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ABSTRACT

One of the most successfutheoriesto dateto explain why observedplanetarywavespropagate
westwardsfaster than linear flat-bottom theory predicts has been to include the effect of
backgroundbaroclinic meanflow, which modifiesthe potentialvorticity waveguidein which the
waves propagate.(Barotropic flows are almost everywheretoo small to explain the observed
differences.)That theory accountedfor most, but not all, of the observedwave speedsA later
attemptto examinethe effect of the slopingbottomon thesewaves(without the meanflow effect)
did not find any overall speed-up.This paper combinesthese two effects, assuminglong
(geostrophicvavesandslowly varying meanflow andtopographyandcomputegroupvelocities
at eachpoint in the global ocean.Thesevelocities turn out to be largely independentof the
orientationof the wavevector A secondspeed-upof the wavesis found (over that for meanflow
only). Almost no eastward-orientegroup velocities are found, so that featureswhich appearto
propagaten the samesenseasa subtropicalgyre would haveto be coupledwith theatmospherer

be density-compensated in some manner.
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1. Introduction

Planetarywavesare the main mechanismwhereby information about one part of the oceanis
transferredto anotherpart. Interestin their propertieswas rekindled when the availability of
satellitealtimetry permittedobservatiorof planetarywaves(TokmakianandChallenor,1993),and
the discoveryby Cheltonand Schlax(1996)thatthesewavesappearedo be propagatingat speeds
up to twice thosepredictedby the linear vertical normal mode theory. Although there has been
somedebateasto the extentof this discrepancye.g.,ZangandWunsch,1999),it is now generally
acceptedhatwavesobservedn altimetry do propagatesignificantlyfasterthanlineartheorywould

predict (and are also visible in other remotely sensed fields).

Theorieshavebeenput forward usinga variety of mechanismso explainthe speed-upOneof
themostsuccessfuto date(thoughnot completelyaccountingor observationsjs dueto Killworth
et al. (1997),who proposedthat the backgroundbaroclinic east-wesshearflow would alter the
existing potential vorticity gradientsufficiently to modify the phasespeedof small disturbances.
(This hadbeenearliersuggestedhy Kang andMagaard,1979.) The Dopplershift producedby the
barotropicflow wasfoundto be almosteverywherdar too smallto accountfor the speedchanges,
aswell asnot necessarilybeingin the right direction. Killworth et al.’s baroclinic computations
confirmed the generalspeed-upsavewithin about10° of the equator.However, the speed-up
predictedstill remainedslightly smallerthanobservedn highernorthernlatitudes,and noticeably
smallerin highersouthernatitudes.Dewar(1998),de Szoekeand Chelton(1999)andLiu (1999a,
1999b) have given simplified explanationswhy this should be the case,and Dewar and Morris
(2000)havedemonstratethe effectin a quasi-geostrophimodel.Fu andChelton(2001)extended
the resultsto non-long waves, showing excellent agreementbetweenobservedand computed
dispersionrelations.Killworth andBlundell (1999) examinedthe role of topographicgradientsin
alteringthe phaseand group velocity of long planetarywavesin a continuouslystratified model.
While topographiceffects were effective locally, Killworth and Blundell found that the effects
tendedto cancelout acrossan oceanbasin,leavingthe net effect of topographyto be small. [This

wasnotfoundby Tyler andK&se’s(2001)in two-layerformulationof the sameproblem.Thereis a
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general but unproven belief that two-layer modelsappearto overestimatesffectsof topography;
certainly in this casetheir results,showing significant net speed-upsare not in accordwith the
equivalent continuously stratified calculation.]

Killworth and Blundell (2001), assuminghat the cancellationof topographiceffectsacrossa
basinmight continueif baroclinic shearwasincludedagain,useda normal mode decomposition
basedon a locally flat bottom to produceapproximatefirst and secondmode phaseand group
velocities.[Liu (1999a,b) hadbeenthefirst to drawattentionto the secondnodeusinga 2.5 layer
model, both from the perspectiveof the surfacetemperaturesignal and from its direction of
propagation.]They found similar resultsto thoseof Liu, including an apparengyre-like structure
in the second-modgroup velocities. Theseresultswill be addressedater in this paper.Tailleux
andMcWilliams (2001) presentan argumentbasedon a differentbottomboundarycondition(one
with zero pressureperturbation)and no meanflow to obtain a similar set of phasevelocitiesto
thosefound by Killworth et al. (1997) with a flat bottom and zonal meanflow. The wavesare
speededup by a factor which is the sameas that found by Samelson(1992) in a two-layer
calculationwho foundanelementof surfacetrappingin wavesover bumpytopographyWhile our
work hereaddresseshe traditional boundarycondition of no normal flow, we shall also discuss
this alternativecondition later in this paper.Finally, Yang (2000) examinedthe propagationof a
wave packet ratherthana coherentwvavewith a vertical structureas consideredy the othercited
papersin the presencef a meanflow, the horizontalgroupvelocity of the packetcould differ in
directionwith depth(the effectof horizontalboundariesvasneglected)Yang concludedhatwave
packetscould accountfor most of the observedfeaturesin the satellite data, although his

conclusion held for waves with a large vertical scale, formally invalid under the ray theory used.

Most paperscited useda WKBJ formulation (aswe shall here),sothatthe backgroundhrough
which long wavespropagates consideredslowly varying comparedwith the length scaleof the
perturbation(itself long comparedwith a deformationradiusso that the long-waveapproximation
holds). However, the more generaland realistic problem — how does a long planetarywave

propagatehroughthe backgroundneanflow presenin the oceanacrossa slowly-varyingversion
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of the oceantopography? hasnot beentackled,largely dueto the computationalnd analytical
difficulties (the problemdependson the orientationof the wavevector,and hitherto formulaefor
group velocitiesin such circumstancediave beenlacking). This paperattemptsto remedythis
omission, by producinglocal solutionsfor the first two vertical normal modesin thesemore
general circumstanceslts companion paper usesray theory and an easternboundary wave
initialisation to confirm that the solutions in this paper are legitimate.

Section2 setsup the problem,andthe algebrafor its solutionis givenin Section3. Section4
discussegroup velocitiesand a clusteringalgorithmto describethem. Section5 examinessome

typical solutions, and Section 6 gives global results for group velocities.

2. Formulation

Following our earlier work, the planetary geostrophicapproximationis employed, since this
permits variation in stratification, unlike the quasi-geostrophi@approximation.The equationsof
motion are cast onto Welander’s (1959) variddléNe write

P/po = M, (2.1)
wherep representpressurep the densitywith py a referencevalue. The geostrophioselocity field

(u, v, w) relative to axegl longitude @ latitude z upward$ is given by

Mze
= — 2.2
My
= 2.3
v af cose 23
M;
= —2— 2.4
W a’f sine (24

wherea is the radiusof the Earth,f = 2Q sin# is the Coriolis parameterand Q is the Earth’s

rotation rate. The density is given by

M
p = —EZZPO (2.5

whereg is the gravitationalaccelerationThe (time-dependen@quationfor densityconservations

a single equation favl, with t representing time:
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u V,
pt+¢+ﬂ+WpZ=OOF
a cose a

_ Mz.Mm Mz,lez' n MAMzzz _
fa2cos# fa2cos# fa?sin®
We assumehatthe flow consistsof a backgroundneanfield, denotedby an overbar,anda small

M, (2.6)

perturbation,denotedby a prime. The backgroundflow, togetherwith the oceantopography,is
permittedto vary only on the large (basin)scalelLy.s,, SOthatWKBJ analysisis permissible This
meansthat effects of abrupttopography,suchas narrow ridges, and narrow boundarycurrents,
mustbe excludedfrom analysis.The perturbationflow varieson a scalely Which is takento be
both shortcomparedwith the basinscale,but long enoughfor the geostrophidalanceto hold. As
Killworth and Blundell (2001) note, there are regionsof the world oceanwherethe background
flow changesufficiently rapidly to formally invalidatethe WKBJ assumptionthoughsuchtheory

continues to provide useable results even in such cases.

The backgroundmeanfield is henceforthexplicitly takento be baroclinic (i.e., to have zero
depth-integratedralue), since any barotropicmeancomponenimerely inducesa Doppler-shiftto
the solution. The barotropiccomponenis seldomlarge enoughto affectthe solutionssavefor the
Antarctic Circumpolar Current and intense westernboundary currents;in the latter, a WKBJ

formulation would anyway be questionable.

With these assumptions, the perturbation field satisfies

, 1

- — M;M%e + MZM ) +
2~ T3 ool (MzMz 2zMz)

M,eM%, + MyM,,) + —————
(MzMz; 2Mz) T2 Cose

_ 1
faz sine®
Becauseof the scaleseparatiomassumptionthe first term in the last bracket(wp?) is formally

(M;Ml, + MjM,,) = O. 2.7)

smallerthanthe second(W'p,) by a factor Lyt / Lyasin; Killworth and Blundell (2001) note thatthe

ratio is actually smaller still. With this assumption, (2.7) becomes, with a little rearrangement,

a v a v N2 (x, v, Z
;Zt+ ;ZA+—M22' zZ ’ _Z ’ + ( y ) /:

- =M M 0. 2.8
a cose a acose © a ” fa2 sing 28)
Equation(2.8) hasboundaryconditionsat surfaceandfloor. For freewaves(Liu, 1999bconsidersa

forced problem),
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w=02z=0=M=02z=0. (2.9
The ocean has varying depth(1, @), at which there is no normal velocity;

uH, +\/H':0,z:—H:>
a cose a
M) + tan® (MZzH, — M%H;) = 0,z = —H. (2.10)

Themeanflow is alsoassumedo satisfythe boundaryconditionof no normalflow at the bottom?
(The bottom boundaryconditionis in contention:Tailleux and McWilliams, 2001 have recently
suggestedan alternative condition of zero bottom pressureperturbation.That usedhere is the
standardpurely kinematic,condition.) Preciselywhat definition of bottomslope— and,indeed,of
bottom depth— is applicableis not clear,and we shall usesmoothingsof high-resolutiondataon
severaldifferentscalesn whatfollows, aswell asexploringin Section5b how closeour solutions

come to satisfying the Tailleux and McWilliams bottom condition.

We now seek a wavelike solution
M = F(4, 0, 2) expi (K1 + |0 — wt) (2.11)
where (k, |) is a wavenumberin the (4, #) directionsand w is a frequency,assumedpositive
without loss of generality.The vertical structureF variesslowly laterally (i.e., on the basinscale)
while the phasevarieson the perturbatiorscale,asis usualin WKBJ theory.Substitutioninto (2.8)

gives after a little algebra the self-adjoint (but nonlinear in frequency) eigenvalue system

F, S_ _

(Bl +2F=Lt@ =0 (2.12)
where
kN2 (A, 0, 2)
S(z A 0,k = ———> 2.13
(z 1, 0,K) i sne (2.13)
ko lv

1,0,k 1) = — 2.14
Q(z 4, 0,k 1) 2cos T 3 (2.14)
R(z 1, 0,kl)=Q-w (2.15)

1 This is not strictly consistentvith our assumptiorof purely baroclinicmeanflow exceptwhenthe oceanhasa flat
bottom. Putanotherway, it would requirea specificmeanEkmanpumping.Acquiring a consistenimeanflow from

observed density data is, of course, a long-standing inversion problem which will not be discussed here.
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This has boundary conditions

F=0F =1 z= 0(assuming a rigid lid) (2.16)

F(-H) = —aF,(-H), wherea = tan® (H, — |EH,1). (2.17)

The secondsurfaceconditionis purelyfor scalingreasonsproviding boththefacility to treat(2.12)
as an initial-value problemwhen convenient,and to enabledifferentiation of the problemto be

well-posed.

If the frequency is known, then the phase velocities
(%a coso, lga) (definition 1), or
(w—ka cose CO—Ia) (definition 2) (2.18)
k2 + |2 Tk 412 '
areknown. Both definitionsareusedin the literature.The formeris not a velocity, describephase
propagatiorwell, butimpliesaninfinite N-S phasespeedor zerol. Thelatteris a vector,doesnot
describephasepropagationwell exceptin the directionof the wavevectorandimpliesa zeroN-S

phase speed for zero

We shallfrequentlyignorethe geometricafactorsin thefollowing discussiorfor clarity, butall
resultswill be quotedasactualspeedslf the derivativeswy, @, canbe computedthenthe group
velocities

c? = (¥, ¥ = (wa cose, wa) (2.19)
arealsoknown. Theseareratherbetterbehavedhaneitherdefinition of phasevelocity andwill be
mainly used in what follows.

The system(2.12),(2.16),and(2.17) provide an implicit dispersionrelationshipconnectingm

with (k, 1); the remainder of this paper will be concerned with computing it.

Beforedoing so, however,notethat AppendixA demonstratesvo propertiesof the dispersion
relationshipfor a flat bottomedoceanand purely baroclinic meanflow: first, there are no real

solutionsfor which the quantity R vanishesanywherein the watercolumn (i.e. for which a critical
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layer exists); and second thereare no solutionsfor positive k for which R doesnot vanish.The
combinationof thesetwo resultsmeanghattherecanbe no (real) eastwardvave propagatiorfor a
flat-bottomedocean,save for any possibleDoppler effects of meanflow. This invalidatesthe
second-modesolutionsof Killworth and Blundell (2001), which sometimeshad eastwardphase
velocity components.That paper had unintentionally avoided (apparently) the critical layer
difficulties by castingthe problemonto a finite numberof vertical normalmodes.Liu’s (1999a,
1999b)paperscastthe flow onto 2 or 3 layers(with a netbarotropicflow) and,like Killworth and
Blundell (2001),found a phasevelocity which would havea critical layer somewheren the water
column. Thus none of these paperspresentsolutions which could occur in the continuously
stratified regime. (Complexsolutionswith eastwardflow could occur; but theseare not located

using the present numerical approaches.)

There are a variety of caseswhich needto be treated,and we considerthe matrix of six
possibilitiesshownin Table 1. Therearethreebackgroundneanflow possibilities:no meanflow
(N), zonal meanflow only (Z), to permit comparisonwith Killworth et al. (1997), and general
meanflow (G). Therearealsotwo topographigossibilities:locally flat topography(F), for which
(2.17) reducesto the familiar F(-H) = 0, and sloping topography (S). Some of these
combinationshave beenaddresseclsewherethe NF caseis the traditional flat-bottom normal
modecalculation;the ZF casewasexaminedy Killworth etal. (1997)andFu andChelton(2001);
andthe NS caseis dealtwith by Killworth andBlundell (1999).0f theremainingcombinationsthe
fully generallGS) casewill bethe mainpoint of focus,sinceit shouldbe the casemostrelevantto

the real ocean.

3. Differentiating the dispersion relation

Exceptin the simplestcaseghe dispersionrelation (2.12) cannotbe solvedanalytically. Because
the long wave assumptionhas been made, the systemis homogeneousin that a solution set
(w; k, 1) implies that (Aw; Ak, Al) is also a solution for any constantA. The lack of analytical
solutionsis hardly a problemnumerically,savethatin orderto obtaingroupvelocity we needto be

ableto computederivativesof w w.r.t. k, |. Onecould contemplatenakingsmallchangego k or |,
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recomputingthe solutionandfinite-differencingto estimategradientsHowever,for the ray theory
in partll of thiswork, secondderivativesarealsorequired,andthis bruteforce approachwould be
unsuitable.

We extendthe approachof Killworth andBlundell (1999), which assumeghat a solutionhas
beenfoundto (2.12),andusesthat solutionto computefrequencyderivatives(in otherwords,the
dispersionrelation is not known exactly, but its derivativescan be computedexactly)? Here we
show how to computefirst derivativesof o w.r.t. k, | from a knowledgeof  itself and its
eigenvectolF; the approachncludesderivativesw.r.t. 4, # aswell — theselatterareneededn Part

Il of this paper for ray tracing.

Let X be a component of = {4, 0, k, |}. Differentiate (2.12) w.r.tX:

L(F) + Lx(F) + wxL,(F) = 0. (31
At the surface,
F=02z=0 (3.2)
F, =0, z=0. (3.3
At the floor,
Fx(=H) + aFx(-H) — HxF(=H) + axF(-H) — HxaF(-H) = 0.
Thus

F«(-H) + akF(-H) = HxF(-H) — axk(-H) + HxaF;(-H). (3.4
Here we note that

_ 9 [K } (E)
Lx(F) = az{ R TRk
and since
R =-1 39 =0,
Jd(F, 2S
Lw(F) = a—z{ﬁ} + F\’BF

2 The methodto be describechassomesimilarity to the Hellman-Feynmartheoremof molecularquantummechanics
(Feynman, 1939).
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Cross-multiply (2.12)x minus (3.2}, and integrate top-to-bottom:

[FXERZ - F%{H - fH FLx (F)dz — wx fH FL, (F)dz = 0. (35

The surface values are zero, leaving

-1 0 0
Ry [ HR(H) = FeHIPeH) = [ FLcPdz + ox [ FL.(F)dz or

-1 0 0

R [XCHIRCH) + aR((H)PeH] = [ FLa(®dz+ ox [ FL(F)dz or
-FK(—H) O 0
RA) [Fx(-H) + aPx(-H)] = I_H FLx (F)dz + wx '[_H FL, (F)dz

or, from (3.4),

“F,(-H
L MR H) = =) + HuaRa(H)] =

0 0
j FLy (F)dz + wxj FL, (F)dz (3.6)
-H -H

We cannow solvefor wy providedmerelythatwe canevaluatethe integralsin (3.6). The first of
these is of

= {2} (2]

so that after an integration by parts we have

{ e[ BT - £, (85 (2] e

0 _ _aR<(—H)Fzz(—H) 0 {& 2 (E) 2}
j_HFLX(F)dz_ = +j_H o+ ) Pz (3.7)
which is immediately computed. The second integral is

0 o d(F, 2S }
j_H FL, (F)dz = I-HF[a_z{ﬁ} + 5F|dz

R {2SF2 FZZ}
B [FﬁlH " J.—H R R dz
_ aF2(-H) 0 {2SF2 FZZ}
= R(-H) LA Rl

(3.8)
Combining (3.6-3.8) gives
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ey aRe(—H)F2(~ 0
FEDHWF, (—H) — axFy(-H) + HxaFp(-H)] + B [ (B2 4 (S), F2)dz

2(_| 0 2
L - e

wx =

(3.9
Eqgn.(3.9) giveswy asrequired,andonly needs, integralsof F, anda knowledgeof w itself. The

only problemoccurswhenthe denominatoiin (3.9) vanishesnearcausticsandchangedrom real
to complex solutions. Theseare both legitimate breakdownsof the solution, thoughthey occur
rarely. Since in this paperwe only solve the local problem,and X = k, | only, we are not
concernedvith horizontalvariationof the backgroundields exceptthe topographicslope(present
within a anday), sothatthe problemat eachlocal positionis only a vertical eigenvalugproblem

(see App. B for details).

Equation(3.9) is an importantresult, thoughcomplicated.In this paper,restricting X to Kk, |
only meanghatthetermsin Hy disappeain (3.9).In moresimplified conditionsit canbereduced
to well-knownresults.For example for a flat bottomandno flow, it is straightforwardo showthat
wx = wlk, o = 0. If east-wesfflow is added,w;, = 0 canstill be demonstratedHowever,in
more general circumstancesve have beenunableto find simple relationshipswhich can be

deduced, other than the generic ones at the start of the following section.

4. Computing group and phase velocities

The frequencyw is found asan eigenvalueof (2.12) andits boundaryconditions,asa function of
thewavenumberk, 1) and,implicitly, of position(sincea, v, N2 all dependon all threespatialco-
ordinates,and H dependson horizontal position). Becauseof the homogeneityof the system,

frequency depends non-trivially only on thieentationy of the wavevector:

o = Kfn(y), wherek = (k, ) = K(cosy, siny). (4.1)

Thus (Liu, 1999b)
o = ko + loy (4.2)
which servesasa usefulcheckon the computationsEqn. (4.2) alsoimpliesthatif | = 0, theeast-

west phase velocity (second definition) wka cos#/K? equals the east-westgroup velocity

wya cose. Thisis aspecialcaseof amoregenerakelationbetweerphaseandgroupvelocity in the
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direction along the wavevectkr From (2.18), second definition,

K ™+ I—cpy =w (4.3
a cosé a
while from (4.2) and (2.19),
k I
¥+ -c¥ = . (4.4
a cose a

Thusthe componentf phaseand group velocity orientedalong k areidentical for long waves.
However,savein the specialcasesdiscussedt the end of the previoussection,in generalphase
andgroupvelocity are not identical (thoughthey often are similar numerically);the complexity of

(3.9) means that little progress can be made toward understanding these dispersive effects.

We concentraten groupratherthanphasevelocity in whatfollows, sincethe formeris much
lessdependenbn wavevectororientation(for example the northwardsphasevelocity vanishesy
definition whenl = 0, butw, = 0 only whenv vanisheddentically). Evenso, the resultsremain
formally dependenton y as well as position, so that some simplification hasto be made for
presentationalpurposes(especially since there are also six combinationsof mean flow and
topography possible, plus several vertical modes to consider).

The weak dependencen wavevectororientation found by Killworth and Blundell (2001)
providesa usefulsimplification. At any horizontalpointin the ocean,19 equispacedrientationsof
the wavevectorare considered,eachwith a westwardcomponent.The restrictionto westward
componentss for two reasonsia) Killworth and Blundell (2001, App. A) showthat thereis no
solution with a locally flat bottom and a north-south-orientedvavevector;and (b) the current
AppendixA showsthatthereis no solutionwith aneastwarccomponenbf the wavevectorat least
for a flat bottom. The argumentcould not be extendedully to includetopographicsiopes,but no
occurrence®f eastwardphasevelocity werefoundin any configuration.The argumentn App. A
doesnot apply to group velocity, but in fact we found only 1/3% of occurrence®f any eastward
groupvelocity (for the secondmnode),evenwhenthefull meanflow andtopographywereincluded.
Henceforthwe restrict attentionto k < 0, i.e. westwardsorientationof the wavevector.The 19

orientationsareequispacedgincethe orientationsvhich may occurfor observedvaveswill depend
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crucially upon the forcing mechanism;lacking knowledge of this, we prefer to retain full
generality. The orientationsrun between90 + 2.9 and 270 — 2.9° to the eastwarddirection; the
closenessto north-southorientationsis necessaryto include the low-latitude planetary wave

behaviour in whictk remains small bdtincreases westward (cf. Schopf et al., 1981).

For eachof the 19 westwardorientations,the eigenvalueproblem(2.12) is solvedfor (real)
frequencyandphaseandgroupvelocitiesarecomputed(The methodologyto do this is detailedin
AppendixB.) As manymodesaspossibleup to four, arefound,thoughwe shallonly reporton the
first two here (successivelyhigher modesare confinedto areasever-neareito the equator).A
cluster algorithm is used on the group velocity vectors so produced.First, the set of group
velocitiesis re-orderedslightly sothatan entry with the maximumnumberof real groupvelocities
locatedis first in thelist. For thefirst orientation,a setof meangroupvelocities,which aresimply
the group velocitiesfor that orientation,is stored.For eachnew orientationafter the first, every
groupvelocity is allocatedto the mostsimilar meangroupvelocity in the existinglist of meanson
a one-to-onebasis.This methodhasthe advantagef robustnessin thatit automaticallyfilters out
solutions which occur for unusual parametercombinationsonly. Such solutions would have
difficulty propagating.(In the absenceof meanflow, the solutionsare naturally orderedby the
number of zero-crossingof F,, the eigenvectorfor the horizontal flow perturbation,but this
orderingcandisappeain the presenceof meanflow. We are not awareof any systematiovay to
providean ordering;which is anothemreasorfor our useof the clusteringapproach.)rhe meanand

the standard deviati@rmre computed at each stage for each member of the list.

Becausethe number of real solutions may dependon orientation, the number of group
velocitiespresentedo the algorithmwill vary (hencethe initialisation by the maximumnumberof
solutions).For someorientations,a solution may not exist. We require,arbitrarily, that a certain

fraction, hereone-quarterof the 19 possiblesolutionsmustexistfor a solutionto be deemedvalid.

3 Here computed as the obvious two-dimensionalanalogueof the one-dimensionalstandard deviation. More
accurately covarianceshouldbe storedso that an error ellipse canbe produced but for our purposeghe simpler

description suffices.
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If not, thatsolutionis discardedthusremovingsolutionswhich only existfor certainwavevector

directions, which would have trouble propagating).

After clusteranalysisoverthe orientationswe havea setof modes,.e., meangroupvelocities
(andphasevelocities,thoughwe shall not showthese)and standarddeviations.The latterindicate
the reliability of quoting a single meangroup velocity; a small standarddeviationcomparedwith
the meanvalue implies that the quotedvalue is representativeand a large standarddeviation
implies thatthe quotedvalueis not representativelhe modesare arbitrarily numberedn orderof
east-westgroup velocity, so that the fastestwestwardmode is numberedl. The N modesare
properly entitled ‘normal modes’, while the Z and G modesare more correctly termed ‘shear

modes’. For simplicity, here, both sets are referred to as normal modes.

5. Example profiles
a. Typical solutions
We discusshere threefairly typical solutions,for locationswhich are flat, slightly sloped,and
steeplysloped.Theselocationsare (a) flat: the N. Pacific (45° N, 150° W), with fractionaldepth
gradientH,;/H = -0.06, H,/H = 0.33; (b) slightly sloped:theN. Atlantic (30° N, 30° W), with
fractionaldepthgradientsH,/H = -0.55, H,/H = -1.5; (c) steeplysloped:the S. Indian (20° S,
70° E), with fractional depth gradientsH,/H = 8.6, H,/H = 2.7 (the latter chosento have a
large zonalgradient,which could amplify the effect of wavevectororientation). At eachlocation,
Fig. 1 showsthe vertical structureof the first eigenmodendits vertical derivativefor the GS case
(full velocity andtopographicgradientsincluded),for wavevectorsorientedat a subsetof the 19
orientationsusedin the calculation,namely120, 150, 180, 210 and 240° from east,togetherwith
the mean horizontal velocity profile.

The slopesimpacton the bottom boundarycondition throughthe value of « in (2.17). When
a/H (which is nondimensional)s small, the boundarycondition (2.17) becomestloseto a flat
bottom, while when a/H is large, (2.17) becomesclose to one of zero pressureperturbation

(F, = 0), suggested by Tailleux and McWilliams (2001), which will be discussed below.
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The flat caseshows an eigenfunctionF which is fairly similar acrossall orientationsof
wavevectorput which clearly resembleseithera flat-bottom solutionnor a solutionwith zeroF..
The insensitivity of the eigenfunctionis matchedby the east-wesgroup velocity, which takesthe
values respectively of (-0.0120, —0.0194, -0.0193, -0.0194, -0.0121) m s?i, effectively
independent of orientation due to the weak east-west topographic gradient.

Theslightly slopingcaseagainhasaninsensitiveeigenfunctionput this time onewhich clearly
doesnotresemblea flat bottomsolution;with arelativelyweakgradientat the floor, the solutionis
closerto onefor zeroderivative.The respectivegroup velocitiesare (—0.0374, —0.0368, —0.0366,
—0.0368, —0.0410) which againvary little, althoughinterestinglyshowinga largest(westward,and
10% largerthanthe smallestvalue)value at 240° orientation,which, asFig. 1 shows,is the mode

least resembling one with zero bottom derivative.

The steeplyslopingcaseshowsa strongereffect of wavevectorrientationrelativeto the slope
direction.Threeof the eigenfunctiongfor 120,150and180°)areall similar andsatisfya boundary
condition approximating to zero F,. Their group velocities are again similar
(-0.112, -0.108, —0.105) m s; their much larger value is becausehe location is closerto the
equator.The othertwo orientationsjn contrastare qualitativelydifferent (havinga sign changen
the vertical derivative),showingthat at theseorientationsno monotonicfirst modecould be found.
(This occurrences familiar from the work of Rhines,1970for the caseof no meanflow.) The
group velocity at these two orientations is respectively much higher and much lower
(-0.156, —0.032) m st than for the other three orientations,showing again that little can be

determined about the magnitude of the group velocity from the shape of the eigenfunction.

b. The role of the bottom boundary condition

In the absencef meanflow, Tailleux andMcWilliams (2001) showeddirectly, andKillworth and
Blundell (1999) showedindirectly, that asthe bottom condition (2.17) movesfrom a condition of
vanishingF towardsa conditionof vanishingF,, the fasterwould be the westwardphasevelocity.
Evenundertheserestrictiveconditionsit is not knownwhatthe effecton the groupvelocity would

be,andif meanflow is includedeventheinducedchangein phasevelocity is not known. Tailleux
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andMcWilliams thenarguedthat the bottom conditionis not well defined,sinceit is not obvious
whatlengthscalesn bottomtopographyarerelevant(thoughPartll will showthatthe changesn
solutionsproducedby changingthe smoothinglength scalefor topographyare small). They thus
suggestedhatthe observedspeed-umf westwardpropagatiorcould be accountedor by replacing
the slopingbottomconditionwith thatof vanishingF.. It is of interestto know how close,in some
sensepur solutionscometo satisfyingsucha boundarycondition(andif theydo, whetherthereis a
speed-umssociatedvith it). In the caseof no meanflow, the answeris clearfrom Killworth and
Blundell (1999).Sincethey found very little netspeed-umcrossan oceanbasin,thenmostof the
world oceancannothaveslopessuchthat the slopingbottomboundarycondition(2.17)resembles
thatof vanishingF,. (It is possiblea priori thatsincetheir solutionswerefor raysemanatingrom
the easternboundary,that modesmight have changedduring the ray propagationtowardsthe
second- andhenceslower— mode.However,we shallseein Partll thatthisis notthe caseatleast
for thefull GS problem.)The casesshownin Fig. 1 alsodemonstratéhatin the presencef mean

flow, smaller bottom gradients are not necessarily associated with faster group velocity.

This canbe madeslightly morerigorousby examiningthe sizeof a. The operantvalueof « ata
location dependson the wavevectororientation and hence on the mechanismproducing the
planetary waves. An averagemeasureof a can be computedacrossthe 19 orientations of
wavevectorwhich of coursecancelghel / k term by symmetry,giving a nondimensionaéstimate
of « asa = tan® H,/H, perforcelosingall longitudinaldepthgradientinformation.Fig. 2 shows
a histogramof the ratesof occurrencef a in theworld oceanin the ‘planetarywaveregion*, over
1° squaresand a bins of 0.1, with the numberof valuesabove20 in magnitudeindicatedat the
edge.(If theentireoceanis included,thelargevaluesof tan# at high latitudesstronglyincreasdahe
numberof largeaveragex values,but theselatitudeslie beyondmostturning latitudesfor annual
and even biennial frequencies.)Killworth and Blundell’'s (1999) calculationsfor a northward
topographicgradientsuggesthat tan® H,/ H would haveto be of order2 or more for significant

wave speedchangesilf this remainstrue in the presenceof meanflow, thenFig. 2 showsthatthe

4 Defined as the world ocean between £5 and +50°, since only very long period waves are observed at higher latitudes.
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majority of valuesof a arenot large.Visual inspectionof contoursof @, however,showthatthere
are preferredlocationsfor largevalues:the N. Atlantic between30 and50° N, small areasof the
W. Pacific,andportionsof the S. Indian at 30-50°S. Sowhile therearecoherenibceanicareasn
which thereare consistentlyhigh valuesof &, thesedo not occupymuchof the oceanequatorward
of 50°.

In generakheratiol / k mustbe foundfrom ray theory,sothatestimate®f a cannotproceedA
very rough guessfor the ratio, suggestedy Tailleux, can be made,estimatingthe wavenumbers
from the classicalflat-bottomcalculation thoughbecausehis is for a differentproblem,its validity

is suspect. For rays starting at an eastern boundary (see Part Il),

K~ @) — _odcg/dy

Criat Cha (¥)
where/g is the assumedtartinglongitudeof theray. The dasheccurvein Fig. 2 showsthe values

acose (A — Ap)

of a derivedfrom this approximationand from the local flat-bottomedsolutionscomputedhere®
The easterrhalf of all oceanbasinsnow hasa/H valuesunder2 in modulus,while the western
side hasvaluesover 2 dueto the linear increasein | westward.However,the sign of a in these
latter regionschangesone or more times with distancewestward,and so a passeshroughzero,
which would makeproblemsfor the propagatiorof a modetied to high a valuesof one particular
sign.

As afinal test,the global calculationsof the next sectionwere repeatedisingdepthgradients
artificially increasedy a factor of 10 over their ‘true’, i.e. 1° smoothedyalues.A correlationof
the artificial group velocities,point by point, againsttheir original valuesshowsthat the original
values are approximately0.87 of the artificial ones (this holds for two separatecalculations:
includingall velocitiesupto 1 m st andincludingonly velocitiesup to 0.01m s?1). If our solutions
were essentiallythosewith no bottom pressureperturbation(and if suchwere the fastestgroup

velocities available), then increasing bottom slopes would have no effect on the solutions.

5 Ratherthantracing somemeasureof the easterrboundary,we havedefineda pseudoboundargs the easternmost
point of the three longitude bands defined in the figure caption.
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We conclude,therefore,thatit is difficult to draw any straightforwardconclusionsaboutthe
behaviourof individual solutions. The problemis complicated,and global computationsmust

therefore be made.

6. Global results

Solutionswere found for the six casesin Table 1, using valuesof topography(and its gradient)
smoothedwith a 1° length scale. The baroclinic fields and buoyancyfrequencyare computed
directly from the World OceanDataatlas(Antonov et al., 1998; Boyer et al., 1998) and so have
been horizontally smoothedduring the production of those data. Since the effects of lateral
smoothingarefelt moststronglyin the depthgradientsandit is far from clearat what scalelong
waves'see’ topography a setof valueswith 3° smootheddatawasalsocomputed.The resultsare
almostindistinguishabldoy eyefrom the 1° resultsto be presentedhere. Thusour resultsarerobust
to detail in the fields on these scales.

Several general statements can be made concerning the results.

First, over the vast majority of the ocean,resultsfor the first vertical mode using the zonal
meanflow (Z in our notation)overwhelminglyresembleheir generalmeanflow counterpartgG).
(Theargument®f Killworth andBlundell (2001)canbe usedto give a partialreasonwvhy this may
bethe case thoughextendingthe argumentgo bottomsloperequiresweakeast-wesslopeswhich

are not observed.) This finding applies less strongly for the second mode.

Secondthe groupvelocitiesare largely dominatedby the east-westomponentFor example,
for the first vertical modein the fully generalGS case,in 94% of the planetarywave region,

|c¥|/|c9| exceeds 0.9; for the second mode, the figure is slightly smaller, at 87%.

Third, over most of the ocean,the (mean)group velocities found by this approachindeed
possestdittle dependencen wavevectororientation(i.e., havesmall standarddeviations).For the
first vertical mode,in 84% of the world oceanin the planetarywave region, the coefficient of
variation(i.e., the meangroupspeedlivided by the standarddeviation)wasmorethan1.96,sothat

eachgroupvelocity in the list canbe thoughtof asstatisticallydifferentfrom zero.In 52% of the
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ocean,the coefficient of variation exceededb, so that the meangroup velocity providesa very
accurateestimatandependentf orientationof thewavevectorFig. 3 showsthe spatialstructureof
this ratio. The locationswherethe ratio is smallerthan either5 or 1.96 tend to be nearsteeper
topography(mid-ocearridges,etc.), in higherpolewardlatitudes,and nearoceanboundariesFor
the secondmode, a similar but weakerresult was found: in 76% of points, the coefficient of
variationexceeded..96,andin 43% of locationsexceeded. (Thereare fewer locationswherea
realsecondnodecanbefound). Thusfor aboutthree-quartersf the world ocean,we canthink of
there being a single well-defined group velocity for each vertical mode This permits us,
henceforth, to quote only mean values with only minor caveats in what follows.

a. The first vertical mode

The first-mode westwardgroup velocity has already beenshown for the NF and ZF casesin
Killworth et al. (1997), subjectto minor changesdue to small differencesin the datasetsised®
Sinceall suchdiagramdook similar (they aredominatedby the latitudinal variationdueto f), we
showonly the fully generalGS casein Fig. 4. The resultsareslightly noisierthanthosefound by
Killworth etal. (1997),andshowa consistenpolewardmovemenbf contoursrelativeto their (ZF)
case. The north-southgroup velocity is, as noted, mainly much smaller than the westward
componentFig. 5 showsthis clearly (experimentswith contouringdirectionwere lessclearthan
this representatioowing to noisiness)Almostthe only locationsin which the groupvelocity is not
strongly directedwestwardsare thoseover topographicfeaturessuchas mid-oceanridges (which
can almost be picked out by eye from the figure).

This fully generalcaseis a combination of mean flow and bottom topographiceffects.
Killworth et al. (1997)found a speed-upf the westward(phase)speedover the traditional zero-
flow, flat-bottom normal mode speed,which was sufficient to explain most of Chelton and
Schlax’s (1996) observationsof an increasein phasespeed.However, Killworth and Blundell
(1999)found little systematiceffecton phaseor group speedfrom topographiceffectsalone.lt is

thereforeinterestingthat the combinationof both effectsin the GS resultsdemonstratea further

6 Since in those calculationsvanished identicallyy, = 0 and so east-west group and phase velocity are identical.
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speed-umf thewestwardgroupvelocity overthatalreadyfoundby Killworth etal. for the ZF case.
Fig. 6 summariseghis, by showing a logarithmic plot of the longitudinally averagedwvestward
group velocity as a function of latitude. (In all summaryplots, it shouldbe rememberedhat the
numberof points enteringthe averagedecrease high latitudeswherefewer solutionscould be
found.) The resultsfall into threegroups,of increasingspeed.The slowestgroupis the no-flow
solutions, with and without topographicslopes(NF, NS). The next fastestspeedsare ZF (not
shown)andGF, i.e., inclusionof meanflow but retaininga locally flat bottom. The fastestspeeds
arefoundfor ZS (notshown)andGS. Thedifferencesaresmallnearthe equator put becomemuch
more noticeablepoleward.Contourplots of the group velocity ratio GS/NF (not shown)indicate
thatthereis muchvariationof the ratio with longitude,including small areasof ratiosunderunity
even at high latitudes.

Figure 7 usesthe samedatato showratiosof the meanspeedgo thosein the NF case(i.e., to
the traditionalnormalmodecalculation).An almostidenticaldiagramis producedf oneplotsthe
ratio of the meangnsteadof the meanof the ratios,saveat high latitudeswherethe signalis noisy.
The speed-udound by Killworth et al. (1997)and later authorsis representedby the dashedine
(GF, almostidenticalto ZF which is not shown).As Killworth andBlundell (1999)found, thereis
little netspeed-upby topographiceffectsalone(dash-dottedine, NS). However,the secondspeed-
up whenbothmeanflow andtopographigradientsareincludedis clearly evident;it approximately
increases in magnitude poleward, reaching values of order 2 in both hemispheres.

It canbe arguedthata morecarefulinterpretationof longitudinally-averagedpeedshoulduse
the harmonicmeanratherthanthe arithmetic,sincewhatis observeds a travel time, proportional
to an integral of the inversespeed(Tailleux, personalcommunication).The resultsof this (not
shown) are essentiallysimilar, though made more noisy by small areasof low velocity which

contribute heavily to the harmonic mean (in addition, the NS/NF ratio is mainly under unity).

b. The second vertical mode

Figure 8 showscontoursof the second-modeast-wesgroup velocity, againfor the GS case.It

resembleghe first-modein structure,thoughof coursewith much reducedspeedsand a further
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encroachmenof areaswhereno solution could be found. Fig. 9 showsthe directionof the group
velocity. This showsmore variability from the strongly westwardorientationof the first mode,
thoughstill dominatedby the westwarddirection,andindicatesthe locationof the 1/3% of vectors

with an eastward component.

Figure 10 showsthe zonally-averagedjroup speeddor the secondmode. The slowestspeeds
remain,asbefore,the NF andNS caseqi.e., thosewith no meanflow). However,all theremaining
caseqwhetherzonalor full meanflow, andwhetherthereis a locally flat or slopingbottom)show
similar speedsshowinga strongdegreeof speed-upver the linear normalmode,exceptnearthe
equator.Fig. 11 showsthe ratios to the NF case.Here thereis a systematicseparationof the
different casesThe smallestratio, neverdiffering far from unity, remainsthe NS case.The cases
with meanflow all have much largerratios,andin increasingorder of ratio (apartfrom a small
amountof noiseat high latitudes)are: GF/NF, ZF/NF, GS/NF,and ZS/NF, so that the maximum
speed-upexperiencedoy the secondmode occursfor zonal flow and sloping topography.The
additional speed-upfor meanflow and topographyover meanflow alone is, however, much
smallerfor this secondmodethanfor the first. For the full case(GS), ratiosof over 2 aretypical
polewardof 35°S. (The ratio of the meansis againsimilar to the meanof the ratios, andis not

shown.)

7. Discussion

This paperhassoughtto produceas generala theory as possiblefor the propagationof small-
amplitude long planetary waves, subject only to the WKBJ assumptionof slowly-varying
backgroundfields such as baroclinic shearand topography.These are necessaryassumptions
without which it would make little senseto computelocal solutions. However, they are not
necessarilywell satisfiedin the real ocean.Killworth et al. (1997) give some discussionof
variability in the baroclinicsignal,andKillworth andBlundell (1999)do the samefor topographic
slopes. The test mentionedearlier (with 3° smoothingrather than 1°) shows that results are
essentiallyindependendf any larger-scalevariability; and,indeed,1° is quite a small smoothing

scalefor global WKBJ theory. Nonethelessimore work needsto be doneon whether(and how)
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backgroundlow andtopographicvariationon scalessmall comparedwith the wavescaninteract
with the waves themselves on a global basis.

The secondspeed-umf westwardpropagatiorinducedby the combinationof baroclinicmean
flow and topographicslopeshas been mentionedseveraltimes without an explanationbeing
offered. It is hardly likely that any topographicslope will act to speedup a planetarywave
(certainly this is not the casewithout meanflow, cf. Killworth and Blundell, 1999). Why, then,
should there be such a consistentspeed-up?n the earlier case of the speed-upinduced by
baroclinicmeanflow over a locally flat bottom,Dewar (1998) and de Szoekeand Chelton(1999)
were able to offer suggestiondasedon potential vorticity structures.Thesestructureshad their
basisin the dynamicsof the large-scaleoceancirculation. Modifying this theoryto include what

can be thought of as an arbitrary bottom slope seems difficult.

As an experimentwe re-examinedhe threetypical oceanlocationsusedin Fig. 1. At eachof
these the absolutebottom slopewas computed.Then a collection of modified bottom slopeswas
created py taking the given slopeandorientingit alongan anglevarying between0° and 360° to
the eastwardlirection.For eachangle,the eigenvalugproblem(2.12)wassolved(overa variety of
wavevectomrientationsagain)andthe meangroupvelocitiescomputedasbefore.Solutionsfor the
threelocationsare shownin Fig. 12. The flat area(45° N, 150° W) showsa noticeabledegreeof
variability of the first modespeedwith angle:someorientationsof topographyspeedhe wave up
overits locally flat-bottomedGF value,andsomeslow it down[plus, at 234°,whatmay be closeto
azeroof thedenominatoof wy in (3.9)]. The actualorientation(shownby the verticaldashedine)
is suchasto slow the wavedown over its locally flat-bottomedGF value. The secondmodespeed
is almostindependenbdf slope orientation.The slightly slopedarea(30° N, 30°W) againshows
slopeorientationsboth increasinganddecreasindhe first-modewave speedthe actualorientation
is suchasto speedup thefirst mode,but haslittle effectonthe secondThe steeplyslopedlocation
(20° S, 70°E) is lesstypical amongthosewe have examined,in that most orientationsof the
topographicslopeincreasethe wave speedover its GF value,thoughthis only holdsfor the first

mode.
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Thereis thuslittle obviousreasonwhy the speed-u@ppearso consistentunlessof coursethe
topographicslope has actedto producea meanflow which is suchasto induce a speed-upof
planetarywaves.This is anintriguing possibility worthy of study,but the set-upof the meanflow
must remain beyond the scope of this paper.

The lack of eastwardgroup velocitiesin our results meansthat explanationsfor eastward
propagatingsea surface temperaturesignals (e.g., Sutton and Allen, 1997, but with caveats
discussedn Killworth andBlundell,2001)cannotrely on ocean-onlydynamicsunlessthe signalis
density-compensatedt least at the large-scaleand for real solutions (exceptperhapsat high
latitudeswherethe barotropicDopplershift canoperate) Smaller-scaldeaturessuchasmesoscale
eddies, etc. could of coursebe involved, but are beyond the scopeof this paper. Thus the
‘information loop’ within the oceanmustbe closedby Kelvin or coastalavestakingthe planetary
wave signal at a westernboundaryand re-propagatingt aroundthe basin circumferenceto re-

initialise the wave. No pseudo-gyral dynamics are permitted by our results.
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APPENDIX A

Existence of solutions

This appendix proves three results concerning the existence of real solutions.
a. Non-existence of critical layers
Supposéhat w is suchthat R vanishesfor somez, 0 > 7z, > —H, i.e., thatthereis a realcritical
layer within the fluid column.Nearz = 7, R ~ A(z — ) +.... If Rhadno higherterms,and S
were independent of depth, the two solutions of (2.12) would simply be

(z - 0 {%(2[Sz - 2)]™). Y2(2[Sz - 2)]")},
wherel,, Y, are Besselfunctionsof secondorder. Thefirst of thesesolutionsis well behavedon
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bothsidesof thezeroof R The expansiorof the secondf the solutionsbeginswith a constantand
containsa term proportionalto (z — z)? In|z — z)|. The solutionwould not be physicalsincethe
vertical velocity is proportionalto F, the pressureis proportionalto F, and so the density is
proportional toF,, containing a termitn|z — zj|, clearly unphysical.

Now it is possiblethatthe highertermsin the expansiorof RandSaboutthe zeroof R couldbe
such as to removethe logarithmic term in the expansionof F, and renderthe secondsolution
physical.In generalhowever this cannotoccur.To seethis mosteasily,evaluatg2.12)andd / dz
(2.12) atzy, assuming only well-behaved solutions:

(R} -RR+ S =0,z2=17

Rz} ~RFE+SF+S=0z=12
wherethe termsin curly bracketsvanishat z, for well-behavedsolutions.Thus F and F, must

satisfy two homogeneous equationg at 7

S -RF, =0

SF+(S-Ry)F = 0.
In general,thesehave no solution other than the null solution, unlessthe determinantof the

coefficients vanishes, i.e., if

(E) =12z= 2z (AL.1)
Sz

If thisoccursatall, it canonly occurat somespecificvalueof z,. Unlike the numericalapproachn
AppendixB, we heretakethe usualview thatthe eigenvalugroblemis onefor o givenk, |. Until
the boundaryconditionsareappliedto closethe eigenvalugroblem,z, depend®n w (aswell ason
k andl).

To closethe problem,then,two casescanoccur. The first, more usual,caseis that only one
well-behavedsolution exists at the critical layer, when F ~ (z — z)2 This solution can only
vanishat the surface(satisfyingthe boundaryconditionthere)for somespecificz, (in turnimplying
a specific w). But there are no further degreesof freedomleft to satisfy the bottom boundary
condition (savein exceptionallyspecialcircumstances)in the second special,case(Al.1) holds

above,and both well-behavedsolutionsexist, but for a pre-specifiedeigenvaluew [z, and w are
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jointly determinedby the requirementghat R mustvanishand (A1.1) musthold]. The boundary
conditionsat top andbottom,both homogeneousnustthenadditionallyboth be satisfied.With no

degrees of freedom, again in general the solution can only be null.

Thus any physically acceptablesolution with an internal critical layer mustbe have complex
frequency(and so not really possessa critical layer). Killworth et al. (1997) reportedcasesof
complex solutions (typically at high latitudes), but the solution method employedhere cannot
locatecomplexsolutions.We concentratalsoon groupvelocitiesfor robustnessandthe definition
of groupvelocity whenthe modeconcernechasa complexfrequencystill remainsill-defined (cf.
the review by Pierrehumbertand Swanson,1995, which shows that the full non-longwave

dispersion relation would be needed).
b. The sign oR
Since the mean flow is baroclinic,

0 0 ko v
dz + —
J.—H Q J'—H a cose a

it follows thatQ takesboth positiveandnegativevaluesin thewatercolumn.Further,asw > 0 by

)dz =0,

supposition,R = Q — w mustbe somewherenegativein eachfluid column. We showedabove

thatR cannot vanish for real solutions. It therefore follows that

R < Oeverywhere.

c. Non-existence of eastward propagating waves for a flat-bottomed ocean

Multiply (2.12) byF and integrate from bottom to top:

0
[%FZL - jOH %zdz + fH %Zdz = 0. (AL.2)
Thefirst termvanishesat the surface andfor aflat-bottomedoceanalsovanishesat the floor. The
secondermis positive(sinceR < 0 hasjust beenproven).Thusthe third term mustbe negative.
The only adjustmento the sign canbe madeby selectingk, which mustthereforebe negativeto
satisfy (A1.2). Thus there can be no flat-bottomedwaves propagatingwith an eastwardphase

velocity (and indeed, if there is no north-south mean flow, the same holds for group velocity).
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This hasimmediateramificationsfor simplified solutionssuchasthoseby Liu (1999a,1999b)
andKillworth andBlundell (2001). Thesearticlesboth found highervertical modeswith eastward
propagation (and frequently possessingwhat would be real critical layers as well) using,
respectivelya 2.5-layeroceanand a modal decomposition.Thesesolutionscannotoccur in the

continuous case.

If the oceanpossessesopography,then the first term in (A1.2) gives an additional term,
aF?/ R, evaluatedat the floor. Thusif a < 0 the samerestrictionagainsteastwardorientationof
phasevelocity holds. Thus an eastwardorientationof the phasevelocity can only occur when
a > 0, which dependn the orientationof the wave vector (k, 1), the topographicgradient,and

the sign of the latitude.

APPENDIX B

The data treatment and numerical method

We usethe 1998World OceanAtlas (Antonovetal., 1998;Boyeretal., 1998)for temperaturand
salinity data,andthe ETOPO5dataset{National GeophysicaData Center,1988) for topography.
The ETOPO5dataweresmoothedoy applyinga Lanczossigmafactorfilter (Lanczos,1957,1966)
to the 2-D Fouriertransformof a 1/4° averageof the original data(averagedor storagereasons),
andthe inversetransformis averagecdnto the samel® squaresasthe WOA data. The smoothed
FFT methodis usedsothatwe canobtaina consistensetof H andits derivatives.This paperonly
requiresH andits first derivatives put theray tracingandcausticcheckingof partll will requireup
to third derivatives,andwe wish to usethe samemethodin both papersWith a 1° filter width, the
resulting topographyis very close to the simple averagedtopographyusedin Killworth et al.
(1997).

We usethe UNESCO 1981 equationof state(Gill, 1982)to computeN? (2) at the reference
levels,and the thermalwind equationgto derive the vertical velocity shear,from which we infer
baroclinic velocity componentsu and v by requiring their vertical integralsto vanish. These

calculationsare doneat all 1° gridpointswith depthat least1000 m. We thus producetabulated
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fields suitableboth for spliningto higherresolutionin the vertical, andfor bilinearinterpolationin

the horizontal.

We now wish to computewy from (3.9),for X = (k, |). This entailsfirst solving (2.12) subject
to (2.16)to give F, F, andF,,. We choosea directiony for the wavevectorandadjustthe value of
|k| usinga NAG library (Numerical Algorithms Group Ltd, 1999) zero-finding routine until the
bottomboundarycondition— either(2.17),or the simplerconditionF (—H) = 0 for the flat-bottom
case— is satisfied.Eqn. (2.12) is integrateddownwardsusinga simple predictor-correctoscheme
with up to 126 gridpointsfor both F andF,, viewedaselementf a coupledODE system Both F
andF, aretabulatedon therefinedverticalgrid ontowhich N2, u andv havebeensplinedwithin the
water column, and at the bottom. Severalnumericalschemesnvolving different tabulationsof F
andF,, anddifferentintegrationschemesveretried beforesettling on that describedwhich gave
the most consistentapproximationto the bottom boundarycondition as H varied with position.
(Note that this required a variable-length step from the last tabulated point to the bottom.)

HavingthusobtainedF andits vertical derivatives we cancomputeall the termsin (3.9) using
the trapezoidalapproximationfor the integrals,and thus obtainthe group velocity. Note that for
X = (k, I) thederivativesof RandSappearingn (3.9) do notinvolve the horizontalderivativesof

N2, u orv, only those o (viaa anday).
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TABLE 1

Combinations of mean flow and topography

Topography
Mean flow Locally Flat (F) Topographic Slopes (S)
None (N) NF NS
Zonal mean flow only (Z) ZF ZS
General mean flow (G) GF GS
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Captions

1. Vertical structureof eigenvectorF (correspondingo the vertical velocity) and its vertical
derivativeF, (correspondingo pressurefor locationswhich are(a) flat (45° N, 150° W), (b)
slightly sloped(30° N, 30° W), and (c) steeplysloped(20° S, 70° E). At eachlocation, five
orientationsof the wavevectorare considered120, 150, 180, 210 and 240° from east.F has
been arbitrarily normalizedto a maximum value of unity; F,, for conveniencehas been
renormalizedto makeits maximummodulusalso be unity (so that somecurvesdo not now
havethe original normalisationF, (0) = 1). The right-handpanelshowsthe meanhorizontal
velocity profile at that location,in m s1. The eastwardcomponentof group velocity differs

between the orientations kfand is given in the text.

2. Histogramof the numberof occurrencegcountedby 1° x 1° arealbinsand0.1 binsfor a) of a
measureof the nondimensionalisedveragevalue of a, i.e., tan®H,/H, (firm line) and the
nondimensionalisedalueof « = tan® (H, — IH,/k)/H, usingan approximateexpressiorin
the text for | / k (dashedine) in the world oceanbetween5 and50° latitude. The areafor the
latter calculationis limited to 40-100°,160—-260°,and 300-360°E. The larger black circles
showaccumulatedtountsbeyondthe +20 extremafor the averagen, the smalleronesfor the

approximate expression.

3. The coefficient of variation (meangroup velocity divided by its standarddeviationover the
wavevectororientationswhere it is defined) for the first internal mode. Contoursare 1.96
(ratios abovethis are statisticallydifferent from zero)and5 (an arbitrary value for which the
mean group velocity can be consideredindependenbf wavevectororientation).Light grey
areas represent regions where a real solution could not be found.

4. Meaneast-wesfirst-modegroupvelocity, for the GS (generalmeanflow, topographicslopes)
case,n m st. Contourintervalsare nonuniform:0.30,0.20,0.15,0.10,0.08,0.06,0.04,0.02,
0.01m st westwardfor comparisorwith Killworth etal. (1997).Valuesare maskedwithin 5°
of the equator,where equatorial,ratherthan long planetarywave, theory should hold. Light

grey areas represent regions where a real solution could not be found.
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