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ABSTRACT  Demands on land use in heavily populated landscapes create mosaic 

structures where semi-natural habitat patches are generally small and dominated 

by edges. Small patches are also more exposed and thus more vulnerable to 

adverse weather and potential effects of climate change. These conditions may be 

less problematic for generalist species than for specialists. Using insectivorous 

woodland birds (great tits and blue tits) as an example, we demonstrate that even 

generalists suffer reduced breeding success (in particular, rearing fewer and 

poorer quality young) and increased parental costs (daily energy expenditure) 

when living in such highly modified secondary habitats (small woods, parks, 

farmland). Within-habitat heterogeneity (using the example of Monks Wood 

NNR) is generally associated with greater species diversity, but to benefit from 

heterogeneity at a landscape-scale may require both high mobility and the ability 

to thrive in small habitat patches. Modern landscapes, dominated by small, 

modified and scattered habitat patches, may fail to provide specialists, especially 

sedentary ones, with access to sufficient quantity and quality of resources whilst 

simultaneously increasing the potential for competition from generalists. 
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Introduction 

The UK is a relatively small set of islands with a long history of habitat modification 

(Darby, 1951; Johnston & Doornkamp, 1982). The current human population is 

approximately 60.5 million (Office for National Statistics) and is predicted to reach 

70 million by 2031 (Carvel, 2007). Thus modification of the landscape is only likely 

to increase as exemplified by a recently declared need to build 5 million new houses 

by 2027.  

In terms of overall landscape structure, human habitat modification has had two 

large-scale contrasting effects. Initially, the natural land cover (mostly forest) was 

replaced and fragmented, increasing landscape heterogeneity (Rackham, 1986). More 

recently, agricultural intensification has decreased the heterogeneity of farmland by 

removing much of the remaining fragments of semi-natural habitat, increasing field 

sizes and promoting large-scale monoculture (Donald et al., 2001; Robinson & 

Sutherland, 2002). About 65% of mainland UK and 75% of England is occupied by 

agricultural land and 50% of agricultural land in England is classed as 

arable/horticultural (Haines-Young et al., 2000). Thus changes in agricultural land use 

and farming practices are major factors driving alterations in landscape structure in 

the UK (Benton et al., 2003). Agricultural impacts on biodiversity have been well 

documented, especially in the case of the decline of farmland birds (Aebischer et al., 

2000; Vickery et al 2004). Measures to increase farmland biodiversity and ecological 

productivity include habitat creation as well as changes in management practices and 

hence also contribute to restoring structural heterogeneity. However, crop production 

remains the primary purpose of farmland and therefore, although the uptake of agri-

environment schemes may eventually occur on a national scale, individual habitat 

patches and margins are relatively small and the resulting structure is fine-grained.  
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Where land is at a premium in heavily populated modern landscapes, habitat patch 

sizes are likely to be small and connectivity high. This creates mosaics with a high 

proportion of edge-habitat and a lack of large areas of single habitat types. Such edge-

dominated, small-patch landscapes tend to favour generalist species at the expense of 

specialists (Lovejoy et al., 1984; Askins et al., 1987; Simberloff & Cox 1987, 

Saunders et al., 1991; With & Crist 1995). Habitat fragmentation may also be more 

severe than is apparent from the presence of physical gaps alone. Many semi-natural 

habitats, especially parks and gardens, are dominated by exotic plant species which 

may support few invertebrates and hence create functional foraging gaps for higher 

taxa such as birds (Reichard et al., 2001). Exotic plant species may also present birds 

and other animals with phenological gaps – even if they support significant 

invertebrate populations, their timing of flowering or leafing may be inappropriate for 

native species. In addition, climate change (both long term and acute events) may 

interact with the above factors increasing habitat instability to which specialists may 

be more vulnerable than generalists. Recent work on the effects of climate change and 

increasing spring temperatures in Europe has also identified the possibility of a 

temperature-induced mismatch between timing of breeding in birds and the timing of 

the peak availability of their food supply (Visser et al., 1998; Visser et al., 2004). 

In this paper, we investigate the consequences of habitat fragmentation for two 

generalist species of arboreal insectivorous birds which feed their young principally 

on tree-dwelling caterpillars. Great tits Parus major and blue tits Cyanistes caeruleus 

were originally forest birds, but now also breed in a range of secondary habitats 

including farmland, parks and gardens. In the UK with its long history of 

deforestation, virtually all deciduous woodland could be regarded as secondary. Thus, 

we use the terms primary and secondary habitat within a UK context, where large 
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woods constitute the least modified and best available “primary” woodland habitat 

and small woods, parks and farmland comprise more highly fragmented and modified 

“secondary” habitats. We demonstrate that even these apparently adaptable tits have 

reduced breeding success and higher parental costs in secondary habitats due to 

fragmentation and gap effects. We also examine how climate interacts with bird 

ecology and habitat suitability. The implications of these results for the persistence of 

habitat specialists compared to generalists in highly modified landscapes are 

discussed with reference to a third parid, the marsh tit Poecile palustris which is still 

largely confined to mature deciduous woodland. Although the terms “generalist” and 

“specialist” imply a dichotomy, in reality species will comprise a continuum 

depending on their responses to the availability and quality of particular key 

resources. The effects of fine-grained landscape-scale habitat variation are also 

considered in relation to heterogeneity within a single habitat type using woodland 

(Monks Wood National Nature Reserve, NNR) as an example.  

 

Methods 

Habitat heterogeneity 

Monks Wood NNR (52o24’ N, 0 o14’ W) comprises 157 ha of mixed deciduous 

woodland in Cambridgeshire in eastern England (Gardiner & Sparks, 2005) (Figure 

1). The boundaries of the NNR are as shown in Figure 1b and 1d. The additional 

block of woodland across the road to the south (Figure 1a and 1c) is a privately owned 

conifer plantation (Bevill’s Wood). A tree species map of Monks Wood was derived 

from supervised classification of Airborne Thematic Mapper (ATM) multi-spectral 

data from 2003 (George, 2005). Different types of vegetation cover including 

different tree species have characteristic reflectance spectra due to differential 
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reflection of solar radiation (Carleer & Wolff, 2004). Tree species also differ in leaf 

phenology, e.g. timing and rate of senescence, increasing the differences in 

reflectance spectra. Thus, using ATM data from five images of the wood, the six most 

abundant tree species (55% common ash Fraxinus excelsior, 21% English oak 

Quercus robur, 14% field maple Acer campestre, 7% aspen Populus tremulus, 2% 

silver birch Betula pendula and 1% elm Ulmus spp.) in the top canopy (minimum 

height threshold of 8 m) were mapped with an accuracy of 89%.  

Top canopy height and sub-canopy understory height were mapped using airborne 

Light Detection And Ranging (LiDAR). Airborne LiDAR can describe vegetation 

structure at both high resolution (sub-metre) and at a landscape-scale (Lefsky et al., 

2002; Lim et al., 2003; Vierling et al., 2008) and thus has particular value in 

ecological applications (Hill et al., 2004; Bradbury et al., 2005; Hinsley et al., 2006, 

2008). LiDAR uses a laser range finder to measure the height of points beneath the 

flight-path of an aircraft. Short duration pulses of near infrared laser light are fired at 

the ground and the return signals reflected from the ground and surface features such 

as trees and buildings are recorded (Wehr & Lohr, 1999). The timing of the returns, 

combined with measurement of the aircraft’s orientation and position, allow the 3D 

position of the points to be calculated and geo-referenced. Digital models of the 

surface of the ground and of vegetation canopy height can then be derived from these 

measurements (Hill et al., 2002; Gaveau & Hill, 2003; Hill & Thomson, 2005). The 

LiDAR data for the Monks Wood top canopy model were acquired on June 10th 2000 

using an Optech Airborne Laser Terrain Mapper (ALTM) 1210 scanner with a 10 kHz 

laser pulse repetition rate, scan angle of ± 10o and a post spacing of one hit per 4.83 

m2. For the understory model, data were acquired on 14th April 2003 and 26th June 

2005 using an Optech Inc. ALTM-3033 with a 33 kHz laser pulse repetition rate. The 
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April (leaf-off) data were acquired at an average flying altitude of 980 m, with a scan 

half angle of 15o generating 1 laser hit per 1 m2, whilst the June (leaf-on) data were 

acquired at an average flying altitude of 1,125 m, with a scan half angle of 20o 

generating 1 laser hit per 2 m2 (Hill, 2007).  

  

Fragmentation and reproductive success 

Reproductive performance of great tits and blue tits was monitored for pairs breeding 

in nest boxes in large woods, small woods, urban parkland and farmland. The large 

woods comprised Monks Wood (36 boxes) and Brampton Wood (52o19’ N, 0 o16’ W, 

132 ha, 22 boxes) in Cambridgeshire. Both are mixed deciduous woodlands in which 

the dominant tree species are common ash, English oak and field maple, with 

Brampton Wood also having some areas of spruce Picea spp. and pine Pinus spp. The 

understory in both is predominantly hawthorn Crataegus spp., blackthorn Prunus 

spinosus and hazel Coryllus avellana (Collins et al., 2005). Up to 53 boxes were 

located in up to 36 small woods (0.1-1.39 ha) in Cambridgeshire and south 

Lincolnshire. All are mixed deciduous woods with the same dominant tree and 

understory species as the two large woods, but with additional small numbers of a 

wide range of species. All these woods are part of a long-term study of woodland bird 

ecology in eastern England (e.g. Hinsley et al., 1999, 2006). The landscape in this 

area is dominated by intensive arable agriculture. 

Breeding performance in parkland was monitored in up to 26 boxes in Bute Park 

(51o29’ N, 3 o11’ W, c. 53 ha) in the centre of Cardiff, south Wales and in up to 42 

boxes in the Cambridge Botanic Gardens (52o12’ N, 0 o08’ E, c. 25 ha). Bute Park 

comprises a mixture of mown grassland, sports pitches, an arboretum, plant nurseries 

and areas of more natural woodland dominated by sycamore Acer pseudoplatanus, 
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Norway maple Acer platanoides and common lime Tilia europaea. The Cambridge 

Botanic Gardens, in the centre of the city, is a formally managed arboretum with 

garden displays, mown grass, water features, greenhouses and visitor facilities, plus 

some small areas of less heavily managed vegetation. At both sites, tree species 

diversity is high with many exotics (broadleaves and conifers) often planted in broad 

taxonomic groups within which many species and varieties are represented. The park 

and gardens are both heavily used by the public. 

Farmland breeding tits were monitored in 75 tit boxes and 15 sparrow boxes (each 

with three compartments) making a total of 120 “boxes”. The boxes were located in 

hedgerow trees, hedges and the occasional small clump of trees across about 9 km2 of 

intensive arable farmland in Buckinghamshire, east central England (51o57’ N, 1 o00’ 

W). The trees were mostly English oak and common ash and the hedges mixed 

hawthorn, blackthorn, hazel and elm plus small amounts of other species.  

At all sites, boxes were visited approximately weekly from the end of March until 

July. Parameters defining breeding success were recorded as follows: (i) first egg 

date, (ii) clutch size, (iii) mean chick weight (g) at 11 days of age, (excluding runts) 

and (iv) the number of young fledged. Chicks were weighed to 0.1 g using a spring 

balance. Mean chick body mass provided an estimate of territory quality because it 

integrates the availability and abundance of food in the territory with the adults’ 

abilities to collect it and deliver it to the young (Hinsley et al., 2002, 2006). Previous 

work has also shown that heavier young are those most likely to survive to breed (e.g. 

Perrins & McCleery, 2001). 

Results were examined for three years (2005 to 2007) for all sites except farmland 

for which data were available only for 2007. In total, data were available for two large 

woods, about 30 small woods, two urban parks but only one farmland site. Thus to 
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facilitate analysis between habitat types, the farmland data were divided by an 

arbitrary east/west division of the site into two approximately equal parts. To test for 

differences in performance in the different habitat types, a mixed model with fixed 

effects for habitat type, year and type x year interaction, and random effects for site, 

site x year interaction and nest box was used. The model allowed for correlation 

between observations on nest boxes from the same site, in a particular year and/or in 

different years, and thereby avoided the pseudo-replication problem of treating 

observations on all boxes as statistically independent. The model was fitted by the 

method of residual maximum likelihood (REML) using the statistical package Genstat 

7 (Patterson & Thompson, 1971).    

 

Structural and functional gaps 

The influences of structural and functional gaps on breeding success were examined 

by monitoring birds breeding in the four different habitats as described above. The 

effects of such gaps on the adults themselves were investigated in two habitat types 

(large wood and park) by measuring the daily energy expenditure (DEE) of adults 

feeding large (10-11 days of age) nestlings (Hinsley et al., 2008). Adults foraging in 

patchy habitat waste time and energy simply crossing gaps to reach suitable foraging 

locations (Hinsley, 2000). Increased adult energy expenditure may be detrimental for 

long-term adult survival (Daan et al., 1996) and in the shorter term may reduce food 

delivery to the nest if adults spend more time foraging for themselves.  

In Bute Park, structural gaps in the tree canopy were common. The percentage of 

gap in the canopy within a 30 m radius of each nest box was calculated from a LiDAR 

top canopy model (data acquired in June 2004, Hinsley et al., 2008) derived as 

described above for Monks Wood (Figure 1c). In Monks Wood, structural gaps were 
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rare, but functional gaps were created by the patchy availability of oak trees (Figure 

1b) which comprise a prime source of the caterpillars essential for rearing young 

(Fischbacher et al., 1998). Thus, the percentage of oak in the canopy within 30 m of 

each box was calculated from the Monks Wood tree canopy map (Figure 1b). English 

oak was uncommon in the park and largely absent within 30 m of any box.   

The DEE of free-living great tits and blue tits feeding young was measured in Bute 

Park and Monks Wood using doubly labelled water (Speakman, 1997). This technique 

uses the differential turnover of oxygen-18 (excreted from the body in water and 

carbon dioxide) and deuterium (excreted in water) to measure carbon dioxide 

production which can then be converted to energy expenditure. The two isotopes are 

stable, but being heavier than the commonly occurring forms of oxygen and hydrogen 

can be measured in blood (or urine) samples using a mass spectrometer. The 

technique has been used on a wide range of animals, including humans, and provides 

the best means of measuring energy expenditure in free-living animals performing 

their normal activities.  

Energy expenditure was measured in both great tits and blue tits in Bute Park and 

in great tits only (too few boxes were occupied by blue tits) in Monks Wood in 2003 

and 2004. Measurements were also made in 2005 in the park to compensate for the 

small sample size (one bird) in 2003. Full details are given in Hinsley et al., (2008). 

All procedures were carried out under licence (see acknowledgements). The 

relationships between DEE and the presence of structural gaps (percentage canopy 

gap) in Bute Park and of functional gaps (percentage of the tree canopy which was not 

oak) in Monks Wood were described using quadratic regression. 
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Timing, temporal gaps and climate effects 

In Monks Wood and Bute Park, the timing and progression of tree leafing was scored 

on a scale of 0 to 6 as follows: 0 = tightly closed dormant buds, 1 = swollen buds, no 

green showing between scales, 2 = swollen buds, green showing between scales, 3 = 

leaf beginning to emerge from bud, 4 = leaf half open, 5 = leaf fully open, but not 

fully expanded, 6 = leaf fully expanded. Six English oak and six common ash were 

recorded at both sites; in addition, six sycamore and six Norway maple were recorded 

in the park because they were abundant and early. The overall state of bud burst/leaf 

expansion for the bottom half of each tree was scored at least once a week. Results 

were expressed as an average per species for oak and ash, and for the two Acer spp. 

combined.  

Timing of breeding of great tits and blue tits in all four habitat types was assessed 

using the date on which each female laid her first egg, recorded by monitoring nest 

boxes as described above. Timing of breeding in tits can vary quite widely between 

years (e.g. Perrins, 1970) and thus results are shown for two years to illustrate the 

pattern across the four habitats in both a relatively early (2007) and relatively late 

(2006) year (although data were only available for farmland in 2007). Results for 15 

years (from 1993 to 2007) for Monks Wood, Brampton Wood and the small woods 

were used to demonstrate the influence of local climate on the timing of breeding and 

how this relationship was influenced by habitat fragmentation. The mean first egg 

date for great tits in each of the two large woods and for all the small woods 

combined were calculated for each of the 15 years. In general, warm springs are more 

favourable for breeding success in tits than cold ones (Slagsvold, 1976, Hinsley et al., 

1999). The warmth sum, calculated as the sum of the maximum daily temperature 

from March 1st to April 25th (McCleery & Perrins, 1998), was used as an index of 
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local spring warmth. Maximum daily temperatures were obtained from a 

Meteorological Office weather station located about 100 m from Monks Wood and c. 

9 km from Brampton Wood. The relationships between egg dates and the warmth sum 

were described using linear regression and the slopes and elevations of the lines for 

Monks Wood, Brampton Wood and the small woods were compared by ANCOVA.  

The interaction of climate with habitat structure and the consequences for breeding 

success were illustrated using data for Monks Wood from two years with contrasting 

spring weather. In 1997, spring was early and warm (mean first egg date 9th April, 

warmth sum  = 759) whereas in 2001 it was late and cold (mean first egg date 27th 

April, warmth sum  = 568). The relationships between mean chick body mass, i.e. 

chick quality, and canopy height (obtained from the LiDAR top canopy model for 

Monks Wood, Figure 1c) around the nest box were compared in these two years using 

linear regression (Hinsley et al., 2006). 

 

Results 

Habitat heterogeneity 

The heterogeneity of Monks Wood in terms of both structure and tree species 

composition is illustrated in Figure 1. Aerial photography (Figure 1a) provided 

information about relatively large features such as fields and the main glades and 

rides, and some qualitative indication of canopy evenness or closure. The tree species 

map derived from ATM reflectance data (Figure 1b) showed that species composition 

is dominated by common ash. Despite this, the six main species are well mixed across 

the wood, but with heterogeneity tending to be greater in the centre and the east. The 

canopy height model provided by LiDAR (Figure 1c) showed that top canopy height 

was highly heterogeneous across the wood, with the tallest trees concentrated more 
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towards the edges and tending to reflect the distribution of ash trees (Figure 1b). The 

lower and more open character of the canopy in the centre of the wood is not apparent 

in the aerial photograph (Figure 1a). The sub-tree canopy understory model (Figure 

1d) also showed considerable variation in structure across the wood with the tallest 

shrub layer in the west and central eastern parts of the wood. 

 

Fragmentation and reproductive success 

Overall, reproductive success in both great tits and blue tits declined with declining 

habitat patch size (e.g. from large woods to small woods) and with increasing 

fragmentation (e.g. from woods to park/farmland) (Figure 2). Both fewer (Figure 2c, 

& f) and poorer quality (i.e. lower body mass, Figure 2b & e) young were reared in 

secondary habitats. The models showed that the declining trend from large to small to 

park/farmland was significant for both species for all three parameters of breeding 

success except numbers fledged for great tits where some effect was suggested by the 

P value of <0.10 (Table 1). For great tits there was a Type x Year interaction for chick 

mass and the number fledged indicating differences between habitat types between 

years (Figure 2). There were no such interactions for blue tits. The declining trends 

suggested that farmland and parkland were similarly poor, but to determine the 

relative status of farmland will require more data.  

 

Structural and functional gaps 

Despite their reduced breeding success, great tits in Bute Park worked harder than 

those in Monks Wood (Park: DEE = 86.3 ± 12.3 kJ day-1, n = 12; Wood: DEE = 78.0 

± 11.7 kJ day-1, n = 23; t = 1.97, P = 0.058) and because of the smaller brood sizes, 

nearly twice as hard for each chick reared (Park: DEE per chick = 14.6 ± 4.8 kJ day-1; 
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Wood: DEE per chick = 8.9 ± 1.7 kJ day-1; t = 5.12, P < 0.001). The parental costs of 

rearing young increased as the amount of gap around the nest site increased (Figure 

3a). In Bute Park, the tits that were working harder than the average for all the birds 

measured in the park were those with more than about 35% gap around their boxes. In 

Monks Wood, there was no relationship between parental DEE and the presence of 

structural gaps around the boxes because the amount of gap was small (less than 1% 

for 21 out of 36 boxes and less than 10% for 26 boxes) and less than that in the park 

(Wood: Gap = 1 ± 4%, n = 22; Park: Gap = 33 ± 23%, n = 26, t26 = 7.02, P < 0.001). 

However, a functional gap effect was evident in that females with less than about 30% 

oak around their boxes (i.e. about 70% “non-oak”) were working harder than the 

average for all birds measured in the wood (Figure 3b) (Hinsley et al., 2008). 

 

Timing, temporal gaps and climate effects 

Signs of leafing, i.e. bud swelling, in oak and ash started a little earlier in Bute Park 

than in Monks Wood, but timing of leaf emergence and expansion were similar 

(Figure 4). However, overall timing of leafing in the park was earlier due to the much 

larger number of tree species; leaf expansion in the maples started about 20 days 

before that in oak and ash in the wood (Figure 4).  

Previous work has shown timing of breeding in both great tits and blue tits to be 

later in small woods compared to large woods (Hinsley et al., 1999), whereas urban 

great tits, but not blue tits, tend to be early (Perrins, 1979, Cowie & Hinsley, 1987). 

These same trends were found at our sites (Table 2). Farmland birds were late 

compared to large woods, but unlike woodland where blue tits tend to start breeding a 

little earlier than great tits, timing was similar in both species on farmland (Table 2). 
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However, as shown here (and see below), timing of breeding in tits can vary 

substantially between years and data were only available for farmland for one year. 

Local climate, summarised as a simple temperature index, the warmth sum, 

influenced timing of breeding in great tits such that egg laying started earlier in 

warmer springs (Figure 5). Over the 15 years from 1993 to 2007, the mean first egg 

date varied by 22 days in the two large woods, Brampton and Monks Wood, and by 

30 days across large and small woods. The interaction between site and warmth sum 

was not significant in an ANCOVA of first egg date on these two variables, and hence 

the regression lines did not differ in slope between sites (F2,39 = 0.08, P > 0.200). 

However, the lines did differ significantly in elevation (F2,41 = 17.0, P < 0.0005), the 

common slope (± SE) being -0.0687 ± 0.0092. The mean first egg dates (± SD) for the 

three sites were Brampton Wood: 18.5 ± 5.8, Monks Wood: 20.0 ± 6.6 and small 

woods: 26.4 ± 5.6. Therefore, the significant difference in elevation was almost 

entirely a consequence of the difference in timing of breeding between small and 

large woods. 

Climate also influenced great tit breeding performance in Monks Wood in relation 

to habitat selection; mean chick body mass increased with canopy height in warm 

springs, but decreased with height in cold springs (Figure 6).  

   

Discussion 

Great tits and blue tits are common and widespread inhabitants of secondary habitats, 

but even as generalists, the birds pay costs in terms of both reduced breeding success 

and higher parental energy expenditure in comparison to their performance in 

continuous woodland. Even in woodland, an effect of functional gaps, i.e. “non-oak” 

foraging habitat, was detected. There was little or no English oak near the nest boxes 
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in Bute Park and exotic tree species were common, as they are in many secondary 

habitats. Therefore, both structural and functional gaps, and their concomitant ill 

effects, are likely to be widespread in secondary habitats. For example, as 

urbanisation increases, small arboreal insectivores are typically the first to disappear 

(Clergeau et al., 1998); urban avifaunas are characterised by medium-sized, ground-

feeding granivores (Marzluff et al., 2001). In addition to rearing fewer and poorer 

quality young, adult survival in secondary habitats may also be reduced. Increased 

energy expenditure and late breeding have both been linked to lower adult survival 

(Thomas et al., 2001; Nilsson & Svensson, 1996), but other factors (such as artificial 

food and warmer urban temperatures) associated with some secondary habitats may 

have a positive influence on survival (see below).  

Evidence from blue tits breeding in adjacent forest types in the south of France 

(Dias & Blondel, 1996) and from other studies (van Noordwijk et al., 1981, 

Lambrechts & Dias, 1993) has shown that timing is partly under genetic control. 

Immigrants may mistime their breeding attempts relative to the local food supply and 

suffer reduced success, increased parental costs and lower survival (Thomas et al., 

2001). Timing is also profoundly affected by climate at both local and geographical 

scales (Slagsvold, 1976; McCleery & Perrins, 1998). Given that timing differs 

between habitat types (Table 2, Figure 5) as well as forest types, the potential for 

climate change to cause mismatching between rates of plant and insect development, 

bird reproductive condition and the cues birds use to initiate breeding is substantial 

(Visser et al., 1998; Sanz, 2003). Single-brooded species may be most at risk, but 

climate factors can also affect multi-brooded species, especially by reducing the 

number of broods produced each year (Peach et al., 2004). Small and modified habitat 
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patches may be particularly vulnerable to climatic effects, for example, due to 

exposure and drying of soils under drought conditions (Saunders et al., 1991). 

Paradoxically, although great tits and blue tits breed less well and at greater cost in 

secondary habitats, the national UK populations of both have increased (British Trust 

for Ornithology, 2006). As small, hole-breeders, tits can be limited by nest site 

availability (e.g. East & Perrins, 1988) and the major cause of annual mortality is 

starvation/predation in cold winter weather (Newton, 1998). Many secondary habitats, 

especially gardens, (but also primary woodland sites) are now supplied with nest 

boxes and a majority of households provide food for birds, especially in winter 

(Cowie & Hinsley, 1988; Cannon et al., 2005). The national success of these two 

species may therefore depend at least in part on the fortuitous provision of both nest 

sites and food by humans and a trend in the UK towards milder winters. However, the 

success of great tits and blue tits in exploiting these new resources may be detrimental 

for other, less adaptable species, and those limited by other factors. For example, 

usurpation of willow tit Poecile montanus nest holes by great tits and blue tits has 

been implicated in the long-term decline (c. 80% in last 40 years) of this species 

(Maxwell, 2002; Gregory et al., 2002).  

By definition, habitat specialists are likely to be more vulnerable to loss, 

fragmentation and modification of their primary habitat, less likely to exploit 

secondary habitats and prone to competition/predation from increasing numbers of 

generalists. Sedentary species and poor dispersers will be at particular risk. Marsh tits 

are sedentary, hole-breeding, arboreal insectivores similar in size to blue tits, but 

seldom occur in secondary habitats. They maintain year-round, relatively large (c. 4-5 

ha) territories in mature deciduous woodland and require the presence of a well-

developed shrub layer (Broughton et al., 2006; Hinsley et al., 2007). Unlike great tits 
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and blue tits, they do not commonly exploit human-provided food and rarely use nest 

boxes. Also unlike great tits and blue tits, the national UK population of marsh tits has 

declined by more than 50% in the last 25 years (Gregory et al., 2002) and declines 

have been greater in smaller woods set in less wooded landscapes (Amar et al., 2006). 

In recent years, the Monks Wood marsh tit population has been stable at about 22 

pairs, whereas numbers in smaller, surrounding woods fluctuate from one (or none) to 

five pairs (R. Broughton, unpubl. data). In 2006, immigrants from these smaller 

woods comprised about 65% of juveniles present in the autumn in Monks Wood. In 

2007, conditions during chick rearing were poor (cold, wet and windy), and probably 

disproportionately so in these smaller woods, and the proportion of immigrant 

juveniles fell to about 50%, raising a real possibility of inbreeding. It also highlights 

the vulnerability of sedentary specialists to the loss of particular key sites. Without 

Monks Wood, the marsh tit populations in the surrounding small woods would 

probably collapse. Thus habitat fragmentation in this landscape where woodland is 

sparse and highly fragmented (Bellamy et al., 1998) has at least the potential to be 

more detrimental for the specialist marsh tit than for the more generalist great tit and 

blue tit. However, as discussed above, even these two adaptable species fare less well 

in secondary habitats, which bodes ill for less mobile, more specialist species.  

Within a particular habitat type, such as Monks Wood in Figure 1, heterogeneity 

contributes to diversity. For example, the numbers of nightingales Luscinia 

megarhynchos in Monks Wood has declined to 0-2 pairs in recent years as the wood 

has matured and the habitat structure required by this species has become rare 

(Gardiner & Sparks, 2005). Conversely, re-growth after widening of some rides has 

increased the availability of low bushy vegetation allowing whitethroats Sylvia 

communis to colonise these interior patches. In addition to the numerous biotic and 
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abiotic differences between large and small habitat patches (Saunders et al., 1991), a 

key factor in the ability of a species to exploit heterogeneity at any scale is mobility. 

A poorly dispersing woodland specialist can traverse unsuitable woodland habitat, but 

may have less success in moving between landscape elements (Gjerde & Wegge, 

1989; Matthysen & Currie, 1996). The provision under agri-environment schemes of 

relatively small and dispersed habitat patches across a large proportion of UK 

farmland has a good chance of success for at least some species of farmland birds 

because they are relatively mobile and adept at exploiting localised and shifting food 

resources (Newton, 1972). Conversely, small, dispersed woods will not maintain 

marsh tits. The lesser spotted woodpecker Dendrocopos minor is another woodland 

species in steep decline (Gregory et al., 2002). In contrast to the sedentary marsh tit, it 

is highly mobile with a home range size of several hundred hectares (Wiktander et al., 

2001), but for specialists, habitat quantity goes hand-in-hand with habitat quality 

(Olsson et al., 2001). If modern landscapes are to provide for specialists as well as 

generalists, they will need to contain certain minimum quantities of good quality 

habitat. Given the conflicting and wide-ranging pressures on land use in modern 

landscapes, this presents a considerable challenge. 
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Figure 1. Illustration of habitat level heterogeneity using Monks Wood NNR as an 

example. a) aerial photograph, b) tree species distribution: light green = common ash, 

red = English oak, dark green  = field maple, purple  = aspen, pink = silver birch and 

yellow  = elm spp., c) top canopy height: tallest trees, c. 16-23 m  = orange and reds, 

medium heights, c. 8-16 m  = light blue, greens and yellow, lower levels c. 1-8 m =  

purple and dark blues; surface of the ground, < 1 m  = pale yellow, d) sub-canopy 

understory height: increasing height indicated by darker shading.  

 

Figure 2. Reproductive success of great tits and blue tits breeding in different 

habitats. Mean values are shown for each habitat type for each year (2005-2007); 

note: data only available for farmland for 2007. For clarity, for each habitat type, the 

standard error (SE) of the mean is shown only for the year with the largest SE. Closed 

circles, solid lines = 2005, open circles, dotted lines = 2006, closed triangles, dashed 

lines = 2007. 

 

Figure 3. The influence of a) structural gaps in the tree canopy in Bute Park and b) 

functional gaps in the tree canopy in Monks Wood on the DEE of great tits and blue 

tits feeding nestlings. Lines fitted using quadratic regression, a) structural gaps: % 

deviation from average DEE = -1.868 – 0.506 % gap + 0.013 % gap2, r2 = 0.42, P = 

0.008, n = 20, note: fitted line omitted the results for the blue tit with the greatest 

negative deviation from the mean because this bird probably failed to restart feeding 

young promptly after experimental manipulation; b) functional gaps: % deviation 

from average DEE = 19.998 – 1.249 % non-oak + 0.014 % non-oak2, r2 = 0.60, P = 

0.001, n = 19. Figure redrawn using data first published in Landscape Ecology 
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(Figures 3 and 4, Hinsley et al. 2008), with kind permission of Springer Science and 

Business Media. 

 

Figure 4. Phenology of leaf development in Bute Park (open symbols) and Monks 

Wood (closed symbols) in 2004. Circles  = English oak, triangles  = common ash and 

squares = maple spp. 

 

Figure 5. The influence of local climate (an index of spring warmth) on the timing of 

breeding (first egg date) of great tits in two large woods and in small woods. Results 

are for 15 years (1993 to 2007). For each wood or habitat type, each point represents 

the mean date for about 17 broods each year. Lines fitted using linear regression, 

Monks Wood: first egg date = 70.3 – 0.074 warmth sum, r2 = 0.56, P = 0.001; 

Brampton Wood: first egg date = 63.4 – 0.066 warmth sum, r2 = 0.57, P = 0.001; 

small woods: first egg date = 71.2 – 0.066 warmth sum, r2 = 0.62, P = 0.001. 

 

Figure 6. The interaction of climate (cold and warm springs) with habitat structure 

(tree canopy height around the nest site) and its effects on breeding success in great 

tits. Chick body mass is positively correlated with survival and thus is an indicator of 

chick quality. Lines fitted using linear regression. 2001, cold spring: mean chick body 

mass = 21.4 – 0.260 canopy height, r2 = 0.82, P < 0.001, n = 11; 1997, warm spring: 

mean chick body mass = 12.9 + 0.323 canopy height, r2 = 0.45, P = 0.069, n = 8. 

 
 
 
 
 
 



Table 1. Comparison of breeding success between habitat types (large wood, small wood, parkland, farmland): summary of fitted mixed model 

with fixed effects for Habitat Type, Year and Type x Year interaction, and random effects for Site, Site x Year interaction and Nest Box. *** = P 

< 0.001, ** = P < 0.01, * = P < 0.05, + = P < 0.10. 

_______________________________________________________________________________________________________________ 

 Wald tests for fixed effects Estimated components of variance 
                                                             __________________________________        ___________________________________________ 
     Type x Year Between Site x Year Between boxes 
 Species Variable Habitat type Year interaction sites interaction within sites/years 
________________________________________________________________________________________________________________ 
 
Great tit Clutch size 41.1*** 7.7* 2.9 0.013 0 2.29 
 
  Mean chick mass 143.4*** 9.3** 17.3** 0 0 1.93 
 
  No. fledged 107.8* 4.4* 9.9+ 0 0.073 3.38 
 
Blue tit Clutch size 31.2*** 0.03 1.2 0 0 2.44 
 
  Mean chick mass 31.6*** 3.0 6.1 0.033 0.004 1.22 
 
  No. fledged 57.7*** 3.8 2.8 0 0 5.57 
________________________________________________________________________________________________________________
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Table 2. Timing of breeding by great tits and blue tits in different habitats. Data for farmland available only in 2007; April 1st  = 1; n refers to 

numbers of nests; sites comprise two large, c. 30 small woods, two parkland sites and one farmland site. 

 
 
 
_____________________________________________________________________________________________________________ 
 2006 2007 
 GREAT    TIT BLUE    TIT GREAT    TIT BLUE    TIT 
 Date n Date n Date n Date n 
_____________________________________________________________________________________________________________ 
 
 Large woods 26.7  ±  4.6 43 24.0  ±  4.0 7 16.3  ±  3.1 46 15.2  ±  2.1 6 
 c. 150 ha 
 
 Small woods 28.8  ±  5.0 20 26.3  ±  3.4 11 19.2  ±  4.1 20 16.4  ±  4.9 9 
 c. 1 ha 
  
 Urban parkland 20.1  ±  4.2 22 24.6  ±  3.5 21 15.3  ±  5.6 24 18.8  ±  3.8 23 
 
 
 Farmland - - - - 20.7  ±  4.0 33 20.9  ±  3.6 31 
 
_____________________________________________________________________________________________________________ 
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Fig. 2 
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Fig. 3 
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Fig. 4 
 
 
 
 
          

50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

Date  (April 1st = 1)

Le
af

 d
ev

el
op

m
en

t i
nd

ex
(fu

lly
 e

xp
an

de
d 

= 
6)

 
 
 
 
 
 

 35



Fig. 5 
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Fig. 6 
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