measurements

Measurements of magnetic field, chargeability (I.P. effect), resistivity and electromagnetic. (E.M) response were made along the lines shown in Fig. 7. A Hunter Mark 3 I.P. equipment was used to measure chargeability and resistivity, using 30 metre dipoles (20 metres in the north) in the 'dipole-dipole' configuration. The chargeability parameter measured in this case was the time integral of the secondary decay voltage between 240 and 1140 milliseconds after termination of a 2 second square wave transmitted pulse: it has been normalised with respect to the primary (transmitted) voltage and is expressed in milliseconds.

Magnetic measurements at Vidlin Ness where steep magnetic gradients were encountered were of the vertical field using a Jalander magnetometer; elsewhere a proton magnetometer was used to measure the total magnetic field. E.M. measurements were made using a Geonics V.L.F. E.M. 16 equipment, and on certain lines (e.g. 150N) using an A.B.E.M. demigun.

Description of Results
The results of interest are presented in detail in Appendix I and summarised in Fig.7. In this section the results are described, starting in the north and working southwards.

The earlier measurements in the extreme north of the area show a linear zone of very high conductivities (i.e. low resistivities giving large, well-defined E.M. anomalies) coincident with prominent magnetic anomalies: these indicate the
continuity of mineralization between the exposure on the north shore, near line 240 N , and the outcrop on line 00. The 'double' anomalies (both E.M. and magnetic) on line 100 N suggest a sinistral displacenent of the mineralized zone at this point of just over 20 metres. The highest conductivities of over 1 mho m^{-1} (corresponding to resistivities of less than 1 ohm m.) were measured on the most northerly line and the anomalies become progressively less pronouncei southwards. The results for line $100 S$ do not show comparable anomalies but the V.L.F. E.M. results on this line (see Appendix I) suggest that the structure is not far off shore. On line $200 S$ the magnetic anomaly over the exposed mineralization on the shore is smaller than those in the north, corresponding to its reduced width; the absence of anomalies on 220 S suggests that the mineralization does not extend inland at this point. Broad zones of high chargeability increasing with depth coincide with the other geophysical anomalies, but they are poorly defined and may be affected by sea water.

Similar anomalies were recorded on line 540 S approximately on strike with the mineralization further north, and continue with greatly varying amplitude to line $1000 S$: this variability implies corresponding changes in the width and composition of the source. Conductivities are generally lower than in the north. The anomalous zone follows a steep bank running parallel to the shore immediately west of the village. Magnetic results on some lines are complicated by additional anomalies to the west which are not apparently associated with conductive material.

On line $1200 S$ no clearly defined EM anomalies were recorded and it was not possible to make IP or resistivity measurements. Two magnetic anomalies lie almost on strike $\because i$ ith those to the north.

From line 1400 S southwards there is a series of chargeability anomalies approximately on strike with those to the north. Associated resistivities are typically of a few hundred ohm metres and provide an insufficiently sharp contrast with the surrounding rocks to give rise to significant EM anomalies: the EM profiles for these lines are therefore omitted from the appendix. The anomalous chargeabilities extend to near the coast of Dury Voe, but are less pronounced on the most southerly lines (3200S and 3400S). Associated magnetic anomalies are generally weak, being of the order of $100 \mathrm{~m} T$ compared to a few thousand nF in the north. Towards the eastern ends of lines 1800 S to 3400S, larger magnetic anomalies were recorded, but these are not associated with high conductivity or chargeability and are belicved to arise from magnetiterich pelitic gneiss (see section on the aeromagnetic anomaly east of Vidlin.)

Fig. 8. Positions of sources of geophysical anomalies

Assessment of Results

Fig 8 indicates the estimated positions of the sources of the principal geophysical anomalies which can be divided into 3 groups. Those in the north (A B) are the most pronounced and well-defined and result from massive sulphides extending close to the surface. The greatest thickness of mineralization coincides with the most prominent anomalies, close to the north shore. At B the thickness is greatly reduced and there is no evidence of substantial mineralization on line 4005 .

The second group of anomalies, CD, show considerably greater variation but they could arise from an extension of the mineralization in the north. They coincide with the western margin of the hornblende-schist (seefig. 3) which forms a ridge parallel to the shore. Betweer points D and E the amount of geophysical evidence obtained was limited by interference from artificial structures. The postulated continuation of the horizon to the coast of Dury Voe, EF, is based primarily on IP and resistivity results, reflecting a source which is only weakly conductive and magnetic. It should be remembered that differential weathering to clays can also cause IP and resistivity anomalies.

The positions of possible faults in the area, deduced from the magnetic and IP results, are shown in Fig. 8. The Aeromagnetic Anomaly East of Vidlin

An elongated aeromagnetic anomaly running parallel to the geological strike lies over the promontory between Vidlin Voe and Lunning Sound (fig.9). This was investigated on the ground by G Marsden (Fig.10). The results show a series of short wavelength (typically 50metres) fluctuations superimposed on a positive anomaly approximately 2 kilometres wide with an amplitude of 700 nT . The body causing the major anomaly is about 6 km long and extends near to the surface. To the north lies a weaker anomaly whose axis is displaced from the main ore: if the source is a continuation of the body to the south, it is probably downthrown and displaced eastwards by a fault (as indicated infig. 9).

Dr D Flinn (pers. comm.). has identified the source of the main aeromagnetic anomaly as a band of magnetite-rich pelitic gneiss: the shorter wavelength anomalies must, then, repsesent outcropping or near-surface bands containing a higher proportion of magnetite. An EM traverse using VLF equipment showed no appreciable anomalies of the kind measured west of Vidin Voe. GEOCHEMICAL SURVEYS

Geophysical work undertaken in June 1975 by A. Burley and M Farker outlined a linear group of IP and magnetic anomalies stretching south fron Vidlin Ness to bury Voe. In order to investigate the cause of these anomalies and find $i f$ the exposed copper mineralization at Vidin Ness continued southwards under the drift, it was decided to carry out a geochemical survey by sampling the

Fig. 9. The aeromagnetic anomaly east of Vidlin

Fig. 10. Ground profile across the aeromagnetic anomaly

Fig. 11. Soil profiles at localities 1, 3 and 4 on Vidlin Ness with copper concentrations
bottom of the till with a pover auger.
The relief of the area is generally low, rising steeply only on the pelitic geneisses to the east of Vidlin. Vegetation is mainly heather and moor grass, with some small areas of improved grassland near Vidin and Skelberry. There are numerous small boggy pools and depressions but little active erosion by the small streams.

The drift covering the area varies from zero to 6 m in thickness, averaging about 2 m . The top $0.5-2.7 \mathrm{~m}$ consists of peat, thicker in the depressions in the landscape but being reduced in other parts by cutting for fuel. The underlying drift is a clay/silt with occasional sandy layers containing frequent clasts about 1 cm size whilst boulders up to 0.5 m are also seen in the few visible sections. This boulder clay is ice-deposited and contains boulders of granite, gneiss and 'schist that cannot be matched locally. At Vidin Ness locality 3 (HU48076651) the grey, stony, exotic till overlies the hard, ironcemented gossan, but at locality 1 (H 448166676) the till is red in colour and contains orientated fragments that appear to be bedrock rotted in situ. Generally however the grey, stony till that overlies the mineralization is evotic and not derived from the underlying bedrock. Orientation Sampling

In order to define the anomalies that were likely to occur over the mineralization, samples vere collected from the drift profiles at localities 1, 3 and 4 (Grid Reference HU4801663't). Fig. 11 shows the distribution of copper within the profiles and it can be seen that the grey, stony till overlying the red gossan gives only background values for copper (background $=$ 47 ppm Cu as calculated from the survey traverses). The red ochreous till, immediately above the gossan, contains anomalous copper values up to 1100 pr . The hard iron-cemented gossan was perhaps formed during an interglacial period and covered by a later re-advance which deposited the grey till.

The section at locality 1 is unusual in that all the profile, below the peat, is red in colour, has sandy layers within it, and is anomalous in copper throughout. This could be due to either percolation of copper-bearing, ironrich solutions into the till or local preservation in a deep hallow of a soil developed in situ during an interglacial period.

In general the orientation work showed that there is little upward geochemical dispersion and that it is reasonable to expect that the mineralization is overlain by exotic till. It was therefore decided to sample the base of the till wherever possible.

As part of the orientation work a study was made of the regional geochemical map of the Shetlani Islands winch is now on open file at the London and Scottish ofrices of the Institute. The area of the geophysical anomalies is, however,
not drained by many streams and all the streams sedinents in the area from vidin to Dury Voe had less thon 20 ppm Cu , excopt for the stream iraining south from Burga Water (40479640) which contained 45 ppm . This stream was resampled every 200 metres upstream of the original site. The original result could not be repeated, all the stream sediment copper values being $20 p p n$ or below. Pan concentrate samples also were 10 w in copper with a peak value of 23 ppm and it must be assumed that the original sample was contaminated or its analysis was in error.

Stream sediment sampling therefore did not help to locate this mineralization and it would probably have been missed if the area had not been geologically mapped. The reasons for this failure were lack of significant geochemical dispersion into the till, the small number of streams crossing it, and the low-lying nature of the terrain with little active erosion.
Method
The choice of sample interval was made on the basis of the relatively sharp, linear geophysical anomalies, the small across-strike width of the mineralization (about 5 m), the lack of dispersion, and the need to reduce the number of sample sites and the distance of movement between auger sites. Accordingly samples were collected at 10 m intervals along the 400 m spaced geophysical lines and also along intervening 200 m lines where possible (Fig. 12). Three sites were also selected on geophysical line $2400 S$ to investigate the magnetic anomalies over the pelitic gneiss.

Sites vere sampled using an Atlas-Copco 'Minuteman' power auger, which has a small petrol-engine driving a set of spiral auger flights. It is capable of collecting soil samples from depths up to 9 metres. It lacks the power to penetrate large stones but can shoulder aside smaller ones. Samples vere taken at about every metre through the profile until the bit reached bearock. The main uncertainty of the metiod lies in deciding whether the auger has reached the bottom of the till or just hit a large boulder.

Each till sample of about 100 gms was placed in a kraft paper bag and sent to the field laboratory, where it was dried and sieved through 80 mesh . A 5 gm split of the fine fraction was ground to -200 mesl. in an agate planetary ball mill. Thio, sub-sample was analysed for, $\mathrm{Cu}, \mathrm{PJ}, \mathrm{Zn}, \mathrm{Co}$ and Xi by atomic
 Fe, Lo, Ni and Ba by emission spectrograply.

In an attempi io locate the mineralisation ir tite field a fev ti-l sample were panned and the heavy minerals visually identified. These pan concentrate samples were then ground and analysed iy X-ray fiuorescence for ta, lb, an, Cu, Ni, ie, Mn and Ti .

Fig. 12. The location of geochemical and geophysical traverses at Vidlin

The geochemical traverses are show on Fig. 12. and tire number, location, depti and chemical analysis of cacl sample given in Appendices II and ill.

The results or the pan concentrate method vere not encouraging. No chalcopyrite os other copper-bearing mineral was iderified in the iicla and there was thus no visual check on the presence of the mineralization. The summary statistics for the panned till samples are presented in table 1. Samples CHPy anci 7 fiom over the Vidin Ness mineralized horizon do not contain notictably higher valucs for Cu or other , ase metals. Tite only anomalous samples (greater than the thresiold) are CHP119 ($\mathrm{Cn} 140 \mathrm{ppm}, \mathrm{Cu} 70 \mathrm{ppm}$),
 Ni 78 ppm). CHP 119 is situated on traverse 2800 S and the lase of till sample at the same location is also anomalous in copper and zinc. Sample CHP 145 is from one of the auger holes which investigated the large macnetic anomalies east of vidijn. It is very iron-rich (25%) and the anomalous zinc, nickel ance, posisibly lead, may be present in magnetite; although this has not been confirmed mineralogically. Sample CHP 180 is probably contaminated by metallic swarf from the auger flightis. This was noted in the fielu but the possibility again needs further mineralogical confirmation.

TABLE 1

Mcan, standara deviation and geochemical threshold on pannea till sampies from Vidin, Shetland ($N=29$)

E1 ement	Mean, $\overline{\mathrm{x}}$	Standard Deviation, σ	Thrcshold, $\bar{x}+2 \sigma$
$\mathrm{Ba}(\mathrm{ppm})$	333.8	84.0	501.8
$\mathrm{~Pb}(\mathrm{ppm})$	7.3	8.6	25.0
$\mathrm{Zn}(\mathrm{ppm})$	68.0	24.8	117.6
$\mathrm{Cu}(\mathrm{pmm})$	19.0	13.4	45.8
$\mathrm{Ni}(\mathrm{ppm})$	24.8	12.8	50.4
$\mathrm{Fe}(\%)$	5.85	4.03	13.91
$\mathrm{Mn}(\%)$	0.104	0.063	0.230
$\mathrm{Ti}(\%)$	0.553	0.442	1.437

The summary statistics for the analyses of the base of the till samples are given in Table 2. These are all carried out on untransformed data; a log-transformation has been cione and this produces little or no difference in the interpretation except where mentioned.

Fig. 13. Copper in base of till samples, Vidlin

Mean, standard deviation and geochemical threshold on base of till samples from Vidlin, Shetland ($N=122$)

Element	Method	Mean, \bar{x}	Standard Deviation, σ	Threshold, $\bar{x}+2 \sigma$
Cu	A.A.S.	47.3	33.4	114.1
Pb	"	50.2	149.0^{*}	348.2
Zn	$"$	121.9	172.5^{*}	466.9
Co	$"$	20.0	6.2	32.4
Ni	$"$	39.0	14.8	68.6
Cr	E.S.	82.6	72.4	227.4
Mn	$"$	376.4	570.6	2017.6
$\mathrm{Fe}(\%)$	$"$	4.46	0.89	6.24
Co	$"$	17.7	5.3	28.3
Ni	$"$	46.4	17.1	80.6
Ba	$"$	504.9	171.4	84.7 .7

> All elements are in ppm, except Fe which is in \%
> A.A.S. = atomic absorption spectrometry
> E.S. = emission spectrography
> *Distribution markedly positively skewed

The variation of copper in the base of the till samples is displayed in Fig. 13, which shows thet only three samples exceed the threshold of 114 ppm and these lie on traverses $700 \mathrm{~S}, 2800 \mathrm{~S}$ and 3200 S . Traverse 150 N over the suboutcrop of the mineralized horizon on Vidlin Ness is only slightly anomalous with values up to 90 ppm. This low geochemical response is possibly due to insufficient auger penetration. Traverse $700 S$ is more strongly anomalous with a peak value of 115 ppm Cu and several values above 80 ppm . On the $\mathrm{Cu}-\mathrm{Zn} \mathrm{plot}$ (Fig. 14) these samples plot near to the orientation samples from the Vidin Ness mineralized horizon, with copper greater than zinc. Thus the Vidin Ness mineralized horizon is believed to extend as far as these anomalous samples on line $700 S$. Kiassive or disseminated pyrrhotite bodies may continue further south at this horizon but there is no geochemical evidence for the continuation of the copper mineralization. The lack of response on lines 4005 and 6005 is puzzling unless the sulphice horizon lies offshore and is faulted back inland between traverses $600 S$ and 700S. The other anomalous traverses 2800 5 (Fig. 13) and 3200 S , $N W$ of Skelberry, have a sharp copper peak at their western ends, and

Fig. 14. $\mathrm{Cu}-\mathrm{Zn}$ in till samples from Vidlin
this is paralleled by ingh lead and zinc, for example CIS 123 with Cu 360 ppm, Pb $1500 \mathrm{ppm}, \mathrm{Zn} 1300 \mathrm{ppm}$, Co 40 ppm and Ni 65 ppm . On the $\mathrm{Cu}-\mathrm{Zn}$ plot (Fig. 14) all the samples from this 'Dury Voe' vein form a distinct field with $\mathrm{Cu} / \mathrm{Zn}$ less than 0.3 and there is no overlap with the Vidlin Ness samples. There is a similar relationship between copper and lead (not shown). In the Dury Voe coast section on strike with this line of anomalies is a 3 m wide outcrop of 'Fault breccia' with galena and sphalerite (Fig. 5) and this is probably the cause of the geochemical and geophysical anomalies. Although galena and sphalerite are recorded in the Vidlin Ness mineralisation (Fowner 1961, and Cope 1975) they are subordinate to pyrrhotite and chalcopyrite. The Dury Voe 'vein' is believed to be a slightly different type of mineralisation to that at Vidin Ness with Pb and Zn being more important Cu . The depth of the till overlying the 'vein' is less than $2 m$ and could be investigated by trenching.

Using the method of factor analysis, the eleven elements which have been determined in the base of till samples can be grouped into three factors; I - Co, Ni (by both methods), C_{r} and Fe ; II - $\mathrm{Cu}, \mathrm{P} \mathrm{B}, \mathrm{Zn}$ and In ; and III Ba. The first grouping is consistent with the occurrence of basic rocks and these probably extend as far as traverse 2400 S as shown by the high Co, Ni and Cr in sample CHS 107. Basic, or possibly ultrabasic, rocks appear to occur west of the mineralized horizon as shown by traverse 700 S (Fig. 15), where high Cr occurs west of the high Cu sample. $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ and Mn are associated as seen from Figs $1 l^{\prime}$ and 15. This does not seem to be due to a secondary oxide concentration effect as some samples have high Mn without concentrating Cu , Pb or Zn . The Pb and Zn distributions are also log-normal because of the high values associated with this mineralization. If all the orientation samples are included in the factor analysis, then $\mathbf{C u}$ is contained in a factor vith Fe , and this is obviously due to the effect of the high Fe and Cu -rich samples collected directly over the Vidlin Ness mineralization. The third factor in the base of till sample matrix, the variation of Ba, cannot be readily related to any of the mineralization and none of the high Ba samples coincide with other high element values. Barium is probably contained in feldspar or trace amounts of barite in the metamorphic rocks.

Conclusions

1. The copper mineralization at Vidin Ness extends to traverse 700 s but has not been detected further south. Basic rocks continue beyond the mineralization 2. The Cu, Pb and Zn anomalies on traverse 2800 S and 3200 S , NW of Skelberry, although different in geochemical character, are worthy of furtiser investigation by trenching or drilling.
2. The linear geophysical features, which extend from Vidin to Lury Voe, are not geochemically anomalous, with the exceptions noted above, and are probably caused by disseminated pyrrhotite vithin isasic rocks.

Fig. 15. Geochemical variation on selected traverses, Vidlin

hineralogy

Mineralogicai studies were carried out by P is Simpson and M Cope of the Mineralogy Unit on specimens from outcrops of the sulphide horizon and from sulphide-bearing hornblende-schists from Vidlin Ness and Dury Voe (Reports dated 27th November 197t and November, 1975). Mineralogy of Outcrop Specimens

The massive sulphide rocks are non-foliated and have a patchy granular texture due to the uneven distribution of iron sulphides, chalcopyrite and amphibole. Chalcopyrite and local sphalerite and galena are enriched at the margins of amphibole-rich patches and quartz-rocks. In thin section there is seen to be a gradation from virtually silicate-free sulphide-rocks to heavily altered sulphide-rich anphibolites in which cavity fillings of colloform pyrite and marcasite with cores of granular pyrrhotite are truncated by a mixed assemblage of chalcopyrite, sphalerite and minor amounts of galena. The chalcopyrite exploits cleavage traces of the host amphibole and forms veinlets cutting across earlier stockworks of pyrite and marcasite.

The sulphide-bearing tremolite-rocks are dominantly recrystallized amphibole rocks that display stellate aggregates of tremolite, together with Mg-rich chlorite or talc, patches of altered plagioclase and some ilmenite grains. The opaque sulphide minerals are again the same as those in the massive sulphide-rocks with similar late cross-cutting sulphide veins. The sulphide-tremolite-rocks on the western edge of the massive sulphide horizon at locality 3 carry also calcite, mica and quartz, and elsewhere these rocks pass into quartz-rocks with disseminated pyrite and occasional aggregates of stellate tremolite.

The sulphide-bearing hornblende-rocks that form thin bands up to a few metres across at Dury Voe and the much more extensive hornblende-rocks that enclose the sulphide horizon at Vidlin Ness are amphibolites comprising colourless or greenish amphiboles with brownish green cores, plagioclase, quartz, epidote, ilmenite and sphene. Some of these rocks are altered with a development of tremolite. All have cavity fillings of pyrite and marcasite, together with disseminated pyrrhotite; but, in general, only minor amounts of iisseminated chalcopyrite are present. Disseminated chalcopyrite is slightly more abundant in coarse-grained amphibolitic rocks on the eastern edge of localitics 2 and 3, now altered to tremolite-chlorite rocks with only minor quantities of quartz and plagioclase. Eleven specimens from outcrops vere anaiysed for a range of metals. Average values for each of the three types of specimen are 3 iven in ppin (Table 3).

TABLE 3 -

Specimen type	No		Parts per million				
	analysed	Cu	Pb	Zn	Ag	Co	Ni
Copper-rich massive sulphide	5	49,160	270	6,650	30	130	35
Sulphide-tremolite-quartz rock	2	1, 14,40	150	280	3	45	35
Amphibolite	4	210	30	80	1	50	65

Analyst, S Chaumoo, Analytical and Ceramics Unit. Xif analyses by D Bland, Mineralogy Unit, show that small anounts of chromium are also present in the massive sulphides.

Electron Microprobe Analyses

In order to provide information which could prove useful in any assessment of compositional controls acting on the various mineral assemblages, the nature of the green and colourless amphiboles was determined by ENPA of mineral grains in two selected samples (ST2 and V/tc respectively). The ruantities of $C u$ and Zn present in each phase were also determined. Analytical results are roported as oxide analyses together with calculated atomic proportions (Tables 4 and 5).

TABLE 4

Electron microprobe analyses of amphibole in specimen V4c (PTS 2264) tremolite-quartz-rock with chalcopyrite and sphalerite.

	Weight Percent	
	Anal. 1	Anal. 2
SiO_{2}	55.55	55.09
TiO_{2}	0.06	0.14
$\mathrm{Al}_{2} \mathrm{O}_{3}$	2.30	4.96
Mg O	21.04	21.63
FeO	3.92	2.22
CaO^{2}	13.25	13.84
$\mathrm{Na}_{2} \mathrm{O}$	0.25	0.61
$\mathrm{K}_{2} \mathrm{O}$	0.02	0.10
Cun	0.09 (6050ppm Cu)	0.00 (nd.)
ZnO	0.00 (nd.)	0.00 (nd.)
$\mathrm{H}_{2} \mathrm{O}^{*}$	3.51	2.03
TOTAL*	100.00 30	100.00

Atomic Proportions

Si	7.57		7.51	
Ti	0.07	8.00	0.13	8.00
A1	0.36		0.36	
A1	0.01		0.44	
Mg	4.28	4.74	4.43	5.13
Fe	0.45		0.26	
Ca	1.94		1.95	
Na	0.07	2.01	0.16	2.13
K	-		0.02	
OH*	3.20		1.86	

*Percent $\mathrm{H}_{2} \mathrm{O}$ was calculated by difference.
Anal. 1 was carried out on amphibole crystal surrounded by chalcopyrite.
Anal. 2 was carried out on large amphibole crystal bearing chalcopyrite stringers along (001) cleavage traces.

TABLE 5

Electron microprobe analyses of green amphibole in specimen ST 2 (PTS 1256), ilmenite-quartz-feldspar-amphibolite with iron sulphides, from Skeo Taing Skerry.

Anal. 1
Anal. 2
Anal. 3
Anal. 4

SiO_{2}	43.60		43.37		41.63		42.93
TiO_{2}	1.60		1.30		1.44		1.40
$\mathrm{Al}_{2} \mathrm{O}_{3}$	11.60		11.23		11.92		11.73
MgO	8.06		8.28		7.27		7.44
FeO	19.26		19.33		20.60		20.74
CaO	11.26		11.49		1.16		10.89
$\mathrm{Na}_{2} \mathrm{O}$	1.86		1.64		1.84		1.85
$\mathrm{K}_{2} \mathrm{O}$	0.45		0.77		0.59		0.65
CuO	0.00	(23Gppm Cu)	0.04	(2795ppm Cu)	0.014	(2955ppm Cu)	0.04
ZnO	0.00	(nd.)	0.00	(nd.)	0.00	(nd.)	0.04
$\mathrm{H}_{2} \mathrm{O}$	2.31		2.55		3.53		2.29
TOTAL*	100.00		100.00		100.0%		100.00

Atomic Proportions

Si	6.53		6.51		6.22		6.49	
Ti	0.18	8.00	0.15	8.00	0.16	8.00	0.15	8.00
Al	1.29		$1.3{ }^{\prime}$		1.62		1.36	
A1	0.88		0.65		0.48		0.73	
Mg	1.80	5.09	1.85	4.93	1.62	4.6?	1.68	5.03
Fe	2.41		2.43		2.58		2.62	
Ca	1.81		1.87		1.79		1.77	
Na	0.54	2.44	0.48	2.50	0.53	2.45	0.54	2.44
K	0.09		0.15		0.13		0.13	
OH*	2.30		2.56		3.52		2.31	

*Percent $H_{2} \mathrm{O}$ was calculated by difference. All analyses were carried out on large unzoned, generally inclusion free, crystals. The green amphiboles in ST2 were determined as Hormblende (SS) of the calcium amphibole group and the light - coloured species in V4c as Mg-rich members of the Tremolite-Ferro-actinolite series of the same amphibole group. Mineralogy of Drill-Cores

Examination of the drill-cores from drill-holes 1-6 showed that the sequence of rock-types encountered in cach drill-hole is very similar. It was decided therefore to undertake detailed mineralogical studies through hanging wall to the foot-wall of sulphide mineralization is drill-hole 1 in which there is the greatest development of massive sulphides (see Appendix IV -Drill-hole 1). These studies were carried out by P R Simpson (Reported dated 21/5/76).

Calc-silicate country rock comprises most of the first 46 m of drill-hole 1. A specimen from $45-85 \mathrm{~m}$ (Section $N_{0} S N 2581$) is tremolite-rich with about 95% tremolite imparting a strong schistosity to the rock. It is colourless and biaxial negative with a large axial angle of 20°. The identification is confirmed by X-ray Diffraction Photograph No. Ph 5385-D Atkin, 21/5/76. Cilcite is an important constituent in the groundmass, and graphite noted in reflected light is present in sub-parallel bands with traces of pyrite.

Below this there is a sharp contact with impure quartz-rock (SN 2582-47.7m) comprising 30% quartz, orains cross-cut by several sets of inclusion trails and 15% partly chloritized tremolite. In reflected light, chalcopyrite is the dominant phase intergrown with minor amounts of pyrrhotite, sphalerite, pyrite and galena. The sulphide ernibit cross-cutting relationshins in places similar to those in the sulphide-bearing quartz-rocks at locality 4. This quartz-rocis continues downole to $5 N 2583-47.9 \mathrm{~m}$ in which there are equal amounts of chalcopyrite and pyrhotite with minor amounts of sphalerite as an interstitial

intergrowth.

At 148.0 m there is a sharp contact (SN 2584) between quartri-rock above and tremolite-rock with individual crystals engulfed in massive pyrrhotite with traces of sphalerite and chalcopyrite. This gives away again to quartz-rock (SN 2586-4.9.15m) with 95\% quartz and only minor, partly chloritized tremolite and interstitial disseminations of dominant chalcopyrite intergrown with minor pyrrhotite.

At 49.6 m (SN 2585) the rock consists of 95% tremolite partly replaced by intergrowths of dominant chalcopyrite, minor pyrrhotite, sphalcrite and galena. The sulphides are developed interstitially to the silicates and also cross-cut and replace discrete tremolite crystals. Two euhedral crystals of arsenopyrite were observed. Again at 52.1m (SN 2.587) and 52.3m (SN 2588), tremolite-rock has individual tremolite crystals embedded in a matrix of pyrrhotite with lesser amounts of chalcopyrite, sphalerite and traces of galena. Nodular inclusions of impure quartz-rock occuring within the tremolite-rock (SN 2588) contain much less sulphide than the tremolite-rock. However the sulphide within and rimming the nodules is dominantly chalcopyrite whereas the sulphide in the tremolite-rock is dominantly pyrrhotite.

At 53.3 m there is a fault breccia (SN 2589) consisting of angular breccia fragnents of massive pyrrhotite with minor sphalerite and traces of chalcopyrite. The massive pyrrhotite has distinctive single crystals of tremolite embedded within it. The fault is invaded and cemented by calcite associated with chlorite and limonitic staining.

Below the fault breccia at $54.2 m$ there is tremolite-calcite rock (SN 2590) with massive pyrnotite, minor chalcopyrite and sphalerite. A late cross-cutting carbonate vein has a marginal development of chalcopyrite. This gives way to a rock (SN 2591-54.9) consisting of 50% quartz and 50% tremolite much rounded and replaced by sulphides consisting largely of pyrrhotite with major amounts of sphalerite and chalcopyrite. These predominate over pyrrnoitite in the quartzrich portions of the rock whereas massive pyrrhotite predominates in the tremoliterich areas which appear more succeptible to replacement.

At 55.On there are quartz-rock nodules in tremoliterich rock (SN 2592) similar to those at 52.3 m while at 55.2 m (SN 2593) there are coarse-grained, rounded albite crystals in a groundmass of biotite with interstitial major pyrrhotite, minor chalcopyrite, sphalerite and ilmenite.

The massive pyrrhotite-rock (SN $2594-56.7 \mathrm{~m}$) carries minor sphalerite and chalcopyrite with clasts of tremolite-calcite-rock. Thert are cross-cutting quartz-calcite veins and a partial development of secondary marcasite/pyrite in pyrrhotite.

At 57.2 n there is a contact (SN 2595) between mascive pyrrhotite with subrounded tremolite crystals and amphibolite consisting of amphibole with green hornblendic cores to crystals with tremolitic contacts against the sulphide. Chalcopyrite and sphalerite predominate over pyrrhotite as the disseminated sulphide phase in the amphibolite.

Below this there are rare euhedral crystals of arsenopyrite (SN 2597-58.5). Quartz-rock (SN 2596-57.9n) within the massive pyrrhotite-rock has minor chlorite, tremolite and pyrrhotite. At 58.85 m , massive pyrrhotite, chalcopyrite and sphalerite occurs in sheared tremolite-quartz-rock (SN 2598). The sulphides apparently form a matrix in which sheared and rounded clasts are embedded.

In contrast to the outcrop exposures of suiphides which consist largely of pyrite/marcasite, the massive sulphides in the drill-cores are mainly pyrrhotite, and pyrite/marcasite is rarely developed. No evidence of primary structures remains and it is evident that there has been considerable shearing and redistribution of minerals along the sulphide horizon. Cross-cutting and replacement textures show that there has been a later mobilization with the nore mobile copper, zinc and lead phases being concentrated in veinlets and at the margins of, and within the quartz-rocks whereas pyrrhotite has preferentially replaced tremolite crystals. It is possible that this mobilization occurred in Hercynian times as galena from a small vug at locality 1 (grid ref. li82668) has been dated at this age by Dr S Moorbath (1962).

A study of the drill-cores by C G Smith has shown that sphalerite is present at several horizons above the mineralized zone in drill-holes 6 and to a lesser extent in drill-hole 3. It is most common (up to 3%) in zones of brecciated calc-silicate granulite occurring as isolated patches or as a limited stockwork. Chalcopyrite and pyrrhotite, although also present within the breccia occur separately to the sphalerite. Sphalerite was only once noted in undisturbed calc-silicate granulite where it occurs with galena. Finally sphalerite occurs as scattered grains infilling small shears and quartz-calcite veinlets which cut both amphibolite and calc-silicate granulite. In these shears and veinlets the sphalerite is associated with pyrite and more rarely with pyrrhotite. DRILLING RESULTS

A contract for drilling at Vidlin Ness was awarded on the 16th January, 1976 to Messrs Drill Sure Limited of Warwick. The drilling equipment arrived at the first site on the 20th February, 1976 and the drilling programme of six drill. holes totalling 513.31m was completed on the 30th March, 1976. An Atlas Copco Diamec 700 drilling machine was used with coring bits of NQ size for broken and weathered near-surface rock, and 56 mm size for the remaining parts of the drill-holes. The angle of each drill-hole was measured every 50 m and at the bottom of the hole using a Tropari survey instrument.

The six drill-holes were planned to penetrate the sulphide horizon extending from locality 1 to locality 4 (Figs. 3,4) at depths of $40-50 \mathrm{~m}$ in drill-holes $1-4$ and to depths of $70-100 \mathrm{~m}$ in drill-holes 5 and 6. Core recovery apart from overburden and highly weathered near-surface rock was virtually 100%. Intersections with the sulphide horizon were successfully made at each site. Details of the six drill-holes are given in Table 6.

TABLE 6
Details of drill-holes at Vidlin Ness

$\begin{aligned} & \text { DH } \\ & \text { No. } \end{aligned}$	NGR	Distance from West edge of sulphides	Azimuth and Inclination			Total depth
			Start	50m	Bottom	
1	48156677	36m	$\mathrm{N} 110^{\circ} / 60^{\circ}$	$\mathrm{N} 113.5^{\circ} \mathrm{E} / 59^{\circ}$	$\mathrm{N} 113.5{ }^{\circ} \mathrm{E} / 58^{\circ}$	75.48 m
2	48106660	37m	$N 120^{\circ} / 60^{\circ}$	$N 120^{\circ} \mathrm{E} / 59^{\circ}$		62.91 m
3	48076652	40 m	$N 120^{\circ} \mathrm{E} / 60^{\circ}$	$N 120^{\circ} \mathrm{E} / 57^{\circ}$	$N 115{ }^{\circ} \mathrm{E} / 55^{\circ}$	84.83 m
4	48006631	36m	$N 115^{\circ} \mathrm{E} / 60^{\circ}$	$N 113^{\circ} \mathrm{E} / 57^{\circ}$	$N 115{ }^{\circ} \mathrm{E} / 55^{\circ}$	80.22 m
5	48156677	35 m	$N 110^{\circ} \mathrm{E} / 75^{\circ}$	$N 110^{\circ} \mathrm{E} / 75^{\circ}$	$N 115{ }^{\circ} \mathrm{E} / 74^{\circ}$	88.69 m
6	48076652	44 m	$N 120^{\circ} \mathrm{E} / 70^{\circ}$	$\mathrm{N} 120^{\circ} \mathrm{E} / 69^{\circ}$	$N 120^{\circ} \mathrm{E} / 66^{\circ}$	121.18 m
				Total metrage		513.31m

Section through the drill-holes illustrating simplified geology are shown in Figs. 16 and 17. Full details of the geology of the drill-cores and assay results for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Co}, \mathrm{Ni}$ and Ag are given in Appendices IV and V . A summary of the sulphide intersections is given in Table 7.

TABLE 7

Sulphide horizon intersections and assay results

Thickness of Length of True thickness Average assay values sulphide horizon at outcrop
intersection of of sulphide sulphide horizon horizon over sulphide horizon

$\mathrm{Cu} \%$	$\mathrm{~Pb} \%$	$\mathrm{Zn} \%$
0.97	0.06	0.75
1.19	0.06	1.27
0.67	0.05	0.39
0.46	0.01	0.12
0.32	0.02	0.27
0.46	0.01	0.14

Analyst, Miss B P Allen, Analytical and
Ceramics Unit
The metals were determined by atomic absorption spectrophotometry.

Fig. 16. Drill-hole intersections at Vidlin Ness, localities 1 and 2

The drill-hole intersection of the sulphide horizon were sampled every metre or at every obvious change of mineralization or of rock-type (see Appendices IV and V). Average values across the sulphide horizon were determined using all the values obtained. This means that in some of the drill-holes, and notably in drill-hole 5, some relatively barren ground included in the overall calculations has a strong lowering influence on the average metal values.

Fig. 16 shows that the thickness of the sulphide horizon outcropping at locality 1 increases to its intersection in drill-hole 1 and then slightly decreases in thickness to the intersection in drill hole 5 at a depth of 59.5 m below surface. At outcrop the sulphide horizon consists of bands of massive sulphides up to 2 m thick, separated by sulphide-bearing tremolite-quartz-rock and sulphide-bearing amphibolite, whereas in drill-hole 1 the massive sulphide portion is about 10 m thick. Further down, in drill-hole 5, there is a decrease in massive sulphides and an increase in iron sulphide-bearing amphibolite, resulting in an overall decrease in grade. Removel of the comparatively barren samples would upgrade the ore to above $0.7 \% \mathrm{Cu}$.

At the other localities there is a decrease in thickness downwards from surface and the assay values in general diminish to the south. Because of strong weathering and leaching at surface outcrops it proved impracticable to sample across the sulphide horizon so that it is not known with the available data if grades differ much from surface to intersection in depth. At localities 1 and 3 however there is an apparent diminution in copper, lead and zinc values from the upper drill-hole intersection to the lower intersection.

The drilling results indicate that the sulphide horizon probably persists throughout the strike length from locality 1 to locality 4 indicated by geophysical measurements and outcrop mapping, and probably to depths of at least 100 m .

DISCUSSION AND CONCLUSIONS
The first discovery in the Scottish Caledonides of strata-bound sulphide associated with metabasic rocks is of major significance and demonstrates that further work is desirable to establish if additional occurrences are present at this horizon in the Dalradian of Shetland and the mainland.

The probable volcanic origin of the metabasic rocks is indicated by analyses of a representative suite of five amphibolites from or close to the sulphide-bearing horizon in the Vidlin area, and for comparison the analysis of a supposed spilite from the Hawks Ness area, Shetland is also included. Analyses were carried out by direct electron excitation X-ray spectrometry (Table 8).

	V39	HN1	V1e	ST4	CHD5/770	V3h
SiO_{2}	49.9	49.3	48.7	47.5	46.9	43.5
	49.8	49.4	48.5	47.4	46.7	43.1
$\mathrm{Al}_{2} \mathrm{O}_{3}$	13.9	14.3	14.6	15.7	13.4	12.1
	13.9	14.3	14.6	15.7	13.5	12.1
Total Fe	12.9	15.1	11.4	14.8	15.7	19.2
as $\mathrm{Fe}_{2} \mathrm{O}_{3}$	12.8	15.2	11.9	14.8	15.7	19.1
MgO	7.79	5.75	8.74	5.90	7.62	13.3
	7.95	5.88	8.83	5.96	7.76	13.2
CaO	9.40	8.14	11.7	8.79	10.1	6.45
	9.27	8.19	11.8	8.69	10.2	6.41
$\mathrm{Na}_{2} \mathrm{O}$	3.45	4.45	2.30	3.80	2.90	1.65
	3.50	4.55	2.35	3.90	3.00	1.65
$\mathrm{K}_{2} \mathrm{O}$	0.47	0.21	0.55	0.55	0.58	0.57
	0.48	0.22	0.56	0.56	0.60	0.58
TiO_{2}	1.46	2.43	1.04	2.44	1.98	1.54
	1.44	2.51	1.04	2.45	1.99	1.53

Results of duplicate determinations were obtained using a gabbro-basalt calibration curve for the Fe . Standard rocks were used for calibration. Analyst, A E Davis, Analytical and Ceramics Unit.

The localities of V3g and V3h are shown on Fig. 6; HN1 is from Hawks Ness (Nat. Grid Ref HU 472491); V1e is from..the first exposure of hornblendeschist west of locality 1 on Fig. 4 ; ST4 is from an outcrop of hornblende-schist in the stream east of Tua Farm (Nat. Grid. Ref. HU467634), north of B on Fig. 5; and $\mathrm{CHD} 5 / 770$ is a drill-core specimen from drill-hole 5 at 77.0 to 77.5 m .

The Vidlin amphibolites apart from V3h are fairly similar and comparable in most respects to the slightly metamorphosed spilitic basalt from Hawks Ness. Chemically they fit roughly into the island-arc tholeiitic series (Baker, 1972) or oceanic tholeiite series from the mid-Atlantic ridge (Kay et al.1970) with low silica, potash and alumina. Total iron is however higher than the average tholeiitic basalt (Engel et al, 1965), and is more similar to total iron values in Scourie dykes from the Scottish Mainland (Dearnley, 1963). A perusal of analyses in the literature shows that the Vidin amphibolites chemically resemble most closely tholeiites of Tertiary age paralleling the Red Sea coast of Egypt (Garson and Livingstone, 1973), and it is noteworthy that these Egyptian tholeiites also locally contain accumulations of iron sulphides, together with some chalcopyrite, similar to the massive sulphides at Vidlin.

Sample $V 3 h$ contains much less SiO_{2} and $\mathrm{Na}_{2} \mathrm{O}$ and much higher total iron and Mgo than the other analysed rocks in Table 8. Sample V3h and CID $5 / 770$ which has chemical similarities, are both from the eastern flank of the amphibolite belt i.e. east of the sulphide horizon. The low silica and soda and increase in mafic minerals may therefore be a reflection of differentiation within a volcanic flow or flows.

Mineralogical studies of the sulphide horizon have produced little evidence of the origin of these rocks. This is because any original sedimentary, depositional or replacement features in the massive sulphides have been almost totally removed or altered during metamorphism and tectonic movements through and along this undoubted incompetent horizon. It is also evident that there has been mobilization and recycling of the metals.

The amphibolites from south of Vidlin Ness, chemically identical to the presumed metabasic volcanic rocks at Vidlin Ness which are hosts to the sulphide mineralization are also comparatively rich in iron sulphides and locally contain chalcopyrite (Report by M S Garson dated 10/9/75). It would seem therefore that the volcanic rocks at this horizon were sufficiently rich in iron and copper to provide a source of these metals which could be concentrated by circulating brines in the manner proposed for the Cyprus-type mineralization associated with pillowed lavas (Robertson and Fleet, 1976).

The quartz-rocks perhaps provide some clues as to the original setting of the sulphide-rich horizon. At locality 1 there are quartzitic rocks which were probably deep-water (?) cherts showing slump features and at locality 4 similar cherty rocks are overlain by quartzites of detrital origin, the detrital grains possible coming from the cherts themselves. Speculatively, vague graded bedding features at both localities indicate that the rocks are the right way up stratigraphically, and this would be in line with the sparse evidence of gravitational differentiation to the east. If the massive sulphide horizon represents a volcanogenic-exhalative mineralization then the sulphide-bearing quartz-rocks which grade laterally into tremolite-rich varieties could have been siliceous exhalites. This would partly explain their localized occurrence and complex distribution, for example at locality 4 (see Fig. 6).

A comparison may be made with the Caledonide strata-bound sulphide deposits of Scandinavia (Vokes 1962, 1968), and, in particular, with the chalcopyrite-sphalerite-pyrrhotite ores of the Sulitjelma and Grong regions of Norway. There the deposits fozm horizons between calcareous schists and mafic lava, pyroclastics and amphibolites, and occur as strata-bound tabular or lens-shaped bodies, more than 1 km long, about $1.5-2 \mathrm{~m}$ thick, with local thicknesses up to 5.8 m . Production grades - for example, at Skorovas mine - range from
0.5 to 1.3% copper and 0.5 to 1.7% zinc.

The Norwegian examples provide a useful model for assessment of the potential of the Vidin area. The strata-bound sulphide horizons there are of the same order of thickness as the Vidlin occurrence, and commonly form deposits of from 1500000 to 10000000 tonnes of ore. Drilling results show that the Vidlin occurrence thickens to the north, so there could be appreciable reserves beneath the sea. There is also an increase in copper and zinc grades from south to north with the grades at locality 1 being similar to those in many of the Scandinavian sulphide deposits.

Comparison with the Scandinavian sulphide deposits suggests also that other lens-shaped occurrences could be present in depth within the $4-\mathrm{km}$ strike length of the presumed sulphide horizon intermittently developed between Vidlin Ness and Dury Voe.

Geophysical surveys show that the mineralization outcropping at Vidin Ness has produced the most pronounced and well-defined EM and magnetic anomalies which extend as far as 540S, suggesting that the mineralization occurs over a strike length of about 800 m . Some off-setting by faulting is also indicated within this stretch. Further south to iraverse 1000 there is a considerably greater variation in anomalies but these could be due to an extension in depth of the Vidlin Ness mineralization, or to a change in mineralization.

The postulated continuation of the horizon to Dury Voe is based primarily on IP and resistivity results reflecting a source which is only weakly conductive and magnetic. There is therefore little evidence geophysically of significant near-surface mineralization in the area, but the possibility of mineralization in depth is not ruled out.

Stream sediment sampling failed to locate any mineralization along the line of geophysical anomalies from Vidlin Voe to Dury Voe mainly because of lack of significant geochemical dispersion into the till and the small number of streams crossing it. Base of till sampling revealed only three anomalies lying on traverses 700S, $2800 S$ and $3200 S$ (Fig. 13), but the low geochemical response along the line of the rest of the horizon is possibly due to insufficient auger penetration.

The peak value on traverse 700 S is 115 ppm Cu with several values above 80ppm. This coincides with geophysical anomalies and the Vidlin Ness sulphide horizon is believed therefore to extend at least as far as this with possibly part of the horizon between traverses 400 S and 600 S faulted off-shore. This would give a strike length of about 1000 m for the Vidin Ness mineralization. The other anomalous traverses 2300S and 3200S, NW of Skelberry, have a sharp copper peak at their western ends, and this is parallelled by high lead and zinc.

In the Dury Voe coastal section, roughly on strike with this line of anomalies, there is a 3 m wide outcrop of fault breccia with galena and sphalerite (Fig.5) and this is probably the cause of the geochemical anomalies. This surface mineralization however may be the result of mobilization of metals from an underlying sulphide body similar to that at Vidlin Ness and requires investigation.

The drilling results indicate that there is a general thickening of the sulphide horizon to the north and a corresponding increase in copper and zinc grades in this direction. Geophysical work carried out off-shore by Dr D Flinn (pers. comm.) has shown that there is a pronounced magnetic anomaly northwards along the strike of the sulphide horizon confirming the likelihood of the body sextending'some considerable distance under Vidlin Voe. A study of the aeromagnetic anomaly east of Vidlin suggests that the major anomaly is displaced eastwards by a fault trending WNW about 2 km north of Vidlin Ness (Fig. 9). If the sulphide horizon persists this far then it also may be displaced to the east, and this would explain the lack of rock-types corresponding to the Vidlin Ness succession on Lunna Ness to the north.

Summary of the Conclusions

1. Strata-bound sulphide mineralization associated with amphibolites (possibly metamorphosed tholeiites) outcrops at four localities at Vidlin Ness in Shetland within a Dalradian succession dominantly of calc-silicate granulites and thin marbles. Outcrop thicknesses are obscured by till and beach deposits but reach 11.5 m at one locality.
2. The mineralization comprises massive sulphides (dominantly pyrrhotite with lesser amounts of chalcopyrite, sphalerite and galena), sulphide-bearing quartz-rocks gradational into sulphide-bearing tremolite-rocks and sulphiderich amphibolites.
3. Six drill-holes into the sulphide horizon confirm that it has a strike length of at least 500 m and a vertical extent of at least 10 um . The horizon is inclined at about 60° to 90° to the west, except between drill-holes 3 and 6 where it dips 80° to the east.
4. The sulphide horizon decreases in thickness from about 10 m in drill-holes 1 and 5 in the north to just less than 2 m in depth in drill-holes 3 and 6 in the south.
5. Average copper and zinc values across the sulphide intersections in the drill-holes range from $0.46 \% \mathrm{Cu}$ and $0.12 \% \mathrm{Zn}$ in the south to $1.19 \% \mathrm{Cu}$ and $1.27 \% \mathrm{Zn}$ in the northern part of the area. Removal of barren bands in the horizon would upgrade these values.
6. Disseminations of sphalerite and separately of chalcopyrite occur in patches and veinlets on the hanging wall of the sulphide horizon and amphibolite and in brecciated zones within the calc-silicate granulites to the west. These are possibly the expression of recycling of metals in Hercynian times and their economic importance is difficult to assess with the available data. 7. An extension southwards of the sulphide-bearing amphibolites to Dury Voe is indicated by linear geophysical anomalies and occasional outcrops of amphibolite. Well-defined EM and magnetic anomalies suggest the massive sulphides at Vidlin Ness may have a strike length of at least 1000 m . This horizon may be present in depth towards Dury Voe but the source is only weakly conductive and magnetic.
7. Geochemical base of till sampling has located two anomalies for copper, one about 200 metres so uth of the most southerly outcrop of mineralization at Vidlin Ness, and the second with high lead and zinc values just north of Dury Voe, on strike with breccia carrying galena and sphalerite. The latter may be a leakage from an additional body of massive sulphides in depth. 9. The likelihood of the sulphide horizon continuing northwards under Vidlin Voe is confirmed by geophysical work carried out by Dr D Flinn which outlined a pronounced magnetic anomaly extending northwards from the outcrop on the skerry at locality 1.
8. The copper-bearing sulphide occurrence at Vidlin is of similar type, grade and thickness to strata-bound sulphide occurrences mined in Scandinavia, e.g. the chalcopyrite-sphalerite-pyrrhotite ores of the Sulitjelma and Grong regions of Norway, which commonly form deposits of from 1,500,000 to $10,000,000$ tonnes of ore. Further drilling is required at Vidlin to determine the size of this occurrence.

BAKRR, P.E. 1972. Volcanism at destructive plate margins. J. Earth Sci., (Leeds) Vol. 8, pp. 183-195

DEARNLEY, R. 1963 The Lewisian complex of South Harris with some observations on the metamorphosed basic intrusions of the Outer Hebrides, Scotiand.

Quart. J. Geol.Soc. (Iond.), Vol. 119, pp. 243-312.
ENGEL, A.E.J., ENGEL, C.G., and HAVENS, R.G. 1965. Chemical characteristics of oceanic basalts and the upper mantle. Bull. Geol. Soc. Amer., Vol. 76, pp. 719-734
FLINN, D. 1967. The metamorphic rocks of the southern part of the mainland of Shetland. Geol. J., Vol. 5, pp. 251-290
MAY, F., HOBERTS, J.L. and TREAGUS, J.E. 1972. A revision of the stratigraphic succession of the east mainland of Shetland. Scott. J. Geol. Vol. 8, pp. 335-343
GARSON, M.S. and IIVINGSIONE, A. 1973. Is the South Harris complex in north Scotland a Precambrian overthrust slice of oceanic crust and island arc? Nature Phys. Sci., Vol. 243, pp. 74-76 and MAY, F. 1976. Technical note. Copper mineralization at Vidlin, Shetland. Trans. Instn. Min. Matall. (Section B: Appl. Earth Si.), Vol. 85. in press.
KAY, R., HUBBARD, N.J. and GAST, P.W. 1970. Chemical characteristics and origins of oceanic ridge volcanic rocks. J. Geophys. Res. Vol. 75, pp. 1585-1613.
MOORBATH, S. 1962. Lead isotope abundance studies on mineral occurrences in the British Isles and their geological significance. Philos. Trans. R. Soc., A. Vol. 254, pp. 295-360.

ROBERTSON, A.H.F. and FLEET, A.J. 1976. Rare-earth element evidence for the genesis of the metalliferous sediments of Troodos, Cyprus. Joint Meeting Instn. Min. Metall. and Volc. Stud. Gp. Geol. Soc. Iond., Jan., 1976. Abstr.
VOKES, F.M. 1962. Mineral parageneses of the massive sulfide ore bodies of the Caledonides of Norway. Econ. Geol., Vol. 57, pp. 890-903.
1968. Regional metamorphism of the Palaeozoic geosynclinal sulphide ore deposits of Norway. Trans. Instn. Min. Metall. (Sect. B: Appl. Earth Sci.), Vol. 77, pp. B53-59.

Unpublished

BATESON, J.H. 1975. Vidlin Ness, Shetland Islands : a photogeological study. Overseas Division, IGS., 21st May 1975.

BLaND, D.J. 1974. Report on seventeen samples of ore and country rock from Vidlin, Shetland, received from Dr S.H.O. Bowie. Interim Lab. Report., Mineralogy Unit., Geochemical Division, IGS. Ref. GD 11.02/2M. 25th July 1974.

BOWIE, S.H.U. 1974. Note to D. Masson Smith on mineralization at Vidlin Ness. Geochemical Division, IGS., Sept. 1974.
BURLEY, A.J. 1975. Preliminary notes of geophysical surveys at Vidlin, Shetland, June, 1975. Applied Geophysics Unit, Geophysical Division, IGS, 22nd July, 1975.
and PARKER, M. 1974. Report on geophysical surveys in Shetlend. Applied Geophysics Unit, Geophysical Division, IGS. October, 1974. CLARK, G.C. 1975. Report on geological examination of Vidlin Ness, Shetland. Highlands and Island Unit, IGS, 11th April, 1975.
CDATS, J.S. 1976. Report on geochemical till sampling at Vidlin, Shetland. October, 1975. Radioactive and Metalliferous Minerals Unit, Geochemical Division, IGS. Ref. D1/HI900/CH. April, 1976.
COPE, M.J. 1975. Mineralized samples from Vidlin Ness, Shetland. Rep. No. 167, Mineralogy Unit, Geochemical Division, IGS. Ref. 11.02/2M. November, 1975.
GARSON, M.S. 1975. Preliminary notes on the Vidlin Ness copper prospect, Shetland Islands. Geochemical Division, IGS. 10th Sept. 1975.
MAY, F. 1976. Report on geological mapping at Vidlin, Shetland. Highlands and Islands Unit, IGS, 5th Jan., 1976.
POWNER, R.F. 1961. The geology of the Lunnasting-Whalsay area, Shetland. Ph. D. Thesis, University of Liverpool.

SIMPSON, P.R. 1974. Mineralogical report on seventeen samples of ore and country rock from Vidlin, Shetland, received from Dr. S.H.U. Bowie. Preliminary Lab. Report, Mineralogy Unit, Geochemical Division, IGS. Ref. GD11.02/2M. 27th Nov., 1974.
1976. Mineralogical report on borehole samples from Vidlin. Mineralogy Unit, Geochemical Division. May, 1976.

APPENDIX ONE

GEOPHYSICAL SURVEY RESULTS

SECTION 1: Magnetic feld profiles

RESISTIVITY \& INDUCED POLARISATION PSEUDOSECTIONS

HORIZONTAL SCALE 1:2000

MAGNETIC FIEID PROFILES : On core lines in the northern part of the area (240N), $200 \mathrm{~N}, 150 \mathrm{~N}, 100 \mathrm{~N}, 50 \mathrm{~N}, 00,100 \mathrm{~S}, 220 \mathrm{~S}, 540 \mathrm{~S}$) the vertical component of the field was measured relative to an arbitrary datum. On all other lines the total field was measured. Units of field are nanotesla ($n T$) where $1 n T=1$ gamma.

RESISTIVITY AND I.P. SECTIONS : Pseudo-sections of apparent resistivity in ohm metres and chargeability (M_{240}^{1140}) in milliseconds are presented.

$\varepsilon{ }^{\circ} I^{\circ} I \forall$

LINE 0 VERTICAL MAGNETIC FIELD, APPARENT RESISTIVITY AND CHARGEABILITY

LINE 200S. 400S AND 600S TOTAL MAGNETIC FIELD

LINE 1400 S TOTAL MAGNETIC FIELD. RESISTIVITY AND CHARGEABILITY

$140 \mathrm{E} \quad 170 \quad 200 \quad 230 \quad 260 \quad 290 \quad 320 \quad 350 \quad 380 \quad 410 \mathrm{E}$

CHARGEABILITY

APPARENT RESISTIVITY

CHARGEABILITY

LINE 2200 S TOTAL MAGNETIC FIELD, RESISTIVITY AND CHARGEABILITY

10w		20E	50	80	110	140	170	200	230	260	290	320	350			
	,	20E	5	,	1	140	1	200	13	260	290	320	350	380	410	440 E

| 50 E | 80 | 110 | 140 | 170 | 290 | 230 | 260 | 290 | $330 E$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

APPARENT RESISTIVITV

$50 \mathrm{E} \quad 80 \quad 110 \quad 140 \quad 170 \quad 200 \quad 230 \quad 260 \quad 290 \quad 320$.
CHARGEABIUTY

LINE 2600 S TOTAL MAGNETIC FIELD , RESISTIVITY AND CHARGEABILITY

40 W	10	${ }^{20} \mathrm{E}$	50	80	110	140	170	200	230	260	290	320	350	380	410	440E
APPA	NT	Stivi														

CHARGEABILITY

LINE 2800 S TOTAL MAGNETIC FIELD. RESISTIVITY AND CHARGEABILITY

30400

1798

26

50

 18 ?

LINE 3200 S TOTAL MAGNETIC FIELD. RESISTIVITY AND CHARGEABILITY

GEOPHYSICAL SURVEY RESULTS

SECTION 2: eLECTROMAGNETIC SURVEY, PROFILES

The VLF received was tuned to $G B R$ at $16 \mathrm{KH}_{2}$ and the traverses were made from east to west.

$$
\cdot \quad \underbrace{50} \text { metres }
$$

LINE 400 S

LINE 600 S

LINES $200 \mathrm{~S}, 400 \mathrm{~S}, 600 \mathrm{~S}$: VLF EM PROFILES

N PHASE

Traverse 1900	Position on Praverse	Pamned Tili Sampie	Depth
CHS 1	1OE		1.1ra
CHS 3	$1)$		0.8
CHS 3	104		1.4
CHS i_{1}	20 ir		1.3
Chis 5	306	Cup 3	2.3
Cris 6	4 l		1.2
CHS 7	50w	CHP 7	1.4
Traverse 700 S	;		
CISS 8	110 E		0.9 m
CHS 9	11		1.8
CHS 10	"		$\because 5$
CIIS 11	"		2.7
CIIS 12	120E		1.8
CHS 13	1		2.7
CHS 14	"		3.5
CHS 15	130E		0.8
Cus 16	"		1.3
CHS 17	1 ${ }^{\prime}$ OE		0.7
CHS 18	1		1.15
CHS 19	:		1.8
CHS 20	"		2.0
CIS 21	"		2.6
CilS 22	1502		0.9
CHS 23	"		1.7
CHS 24	"		\therefore : 4
CHS 25	1605		0.9
CHS 26	:		1.7
CHS 27	"		2.6
CHS 28	1		3.0
CIIS 29	1708		0.9
CHS 30	180 E		0.5

Traverse 600s

CIIS 31
CHS 3:
-
CIIS 33

270E
160E
150E No samplc
1402
1.5 m
0.0
-
0.9

CHS $3{ }^{\text {t }}$	1308		0. 2 m
CIS 35	1002.		0.6
CHS 36	110E		1.0
CHE 37	"	CHP 37	1.6
CHS 38	100e		0.8
CHS 39	"		1.4
CHS 40	90 E		0.9
CHS 41	"		1.7
CHS 42	"		1.8
CHS 43	80 E	CHP 43	1.1
CHS 414	"		2.3
CHS 45	"		2.8

Traverse 1000 S

Traverse 1600 S

CHS 57	320 E
CHS 58	310 E
CHS 59	300 E
CHS 60	290 E
CHS 61	$"$
CHS 62	280 E
CHS 63	$"$
CHS 64	270 E
CHS 65	260 E
CHS 66	250 E
CHS 67	240 E
CHS 68	230 E
CHS 69	

	2.0 m
	1.4
	1.1
	1.3
	0.9
	2.0
	1.4
	1.8
	0.9
	1.0
CHP 67	0.9
	0.8
	0.7

Traverse $2 t 00 \mathrm{~S}$

CHS 106	180 E		3.0 in
CHS 107	190 E	CHP 107	4.5
CHS 108	200 E	CHP 108	3.4
CHS 109	210 E	CHP 109	2.0
CHS 110	220 E		1.0
CHS 111	230 E		0.6
CHS 112	240 E	CHP 112	0.9

Traverse 2800 S
CHS 113 150E
CHS 114 , 14OE
CHS 115 - 130E
CHS 116 120E

CiIS 117 110E
CIS 1181002
CHS 119 JOE
CIS 120
8OE
CIIS 121
70E

Traverse 3200 S

(4 samples)
$\begin{array}{ll}\text { CHS } 122, A, B, C, & 60 E \\ \text { CIIS } 123\end{array}$
CLiS 12.4 30 E
CHS 125 9OE
CIIS 126 100E
CHS 127 110E
CHS 128 120E
CHS 129 130E
2.0 m
1.5
0.7
0.4
1.6
1.2
2.2
3.0

CHS 130 14OE
CHS $131 \quad 150 \mathrm{E}$
1.3
2.2

Traverse 34005

CHS 132	120 E
CHS 133	110 E
CHS 134	100 E
CHS 135	$9 O E$
CHS 136	30 E
CHS 137	$7 O E$
CIS 138	COE
CHS 139	50 E

1.1 mm
0.6
1.1
1.3
1.0
0.6
0.6
1.8

CHS 140	$\angle O E$	0.60
CHS 141	$30 E$	2.7
CHS 142	$"$	3.0
CHS 143	$2 O E$	0.6

Traverse 24005

CHS	144	$700 E$
CHS	145	$650 E$
CHS 146	$60 O E$	

Traverse 2200 S

CHS	147		280 E
CHS	148		270 E

CHS 149
CHS 156
CHS 157
CHS 158
CHS 159
CHS 160
CHS 161
CHS 162
CHS 163
270
260 O
250E
240 E
230 E
CHP 14 1 t
1.9 m

CHP 145
CHP 1': ${ }^{\prime}$
2.3 CHR 145
1.4 CHK 145

CHS $164 \quad 200 \mathrm{E}$

Sections above localities 4-1
Loc. 4
CIIS 166
CHS 167
CHS 168
CHS 169
Loc. 3
CHS 170
CIIS 171
CHIS 172
Loc. 1
CHS 173
0.15 m
0.11
0.15
0.35

CHS 174
CHS 175
0.3
0.5
1.0
1.0
1.3
2.0

CHS 176	joE		1.2 m
CHS 177	40E	CIP 177	2.7
CHS 178	30 E		2.1
CHS 179	20 E		1.0
CHS 180	10E	Cil 180	3.0
CHS 181	0		0.9
CHIS 182	10\%		1.7

Traverse 1200S

CHS	183
CHS	$18 l_{4}$
CHS	185
CHS	186
CHS	187
CHS	188
CHS	189

210 E
200E
190E

CHP 183	2.8 m
	2.2
	0.6
	1.3
CHI 187	2.2
	0.6
	0.7
	0.5

TABL: I SOIL SAMPLES, VIDLIN

TABLE II
PANNED TILL SAYIPLES FROM VIDLIN

APPENDIX FOUR DRILL-CORE LOGS

SECTION OF....Drillhole No.... 4 Vidlin Ness, . Vidlin, Shetland \qquad

Communicated. June . 1976....... by...Institute .af..Geolagical . Sciences
Date of boring or sinking.......9.3.76...................Borer...Drillsure. Lt.
One-inch Map.128..........Six-inch Map......HU..46..NE \qquad

Thickness	Depth from Surface
Metres	Metres

PEAT, No recovery.
BOULDER CLAY, fragments only of granite, vein quartz

and acid gneiss. 10\% recovery $\quad 2 \quad$| | 78 | 2 | 78 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BOULDER CLAY, fragments only - upper 10 cm of granite $\begin{array}{llllll}\text { remainder of migmatitic gneiss with quartz vein }<10 \% \text { recovery } & 0 & 35 & 3 & 13\end{array}$ BOULDER CLAY, fragments only of acid gneiss, vein quartz and amphibolite. 3\% recovery. 1204

CALC SILICATE, off-white massive rock composed of quartz and subordinate calcite with widely spaced dark green amphibolitic + ? chloritic partings with occasional bands of the darker more usual striped calc silicate The latter is dominant between 6.00 and 6.70 m . Microfaulting at 6.95 and carbonate vein between 7.00 and 7.06 m . Rock is unusually calcite-rich between 7.09 and 7.23 - almost a limestone with quartz and calcite veining. Inclination at top 38° increasing to 90° between 4.72 and 5.00 m and then lessening to 45° at 5.50 m . Core all quite broken.

AMPHIBOLITE, medium to fine grained with foliation only apparent below 8.00 m . Probably altered as actinolite seems dominant over hornblende. Inclination 33° at 8.55 m . Pyrrhotite disseminated throughout with associated minor chalcopyrite at 7.85 m Joints and cracks frequently have film of pyrite and at 8.50 m disseminated ? molybdenum. 20 cm missing probably between 8.17 and 8.37 as are very broken there.

1	27	8	76

$\begin{array}{llllll}\text { CALC SILICATE with quartz vein } & 0 & 06 & 8 & 82\end{array}$ BRECCIA upper 13 cm of quartz vein with minor calcite and angular fragments of dark ? calc silicate. Trace of pyrite

Six-inch Map (County and Quarter Sheet) HU. 46. NE

Six-inch Map (County and Quarter Sheet)...HU 46 NE

Six-inch Map (County and Quarter Sheet)

| \# | | Thickness | Depth from Surface |
| :--- | :--- | :---: | :---: | :---: |
| | | Metres | Metres |

SECTION OF Drillhole No. 4 , Vidlin

Six-inch Map (County and Quarter Sheet)........ HU 46NE

Alteration Zones

60.05-61.25. Massive nonfoliated slightly paler green rock with occasional quartz - feldspar segration. Between 60.56 and 60.65 m is a band of the massive pale green rock which occurs at the top of this unit. This seam of massive pyrrhotite at 61.05 m . otherwise sulphide lacking in this zone. Reverts to more typical fine grained amphibolite around 61.25.
$62.65-62.92 \mathrm{~m}$ with patchy sphalerite mainly in quarttz feldspar segregations.
64.37-64.80. Consists principally of bands up to 18 cm thick of massive white rock (plagioclase + calcite +3 quartz) containing bands and whisps of amphibolite. Impression is that whole rock is replacing the amphibolite.
65.07 - 65.87 m similar to above but bands generall smaller averaging $1-10 \mathrm{~mm}$ with a maximum of 10 cm . With one: exception these are parallel to the foliation - though deviations occur where they are ptygmatically folded. Are occasionally cut by quartz - feldspar veins carrying pyrrhotite and minor chalcopyrite 66.14-66.59m. Similar with pyrrhotite as rare patches and disseminations.
68.43 - 68.87m - more typical of usual type (viz. 60.05-61.25m) but lacks coarse feldspar and amphibol. and has calcite 69.18-69.23, 70.98-71.38 and 71.89-71.93m all typical with coarse plagioclase, quartz, amphibole and patchy pyrrhotite. Latter is unique in having lensoid core of amphibolite surrounded by pale green amphibole and marginal quartz - feldspar.
Below 67.51m pyrchotite is only rarely present as a dissemination being mostly a vein mineral. Minor chalcopyrite in vein at 70.17 m . \& fairly coarse
\qquad
Six-inch Map (County and Quarter Sheet)...HU 46 NE

\qquad
\qquad
Surface Level
O.D.

Communicated...June 1976 by...Institute of Geological Sciences

Date of boring or sinking \qquad Borer

Drillsure Ltd

One-inch Map... 128Six-inch Map..................

	Thickness		Depth from Surface	
	Metres		Metres	
PEAT, no recovery				
BOULDER CLAY, fragments only of semi pelite, feldspathic gneiss, granite, vein quartz and more rarely amphibolite. 10\% recovery.	1	98	1	98
BOULDER CLAY, two large fragments of granite, one gneissose, with smaller fragments of granite, amphibolite and migmatites. 7% recovery.	0	96	2	94
BOULDER CLAY, fragment of migmatite. 12\% recovery.	0	50	3	44
BOILDER CLAY, fragments of semi pelite, migmatite and granite.	0	4	3	48
BOULDER CLAY, fragments of quartz vein, amphibolite, semi pelite and granite-gneiss, 20% recovery.	0	75	4	23
BOULDER CLAY, fragments of amphibolite, granite and quartz. 30\% recovery.	0	40	4	63
BOULDER CLAY, fragments of pelite. 17% recovery	0	64	5	27
BOULDER CLAY, fragments of brecciated quartz and semi pelite. 30% recovery.	0	31	5	58
BOULDER CLAY, comprising large piece of micaceous psammite and small fragments of semi pelite and granite	0	22	5	80
EXOTIC, large fragment of dark, very fine grained siliceous rock cut by quartz vein	0	48	6	28
CAVE-IN - fine fragments	3	47	9	75
CALC SILICATE pale and dark bands consisting almost entirely of amphibole. Inclination $65-90^{\circ}$	0	30	10	05
HORNBLENDE-SCHIST with occasional garnets. Between 10.15 and				
10.48 dominated by pale plagioclase - ? actinolite alteration				
zones sharing fairly intimate interbanding and probably contain-				
ing sedimentary laminae. Quartz veins and pyrite on joints.	0	50	10	55

Six-inch Map (County and Quarter Sheet)...HU 46 NE

may be due to increase in chlorite content. Pyrite frequently developed in small shears in thin section. Further small disturbances between 22.90 and 23.00 m , being particularly noticeable in the quartz-feldspar areas (common below 22.70 m) with a network of chlorite-filled shears.
DISTURBED ZONE, calc silicate strongly disrupted but not brecciated with brittle folds in evidence. Quartz vein containing angular fragments of country rock between 23.55 and 23.75 m parallel to core axis.
BRECCIA ZONE, consisting principally of ground up calc silicate - massive pale and dark green rock (patch colouration) with irregular quartz blebs. Brecciation particularly apparent where pegmatite veins are present (24.20-24.25; 25.55-25.65; 25.95-26.00; 26.03-26.05). Despite brecciation foliation is apparent below 25.65. Small patch of chalcopyrite and sphalerite at 24.80. Dissemination of ? pyrrhotite 25.65-25.73m. Molybdenum on joints at 25.73 m .
AMPHIBOLITE, rather altered with garnets almost completely replaced. Cut by a network of carbonate veinlets some of which carry pyrrhotite and chalcopyrite.
BRECCIATED PEGMATITE, cut by epidote-filled shears.
Lower 3 cm of quartz with angular fragments of calc silicate.

CALC SILICATE - upper 23 cm pale grey then mid grey until lowest 8 cm . Well developed striping throughoyt Inclination at top 50°. Calcite content generally very low. Calcite veinlet at $26.42 \mathrm{~m} .0 .5-1 \mathrm{~cm}$ thick. Several quartz veinlets. Pyrite with occasional graphite on joints


```
SHEARED PEGMATITE with stockwork of pyrrhotite
(1-2%) and chalcopyrite ( }-1%\mathrm{ )
```

MASSIVE PYRRHOTITE forming over 90% of core between 40.86 and 40.94 m tapering towards base. Speck's of chalcopyrite $(<0.1 \%)$. Remainder consists of plagioclase, quartz, tremolite, chlorite and calcite. Lower margin a darkishear zone with occasional pyrite cubes, specks of chalcopyrite.
ALTERED AMPBIBOLITE, intensely sheared at base. Pyrrhotite probably about 10% in lowest 2 cm with disseminated chalcopyrite $2-3 \%$. Below 41.30 m both less than 1%.

Intensely disrupted pegmatite at base
? CALC SILICATE, possibly containing some altered amphibolite. Specks and streak of chalcopyrite BRECCIA, dominated by angular pieces of calc silicate but upper part contains plagioclase fragments which may have been derived from the altered amphibolite Angular pyrrhotite pieces also common in upper part forming approximately 60% between 41.76 and 41.82 . Calcite veinlets very common lower half. Chalcopyrite patches and stringer occasionally present but overall less than 10\%. Matrix of dark ? chlorite. CALC SILICATE, midgrey, striped. Sheared with calcite and quartz veining. Brecciated between 42.17 and 42.26 and 42.51 - 42.63 m . Chal copyrite in shears at 42.27.
CALC SILICATE, pale grey, and finely striped in upper part but below 43.46 m reverts to darker rock similar to that above 42.62 m : Below 46.40 m paler calcite rich rock until well developed striping at 46.82 m passes down into darker rock with finer striping and little calcite Band of paier rock as above 47.15-47.20m. Fairly homogeneous dark rock with only faint striping and variable calcite between 47.20 and 47.81 m . Cut by many calcite veinlets.

Pyrite common particularly in shears with graphite on joints. 47.89-48.21m paler rock, devoid of calcite which in lower 15 cm is paler green and quite disrupted with clay gouge in narrow shears and many irregular calcite veinlets. Some small specks of pyrite. Below 48.21m slightly darker rock with very regular striping, becoming lighter below 48.30 m with bands of hornblende-schist (greenbed type) up to 6 cm thick - noticeably finely banded - possibly dominant rock between 49.38 and 49.68 m . Some bands of the coarser (irregularly banded) pale calcite-rich rock. Irregular vein and patches of calcite between 48.70 and 48.80. Two thin pegmatites ($<1 \mathrm{~cm}$ thick) between 49.94-49.99m. Impure limestone bands, greenish white, 52.04-52.0p and 52.10-52.16m.
Inclination 38° at $42.75,80^{\circ}$ at $43.70,90^{\circ}$ at 44.47 42° at $44.80,44^{\circ}$ at $45.70,40^{\circ}$ at 48.30 and at 50.30 and 45° at 52.10 m . Brittle folds, frequently accompanied by shearing, brecciation and graphite coating common particularly at 43.04-43.14, 43.30 43.46, 46.45-46.49 and 46.85-46.90. Breccia zone between 45.15 and 45.20 m . Strongly disrupted and brecciated between 45.96 and 46.30 m with graphite and clay infilling shears Numerous irregular calcite (+minor quartz) patches. Between 46.30 and 46.40 m inclination 90° with gentle flexures. Returns abruptly to 30° at 46.40. AMPHIBOLITE, medium grained, mostly altered to palish grey coarse grained rock in upper 68 cm composed dominantly of tremolite/actinolite. Below 52.84m although rock is generally fresher (some alteration zones do occur) core is badly broken. Some brecciation between 53.39 and 53.49. Alteration again below 54.27 with occasional quartz-feldspar pegmatites and calcite

SECTION OF \qquad Drillhole No. 5, Vidlin

Six-inch Map (County and Quarter Sheet) HU 46 NE
veins. 31cm. missing between 53.29 and 54.27 m and between 54.67 and 55.10 m where the core is reduced to small fragments 14 cm are absent. Similarly between 55.33 and 55.69 m , with intense calcite veining below 55.64m. Pyrrhotite not often seen in the more broken sections but in other parts it occurs as a fine dissemination ($\leq 3 \%$). Pyrite particularly common between 55.80 and 56.20 , some being associated with calcite veins. 12 cm missing between 56.38 and 56.50 m . Below 56.50 m core in larger pieces with irregular quartz veinlets.

PLAGIOCLASE-AMPHIBOLITE, mostly a granular intergrowth but between 57.20 and 57.40 m the plagioclase is streaked parallel to the foliation. Foliation generally more evident than in above unit - inclinat: 60° at 56.75 m and 50° at 57.35 m . Finely disseminated pyrrhotite generally less than 1%. Calcite + minor quartz veins common between 56.66 and 57.06 m forming up to 50% of core between 56.75 and $56.95 m$ and containing patches and streaks of pyrrhotite (up to 2 cm$)$ + rare pyrite. Specks of chalcopyrite with pyrrhotite associated with very thin quartz-feldspar veinlets (similar to the underlying pegmatite) at 57.47 m .

QUARTZ-FELDSPAR-PEGMATITE, crosscutting with stockwork of pyrchotite (up to 10\%) with irregular distribution of chalcoprrite (up to 1%) + ? molybdenite. AMPHIBOLITE with garnet-and plagioclase rich zones, the latter probably associated with alteration in the upper 30 cm . Some finely divided pyrrhotite generally less than 1% but probably nearer 10% in the alteration zones. Pyrite common on joints. Pegmatite 1.5 cm thick between 58.18 and 58.38 m with pyrrhotite and pyrite. Also between 58.62 and 58.80 m .

Alteration zones

59.10-59.40m. generally of coarse lighter amphibole
with stockwork of pyrrhotite ($\mathbf{~} 2 \%$) and minor chalcopyrite ($<0.5 \%$). Minerals may be concentrated in quartzfeldspar veins.
59.65-59.75m. Rather more feldspathic with finely disseminated pyrrhotite and carbonate-quartz vein containing specks of galena. Inclination 50° at 59.00 m .

MASSIVE PYRRHOTITE (50\%) - CALCITE (30\%) VEIN crosscutting with khaki coloured gossan (20\%). AMPHIBOLITE, medium or occasionally coarse grained, depending on the state of alteration. Pyrrhotite very finely disseminated ($<1 \%$) but more common in veinlets and in shears where it is often accompanied by chalcopyrite. Chalcopyrite is common below 60.25 h mainly as irregularly distributed tiny streaks and blebs occasionally up to 6 mm . Overall distribution about 1\%.
MASSIVE PYRRHOTITE with minor pyrite and traces of chalcopyrite containing irregularly shaped pieces of tremolite, calcite, chlorite and rare talc.

Estimated volume \% Inclusions and remarks

	Pyrr	Chpy	Py	
$60.60-60.70$	80	-	Trace	Tremolite, calcite
chlorite				

	in veinlets calcit and chlorite.
60.90-61.02 65-70 Trace 5-10	Talc, chlorite with calcite in uper he

AMPHIBOLITE, medium grained, with an irregular distribution of pyrrhotite and chalcopyrite ($<1 \%$)

SECTION OF ...Drillhole No. 5., Vidlin
Six-inch Map (County and Quarter Sheet)......HU 46 NE

SECTION OF Drillholo io.5, Vid!in

Six-inch Map (County and Quarter Sheet)....HU 46 NE

Thickness
Metres

Prrite (15%) concentrated in veins

COARSE-TREMOMITE-ACIMNOATE - Rock with thin band of bronzy biotite at upper margin.

QUARTZ-TREMOLITE-ROCK; pale off-white medium to coarse grained with vertical or steeply inclined lineation in parts. . Sporadic development of very coarse actinolite.

AMPHIBOLITE (coarse actinolite rock) with quartz bands and blebs. Patciny pyrchotite locally up to 5\%。

BIOTITE-CHLORITE-PLAGIOCLASE-AMPHIBOLITE, very compact and quite fine grained in parts. Bronzy biotite conspicuous Pyrrhotite throughout, 10-15\%. TALC-CHLORITE-BIOTITE-SCHIST. Pyrrhotite occurs throughout generally as a fine dissemination, 5-10\% but in parts may be up to 50%. Chalconvrite associated - overall probably less than 0.5% but locally: blebs and streaks may form about 2-3\%. Inclination ranges from 50-90 . MASSIVE PYRRHOTITE enclosing large fragments of underlying amphibolite and more rarely irregular quartz segregations

AMPHIESITE, upper 50 cm . almost fine grained with
poorly ieveloped foliation. Passes down into medium grained garnet-amphibolite. Very finely disseminated throughout with occasional concentrations. Present also in quartz veinlets and in alteration segregations. lare specks of chalcopyrite at 76.63 m . Pyrite common with quasta on joints. Alteration zoses 77.68 - 77.73 m - coarse plagioclase and amphibolite with pyrrhotite blebs. 78.60-79.70m. Many narrow segregations - overall slightly paler green. Inclination 60° at $77.10,50^{\circ}$ at 77.40 and 45° at 79.70 m

70

SECTION OF \qquad Drillhole No. 5 . Vidlin

Six-inch Map (County and Quarter Sheet).......... 46 NE

QUARTZ-F ELDSPAR-VEIN quartz tends to be in patches enclosing and invading pieces of amphibolite. Probably a sweat - out. Irregular patches and stockwork of pyrihotite.

AMPHIBOLITE, altered in upper 30 cm , then freshening downwards with decrease in pyrrhotite content from 2.3% to a fine dissemination $<1 \%$. Between 81.18 and 81.29 m dominated by bronzy mica and consequently quite schistose. Also thin partings of dark ? chlorite. Pyrite conspicuous in certain bands, generally as irregular blebs, 3%. Quartz-feldspar Lenses and irregular patches which also feature in underlying amphibolite.
81.25-81. 37 m . very pale khaki bands with fine stripes and irregular patches of quartz and feldspar. Also has less common thin hornblendic bands. Pale rock probably comprises tremolite and may be a sweat-out. Bronzy mica common between 81.37 and 81.70 m . The lowest 30 cm very finely banded with increased pyrrhotite content ($>1 \%$) and quartz veins parallel to the foliation. Thought to be an alteration feature but may be some sedimentary bands. Inclination 58° at 81.50.

2
CALC SEICATE, alternating stripes and bands of pale grey and pale khaki with thin dark ? hornblendic laminae - Banding often wavy and discontinuous. Khaiki bands disappear below 83.05 m where rock becomes darker and presumably more hornblendic. Also slightly more micaceous and with aligned quartz lenses. Khaki bands reappear and predominate between 83.10 and 83.21 m where rock is disturbed and veined with calcite and has irregular quartz lenses. Very similar to the rock between 81.25 and 81.37m. Below this there appear irregular patches and then seams of pale buff limestone which rapidly

SECTION OF Drillhole No.5, Vidlin

Six-inch Map (County and Quarter Sheet) HU 46 NE

PEAT, no recovery
BOULDER CLAY, fragments only of porphyroblastic semi pelite. 2% recovery.
BOULDER CLAY, fragments only of amphibolite, migmatite and porphyroblastic gneiss 4% recovery.
CALC SILICATE, essentially tremolite-schist with thin, often discontinuous bands of pale green ? actinolite and speckled with darker hornblende crystals up to 6 mm .
Inclination 80°. 14 cm . missing.
CALC SILICATE, mid grey with distinctive striping often very wavy and commonly disrupted. Inclination dominantly 90° but lessens to 60° below 10.00 m . Cut by closely spaced shears, generally parallel to bedding, which contain dark $\begin{array}{llllll}? \text { chlorite and graphite. } & 3 & 22 \quad 10 \quad 37\end{array}$ CALC SILICATE as above, but below 10.40 m almost totally replaced, in a nebulous sort of way by massive off-white to pale green calc rock with occasional flecksof tremolite. Inclination $80-90^{\circ}$. Lower margin seems quite conformable $\begin{array}{llll}\text { and does not have the look of replacement. } & 0 & 63 & 11\end{array}$
CALC SILICATE, dominantly amphibolitic with no calcite Pale calc-rich bands between 11.45 and 11.86 m . upper part associated with quartz-feldspar pegmatitic lens. Inclination generally $80-90^{\circ}$ but strongly folded between 11.86 and 11.93. Specks of pyrite common, particularly on joints.

1
32
12
32
CALC SILICATE, mid grey, striped with abundant calcite.
Above 12.63 m and below 13.20 m irregular patches and smears
of calcite, some with associated pyrite. Inclination dominantly 90° and strongly folded at 13.40 m . Closely spaced shears with dark ? chlorite, graphite and occasional pyrite specks. Strongly folded between 14.15 and 14.35 m
with minor brecciation.

CALC SILICATE, darker and more compact than above probably mainly amphibole, together with a little mica but no calcite. Pyrite common and a little finely divided pyrrhotite. Closely spaced shears as above.

CALC SILICATE, mid grey banded with much calcite. Inclination dominantly 90° with brittle folds occasiona$11 y$ reducing inclination to 45°. Graphite common in shears withspecks of pyrite. Irregular calcite veinlets common below 16.00 m . Becomes slightly darker below 16.21m but calcite still evident. BRECCIATED CALC SILICATE, traversed by network of small shears with graphite and rock polish. Degree of disturbance not great as in most parts vertically inclined bedding still visible. More intensely disrupted parts have irregular calcite patches. Minor amounts of pyrite generally as single crystals. BRECCIA. Similar to above but more strongly deformed. Foliation obliterated over most of section and a dark matrix (previously confined to small shears) much more evident. Below 19.00 m volume of calcite increases markedly to give blotchy pale green-white rock. Some of calcite looks original. Also some quartz-feldspar patches. Specks of chalcopyrite at 18.98 m . ? sphalerite between 19.11 and 19.59 m scattered grains occasionally showing crude stockwork - probably 1-2\%. Marked change at 19.68 to pale green with dark angular fragments and interstitial calcite. Dark fragments disappear after first 8 cm and calcite content increase. Patches of pyrrhotite up to 9 mu:

SECTION OF ..Drillhole No. 6 . Vidlin
Six-inch Map (County and Quarter Sheet).......... 46 NE

however, having pyrrhotite. Sporadic garnetiferous bands. However below 25.80 m studded with garnets up to 3 mm . Finely divided ? pyrrhotite throughout ($<0.5 \%$). Pyrite on joints and very abundant in calcite veins between 26.05 and 26.07 m . ALTERED AMPHIBOLITE, upper 7 cm very closely jointed. consists of irregulárly interbanded dark slightly altered amphibolite and massive greenish white ? feldspathic rock. Shot through with irregular dark cracks and occasional dark ? chlorite. Isolated patches of sphalerite between 26.87 and 26.95 m . CALC SILICATE, upper 9 cm amphibolitic with no calcite, and hence may represent a transitional junction. More calcic part has a few hornblendic laminae. Occasional lens of dark blue-black ? chlorite. Pyrite on joints. Inclination 52°. AMPHIBOLITE. After initial 8 cm of fine pale altered rock with coarse feldspar-quartz-segregations the rock consists of dark green amphibolite peppered with garnets up to 5 mm . The latter are also concentrated at certain horizons. Further segregations at $27.43-27.47 \mathrm{~m}$, otherwise relatively homogeneous with only a few quartz-feldspar and calcite veins. The latter commonly have pyrite. Specks of pyrrhotite throughout with pyrite on joints. CALC SILICATE. Alternating bands of pale green-white calc. rock and dark hornblendic parts, with a few quarizfeldspar laminae (could be an altered amphibolite but quite calcareous). Inclination 35°. AMPHIBOLITE, upper 60 cm . altered with occasional plagioclase segregations and locally intense calcite veining. Passes down into fresher rock, studded with pale pink garnets which are occasionally replaced by white 'chlorite'. Garnets disappear between 30.00 and 30.32 m where alteration is again evident. Bronzy biotite laminae common 30.15-30.22m.

SECTION OFDrillhole No. 6., Vidlin
Six-inch Map (County and Quarter Sheet) ... HU 46 NE \qquad

Inclination 48° at 30.10 m . Core broken and chloritised between 31.00 and 31.08 m with calcite veining. Altered again below 31.32 m with occasional bands of bronzy mica. Finely disseminated pyrrhotite occasionally present with rare larger patches. Also patchy sphalerite associated with calcitequartz veining between 31.25 - 31.30 m .
ALTERED AMPHIBOLITE, rather heterogeneous pale grey rock with occasional pale green - off white bands and irregular patches of quartz-feldspar and blueblack ? chlorite. Frequently traversed by network of small dark shears. Sphalerite in thin seams throughout and particularly common (2-3\%) between 31.73 and 31.80 m . Occasionally associated with chalcopyrite, more commonly pyrite. Pyrite well developed in calcite veins.

CALC-SILICATE, pale grey, striped with abundant calcite below upper $3-5 \mathrm{~cm}$. Inclination 45° with occasionally gentle folding. Strongly sheared below 32.57 m with small fault gouge between 32.65 and 32.71 m . Thin calcite veinlets also abundant. FAULT GOUGE, fine dark greenish rock with calcite veinlets, traversed by thin shears. 10 cm absent. BRECCIA, upper 15 cm comprises angular pale green ? calc silicate and quartz-calcite separated by dark chlorite occasional calcite and sphalerite (2-3\%). Underlain by brecciated off-white limestone in which sphalerite is only rarely seen. Probably continues to the base though the core is badly broken below 33.41 m .

PLAGIOCLASE-TRENOLITE-ACTINOLITE-CALCITE-ROCK
Massive white with thin discontinuous actinolite laminae. Quartz veins present between 33.65 and 33.95 m . Irregular thin dark shears throughout. In lowest 6 cm . comprises alternating bands of white and pale

Six-inch Map (County and Quarter Sheet)................

| | ALTERED AMPHIBOLITE alternating bands of pale
 khaki to off-white - and quartz-plagioclase-
 tremolite rock with occasional crystals of actinolit |
| :--- | :--- | and some pyrrhotite - rich bands.

SEMI-PELITE, fine grained dark grey with irregular quartz laminae. Includes 3 cm band of pale massive rock with pyrrhotite disseminated throughout.
ALTERED AMPHIBOLITE, comprising massive pale offwhite rock, as above, with thin amphibolitic bands and laminae. Pyrrbotite common between 36.04 and 36.09 m . Below 36.09 darker rock predominates. Below 36.20 shearing more intense and pyrite occasionally present in cracks. Trace of ? molybdenite at 36.45 m .
Steeply inclined contact.
BRECCIA mainly angular fragments of the above in a dark matrix (upper half) made up of rock in lower half.
PLAGIOCLASE-ACTINOLITE-CALCITE-ROCK, massive white to pale green, sheared and partly brecciated.
Reduced to small fragments in lowest 13 cm .
CALC SILICATE, dominantly white tremolite with irregular pale green actinolite partings + ? scapolite. 0 CALC SILICATE mid to pale grey with striping poorly developed in upper part but becoming more evident downwards. Frequently disrupted by shearing. Inclination 33° at $38.70 \mathrm{~m} .50^{\circ}$ at 40.50 m . Bedding very disturbed below 40.70 m with some mild brecciation, graphite and rock polish on joints. Streaks of sphalerite with occasional associated galena, 40.89-40.97m.

BRECCIA - angular fragments of amphibolitic calc silicate with feldspar and little or no free calcite
CALC SILICATE, upper 20 cm . strongly disturbed with bedding only partly visible. Of the mid grey type with abundant calcite. Pale massive calc bands
between 42.50 and 42.58 m . Disturbed zone 42.80 43.03 m , in which calc silicate is cut by graphitecoated shears (up to 2 mm) and a very limited zone of brecciation. Irregular calcite vein with some patchy dark ? chlorite + pyrite between 44.80 and 44.30 m . Inclination 28° at 42.45 m . Steepens to 65° at 45.45 m concomitantly with onset of brecciatiok. This dies out again below 45.70 m . Graphite conspicuous. Inclination lessens to 28° at 44.84 m . LIMESTONE, massive white rock with aligned bluish grey flecks similar in colour to surrounding schist. Top junction sharp but lower less well defined, giving the impression that this is a replacement rock.

CALC SILICATE, similar to above with a few thin micaceous horizons between 46.25 and 46.40 m . Below the core is again in small pieces, graphite is common on joints and there is limited brecciation. Inclination 45° and 46.30 m . Graphite on joints 47.16-47.18m. calcite dies out below 47.12 m . Limestone bands as above. 48.25-48.30m. and 48.40-48.88m. Dark amphibolite bands with probably more actinolite than hornblende 48.80-48.83 and 48.86-48.88m. Minor shearing, irregular calcite veining and pyrite $49.11-49.35 \mathrm{~m} .1 \mathrm{~cm}$ thick calcite-quartz vein at 49.40 m with minor sphalerite. Between 49.40 and 49.71 m graphite and pyrite common on joints. Pyrite common in rock between 49.80 and 50.06 m . Micaceous partings between 50.06 and 50.20 m . Coarse dark amphibolitic porphyroblasts appear at 50.03 m and are widespread below 50.25 m . Sphalerite in calcite-quartz vein at 50.23 m . Coarse amphibole dies out below 52.50 m but reappears below 53.50 m . Inclination 50° at 54.50 m . Intensive veining between 54.76 m . - iarger contain quartz and feldspar and are cut by later calcite veinlets.

Six-inch Map (County and Quarter Sheet)...HU..46. NE \qquad
\square

Rock noticeably sheared in lowest 7 cm . QUARTZ-FELDSPAR-PEGMATITE with pyrite infilling shears.

CALC SILICATE, sheared and invaded by pegmatite veinlets, with later calcite veinlets. QUARTZ-FELDSPAR-PEGMATITE, as above but much less pyrite. Includes many angular fragments of calc silicate.

CALC SILICATE, strongly sheared and quite clayey. LIMESTONE, pale buff with thin closely spaced chloritic partings.

CALC SILICATE, strongly sheared and veined with calcite with only local brecciation. BRECCIA, angular fragments of calc silicate up to $3-4 \mathrm{~cm}$ in dark matrix with irregular calcite patches and veinlets. Between 56.38 and 56.48 and between 56.49 and 56.66 m up to half the core is occupied by? in situ calc silicate. CALC SILICATE, much as above, ie pale grey with conspicuous striping and abundant calcite. Several thin ? hormblendic bands (up to 1 cm thick) 57.79 - 57.95 m . Inclination 40° at 58.00 m . Brittle folding 57.95 - 58.17 m with graphite conspicuous on joints. Pyrite veinlet up to 6 mm at 58.45 m Irregular calcite veinlets occur locally. Local shear zone 58.81 - 58.87 m with minor clay gouge, graphite and disseminated pyrite. Darker variety of calc silicate with only a few thin calcite-rich bands present between 60.13 and 60.63 m . Inclination 57° at 58.90 m . Bands of a similar rock appear again below 60.95 and by 61.60 m are dominant. Total exclusion of paler stripes gives rise to much darker rock below 61.81m. Between 62.00 and 62.03m. quartz-calcite veins with angular fragments of country rock, thin film of pyrite and rare sphalerite. Cut by thin calcite veinlets. Shear zone -
Metres
Con

88

40

55

56

70

Six-inch Map (County and Quarter Sheet)........HU 46 NE
62.90 to 63.00 m . with fault gouge, ? graphite and rock polish. Pyrite common at 60.90 m aligned parallel to foliation whilst at 62.70 m is common in veinlets. Inclination 35° at 60.90 , and 30° at 62.70 m but below 63.35 m steepens to 70° and the rock is slightly sheared. Some calcite veinlets generally with patchy pyrite. Between 63.68 and 63.80 m core reduced to small fragments with abundant rock polish. Intense shearing and calcite veining 64.08 - 64.18 m . Inclination 50° at 64.20 m . DISTURBED ZONE, small pieces generally intensely sheared with abundant rock polish and local brecciation. At 64.50 m dark rock gives way to pale grey calcite-rich calc silicate.

CALC SILICATE, as above with a few fine calcite veins and some graphite on joints. Inclination 43° at 65.00 m 。

BRECCIA, angular fragments of calc silicate in dark clayey matrix consisting principally of graphite. CALC SILICATE, intensely disrupted but foliation (inclination 90°) still visible. Some disrupted quartz veins. Core reduced to small fragments between 66.30 and 66.51 m .

CALC SILICATE, pale to mid grey with striping and abundant calcite. Small pyrite patches common between 67.00 and 67.05 m . Very finely divided pyrrhotite. Inclination 35° at 67.05.

AMPHIBOLITE, fine grained and probably altered. Also probably has lower proportion of quartz and feldspar. Pyrrhotite disseminated throughout.

Cut by shears infilled with calcite dark chlorite and pyrite..
CALC SILICATE, with dark hornblende bands up to 6 cm thick common below 69.78 m . Finely disseminated pyrrhotite in both rock types. Below 72.00 m dip

64
suddenly steepens to 55° and then to 70° at 72.30 m the result of brittle folding. Minor local brecciation and lensed quartz-feldspar-pegmatite-vein. Numerous calcite veins and veinlets. Rock becomes very dark below 72.95 m . almost like an amphibolite. Some fine banding (including calcite-rich units) between 72.38 and 78.58 m . Below 74.25 m return to more calcite-rich pale grey type. Inclination 40° and 74.30 m .

AMPHIBOLITE, fairly sharp top with 1 cm . alteration band just below top. Medium to almost fine grained, dark with occasional concordant quartz veinlets. Alteration type segregation - 74.75 to 74.83 m . plagioclase, actinolite with occasional quartz patches. Pyrrhotite disseminated and in small patches up to 3%. Otherwise pyrrhotite finely disseminated through the rock. ($<1 \%$).

PLAGIOCLASE-AMPHIBOLITE, medium grained equigranular intergrowth of plagioclase and hornblende. Alteration type segregation $75.65-75.75 \mathrm{~m}$ with pyrrhotite about 1%. Otherwise very finely divided. Concordant quartz veinlets common. Below 76.37 m plagioclase porphyroblasts common. Inclination 38° at 76.30 m . AMPHIBOLITE, paler green altered rock with coarse actinolite developing in upper 38 cm . Alteration type segregation - $77.07-77.10 \mathrm{~m}$, plagioclase + actinolite + calcite with rare pyrrhotite patch cut by very thin veinlets containing pyrite and ? chalcopyrite. More extensive zone with aplite vein $77.22-77.29 \mathrm{~m}$. Further aplites at 77.35 and 77.42 m displaced by small shear.

Garnet bands common 77.50-77.60m.
ALTERATION ZONE, distinctly banded rock in upper 35 cm . This gives way to a more massive pale green rock with many quartz-feldspar segregations and aplitic patches. Inclination 60° at top steepening

Six-inch Map (County and Quarter Sheet)........... 46 NE

SECTION OFDrillhole No.6, Vidlin

Six-inch Map (County and Quarter Sheet)...... HU 46 NE
amphibole laminae/bands and patchy pyrrhotite + minor chalcopyrite - 87.82 to 87.92 m . Finely divided pyrrhotite generally less than 1% but very common in quartz veiniets. Inclination 80°. at 88.36m 1-2m. Calcite veinlets with minor pyritebetween 88.60 and 89.50 m . Similar veinlets - 89.80 - 90.05 and 90.14 to 90.65 m . Inclination 57° at $89.45,60^{\circ}$ at 91.70 and 75° at 93.80 m .

ALTERED AMPHIBOLITE upper 10 cm of quite coarse grained amphibolite with irregular quartz-feldspar patchy segregations. Small patch of pyrrhotite with minor chalcopyrite. Remainder is of fine grained amphibolite with chloritic laminae and irregular, mostly concordant quartz veinlets. Pyrrhotite patches and minor chalcopyrite. PLAGIOCLASE-AMPHIBOLITE, much as above. Plagioclase segregations with pyrrhotite die out below 96.60 m . Inclination 60° at 95.70. Pyrite and less commonly pyrrhotite between 97.42 and 97.50 m . Alteration zone 97.86 - 98.10 m . Pale green rock with network of quartz veins- intensity of alteration and veining die out after upper 8 cm .
AMPHIBOLITE with some vaguely defined alteration zones. Quartz-veinlets around 98.50 carry occasional pyrrhotite with minor chalcopyrite GARNETIFEROUS AMPHIBOLITE a few plagioclase segregations and pale green alteration zones -100. 30 to 100.55 m with minor pyrrhotite. Outwith this zone only minor veining with pyrrhotite only recorded once. Finely divided pyrrhotite does appear to occur throughout. Inclination 50° at 99.50 and at 101.00 m . Segregations -103.35 to 103.60 m consist principally of chlorite but contain some large irregular plagioclase patches and pale grey quartz-calcite intergrowths. Occasionally contain highly garnetiferous patches. Garnets also occur

SECTION OF
 \qquad Drillhole No.6. Vidlin

Six-inch Map (County and Quarter Sheet)......HU 46 NE
irregularly in the amphibolite. Pyrite in small patches with rare chalcopyrite. Quartz-feldspar vein (segregation type) with patchy pyrrhotite and associated minor chalcopyrite between 104.05 and 104.10 m .

AMPHIBOLITE with disseminated patchy chalcopyrite (up to - 2%) and minor pyrrhotite $(<1 \%)$. Sulphides also occur in veinlets and in lowest 10 cm chalconyrite forms a stockwork. MASSIVE PYRRHOTITE (55-60\%) with 15-20\% chalconyrite and inclusion of talc, chlorite and actinolite AMPHIBOLITE, generally medium grained but some coarse intergrowths with pyrite. In lowest 14 cm vein development of pyrrhotite intergrown with actinolite and with 3-5\% chalcopyrite. Yein of massive pyrrhotite between 106.35 and 106.52 m occupying whole of core in lowest 8 cm . Comprises $50-60 \%$. pyrrhotite and 5-8\% chalcopyrite with inclusions of coarse dark amphibole. Similar vein between 106.69 and 106.70 m with probably about 50% pyrrhotite intergrown with coarse amphibole. No chalcopyrite within but patch below (about 5% over 2 cm). Small chalcopyrite patch between 106.80 and 106.90 m .

MASSIVE PYRRHOTITE with minor chalcopyrite.

Metres

Six-inch Map (County and Quarter Sheet) \qquad HU. . 46. NE \qquad
\square

Thickness	Depth from Surface
Metres	Metres

APPENDIX FIVE
ASSAY RESULIS OF DRIILLCORE SAMPLES

Methods

Copper determinations were performed on-site using a portable X-ray fluorescence analyser (Ecko Electronics Mineral Analyser). The instrument was calibrated using previously analysed, powdered rock samples from surface outcrops at Vidlin, in order to have a similar chemical matrix to the drill cores. Because the geometry, density, and grain size of the drill cores differ markedly from the powdered rock samples, the copper content determined by the Mineral Analyser is only a nominal value, and was later found to be low by a factor of about 0.7 (visually estimated from a scatter plot of AAS Cu versus Mineral Analyser Cu). The use of the instrument is therefore hampered by the physical effects mentioned above and also by a matrix-compositional effect, especially the iron content which varies from low values in the calc-silicate and quartzites to very high values in the massive pyrrhotite-rock. Generally a high iron content will reduce the nominal copper value and conversely erroneously high copper values will be found in the quartzites. Another disadvantage is the relatively small size of the irradiated sample and, coupled with this, the coarse grained and erratic distribution of the chalcopyrite, which produces an unreliable estimate of the copper content, even when averaged over 20 determinations per metre. The advantage of the Mineral Analyser is that a rapid on-site estimation of nominal copper content can be made and used as a guide to the sampling for further chemical analysis.

The chemical analysis was performed by standard atomic absorption techniques, after dissolution of the sample with concentrated HCl, evaporation to dryness, and then addition of HNO_{3}. The normal method of attack with hot HNO_{3} did not prove satisfactory because of the precipitation of sulphur which produced lower metal values, especially for Pb. The possibility of interference, due to the high iron content of the samples, was checked by a standard addition technique but was not found to be significant.

The chemical analysis was performed on a sample prepared by splitting the core in half, jaw crushing to $1-2 m m$ grain size, quartering and grinding to less than 200 mesh in an agate tema mill.

BOREHOLE 1
Sample No. Opper \quad Depth (m) Thickness (m)

CHD	1/45	45.00	1.00
	1/46	46.00	1.00
	1/47	47.00	1.00
	$1 / 48$	48.00	1.00
	1/49	49.00	1.00
	1/50	50.00	1.90
	1/51	51.00	- 1.00
	1/52	52.00	1.00
	1/53	53.00	1.00
	1/54	54.00	1.00
	1/55	55.00	1.00
	1/56	56.00	1.00
	1/57	57.00	1.00
	1/58	58.00	1.00
	1/59	59.00	1.00

BOREHOLE 2
CHD

$2 / 302$	30.20	0.80
$2 / 31$	31.00	0.90
$2 / 319$	31.90	0.65
$2 / 449$	44.91	1.13

BOREHOLE 3

CHD	$3 / 534$	53.40	0.60
	$3 / 54$	54.00	0.65
	$3 / 546$	54.65	0.35
	$3 / 55$	55.00	1.00
	$3 / 56$	56.00	0.43

BOREHOLE 4
$\begin{array}{llll}\mathrm{CHD} & 4 / 474 & 47.40 & 0.60 \\ & 4 / 48 & 48.00 & 0.60 \\ & 4 / 486 & 48.60 & 0.85 \\ & 4 / 494 & 48.45 & 0.55 \\ & 4 / 50 & 50.00 & 0.85 \\ & 4 / 508 & 50.85 & 0.57\end{array}$

Mineral

0.39	0.525	0.058	0.450	115	45	6
0.59	1.330	0.078	1.570	310	85	6

$\begin{array}{lllllll}0.59 & 1.330 & 0.078 & 1.570 & 310 & 85 & 6 \\ 0.59 & 0.900 & 0.060 & 0.675 & 225 & 60 & 6\end{array}$
$\begin{array}{llllllll}0.64 & 0.950 & 0.081 & 0.610 & 260 & 65 & 6\end{array}$
$\begin{array}{lllllll}0.80 & 1.025 & 0.090 & 1.180 & 245 & 65 & 7\end{array}$
$\begin{array}{lllllll}0.51 & 0.875 & 0.054 & 0.330 & 220 & 60 & 5\end{array}$
$\begin{array}{lllllll}0.58 & 0.880 & 0.060 & 0.680 & 270 & 70 & 5\end{array}$
$\begin{array}{lllllll}0.88 & 1.340 & 0.044 & 0.525 & 250 & 65 & 6\end{array}$
$\begin{array}{llllllll}0.72 & 1.160 & 0.057 & 1.250 & 285 & 80 & 7\end{array}$
$\begin{array}{lllllll}0.33 & 0.895 & 0.061 & 0.445 & 200 & 55 & 6\end{array}$
$\begin{array}{lllllll}0.74 & 0.925 & 0.058 & 0.500 & 275 & 70 & 5\end{array}$
$\begin{array}{lllllll}0.66 & 0.955 & 0.038 & 0.610 & 325 & 85 & 5\end{array}$
$\begin{array}{lllllll}0.89 & 1.140 & 0.050 & 0.600 & 255 & 70 & 5\end{array}$
$\begin{array}{lllllll}0.59 & 0.730 & 0.031 & 0.525 & 155 & 40 & 5\end{array}$
$\begin{array}{lllllll}0.25 & 0.300 & 0.006 & 0.033 & 35 & 15 & 3\end{array}$

0.52	0.840	0.037	1.035	310	70	6
0.61	0.970	0.062	1.460	320	75	5
1.13	1.950	0.076	1.330	270	60	5
-	0.110	0.002	0.011	80	80	2

0.12	0.100	0.020	0.010	45	65	1
0.11	0.515	0.006	0.100	140	30	3
0.39	0.435	0.015	0.335	225	45	3
0.23	0.860	0.088	0.595	215	45	5
0.08	0.100	0.022	0.018	30	20	1

0.10	0.445	0.008	0.370	165	40	2
0.05	0.130	0.007	0.030	45	65	1
0.33	0.615	0.004	0.155	190	40	3
0.00	0.250	0.003	0.080	295	60	3
0.35	0.780	0.005	0.060	130	35	4
0.01	0.075	0.005	0.008	25	40	1

Table 1 continued

BOREHOLE 5

fig 4 geological map of viduin ness
SCaLE 1:2500 Approximately
riser

