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ABSTRACT

One of the most successful theories to date to explain why observed planetary waves propagate

westwards faster than linear flat-bottom theory predicts has been to include the effect of

background baroclinic mean flow, which modifies the potential vorticity waveguide in which the

waves propagate. (Barotropic flows are almost everywhere too small to explain the observed

differences.) That theory accounted for most, but not all, of the observed wave speeds. A later

attempt to examine the effect of the sloping bottom on these waves (without the mean flow effect)

did not find any overall speed-up. This paper combines these two effects, assuming long

(geostrophic) waves and slowly varying mean flow and topography, and computes group velocities

at each point in the global ocean. These velocities turn out to be largely independent of the

orientation of the wavevector. A second speed-up of the waves is found (over that for mean flow

only). Almost no eastward-oriented group velocities are found, so that features which appear to

propagate in the same sense as a subtropical gyre would have to be coupled with the atmosphere or

be density-compensated in some manner.
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1. Introduction

Planetary waves are the main mechanism whereby information about one part of the ocean is

transferred to another part. Interest in their properties was rekindled when the availability of

satellite altimetry permitted observation of planetary waves (Tokmakian and Challenor, 1993), and

the discovery by Chelton and Schlax (1996) that these waves appeared to be propagating at speeds

up to twice those predicted by the linear vertical normal mode theory. Although there has been

some debate as to the extent of this discrepancy (e.g., Zang and Wunsch, 1999), it is now generally

accepted that waves observed in altimetrydo propagate significantly faster than linear theory would

predict (and are also visible in other remotely sensed fields).

Theories have been put forward using a variety of mechanisms to explain the speed-up. One of

the most successful to date (though not completely accounting for observations) is due to Killworth

et al. (1997), who proposed that the background baroclinic east-west shear flow would alter the

existing potential vorticity gradient sufficiently to modify the phase speed of small disturbances.

(This had been earlier suggested by Kang and Magaard, 1979.) The Doppler shift produced by the

barotropic flow was found to be almost everywhere far too small to account for the speed changes,

as well as not necessarily being in the right direction. Killworth et al.’s baroclinic computations

confirmed the general speed-up, save within about 10° of the equator. However, the speed-up

predicted still remained slightly smaller than observed in higher northern latitudes, and noticeably

smaller in higher southern latitudes. Dewar (1998), de Szoeke and Chelton (1999) and Liu (1999a,

1999b) have given simplified explanations why this should be the case, and Dewar and Morris

(2000) have demonstrated the effect in a quasi-geostrophic model. Fu and Chelton (2001) extended

the results to non-long waves, showing excellent agreement between observed and computed

dispersion relations. Killworth and Blundell (1999) examined the role of topographic gradients in

altering the phase and group velocity of long planetary waves in a continuously stratified model.

While topographic effects were effective locally, Killworth and Blundell found that the effects

tended to cancel out across an ocean basin, leaving the net effect of topography to be small. [This

was not found by Tyler and Käse’s (2001) in two-layer formulation of the same problem. There is a
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general, but unproven, belief that two-layer models appear to overestimate effects of topography;

certainly in this case their results, showing significant net speed-ups, are not in accord with the

equivalent continuously stratified calculation.]

Killworth and Blundell (2001), assuming that the cancellation of topographic effects across a

basin might continue if baroclinic shear was included again, used a normal mode decomposition

based on a locally flat bottom to produce approximate first and second mode phase and group

velocities. [Liu (1999a, b) had been the first to draw attention to the second mode using a 2.5 layer

model, both from the perspective of the surface temperature signal and from its direction of

propagation.] They found similar results to those of Liu, including an apparent gyre-like structure

in the second-mode group velocities. These results will be addressed later in this paper. Tailleux

and McWilliams (2001) present an argument based on a different bottom boundary condition (one

with zero pressure perturbation) and no mean flow to obtain a similar set of phase velocities to

those found by Killworth et al. (1997) with a flat bottom and zonal mean flow. The waves are

speeded up by a factor which is the same as that found by Samelson (1992) in a two-layer

calculation, who found an element of surface trapping in waves over bumpy topography. While our

work here addresses the traditional boundary condition of no normal flow, we shall also discuss

this alternative condition later in this paper. Finally, Yang (2000) examined the propagation of a

wavepacket, rather than a coherent wave with a vertical structure as considered by the other cited

papers. In the presence of a mean flow, the horizontal group velocity of the packet could differ in

direction with depth (the effect of horizontal boundaries was neglected). Yang concluded that wave

packets could account for most of the observed features in the satellite data, although his

conclusion held for waves with a large vertical scale, formally invalid under the ray theory used.

Most papers cited used a WKBJ formulation (as we shall here), so that the background through

which long waves propagate is considered slowly varying compared with the length scale of the

perturbation (itself long compared with a deformation radius so that the long-wave approximation

holds). However, the more general and realistic problem – how does a long planetary wave

propagate through the background mean flow present in the ocean, across a slowly-varying version
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of the ocean topography? – has not been tackled, largely due to the computational and analytical

difficulties (the problem depends on the orientation of the wavevector, and hitherto formulae for

group velocities in such circumstances have been lacking). This paper attempts to remedy this

omission, by producing local solutions for the first two vertical normal modes in these more

general circumstances. Its companion paper uses ray theory and an eastern boundary wave

initialisation to confirm that the solutions in this paper are legitimate.

Section 2 sets up the problem, and the algebra for its solution is given in Section 3. Section 4

discusses group velocities and a clustering algorithm to describe them. Section 5 examines some

typical solutions, and Section 6 gives global results for group velocities.

2. Formulation

Following our earlier work, the planetary geostrophic approximation is employed, since this

permits variation in stratification, unlike the quasi-geostrophic approximation. The equations of

motion are cast onto Welander’s (1959) variable . We writeM

p/ ρ0 = Mz (2.1)
where  represents pressure,  the density with  a reference value. The geostrophic velocity field

 relative to axes  is given by

p ρ ρ0

(u, v, w) (λ , θ , z )longitude  latitude  upwards

u = −
Mzθ

a f
(2.2)

v =
Mzλ

a f cosθ
(2.3)

w =
Mλ

a2f sinθ
(2.4)

where  is the radius of the Earth,  is the Coriolis parameter, and  is the Earth’s

rotation rate. The density is given by

a f = 2Ω sinθ Ω

ρ = −
Mzz

g
ρ0 (2.5)

where  is the gravitational acceleration. The (time-dependent) equation for density conservation is

a single equation for , with  representing time:

g

M t
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ρt +
uρλ

a cosθ
+

vρθ

a
+ wρz = 0 or

Mzzt −
MzθMzzλ

f a2 cosθ
+

MzλMzzθ

f a2 cosθ
+

MλMzzz

f a2 sinθ
= 0. (2.6)

We assume that the flow consists of a background mean field, denoted by an overbar, and a small

perturbation, denoted by a prime. The background flow, together with the ocean topography, is

permitted to vary only on the large (basin) scale , so that WKBJ analysis is permissible. This

means that effects of abrupt topography, such as narrow ridges, and narrow boundary currents,

must be excluded from analysis. The perturbation flow varies on a scale  which is taken to be

both short compared with the basin scale, but long enough for the geostrophic balance to hold. As

Killworth and Blundell (2001) note, there are regions of the world ocean where the background

flow changes sufficiently rapidly to formally invalidate the WKBJ assumption, though such theory

continues to provide useable results even in such cases.

Lbasin

Lpert

The background mean field is henceforth explicitly taken to be baroclinic (i.e., to have zero

depth-integrated value), since any barotropic mean component merely induces a Doppler-shift to

the solution. The barotropic component is seldom large enough to affect the solutions save for the

Antarctic Circumpolar Current and intense western boundary currents; in the latter, a WKBJ

formulation would anyway be questionable.

With these assumptions, the perturbation field satisfies

M′zzt −
1

f a2 cosθ
(M̄zθM′zzλ + M′zθM̄zzλ) +

1
f a2 cosθ

(M̄zλM′zzθ + M′zλM̄zzθ) +

1
f a2 sinθ

(M̄λM′zzz + M′λM̄zzz) = 0. (2.7)

Because of the scale separation assumption, the first term in the last bracket ( ) is formally

smaller than the second ( ) by a factor ; Killworth and Blundell (2001) note that the

ratio is actually smaller still. With this assumption, (2.7) becomes, with a little rearrangement,

w̄ρ′z

w′ρ¯ z Lpert / Lbasin

M′zzt +
ū

a cosθ
M′zzλ +

v¯
a

M′zzθ −
ūz

a cosθ
M′zλ −

v¯ z

a
M′zθ +

N2 (x, y, z)
f a2 sinθ

M′λ = 0. (2.8)

Equation (2.8) has boundary conditions at surface and floor. For free waves (Liu, 1999b considers a

forced problem),
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w′ = 0, z = 0 ⇒ M′ = 0, z = 0. (2.9)
The ocean has varying depth , at which there is no normal velocity;H (λ, θ)

w′ +
u′Hλ

a cosθ
+

v′Hθ

a
= 0, z = −H ⇒

M′λ + tanθ (M′zλHθ − M′zθHλ) = 0, z = −H. (2.10)
The mean flow is also assumed to satisfy the boundary condition of no normal flow at the bottom.1

(The bottom boundary condition is in contention: Tailleux and McWilliams, 2001 have recently

suggested an alternative condition of zero bottom pressure perturbation. That used here is the

standard, purely kinematic, condition.) Precisely what definition of bottom slope – and, indeed, of

bottom depth – is applicable is not clear, and we shall use smoothings of high-resolution data on

several different scales in what follows, as well as exploring in Section 5b how close our solutions

come to satisfying the Tailleux and McWilliams bottom condition.

We now seek a wavelike solution

M′ = F (λ, θ, z) expi (kλ + lθ − ωt) (2.11)
where  is a wavenumber in the  directions and  is a frequency, assumed positive

without loss of generality. The vertical structure  varies slowly laterally (i.e., on the basin scale)

while the phase varies on the perturbation scale, as is usual in WKBJ theory. Substitution into (2.8)

gives after a little algebra the self-adjoint (but nonlinear in frequency) eigenvalue system

(k, l) (λ, θ) ω

F

(Fz

R)
z

+
S

R2
F ≡ L (F) = 0 (2.12)

where

S(z; λ, θ, k) =
kN2 (λ, θ, z)

a2f sinθ
(2.13)

Q (z; λ, θ, k, l ) =
kū

a cosθ
+

lv¯
a

(2.14)

R(z; λ, θ, k, l ) = Q − ω (2.15)

1 This is not strictly consistent with our assumption of purely baroclinic mean flow except when the ocean has a flat

bottom. Put another way, it would require a specific mean Ekman pumping. Acquiring a consistent mean flow from

observed density data is, of course, a long-standing inversion problem which will not be discussed here.

– 7 – 14/8/03



This has boundary conditions

F = 0, Fz = 1, z = 0 (2.16) (assuming a rigid lid)

F (−H) = −αFz (−H) , α = tanθ (Hθ −
l

k
Hλ) . (2.17) where 

The second surface condition is purely for scaling reasons, providing both the facility to treat (2.12)

as an initial-value problem when convenient, and to enable differentiation of the problem to be

well-posed.

If the frequency is known, then the phase velocities

cp = (cpx, cpy) =

(ω
k

a cosθ,
ω
l

a)  (definition 1), or

( ωk

k2 + l2
a cosθ,

ωl

k2 + l2
a)  (2.18)(definition 2)

are known. Both definitions are used in the literature. The former is not a velocity, describes phase

propagation well, but implies an infinite N-S phase speed for zero . The latter is a vector, does not

describe phase propagation well except in the direction of the wavevector, and implies a zero N-S

phase speed for zero .

l

l

We shall frequently ignore the geometrical factors in the following discussion for clarity, but all

results will be quoted as actual speeds. If the derivatives  can be computed, then the group

velocities

ωk, ωl

cg = (cgx, cgy) = (ωka cosθ, ωla) (2.19)
are also known. These are rather better behaved than either definition of phase velocity and will be

mainly used in what follows.

The system (2.12), (2.16), and (2.17) provide an implicit dispersion relationship connecting

with ; the remainder of this paper will be concerned with computing it.

ω

(k, l)

Before doing so, however, note that Appendix A demonstrates two properties of the dispersion

relationship for a flat bottomed ocean and purely baroclinic mean flow: first, there are no real

solutions for which the quantity  vanishes anywhere in the water column (i.e. for which a criticalR
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layer exists); and second, there are no solutions for positive  for which  does not vanish. The

combination of these two results means that there can be no (real) eastward wave propagation for a

flat-bottomed ocean, save for any possible Doppler effects of mean flow. This invalidates the

second-mode solutions of Killworth and Blundell (2001), which sometimes had eastward phase

velocity components. That paper had unintentionally avoided (apparently) the critical layer

difficulties by casting the problem onto a finite number of vertical normal modes. Liu’s (1999a,

1999b) papers cast the flow onto 2 or 3 layers (with a net barotropic flow) and, like Killworth and

Blundell (2001), found a phase velocity which would have a critical layer somewhere in the water

column. Thus none of these papers present solutions which could occur in the continuously

stratified regime. (Complex solutions with eastward flow could occur; but these are not located

using the present numerical approaches.)

k R

There are a variety of cases which need to be treated, and we consider the matrix of six

possibilities shown in Table 1. There are three background mean flow possibilities: no mean flow

(N), zonal mean flow only (Z), to permit comparison with Killworth et al. (1997), and general

mean flow (G). There are also two topographic possibilities: locally flat topography (F), for which

(2.17) reduces to the familiar , and sloping topography (S). Some of these

combinations have been addressed elsewhere: the NF case is the traditional flat-bottom normal

mode calculation; the ZF case was examined by Killworth et al. (1997) and Fu and Chelton (2001);

and the NS case is dealt with by Killworth and Blundell (1999). Of the remaining combinations, the

fully general (GS) case will be the main point of focus, since it should be the case most relevant to

the real ocean.

F (−H) = 0

3. Differentiating the dispersion relation

Except in the simplest cases the dispersion relation (2.12) cannot be solved analytically. Because

the long wave assumption has been made, the system is homogeneous, in that a solution set

 implies that  is also a solution for any constant . The lack of analytical

solutions is hardly a problem numerically, save that in order to obtain group velocity we need to be

able to compute derivatives of  w.r.t. . One could contemplate making small changes to  or ,

(ω; k, l ) (Aω; Ak, Al ) A

ω k, l k l
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recomputing the solution and finite-differencing to estimate gradients. However, for the ray theory

in part II of this work, second derivatives are also required, and this brute force approach would be

unsuitable.

We extend the approach of Killworth and Blundell (1999), which assumes that a solution has

been found to (2.12), and uses that solution to compute frequency derivatives (in other words, the

dispersion relation is not known exactly, but its derivatives can be computed exactly).2 Here we

show how to compute first derivatives of  w.r.t.  from a knowledge of  itself and its

eigenvector ; the approach includes derivatives w.r.t.  as well – these latter are needed in Part

II of this paper for ray tracing.

ω k, l ω

F λ, θ

Let  be a component of . Differentiate (2.12) w.r.t. :X X = {λ, θ, k, l} X

L (FX) + LX (F) + ωXLω (F) = 0. (3.1)
At the surface,

FX = 0, z = 0 (3.2)

FXz = 0,  z = 0. (3.3)
At the floor,

FX (−H) + αFXz(−H) − HXFz(−H) + αXFz(−H) − HXαFzz(−H) = 0.

Thus

FX (−H) + αFXz(−H) = HXFz(−H) − αXFz(−H) + HXαFzz(−H) . (3.4)
Here we note that

LX (F) =
∂
∂ z{−RX

R2
Fz} + ( S

R2)
X

F

and since

Rω = −1,  Sω = 0,

Lω (F) =
∂
∂ z{Fz

R2} +
2S

R3
F.

2 The method to be described has some similarity to the Hellman-Feynman theorem of molecular quantum mechanics

(Feynman, 1939).
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Cross-multiply (2.12).  minus (3.2). , and integrate top-to-bottom:FX F

FX
Fz

R
− F

FXz

R


0

−H
− ∫

0

−H
FLX (F) dz − ωX ∫

0

−H
FLω (F) dz = 0. (3.5)

The surface values are zero, leaving

−1
R(−H)

[FX (−H) Fz(−H) − F (−H) FXz(−H)] = ∫
0

−H
FLX (F) dz + ωX ∫

0

−H
FLω (F) dz,  or

−1
R(−H)

[FX (−H) Fz(−H) + αFz (−H) FXz(−H)] = ∫
0

−H
FLX (F) dz + ωX ∫

0

−H
FLω (F) dz,  or

−Fz(−H)
R(−H)

[FX (−H) + αFXz(−H)] = ∫
0

−H
FLX (F) dz + ωX ∫

0

−H
FLω (F) dz,

or, from (3.4),

−Fz(−H)
R(−H)

[HXFz(−H) − αXFz(−H) + HXαFzz(−H)] =

∫
0

−H
FLX (F) dz + ωX ∫

0

−H
FLω (F) dz. (3.6)

We can now solve for  provided merely that we can evaluate the integrals in (3.6). The first of

these is of

ωX

FLX (F) = F 
∂
∂ z{−RX

R2
Fz} + ( S

R2)
X

F
so that after an integration by parts we have

∫
0

−H
FLX (F) dz = F {−RX

R2
Fz}

0

− − H
+ ∫

0

−H
{RX

R2
F2

z + ( S

R2)
X

F2} dz,  or

∫
0

−H
FLX (F) dz = − αRX (−H) F2

z (−H)
R2 (−H)

+ ∫
0

−H
{RX

R2
F2

z + ( S

R2)
X

F2} dz (3.7)

which is immediately computed. The second integral is

∫
0

−H
FLω (F) dz = ∫

0

−H
F 

∂
∂ z{Fz

R2} +
2S

R3
F dz

= F
Fz

R2


0

−H
+ ∫

0

−H
{2SF2

R3
−

F2
z

R2} dz

=
αF2

z (−H)
R2 (−H)

+ ∫
0

−H
{2SF2

R3
−

F2
z

R2} dz. (3.8)

Combining (3.6–3.8) gives
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ωX =
−Fz(−H)
R(−H) [HXFz(−H) − αXFz(−H) + HXαFzz(−H)] + αRX(−H)F2

z (−H)
R2(−H) − ∫

0
−H {RX

R2F2
z + ( S

R2)X F2} dz
αF2

z (−H)
R2(−H) + ∫0

−H {2SF2

R3 − F2
z

R2} dz

(3.9)
Eqn. (3.9) gives  as required, and only needs , integrals of , and a knowledge of  itself. The

only problem occurs when the denominator in (3.9) vanishes, near caustics and changes from real

to complex solutions. These are both legitimate breakdowns of the solution, though they occur

rarely. Since in this paper we only solve the local problem, and  only, we are not

concerned with horizontal variation of the background fields except the topographic slope (present

within  and ), so that the problem at each local position is only a vertical eigenvalue problem

(see App. B for details).

ωX F F ω

X = k, l

α αX

Equation (3.9) is an important result, though complicated. In this paper, restricting  to

only means that the terms in  disappear in (3.9). In more simplified conditions it can be reduced

to well-known results. For example, for a flat bottom and no flow, it is straightforward to show that

. If east-west flow is added,  can still be demonstrated. However, in

more general circumstances we have been unable to find simple relationships which can be

deduced, other than the generic ones at the start of the following section.

X k, l

HX

ωk = ω / k, ωl = 0 ωl = 0

4. Computing group and phase velocities

The frequency  is found as an eigenvalue of (2.12) and its boundary conditions, as a function of

the wavenumber  and, implicitly, of position (since  all depend on all three spatial co-

ordinates, and  depends on horizontal position). Because of the homogeneity of the system,

frequency depends non-trivially only on the orientation  of the wavevector:

ω

(k, l) ū, v¯ , N2

H

ψ

ω = K fn (ψ) , k = (k, l ) = K (cosψ, sinψ) . (4.1) where 

Thus (Liu, 1999b)

ω = kωk + lωl (4.2)
which serves as a useful check on the computations. Eqn. (4.2) also implies that if , the east-

west phase velocity (second definition)  equals the east-west group velocity

. This is a special case of a more general relation between phase and group velocity in the

l = 0

ωka cosθ / K2

ωka cosθ
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direction along the wavevector . From (2.18), second definition,k

k

a cosθ
cpx +

l

a
cpy = ω (4.3)

while from (4.2) and (2.19),

k

a cosθ
cgx +

l

a
cgy = ω. (4.4)

Thus the components of phase and group velocity oriented along  are identical for long waves.

However, save in the special cases discussed at the end of the previous section, in general phase

and group velocity are not identical (though they often are similar numerically); the complexity of

(3.9) means that little progress can be made toward understanding these dispersive effects.

k

We concentrate on group rather than phase velocity in what follows, since the former is much

less dependent on wavevector orientation (for example, the northwards phase velocity vanishes by

definition when , but  only when  vanishes identically). Even so, the results remain

formally dependent on  as well as position, so that some simplification has to be made for

presentational purposes (especially since there are also six combinations of mean flow and

topography possible, plus several vertical modes to consider).

l = 0 ωl = 0 v¯

ψ

The weak dependence on wavevector orientation found by Killworth and Blundell (2001)

provides a useful simplification. At any horizontal point in the ocean, 19 equispaced orientations of

the wavevector are considered, each with a westward component. The restriction to westward

components is for two reasons: (a) Killworth and Blundell (2001, App. A) show that there is no

solution with a locally flat bottom and a north-south-oriented wavevector; and (b) the current

Appendix A shows that there is no solution with an eastward component of the wavevector, at least

for a flat bottom. The argument could not be extended fully to include topographic slopes, but no

occurrences of eastward phase velocity were found in any configuration. The argument in App. A

does not apply to group velocity, but in fact we found only 1/3% of occurrences of any eastward

group velocity (for the second mode), even when the full mean flow and topography were included.

Henceforth we restrict attention to , i.e. westwards orientation of the wavevector. The 19

orientations are equispaced since the orientations which may occur for observed waves will depend

k < 0
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crucially upon the forcing mechanism; lacking knowledge of this, we prefer to retain full

generality. The orientations run between  and ° to the eastward direction; the

closeness to north-south orientations is necessary to include the low-latitude planetary wave

behaviour in which  remains small but  increases westward (cf. Schopf et al., 1981).

90 + 2.9 270 − 2.9

k l

For each of the 19 westward orientations, the eigenvalue problem (2.12) is solved for (real)

frequency, and phase and group velocities are computed. (The methodology to do this is detailed in

Appendix B.) As many modes as possible, up to four, are found, though we shall only report on the

first two here (successively higher modes are confined to areas ever-nearer to the equator). A

cluster algorithm is used on the group velocity vectors so produced. First, the set of group

velocities is re-ordered slightly so that an entry with the maximum number of real group velocities

located is first in the list. For the first orientation, a set of mean group velocities, which are simply

the group velocities for that orientation, is stored. For each new orientation after the first, every

group velocity is allocated to the most similar mean group velocity in the existing list of means on

a one-to-one basis. This method has the advantage of robustness, in that it automatically filters out

solutions which occur for unusual parameter combinations only. Such solutions would have

difficulty propagating. (In the absence of mean flow, the solutions are naturally ordered by the

number of zero-crossings of , the eigenvector for the horizontal flow perturbation, but this

ordering can disappear in the presence of mean flow. We are not aware of any systematic way to

provide an ordering; which is another reason for our use of the clustering approach.) The mean and

the standard deviation3 are computed at each stage for each member of the list.

Fz

Because the number of real solutions may depend on orientation, the number of group

velocities presented to the algorithm will vary (hence the initialisation by the maximum number of

solutions). For some orientations, a solution may not exist. We require, arbitrarily, that a certain

fraction, here one-quarter, of the 19 possible solutions must exist for a solution to be deemed valid.

3 Here computed as the obvious two-dimensional analogue of the one-dimensional standard deviation. More

accurately, covariances should be stored so that an error ellipse can be produced, but for our purposes the simpler

description suffices.
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If not, that solution is discarded (thus removing solutions which only exist for certain wavevector

directions, which would have trouble propagating).

After cluster analysis over the orientations, we have a set of modes, i.e., mean group velocities

(and phase velocities, though we shall not show these) and standard deviations. The latter indicate

the reliability of quoting a single mean group velocity; a small standard deviation compared with

the mean value implies that the quoted value is representative, and a large standard deviation

implies that the quoted value is not representative. The modes are arbitrarily numbered in order of

east-west group velocity, so that the fastest westward mode is numbered 1. The N modes are

properly entitled ‘normal modes’, while the Z and G modes are more correctly termed ‘shear

modes’. For simplicity, here, both sets are referred to as normal modes.

5. Example profiles

a. Typical solutions

We discuss here three fairly typical solutions, for locations which are flat, slightly sloped, and

steeply sloped. These locations are (a) flat: the N. Pacific (45° N, 150° W), with fractional depth

gradients ; (b) slightly sloped: the N. Atlantic (30° N, 30° W), with

fractional depth gradients ; (c) steeply sloped: the S. Indian (20° S,

70° E), with fractional depth gradients  (the latter chosen to have a

large zonal gradient, which could amplify the effect of wavevector orientation ). At each location,

Fig. 1 shows the vertical structure of the first eigenmode and its vertical derivative for the GS case

(full velocity and topographic gradients included), for wavevectors oriented at a subset of the 19

orientations used in the calculation, namely 120, 150, 180, 210 and 240° from east, together with

the mean horizontal velocity profile.

Hλ / H = −0.06, Hθ / H = 0.33

Hλ / H = −0.55, Hθ / H = −1.5

Hλ / H = 8.6, Hθ / H = 2.7

The slopes impact on the bottom boundary condition through the value of  in (2.17). When

 (which is nondimensional) is small, the boundary condition (2.17) becomes close to a flat

bottom, while when  is large, (2.17) becomes close to one of zero pressure perturbation

, suggested by Tailleux and McWilliams (2001), which will be discussed below.

α

α / H

α / H

(Fz = 0)
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The flat case shows an eigenfunction  which is fairly similar across all orientations of

wavevector, but which clearly resembles neither a flat-bottom solution nor a solution with zero .

The insensitivity of the eigenfunction is matched by the east-west group velocity, which takes the

values respectively of ,  m s-1, effectively

independent of orientation due to the weak east-west topographic gradient.

F

Fz

(−0.0120, −0.0194, −0.0193 −0.0194, −0.0121)

The slightly sloping case again has an insensitive eigenfunction, but this time one which clearly

does not resemble a flat bottom solution; with a relatively weak gradient at the floor, the solution is

closer to one for zero derivative. The respective group velocities are ,

 which again vary little, although interestingly showing a largest (westward, and

10% larger than the smallest value) value at 240° orientation, which, as Fig. 1 shows, is the mode

least resembling one with zero bottom derivative.

(−0.0374, −0.0368, −0.0366

−0.0368, −0.0410)

The steeply sloping case shows a stronger effect of wavevector orientation relative to the slope

direction. Three of the eigenfunctions (for 120, 150 and 180°) are all similar and satisfy a boundary

condition approximating to zero . Their group velocities are again similar

 m s-1; their much larger value is because the location is closer to the

equator. The other two orientations, in contrast, are qualitatively different (having a sign change in

the vertical derivative), showing that at these orientations no monotonic first mode could be found.

(This occurrence is familiar from the work of Rhines, 1970 for the case of no mean flow.) The

group velocity at these two orientations is respectively much higher and much lower

 m s-1 than for the other three orientations, showing again that little can be

determined about the magnitude of the group velocity from the shape of the eigenfunction.

Fz

(−0.112, −0.108, −0.105)

(−0.156, −0.032)

b. The role of the bottom boundary condition

In the absence of mean flow, Tailleux and McWilliams (2001) showed directly, and Killworth and

Blundell (1999) showed indirectly, that as the bottom condition (2.17) moves from a condition of

vanishing  towards a condition of vanishing , the faster would be the westward phase velocity.

Even under these restrictive conditions it is not known what the effect on the group velocity would

be, and if mean flow is included even the induced change in phase velocity is not known. Tailleux

F Fz
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and McWilliams then argued that the bottom condition is not well defined, since it is not obvious

what length scales in bottom topography are relevant (though Part II will show that the changes in

solutions produced by changing the smoothing length scale for topography are small). They thus

suggested that the observed speed-up of westward propagation could be accounted for by replacing

the sloping bottom condition with that of vanishing . It is of interest to know how close, in some

sense, our solutions come to satisfying such a boundary condition (and if they do, whether there is a

speed-up associated with it). In the case of no mean flow, the answer is clear from Killworth and

Blundell (1999). Since they found very little net speed-up across an ocean basin, then most of the

world ocean cannot have slopes such that the sloping bottom boundary condition (2.17) resembles

that of vanishing . (It is possiblea priori  that since their solutions were for rays emanating from

the eastern boundary, that modes might have changed during the ray propagation towards the

second – and hence slower – mode. However, we shall see in Part II that this is not the case, at least

for the full GS problem.) The cases shown in Fig. 1 also demonstrate that in the presence of mean

flow, smaller bottom gradients are not necessarily associated with faster group velocity.

Fz

Fz

This can be made slightly more rigorous by examining the size of . The operant value of  at a

location depends on the wavevector orientation and hence on the mechanism producing the

planetary waves. An average measure of  can be computed across the 19 orientations of

wavevector, which of course cancels the  term by symmetry, giving a nondimensional estimate

of  as , perforce losing all longitudinal depth gradient information. Fig. 2 shows

a histogram of the rates of occurrence of  in the world ocean in the ‘planetary wave region’4, over

1° squares and  bins of 0.1, with the number of values above 20 in magnitude indicated at the

edge. (If the entire ocean is included, the large values of  at high latitudes strongly increase the

number of large average  values, but these latitudes lie beyond most turning latitudes for annual

and even biennial frequencies.) Killworth and Blundell’s (1999) calculations for a northward

topographic gradient suggest that  would have to be of order 2 or more for significant

wave speed changes. If this remains true in the presence of mean flow, then Fig. 2 shows that the

α α

α

l / k

α ᾱ = tanθ Hθ / H

ᾱ

α

tanθ

α

tanθ Hθ / H

4 Defined as the world ocean between ±5 and ±50°, since only very long period waves are observed at higher latitudes.
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majority of values of  are not large. Visual inspection of contours of , however, show that there

are preferred locations for large values: the N. Atlantic between 30 and 50° N, small areas of the

W. Pacific, and portions of the S. Indian at 30–50° S. So while there are coherent oceanic areas in

which there are consistently high values of , these do not occupy much of the ocean equatorward

of 50°.

ᾱ ᾱ

ᾱ

In general the ratio  must be found from ray theory, so that estimates of  cannot proceed. A

very rough guess for the ratio, suggested by Tailleux, can be made, estimating the wavenumbers

from the classical flat-bottom calculation, though because this is for a different problem, its validity

is suspect. For rays starting at an eastern boundary (see Part II),

l / k α

k ≈
ω

cf lat
, l = − ω dcf lat / dy

c2
f lat (y)

a cosθ (λ − λE)

where  is the assumed starting longitude of the ray. The dashed curve in Fig. 2 shows the values

of  derived from this approximation and from the local flat-bottomed solutions computed here.5

The eastern half of all ocean basins now has  values under 2 in modulus, while the western

side has values over 2 due to the linear increase in  westward. However, the sign of  in these

latter regions changes one or more times with distance westward, and so  passes through zero,

which would make problems for the propagation of a mode tied to high  values of one particular

sign.

λE

α

α / H

l α

α

α

As a final test, the global calculations of the next section were repeated using depth gradients

artificially increased by a factor of 10 over their ‘true’, i.e. 1° smoothed, values. A correlation of

the artificial group velocities, point by point, against their original values shows that the original

values are approximately 0.87 of the artificial ones (this holds for two separate calculations:

including all velocities up to 1 m s-1 and including only velocities up to 0.01 m s-1). If our solutions

were essentially those with no bottom pressure perturbation (and if such were the fastest group

velocities available), then increasing bottom slopes would have no effect on the solutions.

5 Rather than tracing some measure of the eastern boundary, we have defined a pseudoboundary as the easternmost

point of the three longitude bands defined in the figure caption.
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We conclude, therefore, that it is difficult to draw any straightforward conclusions about the

behaviour of individual solutions. The problem is complicated, and global computations must

therefore be made.

6. Global results

Solutions were found for the six cases in Table 1, using values of topography (and its gradient)

smoothed with a 1° length scale. The baroclinic fields and buoyancy frequency are computed

directly from the World Ocean Data atlas (Antonov et al., 1998; Boyer et al., 1998) and so have

been horizontally smoothed during the production of those data. Since the effects of lateral

smoothing are felt most strongly in the depth gradients, and it is far from clear at what scale long

waves ‘see’ topography, a set of values with 3° smoothed data was also computed. The results are

almost indistinguishable by eye from the 1° results to be presented here. Thus our results are robust

to detail in the fields on these scales.

Several general statements can be made concerning the results.

First, over the vast majority of the ocean, results for the first vertical mode using the zonal

mean flow (Z in our notation) overwhelmingly resemble their general mean flow counterparts (G).

(The arguments of Killworth and Blundell (2001) can be used to give a partial reason why this may

be the case, though extending the arguments to bottom slope requires weak east-west slopes, which

are not observed.) This finding applies less strongly for the second mode.

Second, the group velocities are largely dominated by the east-west component. For example,

for the first vertical mode in the fully general GS case, in 94% of the planetary wave region,

 exceeds 0.9; for the second mode, the figure is slightly smaller, at 87%.|cgx| / |cg|

Third, over most of the ocean, the (mean) group velocities found by this approach indeed

possess little dependence on wavevector orientation (i.e., have small standard deviations). For the

first vertical mode, in 84% of the world ocean in the planetary wave region, the coefficient of

variation (i.e., the mean group speed divided by the standard deviation) was more than 1.96, so that

each group velocity in the list can be thought of as statistically different from zero. In 52% of the
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ocean, the coefficient of variation exceeded 5, so that the mean group velocity provides a very

accurate estimate independent of orientation of the wavevector. Fig. 3 shows the spatial structure of

this ratio. The locations where the ratio is smaller than either 5 or 1.96 tend to be near steeper

topography (mid-ocean ridges, etc.), in higher poleward latitudes, and near ocean boundaries. For

the second mode, a similar but weaker result was found: in 76% of points, the coefficient of

variation exceeded 1.96, and in 43% of locations exceeded 5. (There are fewer locations where a

real second mode can be found). Thusfor about three-quarters of the world ocean, we can think of

there being a single well-defined group velocity for each vertical mode. This permits us,

henceforth, to quote only mean values with only minor caveats in what follows.

a. The first vertical mode

The first-mode westward group velocity has already been shown for the NF and ZF cases in

Killworth et al. (1997), subject to minor changes due to small differences in the datasets used.6

Since all such diagrams look similar (they are dominated by the latitudinal variation due to ), we

show only the fully general GS case in Fig. 4. The results are slightly noisier than those found by

Killworth et al. (1997), and show a consistent poleward movement of contours relative to their (ZF)

case. The north-south group velocity is, as noted, mainly much smaller than the westward

component. Fig. 5 shows this clearly (experiments with contouring direction were less clear than

this representation owing to noisiness). Almost the only locations in which the group velocity is not

strongly directed westwards are those over topographic features such as mid-ocean ridges (which

can almost be picked out by eye from the figure).

f

This fully general case is a combination of mean flow and bottom topographic effects.

Killworth et al. (1997) found a speed-up of the westward (phase) speed over the traditional zero-

flow, flat-bottom normal mode speed, which was sufficient to explain most of Chelton and

Schlax’s (1996) observations of an increase in phase speed. However, Killworth and Blundell

(1999) found little systematic effect on phase or group speed from topographic effects alone. It is

therefore interesting that the combination of both effects in the GS results demonstrates a further

6 Since in those calculations  vanished identically,  and so east-west group and phase velocity are identical.v¯ ωl = 0
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speed-up of the westward group velocity over that already found by Killworth et al. for the ZF case.

Fig. 6 summarises this, by showing a logarithmic plot of the longitudinally averaged westward

group velocity as a function of latitude. (In all summary plots, it should be remembered that the

number of points entering the average decreases in high latitudes where fewer solutions could be

found.) The results fall into three groups, of increasing speed. The slowest group is the no-flow

solutions, with and without topographic slopes (NF, NS). The next fastest speeds are ZF (not

shown) and GF, i.e., inclusion of mean flow but retaining a locally flat bottom. The fastest speeds

are found for ZS (not shown) and GS. The differences are small near the equator, but become much

more noticeable poleward. Contour plots of the group velocity ratio GS/NF (not shown) indicate

that there is much variation of the ratio with longitude, including small areas of ratios under unity

even at high latitudes.

Figure 7 uses the same data to show ratios of the mean speeds to those in the NF case (i.e., to

the traditional normal mode calculation). An almost identical diagram is produced if one plots the

ratio of the means instead of the mean of the ratios, save at high latitudes where the signal is noisy.

The speed-up found by Killworth et al. (1997) and later authors is represented by the dashed line

(GF, almost identical to ZF which is not shown). As Killworth and Blundell (1999) found, there is

little net speed-up by topographic effects alone (dash-dotted line, NS). However, the second speed-

up when both mean flow and topographic gradients are included is clearly evident; it approximately

increases in magnitude poleward, reaching values of order 2 in both hemispheres.

It can be argued that a more careful interpretation of longitudinally-averaged speeds should use

the harmonic mean rather than the arithmetic, since what is observed is a travel time, proportional

to an integral of the inverse speed (Tailleux, personal communication). The results of this (not

shown) are essentially similar, though made more noisy by small areas of low velocity which

contribute heavily to the harmonic mean (in addition, the NS/NF ratio is mainly under unity).

b. The second vertical mode

Figure 8 shows contours of the second-mode east-west group velocity, again for the GS case. It

resembles the first-mode in structure, though of course with much reduced speeds, and a further
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encroachment of areas where no solution could be found. Fig. 9 shows the direction of the group

velocity. This shows more variability from the strongly westward orientation of the first mode,

though still dominated by the westward direction, and indicates the location of the 1/3% of vectors

with an eastward component.

Figure 10 shows the zonally-averaged group speeds for the second mode. The slowest speeds

remain, as before, the NF and NS cases (i.e., those with no mean flow). However, all the remaining

cases (whether zonal or full mean flow, and whether there is a locally flat or sloping bottom) show

similar speeds, showing a strong degree of speed-up over the linear normal mode, except near the

equator. Fig. 11 shows the ratios to the NF case. Here there is a systematic separation of the

different cases. The smallest ratio, never differing far from unity, remains the NS case. The cases

with mean flow all have much larger ratios, and in increasing order of ratio (apart from a small

amount of noise at high latitudes) are: GF/NF, ZF/NF, GS/NF, and ZS/NF, so that the maximum

speed-up experienced by the second mode occurs for zonal flow and sloping topography. The

additional speed-up for mean flow and topography over mean flow alone is, however, much

smaller for this second mode than for the first. For the full case (GS), ratios of over 2 are typical

poleward of 35°S. (The ratio of the means is again similar to the mean of the ratios, and is not

shown.)

7. Discussion

This paper has sought to produce as general a theory as possible for the propagation of small-

amplitude long planetary waves, subject only to the WKBJ assumption of slowly-varying

background fields such as baroclinic shear and topography. These are necessary assumptions

without which it would make little sense to compute local solutions. However, they are not

necessarily well satisfied in the real ocean. Killworth et al. (1997) give some discussion of

variability in the baroclinic signal, and Killworth and Blundell (1999) do the same for topographic

slopes. The test mentioned earlier (with 3° smoothing rather than 1°) shows that results are

essentially independent of any larger-scale variability; and, indeed, 1° is quite a small smoothing

scale for global WKBJ theory. Nonetheless, more work needs to be done on whether (and how)
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background flow and topographic variation on scales small compared with the waves can interact

with the waves themselves on a global basis.

The second speed-up of westward propagation induced by the combination of baroclinic mean

flow and topographic slopes has been mentioned several times without an explanation being

offered. It is hardly likely that any topographic slope will act to speed up a planetary wave

(certainly this is not the case without mean flow, cf. Killworth and Blundell, 1999). Why, then,

should there be such a consistent speed-up? In the earlier case of the speed-up induced by

baroclinic mean flow over a locally flat bottom, Dewar (1998) and de Szoeke and Chelton (1999)

were able to offer suggestions based on potential vorticity structures. These structures had their

basis in the dynamics of the large-scale ocean circulation. Modifying this theory to include what

can be thought of as an arbitrary bottom slope seems difficult.

As an experiment, we re-examined the three typical ocean locations used in Fig. 1. At each of

these, the absolute bottom slope was computed. Then a collection of modified bottom slopes was

created, by taking the given slope and orienting it along an angle varying between 0° and 360° to

the eastward direction. For each angle, the eigenvalue problem (2.12) was solved (over a variety of

wavevector orientations again) and the mean group velocities computed as before. Solutions for the

three locations are shown in Fig. 12. The flat area (45° N, 150° W) shows a noticeable degree of

variability of the first mode speed with angle: some orientations of topography speed the wave up

over its locally flat-bottomed GF value, and some slow it down [plus, at 234°, what may be close to

a zero of the denominator of  in (3.9)]. The actual orientation (shown by the vertical dashed line)

is such as to slow the wave down over its locally flat-bottomed GF value. The second mode speed

is almost independent of slope orientation. The slightly sloped area (30° N, 30°W) again shows

slope orientations both increasing and decreasing the first-mode wave speed; the actual orientation

is such as to speed up the first mode, but has little effect on the second. The steeply sloped location

(20° S, 70°E) is less typical among those we have examined, in that most orientations of the

topographic slope increase the wave speed over its GF value, though this only holds for the first

mode.

ωk

– 23 – 14/8/03



There is thus little obvious reason why the speed-up appears so consistent, unless, of course, the

topographic slope has acted to produce a mean flow which is such as to induce a speed-up of

planetary waves. This is an intriguing possibility worthy of study, but the set-up of the mean flow

must remain beyond the scope of this paper.

The lack of eastward group velocities in our results means that explanations for eastward

propagating sea surface temperature signals (e.g., Sutton and Allen, 1997, but with caveats

discussed in Killworth and Blundell, 2001) cannot rely on ocean-only dynamics unless the signal is

density-compensated, at least at the large-scale and for real solutions (except perhaps at high

latitudes where the barotropic Doppler shift can operate). Smaller-scale features such as mesoscale

eddies, etc. could of course be involved, but are beyond the scope of this paper. Thus the

‘information loop’ within the ocean must be closed by Kelvin or coastal waves taking the planetary

wave signal at a western boundary and re-propagating it around the basin circumference to re-

initialise the wave. No pseudo-gyral dynamics are permitted by our results.
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APPENDIX A

Existence of solutions

This appendix proves three results concerning the existence of real solutions.

a. Non-existence of critical layers

Suppose that  is such that  vanishes, for some , , i.e., that there is a real critical

layer within the fluid column. Near , . If  had no higher terms, and

were independent of depth, the two solutions of (2.12) would simply be

ω R z0 0 > z0 > −H

z = z0 R ∼ A(z − z0) +… R S

(z − z0) {J2 (2 [S(z − z0)]1/2) , Y2 (2 [S(z − z0)]1/2)} ,
where  are Bessel functions of second order. The first of these solutions is well behaved onJ2, Y2
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both sides of the zero of . The expansion of the second of the solutions begins with a constant, and

contains a term proportional to . The solution would not be physical since the

vertical velocity is proportional to , the pressure is proportional to  and so the density is

proportional to , containing a term in , clearly unphysical.

R

(z − z0)2 ln |z − z0|
F Fz

Fzz ln |z − z0|

Now it is possible that the higher terms in the expansion of  and  about the zero of  could be

such as to remove the logarithmic term in the expansion of , and render the second solution

physical. In general, however, this cannot occur. To see this most easily, evaluate (2.12) and

(2.12) at , assuming only well-behaved solutions:

R S R

F

∂ / ∂ z

z0

{RFzz} − RzFz + SF = 0, z = z0

{RFzzz} − RzzFz + SzF + SFz = 0, z = z0

where the terms in curly brackets vanish at  for well-behaved solutions. Thus  and  must

satisfy two homogeneous equations at :

z0 F Fz

z = z0

SF − RzFz = 0

SzF + (S − Rzz) Fz = 0.
In general, these have no solution other than the null solution, unless the determinant of the

coefficients vanishes, i.e., if

(Rz

S)
z

= 1, z = z0. (A1.1)

If this occurs at all, it can only occur at some specific value of . Unlike the numerical approach in

Appendix B, we here take the usual view that the eigenvalue problem is one for  given .  Until

the boundary conditions are applied to close the eigenvalue problem,  depends on  (as well as on

 and ).

z0

ω k, l

z0 ω

k l

To close the problem, then, two cases can occur. The first, more usual, case is that only one

well-behaved solution exists at the critical layer, when . This solution can only

vanish at the surface (satisfying the boundary condition there) for some specific  (in turn implying

a specific ). But there are no further degrees of freedom left to satisfy the bottom boundary

condition (save in exceptionally special circumstances). In the second, special, case (A1.1) holds

above, and both well-behaved solutions exist, but for a pre-specified eigenvalue  [  and  are

F ∼ (z − z0)2

z0

ω

ω z0 ω
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jointly determined by the requirements that  must vanish and (A1.1) must hold]. The boundary

conditions at top and bottom, both homogeneous, must then additionally both be satisfied. With no

degrees of freedom, again in general the solution can only be null.

R

Thus any physically acceptable solution with an internal critical layer must be have complex

frequency (and so not really possess a critical layer). Killworth et al. (1997) reported cases of

complex solutions (typically at high latitudes), but the solution method employed here cannot

locate complex solutions. We concentrate also on group velocities for robustness, and the definition

of group velocity when the mode concerned has a complex frequency still remains ill-defined (cf.

the review by Pierrehumbert and Swanson, 1995, which shows that the full non-longwave

dispersion relation would be needed).

b. The sign of R

Since the mean flow is baroclinic,

∫
0

−H
Qdz ≡ ∫

0

−H ( kū

a cosθ
+

lv¯
a ) dz = 0,

it follows that  takes both positive and negative values in the water column. Further, as  by

supposition,  must be somewhere negative in each fluid column. We showed above

that  cannot vanish for real solutions. It therefore follows that

Q ω > 0

R = Q − ω

R

R < 0 everywhere.

c. Non-existence of eastward propagating waves for a flat-bottomed ocean

Multiply (2.12) by  and integrate from bottom to top:F


FFz

R


0

−H
− ∫

0

−H

F2
z

R
dz + ∫

0

−H

SF2

R2
dz = 0. (A1.2)

The first term vanishes at the surface, and for a flat-bottomed ocean also vanishes at the floor. The

second term is positive (since  has just been proven). Thus the third term must be negative.

The only adjustment to the sign can be made by selecting , which must therefore be negative to

satisfy (A1.2). Thus there can be no flat-bottomed waves propagating with an eastward phase

velocity (and indeed, if there is no north-south mean flow, the same holds for group velocity).

R < 0

k
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This has immediate ramifications for simplified solutions such as those by Liu (1999a, 1999b)

and Killworth and Blundell (2001). These articles both found higher vertical modes with eastward

propagation (and frequently possessing what would be real critical layers as well) using,

respectively a 2.5-layer ocean and a modal decomposition.These solutions cannot occur in the

continuous case.

If the ocean possesses topography, then the first term in (A1.2) gives an additional term,

, evaluated at the floor. Thus if  the same restriction against eastward orientation of

phase velocity holds. Thus an eastward orientation of the phase velocity can only occur when

, which depends on the orientation of the wave vector , the topographic gradient, and

the sign of the latitude.

αF2
z / R α < 0

α > 0 (k, l)

APPENDIX B

The data treatment and numerical method

We use the 1998 World Ocean Atlas (Antonov et al., 1998; Boyer et al., 1998) for temperature and

salinity data, and the ETOPO5 dataset (National Geophysical Data Center, 1988) for topography.

The ETOPO5 data were smoothed by applying a Lanczos sigma factor filter (Lanczos, 1957, 1966)

to the 2-D Fourier transform of a 1/4° average of the original data (averaged for storage reasons),

and the inverse transform is averaged onto the same 1° squares as the WOA data. The smoothed

FFT method is used so that we can obtain a consistent set of  and its derivatives. This paper only

requires  and its first derivatives, but the ray tracing and caustic checking of part II will require up

to third derivatives, and we wish to use the same method in both papers. With a 1° filter width, the

resulting topography is very close to the simple averaged topography used in Killworth et al.

(1997).

H

H

We use the UNESCO 1981 equation of state (Gill, 1982) to compute  at the reference

levels, and the thermal wind equations to derive the vertical velocity shear, from which we infer

baroclinic velocity components  and  by requiring their vertical integrals to vanish. These

calculations are done at all 1° gridpoints with depth at least 1000 m. We thus produce tabulated

N2 (z)

u v
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fields suitable both for splining to higher resolution in the vertical, and for bilinear interpolation in

the horizontal.

We now wish to compute  from (3.9), for . This entails first solving (2.12) subject

to (2.16) to give  and . We choose a direction  for the wavevector, and adjust the value of

 using a NAG library (Numerical Algorithms Group Ltd, 1999) zero-finding routine until the

bottom boundary condition – either (2.17), or the simpler condition  for the flat-bottom

case – is satisfied. Eqn. (2.12) is integrated downwards using a simple predictor-corrector scheme

with up to 126 gridpoints for both  and , viewed as elements of a coupled ODE system. Both

and  are tabulated on the refined vertical grid onto which  and  have been splined within the

water column, and at the bottom. Several numerical schemes involving different tabulations of

and , and different integration schemes were tried before settling on that described, which gave

the most consistent approximation to the bottom boundary condition as  varied with position.

(Note that this required a variable-length step from the last tabulated point to the bottom.)

ωX X = (k, l)

F, Fz Fzz ψ

|k|
F (−H) = 0

F Fz F

Fz N2, u v

F

Fz

H

Having thus obtained  and its vertical derivatives, we can compute all the terms in (3.9) using

the trapezoidal approximation for the integrals, and thus obtain the group velocity. Note that for

 the derivatives of  and  appearing in (3.9) do not involve the horizontal derivatives of

 or , only those of  (via  and ).

F

X = (k, l) R S

N2, u v H α αX
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TABLE 1

Combinations of mean flow and topography

Topography

Mean flow Locally Flat (F) Topographic Slopes (S)

None (N) NF NS

Zonal mean flow only (Z) ZF ZS

General mean flow (G) GF GS

– 29 – 14/8/03



REFERENCES

Antonov, J., Levitus, S., T. P. Boyer, M. Conkright, T. O’Brien, C. Stephens, 1998:World Ocean

Atlas 1998 Vols. 1-3: Temperature of the Atlantic/Pacific/Indian Ocean. NOAA Atlas NESDIS

27. U.S. Gov. Printing Office, Wash., D.C., 166 pp.

Boyer, T. P., Levitus, S., J. Antonov, M. Conkright, T. O’Brien, and C. Stephens, 1998: World

Ocean Atlas 1998 Vols. 4-6: Salinity of the Atlantic/Pacific/Indian Ocean. NOAA Atlas

NESDIS 30. U.S. Gov. Printing Office, Wash., D.C., 166 pp.

Chelton, D. B., and M. G. Schlax, 1996: Global observations of Oceanic Rossby Waves.Science,

272, 234-238.

de Szoeke, R. A., and D. B. Chelton, 1999: The modification of long planetary waves by

homogeneous potential vorticity layers. J. Phys. Oceanogr., 29, 500-511.

Dewar, W. K., 1998: On “too fast” baroclinic planetary waves in the general circulation.J. Phys.

Oceanogr., 28, 1739-1758.

Dewar, W. K., and M. Y. Morris, 2000: On the propagation of baroclinic waves in the general

circulation. J. Phys. Oceanogr., 30, 2637-2649.

Feynman, R. P., 1939: Forces in molecules. Phys. Rev., 56, 340.

Fu, L. L., and D. B. Chelton, 2001: Large-scale ocean circulation. Satellite altimetry and earth

sciences, Fu, L. L., and A. Cazenave, Eds, Academic Press, 133-169.

Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

Kang, Y. Q., and L. Magaard, 1979: Stable and unstable Rossby waves in the North Pacific Current

as inferred from the mean stratification. Dyn. Atmos. Ocean., 3, 1-14.

Killworth, P. D., and J. R. Blundell, 1999: The effect of bottom topography on the speed of long

extra-tropical planetary waves. J. Phys. Oceanogr., 29, 2689-2710.

Killworth, P. D., and J. R. Blundell, 2001: Large-scale propagating disturbances: approximation by

vertical normal modes. J. Phys. Oceanogr., 31, 2852-2870.

Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical

– 30 – 14/8/03



long extratropical planetary waves. J. Phys. Oceanogr., 27, 1946-1966.

Lanczos, C., 1957: Applied Analysis. Pitman, 539 pp.

Lanczos, C., 1966: Discourse on Fourier series. Oliver and Boyd, 255 pp.

Liu, Z., 1999a: Planetary wave modes in the thermocline: non-Doppler-shift mode, advective mode

and Green mode. Quart. J. R. Meteorol. Soc., 125, 1315-1339.

Liu, Z., 1999b: Forced planetary wave response in a thermocline gyre. J. Phys. Oceanogr., 29,

1036-1055.

National Geophysical Data Center, 1988: Data Announcement 88-MGG-02, Digital relief of the

Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, Colorado.

Numerical Algorithms Group Ltd, UK, 1999: Nag Fortran Library Manual, Mark 19, Numerical

Algorithms Group Ltd, Oxford, UK.

Pierrehumbert, R. T. and K. L. Swanson, 1995: Baroclinic instability. Ann. Rev. Fluid Mech.,27,

419-467.

Rhines, P. B., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fl.

Dyn., 1, 273-302.

Samelson, R. M., 1992: Surface-intensified Rossby waves over rough topography.J. Mar. Res., 50,

367-384.

Schopf, P., D. L. T. Anderson, and R. Smith, 1981: Beta-dispersion of low frequency Rossby

waves. Dyn. Atmos. Ocean., 5, 187-214.

Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic sea surface

temperature and climate. Nature, 388, 563-567.

Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of

extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 1461-1476.

Tokmakian, R.T. and Challenor, P.G., 1993: Observations in the Canary Basin and the Azores

Frontal Using Geosat Data. J. Geophys. Res., 98, 4761-4773.

Tyler, R. H. and R. Käse, 2001: A string function for describing the propagation of baroclinic

– 31 – 14/8/03



anomalies in the ocean. J. Phys. Oceanogr., 31, 765-776.

Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11, 309-318.

Yang, H., 2000: Evolution of long planetary wave packets in a continuously stratified ocean.J.

Phys. Oceanogr., 30, 2111-2123.

Zang, X., and C. Wunsch, 1999: The observed dispersion relationship for North Pacific Rossby

wave motions. J. Phys. Oceanogr., 29, 2183-2190.

– 32 – 14/8/03



Captions

1. Vertical structure of eigenvector  (corresponding to the vertical velocity) and its vertical

derivative  (corresponding to pressure) for locations which are (a) flat (45° N, 150° W), (b)

slightly sloped (30° N, 30° W), and (c) steeply sloped (20° S, 70° E). At each location, five

orientations of the wavevector are considered: 120, 150, 180, 210 and 240° from east.  has

been arbitrarily normalized to a maximum value of unity; , for convenience, has been

renormalized to make its maximum modulus also be unity (so that some curves do not now

have the original normalisation ). The right-hand panel shows the mean horizontal

velocity profile at that location, in m s-1. The eastward component of group velocity differs

between the orientations of  and is given in the text.

F

Fz

F

Fz

Fz (0) = 1

k

2. Histogram of the number of occurrences (counted by 1° × 1° areal bins and 0.1 bins for ) of a

measure of the nondimensionalised average value of , i.e., , (firm line) and the

nondimensionalised value of , using an approximate expression in

the text for  (dashed line) in the world ocean between 5 and 50° latitude. The area for the

latter calculation is limited to 40–100°, 160–260°, and 300–360° E. The larger black circles

show accumulated counts beyond the ±20 extrema for the average , the smaller ones for the

approximate expression.

α

α tanθHθ / H

α = tanθ (Hθ − lHλ / k) / H

l / k

α

3. The coefficient of variation (mean group velocity divided by its standard deviation over the

wavevector orientations where it is defined) for the first internal mode. Contours are 1.96

(ratios above this are statistically different from zero) and 5 (an arbitrary value for which the

mean group velocity can be considered independent of wavevector orientation). Light grey

areas represent regions where a real solution could not be found.

4. Mean east-west first-mode group velocity, for the GS (general mean flow, topographic slopes)

case, in m s-1. Contour intervals are nonuniform: 0.30, 0.20, 0.15, 0.10, 0.08, 0.06, 0.04, 0.02,

0.01 m s-1 westward for comparison with Killworth et al. (1997). Values are masked within 5°

of the equator, where equatorial, rather than long planetary wave, theory should hold. Light

grey areas represent regions where a real solution could not be found.
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