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Abstract

This paper describes the development and evaluation of the UK’s new high resolution

global coupled model, HiGEM, which is based on the latest climate configuration of the Met

Office Unified Model, HadGEM1. In HiGEM, the horizontal resolution has been increased to

1.25◦ x 0.83◦ in longitude and latitude for the atmosphere, and 1/3◦ x 1/3◦ globally for the

ocean. Multi-decadal integrations of HiGEM, and the lower resolution HadGEM, are used to

explore the impact of resolution on the fidelity of climate simulations.

Generally SST errors are reduced in HiGEM. Cold SST errors associated with the path of

the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus

regions where the simulation of low level cloud is better at higher resolution. The ocean

model in HiGEM allows ocean eddies to be partially resolved,which dramatically improves

the representation of sea surface height variability. In the Southern Ocean, most of the heat

transports in HiGEM is achieved by resolved eddy motions which replaces the parametrised

eddy heat transport in the lower resolution model. HiGEM is also able to more realistically

simulate small-scale features in the windstress curl around islands and oceanic SST fronts,

which may have implications for oceanic upwelling and oceanbiology.

Higher resolution in both the atmosphere and the ocean allows coupling to occur on small

spatial scales. In particular the small scale interaction recently seen in satellite imagery be-

tween the atmosphere and Tropical instability waves in the Tropical Pacific ocean is realisti-

cally captured in HiGEM. Tropical instability waves play a role in improving the simulation of

the mean state of the Tropical Pacific which has important implications for climate variability.

In particular all aspects of the simulation of ENSO (spatialpatterns, the timescales at which

ENSO occurs, and global teleconnections) are much improvedin HiGEM.
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1. Introduction

This paper is the first in a series describing the developmentand performance of the UK’s first

high resolution global environment model (HiGEM). These papers will highlight different aspects

of the Earth system and the new perspectives that high resolution has brought to the simulation

of the coupled system. The HiGEM project is a partnership between the Natural Environment

Research Council (NERC), the UK academic community and the Met Office Hadley Centre. Its

aim is to extend the latest climate configuration of the Met Office Unified Model, HadGEM1,

to higher resolution in both the atmosphere and ocean. HiGEMhas also formed the core of the

modelling activities of the UK-Japan Climate Collaboration (UJCC) between the National Centre

for Atmospheric Science, the Met Office Hadley Centre and theEarth Simulator Centre, in which

UK staff are permanently based at the Earth Simulator Centrein Yokohama.

HiGEM represents a significant change in how global environment modelling is conducted in

the UK; it brings together the fundamental research within NERC and the academic community

with the climate prediction programme of the Met Office Hadley Centre. HiGEM has facilitated the

engagement of NERC expertise in various aspects of climate system science with the development

and evaluation of the UK’s next generation model of the global environment. For the first time,

many of the principal areas of NERC science are working together, leading to a concerted effort

in state-of-the-art global environment modelling which hitherto has been somewhat fragmented.

Moving towards higher resolution has enabled the gap to be narrowed between modellers and sci-

entists specialising in particular processes and phenomena, and between models and observations

of the Earth system.

The overarching drivers for the development of HiGEM are, firstly, to explore the impact of

higher resolution on the fidelity of the simulations and, secondly, to understand the non-linear pro-

cesses that give rise to interactions between small and large spatial scales, and between high and
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low frequencies, within the climate system. Complex fluid flows in the atmosphere and oceans are

a fundamental feature of the climate system. They transportenergy, tracers, and momentum within

and between system components; they occur over a wide range of spatial scales, and evolve over a

wide range of time scales. A clear imperative is to develop models of much higher resolution, in

order to simulate explicitly flows down to smaller scales, and to capture potential non-linear inter-

actions between a wider ranger of spatial and temporal scales, and between different components

of the climate system. Rapid increases in computer power areenabling much higher resolution to

be used and HiGEM attempts to exploit those opportunities.

The current, state-of-the-art coupled climate models usedin the IPCC 4th Assessment Report

(IPCC 2007) have a typical resolution of∼1.5-3◦ in the atmosphere and∼1◦ in the ocean. In

neither component are key aspects of the climate system (such as the influence of ocean eddies,

orographic forcing of the atmosphere, tropical cyclones) adequately represented. Furthermore,

during the 30 year history of climate modelling, the horizontal resolution has barely increased

despite a substantial increase in the complexity of the models. Computing power has increased

by several orders of magnitude, but that increase in power has been used almost exclusively to

introduce more complex parametrisations and additional processes, to perform multi-century inte-

grations and, more recently, to explore uncertainty through large ensembles of simulations.

Yet there is a strong case for higher resolution in all components of the coupled system. For

the atmosphere, high resolution simulations have already demonstrated significant improvements

in the representation of storm track processes and of the detailed precipitation distribution over

Europe where orographic effects are important (Pope and Stratton 2002, Junget al. 2006). For the

ocean, there is good evidence that eddy permitting models provide a much better representation

of the wind-driven circulation and western boundary currents (Semtner and Chervin, 1988; Bryan

and Holland, 1989; FRAM Group 1991; Semtner and Chervin, 1992). The early eddy permitting
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models also captured, for the first time, the geographical distribution of mesoscale eddy variability

observed by satellite altimeters. Since the equatorial Rossby radius for ocean waves is of the order

of 100-250km (e.g. Gill 1982), it is clear that higher resolution will also give a more accurate sim-

ulation of equatorial waves, which are a key part of El Nino. However, there are still deficiencies

at mid to high latitudes where the Rossby deformation radiusremains unresolved indicating a need

for even higher resolution (Smithet al. 2000).

At the land surface, strong variations in properties such astopographic height, vegetation cover,

soil properties, soil moisture and snow cover, occurs at alllength scales. These combine non-

linearly to produce large variations in surface fluxes of heat, moisture, momentum and carbon

dioxide. As a result, the accurate modelling of surface processes in GCMs is strongly constrained

by horizontal resolution. Numerous studies have illustrated that land surface feedbacks can affect

the atmosphere at scales from the local up to the global (e.g.Taylor et al. 2007). Explicitly

resolving finer scale surface features should lead to improvements in the simulation of climate

over continental regions.

Sea ice is highly inhomogeneous, with much of the exchange ofheat between ocean and atmo-

sphere taking place over small areas of open water (leads andpolynyas) within the ice cover. These

exchanges of heat determine the overall growth of the wintersea ice and the consequent modifi-

cation of ocean water masses through brine rejection. Correct parametrisation of these energy

exchanges is essential for realistic climate simulations and requires high resolution atmospheric

and oceanic fields in order to calculate the fraction of open water and its distribution within a grid

cell correctly. The rheology of sea ice is also highly nonlinear. Accurate simulation of ice-ocean

interactions thus requires a high spatial resolution (Holland 2001).

High resolution simulations of the climate system have generally been run in uncoupled mode

and often only at a regional scale where the simulation may becompromised by errors in the
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boundary forcing. The impact of details in the structures, for example the tightness of the Gulf

Stream, on the evolution of the global coupled system has yetto be explored properly, although it

may be substantial. For example, results from a coupled model have shown a dramatic improve-

ment in the mean tropical climate and the simulation of El Nino when the atmosphere is run at

a resolution commensurate with that of the ocean (Guilyardiet al. 2004). Furthermore, analy-

ses of near-surface wind speed and direction over the globalocean from the QuikSCAT satellite

radar scatterometer (Cheltonet al. 2004) have shown persistent small-scale features indicative

of air-sea interaction over sea-surface temperature fronts, such as the Gulf Stream, and the influ-

ences of islands and coastal mountains. Similarly, resultsfrom a high resolution version of the

coupled MIROC3.2 climate model (K-1 Model Developers 2004)shows that resolving small scale

islands and orographic features, such as the Hawaiian Islands, can have far-reaching effects on the

atmosphere and ocean (Sakamotoet al. 2004)

This paper describes the development of HiGEM, and presentsa basic evaluation of its per-

formance from a multi-decadal integration for the current climate. Further papers will cover in

more detail aspects such as weather, ocean variability and modes of climate variability (Harleet

al. 2008; Robertset al. 2008a,b; Shaffreyet al. 2008; Stevenset al. 2008). Section 2 contains a

description of HiGEM including the changes made from HadGEM1, the production of the high res-

olution boundary conditions and the optimisation of the code. Using results from a multi-decadal

simulation for the current climate, the performance of the full system and of each component of the

model is described in Section 3 with a particular emphasis onthe impact of high resolution on the

simulation. Section 4 highlights specific coupled ocean-atmosphere interactions that are facilitated

by high resolution in both the atmosphere and ocean combined. The paper concludes with some

discussion and overall conclusions concerning model performance.
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2. Model Description

HiGEM is based on the latest climate configuration of the Met Office Unified Model, HadGEM1

(Johnset al. 2006, Martinet al. 2006; Ringeret al. 2006), which has formed a major contribution

to the IPCC 4th Assessment Report (IPCC 2007). The horizontal resolution of HadGEM1 is

1.875◦ x 1.25◦ in longitude and latitude (N96) in the atmosphere, and 1◦ x 1◦ (increasing to 1/3◦

meridionally near the equator) in the ocean.

In HiGEM, the horizontal resolution has been increased to 1.25◦ x 0.83◦ (N144) in longitude

and latitude for the atmosphere, and 1/3◦ x 1/3◦ globally for the ocean and sea ice. Experience

in numerical weather prediction suggests that at N144 weather systems, the building blocks of

climate, are more realistically represented. Similarly, experience with high resolution ocean mod-

els suggests that at 1/3◦ ocean resolution, small-scale eddies are represented, steep gradients such

as in western boundary currents are better resolved, and theocean can be made much less diffu-

sive. HiGEM has higher resolution in both components than has hitherto been used in the UK for

extended simulations of the coupled global environment.

In the development of HiGEM, a number of versions of the modelwere produced. In this

paper we describe HiGEM1.2 and document the changes required to produce this model from

HadGEM1. An earlier version of HiGEM, HiGEM1.1 was also extensively tested and a centennial

simulation was run on the Earth Simulator. This integrationwill be described in greater detail in

Robertset al. (2008a).

The move to higher resolution has necessitated some changesto the model, particularly in the

ocean. Furthermore since the submission to the IPCC 4th Assessment Report, various improve-

ments have been implemented in HadGEM1 to form the latest version HadGEM2-AO. Some of

these improvements have been included in the HiGEM code.
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2.1 Atmosphere Component

The atmosphere component of HiGEM1.2 is very similar to the HadGEM1 model (see Martinet

al. 2006). It has a non-hydrostatic dynamical core (Davieset al. 2005), with semi-Lagrangian

transport. Discretisation is on a Arakawa C grid. Parametrisations in HadGEM1 are substantially

improved, e.g. new boundary layer and convection schemes, compared to the earlier Met Office

Hadley Centre HadCM3 model (Gordonet al. 2000). HadGEM1 includes an interactive aerosol

scheme, driven by surface and elevated emissions. Both HadGEM1 and HiGEM1.2 have 38 levels

in the vertical.

With the increased resolution of HiGEM1.2 the timestep was reduced from 30 minutes (HadGEM1

value) to 20 minutes. The magnitude of polar filtering in the advection scheme was also reduced.

In HadGEM1 a targeted diffusion scheme was implemented to prevent grid points storms. The

vertical velocity threshold at which the targeted moisturediffusion is triggered was increased from

0.1ms−1 in HadGEM1 to 0.4ms−1 in HiGEM1.2.

Two improvements in HadGEM2-AO were also found to have a beneficial impact on the sim-

ulation in HiGEM1.2 and so were included. These included reducing the snow-free sea-ice albedo

from 0.61 to 0.57 and changing the treatment of runoff over frozen soil. In HadGEM1 it was as-

sumed that none of the runoff penetrated into frozen soil. When this assumption was relaxed there

was marked improvement in the seasonal cycle of soil moisture and land temperatures.

HiGEM1.2 includes the total ocean current in the calculation of surface wind stress. This

produces improvements in the simulation of sea surface temperatures in the tropical east Pacific

compared to HadGEM1 where the ocean currents were not included. The coupling frequency is

unchanged from HadGEM1, i.e. that ocean and atmosphere are coupled once per day.
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2.2 Ocean component

The ocean component follows that used in the ocean componentof HadGEM1 (Johnset al., 2006),

but with increased horizontal resolution and improvementsto some of the model physics. The

latitude-longitude grid has a singularity at the North Polewhich is treated as a land point. Con-

vergence of the meridians towards the North Pole on the spherical grid requires the tracers and

baroclinic velocities to be Fourier filtered northwards of 80◦N to maintain stability. No filtering is

necessary in the southern hemisphere.

The ocean model has 40 unevenly spaced levels in the verticalwith enhanced resolution near

the surface to better resolve the mixed layer and atmosphere-ocean interaction processes. The

level thicknesses are derived from an analytic expression to give near 10m resolution close to the

surface, increasing smoothly to near 300m at depth. The use of an analytic function to derive the

model levels results in 2nd order accurate vertical differencing (Martiet al., 1992). The maximum

ocean depth is 5500m.

The external mode is solved with a linear implicit free surface scheme (Dukowicz and Smith,

1994). To prevent the free surface height in marginal seas changing too far from the mean sea

level an adjustment is performed after each timestep to maintain the average global free surface

height. This has no impact on the dynamics as it is only gradients of free surface height which are

important for a linear free surface.

Lateral mixing of tracers uses the isopycnal formulation ofGriffieset al. (1998) with a constant

isopycnal diffusivity. The Gent and McWilliams (1990) (GM)adiabatic mixing scheme which was

used in the lower resolution HadGEM1 is not used in HiGEM1.2.Tests showed that its inclusion

created low eddy variability, erosion of fronts and the higher horizontal resolution of HiGEM1.2

means that eddies are, at least partially, represented. Theadiabatic biharmonic scheme of Roberts

and Marshall (1998) (biharmonic GM) is used to reduce noise in tracer fields, particularly at high
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latitudes. To represent enhanced mixing at the ocean surface, tracers at levels 1 and 2 are mixed

horizontally using a biharmonic scheme. All the biharmonicmixing schemes use constant coef-

ficients scaled by cos3(latitude) for numerical reasons to deal with the convergence of meridians

approaching the North Pole.

The vertical mixing of tracers uses a hybrid scheme. The diffusivity at all depths is set us-

ing the Richardson number parametrisation subject to a minimum, depth dependent background

diffusivity. A bulk mixed layer scheme is used to determine the tracer values in the mixed layer.

The vertical mixing of momentum also uses an hybrid scheme with a similar Richardson number

parametrisation to that used for vertical tracer mixing, but subject to a constant minimum back-

ground diffusivity. The mixing of momentum in the mixed layer is represented by assuming the

diffusion coefficient is a quadratic function of depth. For both momentum and tracers, the diffu-

sivity is enhanced immediately below the mixed layer base toreduce the large gradients which can

occur in this region.

Tracers are advected using a pseudo fourth-order scheme (Pacanowski and Griffies, 1998) ex-

cept at the bottommost level which uses an upwind scheme to reduce tracer extrema. Momentum

advection uses a second order centred difference scheme. Bottom friction is implemented using a

quadratic semi-implicit scheme.

The equation of state (EOS) used in HiGEM1.2 is that given in McDougallet al. (2003). The

UNESCO EOS (Gill, 1982) was updated by Feistel and Hagen (1995) by including more recent

data. However, this gives density as a function of pressure,salinity and in-situ temperature. Mc-

Dougallet al. (2003) derived a 25 term fit in terms of pressure, salinity andpotential temperature,

more convenient as the model uses potential temperature. A reference density (required by the

Boussinesq approximation) ofρ0 = 1.035 g cm−3 is used. Convection is parametrised using the

full convection algorithm of Rahmstorf (1993). Further details of the ocean physics parametrisa-
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tions are given in the companion paper by Stevenset al. (2008).

2.3 Sea Ice component

The configuration of the sea ice component in HiGEM1.2 follows closely that used in HadGEM1,

with the exception of changes to the values of some parameters and the introduction of a sub-time

stepping scheme for the ice dynamics. The main features are summarised below and further details

can be found in McLarenet al. (2006). It contains elements of the CICE elasto-viscous-plastic

model (Hunke and Lipscomb 2004).

Rather than existing as a separate sub-model the major part of the sea ice component resides

within the ocean model with a small part in the atmosphere model. The ocean part solves for the

dynamics, mechanical redistribution (ridging) and some ofthe thermodynamics. The atmosphere

part calculates the atmosphere-ice fluxes and the ice surface temperature using the atmosphere

timestep to allow representation of the diurnal cycle. These fields are then averaged and commu-

nicated to the ocean model on a coupling timestep.

The ice pack is modelled as a five category ice thickness distribution which evolves through

advection, ridging and thermodynamic growth or melt. The ice velocities are calculated by solving

the ice momentum equation using the Elastic Viscous Plastic(EVP) model of Hunke and Dukowicz

(1997). The rate of change of ice momentum is a balance between ice-air drag, ice-ocean drag,

Coriolis force and internal ice stresses. The stresses are calculated from a constitutive equation

which relates the ice stresses to the strain rates using an EVP rheology. The ice velocities are

used to advect each ice category and the open water category using an upwind scheme. Following

advection, the ridging scheme (Hunke and Lipscomb, 2004) converts thin ice into thick ice and

creates open water. This ensures that in regions of convergent flow the ice area cannot exceed

the grid cell area. The thermodynamic growth/melt is represented using the zero layer model of
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Semtner (1976), applied to each category. The zero layer model implies that there is no heat storage

within the ice. After the thermodynamic model has calculated the thickness growth rates the linear

remapping scheme of Lipscomb (2001) is used to calculate thetransfer of ice between categories.

The ice model parameters are the same as those used in HadGEM1with the exception of those

related to the EVP subcycle timestep. The EVP model introduces an elastic component to the

Viscous Plastic (VP) rheology as a means to increase the efficiency of the ice stress calculation.

The EVP calculation is subcycled with a timestep which is O(100) times smaller than the ocean

timestep. In the limit of a very small subcycle step the EVP solution converges to the VP solu-

tion. Taking many subcycle steps is computationally expensive but if insufficient steps are taken

elastic waves can remain in the solution which leads to noisyice velocities. The ocean timestep in

HadGEM1 is 1 hour and the EVP subcycle step is 30 s. HiGEM1.2 has an ocean timestep of 20

mins and an EVP subcycle step of 10 s.

The presence of a land point at the North Pole on the ocean gridmeans that no thermodynamic

processes can affect the ice concentration at this point. However, sea ice does exist at this point

and its evolution is calculated by a scheme that advects ice over the pole using ice velocities from

the row immediately to the south.

In some early runs there were problems with stability of the ice model close to the north polar

island. The ice velocities at the northernmost ocean row became large enough to violate the CFL

stability criterion due to the convergence of meridians. The resulting noisy ice concentration field

meant that the ridging process was unable to converge in a reasonable number of steps and the

model crashed with negative ice concentrations. In the ocean the stability problems are solved by

Fourier filtering the velocity and tracer fields. Filtering cannot be performed on the ice velocities

because it changes the mask of icy/non-icy grid cells. A possible solution would be to reduce

the ocean timestep which is undesirable because if reduces the speed of the whole model. An
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alternative solution which has been implemented is to sub-timestep the ice dynamics and ridging

calculations. The calculation of the ice velocities, the advection of the individual categories and

the ridging calculation is performed twice, with a timestepof half the ocean timestep followed by

the thermodynamic part of the calculation over a whole oceantimestep.

2.4 Boundary Conditions

(a) Bathymetry

The bottom topography is derived from two datasets, the 1/12◦ GEBCO Digital Atlas (IOCet

al., 2003) and the 1/30◦ dataset of Smith and Sandwell (1997). Both datasets are interpolated to

the model grid by taking the median of all depths within each 1/3◦ x 1/3◦ grid cell for those cells

where more than 62.5 % of the points are sea points. This was found to give the best representation

of coastlines. The resulting depth fields were not smoothed.In some regions, particularly the deep

ocean basins there are significant differences between the two datasets. In these regions the model

depth was taken as the mean of the GEBCO and Smith and Sandwell(1997) values. The model

depths were converted to model levels, and isolated bays (grid cells unaffected by advection) and

single grid cell holes were filled. The topography was then adjusted in the regions of key sills and

narrow pathways using data from Thompson (1995).

The land-sea mask is based on the GEBCO dataset with some adjustment of the coastline to

give as accurate a representation as possible, commensurate with the 1/3◦ degree horizontal res-

olution. The connection between the Mediterranean Sea and the Atlantic Ocean at the Strait of

Gibraltar is unresolved by the model grid, which requires a width of two tracer cells, or approxi-

mately 74 km, to allow an advective transport. The Strait of Gibraltar is 12 km wide, so rather than

modifying the topography to widen the Strait, the choice wasmade to close the Strait with a land

barrier. The Mediterranean Outflow strongly affects water mass properties in the Atlantic Ocean
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so the exchange of tracers is parametrised as a volume flux of +0.5 Sv (Atlantic to Mediterranean)

in the upper ocean and a return volume flux of equal magnitude at depth. The entrances to the Red

Sea and Persian Gulf are sufficiently well resolved to be opento the Indian Ocean. The Black Sea,

Caspian Sea and Great Lakes are represented but are not connected to other ocean basins.

(b) Land surface conditions

The model requires input datasets (ancillary files) to provide information about surface bound-

ary conditions, such as orography, and other climatological fields, such as vegetation cover, which

the model does not predict. The starting point in creating the ancillary files is deriving the land

fraction from the land/sea mask of the ocean model. The coastal tiling scheme in the model en-

ables a more accurate representation of fluxes at land-sea boundaries by combining ocean and land

surface fluxes in proportion to the fraction of land within the gridbox.

The orography has been derived from the 1’ GLOBE dataset, which provides an accurate rep-

resentation of the mountains and their sub-gridscale characteristics. The orography is smoothed

with a Raymond filter to remove grid-scale and sub-grid scalefeatures that are poorly represented

in the model (Websteret al. 2003).

The land surface scheme of HadGEM1 uses fractional tiling torepresent sub-gridscale surface

heterogeneity. Nine land surface types are used, which include five vegetation types (C3 and C4

grasses, shrub, needleleaf and broadleaf trees), bare soil, urban, permanent ice and open water.

Seasonally varying vegetation fractions for the five vegetation types were derived from the IGBP

dataset (Lovelandet al. 2000). A new specification for the soil albedo based on the analysis

of MODIS data has been implemented over the Sahara (Holdcroft et al. 2008). Previously the

distribution of soil albedo over the Sahara was too uniform and had unrealistically high values.

(c) Aerosol emissions and greenhouse gases

The interactive aerosol scheme in HiGEM1.2 requires emissions data and oxidant fields to
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drive the sulphur, black carbon and biomass burning modelling. The raw datasets on which these

are based are the same as for HadGEM1 (Martinet al. 2006), but interpolated to the higher

horizontal resolution required for HiGEM1.2 (the verticalresolution is the same). For the sulphur

cycle, seasonal anthropogenic sulphur dioxide emissions representing present-day values are from

Smithet al. (2004). Natural emissions of dimethyl sulphide (DMS) on land are from Spiroet al.

(1992), and monthly mean sea water concentrations of DMS arefrom Kettleet al. (1999). Annual

mean volcanic sulphur emissions representing constantly-emitting sources are from Andres and

Kasgnoc (1998). Monthly mean 3-dimensional fields of oxidants (OH, H2O2 and HO2) for the

sulphur cycle are taken from the off-line STOCHEM model (Collins et al. 1997). Annual mean

black carbon (soot) and monthly mean biomass burning aerosol emissions are taken from Nozawa

(2003, personal communication to Hadley Centre).

The model is forced with fixed present-day concentrations oftrace greenhouse gases (the mass

mixing ratios of CO2, CH4, N2O are 5.241e-04, 9.139e-07 and 4.665e-07 respectively). Ozone is

a seasonally varying two dimensional field (latitude-height) derived from the SPARC climatology

for 1990 (Randel and Wu, 1999).

2.5 Model optimisation

HiGEM1.2 is computationally very demanding and good optimisation of the code was considered

essential to ensure efficient use of computing resources andto achieve a wallclock time that is

fast enough to enable a multi-decadal simulation within a few months. HiGEM1.2 has been im-

plemented on the UK Research Council’s HPCx system (IBM p5-575 cluster) and on the Earth

Simulator.

The target performance of HIGEM1.2 was set at a minimum of 1 year of simulation per day.

The unoptimised code was found to spend nearly 60% of the timein inter-process communication,
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most of which was in the conjugate gradient solver routine inthe ocean code. Furthermore the sea

ice code was found to be poorly load balanced. Implementing afaster global sum in the conjugate

gradient solver and better load balancing in the sea ice resulted in a 62% speed-up of the code. With

these improvements HiGEM1.2 can achieve its target performance of 1 year of model simulation

per day on 256 processors on the HPCx system.

2.6 Model initialisation and integrations

The atmosphere initial conditions were created from a September ECMWF analysis field, with

land surface conditions set to values from the ancillary files. The ocean initial conditions were

created using potential temperatures and salinities interpolated from the 1/4◦ World Ocean Atlas

2001 (Conkrightet al. 2002), with initial ocean currents at rest. The sea ice fieldswere interpolated

from September HadGEM1 model fields.

To demonstrate the impact of increased resolution an equivalent lower resolution control,

HadGEM1.2, has also been developed. HadGEM1.2 is very similar to HadGEM1 (Johnset

al., 2006) but implements most of the changes to the parametrisations that are in HiGEM1.2.

HadGEM1.2 has the same horizontal and vertical grids in the atmosphere and ocean as HadGEM1

and also uses identical bathymetry and orography.

Differences in the ocean code between HadGEM1.2 and HiGEM1.2 mainly result from the

different horizontal resolution. In HiGEM1.2 the entrances to the Red Sea and Persian Gulf are

resolved by the model grid, but the coarser resolution of HadGEM1.2 requires that these are

parametrised. The horizontal mixing coefficients are larger than in HiGEM1.2, commensurate

with the coarser grid, and the timestep is increased to 1 hour. HadGEM1.2 uses the Gent and

McWilliams (1990) adiabatic mixing scheme with the coefficients determined from the Visbeck

et al. (1997) scheme. Horizontal viscosity in HadGEM1 was a combination of Laplacian with
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constant coefficient and biharmonic with coefficient scaledby cos3(latitude). Investigations at the

Met Office Hadley Centre found improvements to the equatorial circulation by changing the con-

stant Laplacian viscosity to an anisotropic scheme. This isthe formulation used in HadGEM1.2.

The Laplacian viscosity has a zonal coefficient given byKx= 750 (1 - cos (latitude)) m2s−1 and a

meridional value,Ky = Kx(∆x/∆y) where∆x and∆y are the zonal and meridional grid spac-

ings. The only differences in the sea ice model are that HadGEM1.2 has an EVP subcycle timestep

of 30s and does not use the dynamics subtimestepping scheme.

Both the HiGEM1.2 and HadGEM1.2 were run for 70 years from thesame initial conditions.

A slightly earlier version of HiGEM, HiGEM1.1, has also beenrun for 130 years on the Earth

Simulator in Japan. Many aspects of the model’s performanceare similar to those of HiGEM1.2

and some limited results will be used to demonstrate the level of skill in capturing El Nino when

more than 70 years of simulation are required to assess its temporal characteristics. More details

on this simulations can be found in Robertset al. (2008a,b)

3. Evaluation of model performance

The evaluation of the high resolution model simulations hasinvolved the wide range of NERC

expertise related to the various components of the climate system, and used recent developments

in earth observation for several components of the system. In this paper the focus will be on

the mean state of the global climate system and how resolution in the atmosphere and/or ocean

improves the overall performance of the model. One of the major results from HiGEM1.2 has

been the representation of fine scale air-sea coupled processes, especially in the Tropical Pacific,

as well as significant improvements in the simulation of El Nino and its global effects. A basic

description of these achievements will be provided in Section 4, and more detailed aspects of these
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phenomena, and of weather and ocean variability in HiGEM will be presented in related papers

(Harleet al. 2008; Robertset al. 2008a,b; Shaffreyet al. 2008; Stevenset al. 2008).

3.1 Overall energy balance

Table 1 compares the annual, global mean energy balance of the HiGEM1.2 and HadGEM1.2 sim-

ulations with observational estimates. The models show similar characteristics compared with the

observations. The net radiation in both cases is close to balance, but this is achieved by reflecting

too little solar radiation back to space and emitting too much thermal radiation. These character-

istics are enhanced in HiGEM1.2, which has slightly less cloud and sea ice than the HadGEM1.2,

more solar absorption at the surface and consequently higher surface temperatures. It was decided

not to attempt to re-tune HiGEM1.2 to bring the net radiationinto balance, because the radiation

imbalance is not large and the initial emphasis is to examinethe impact of higher resolution on

atmospheric and oceanic processes, rather than to perform long-range climate predictions.

The differences between HiGEM1.2 and HadGEM1.2 also influence the evolution of the radia-

tion balance and surface temperatures, as the models spin-up to equilibrium during the integrations

(Figure 1). Initially both models cool in accordance with the negative net top-of-atmosphere (TOA)

radiation. The net outgoing longwave radiation (OLR) fallsand the net TOA radiation rapidly ad-

justs to being slightly positive in HiGEM1.2 and to near zeroin HadGEM1.2. As a result of the

positive net TOA flux, HiGEM1.2 gradually warms to reach an equilibrium global mean surface

temperature close to the initial condition, whereas HadGEM1.2 remains cold.

The evolution of the sea ice has an impact on the longer timescale evolution of the global

radiation balance. Over the first few decades there is a reduction in sea ice in HiGEM1.2 (Figure 1f)

mostly around the Antarctic (see section 3.6). After year 30some Antarctic sea ice reforms, which

leads to a reduction in net surface solar and a small reduction in the net TOA. It is also worth
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noting that in both models the net TOA has a small but positivevalue into the climate system. As

shown by Johnset al. (2006) in HadGEM1 this is stored as heat in the ocean subsurface. A similar

evolution of subsurface ocean temperatures occurs in HiGEM1.2 and will be discussed in greater

detail in Stevenset al. (2008).

Figure 2 shows the geographical distributions of the reflected solar, outgoing thermal and net

radiation at the top of the atmosphere from HiGEM1.2, and thedifferences from the HadGEM1.2

control. The fields are averaged over years 21 to 70. The choice of averaging period was based

on the time taken for the initial spin-up of the TOA to become small. Unless otherwise stated,

subsequent figures showing the means of various model quantities are also based on 21 to 70 year

averages.

The tendency for lower cloud amounts in HiGEM1.2 is apparentin the generally negative val-

ues in the reflected solar differences. Martinet al. (2006) show that the simulation of subtropical

marine stratocumulus in the atmosphere-only version of HadGEM1 is considerably better than that

in the previous model, HadAM3. Figure 2 shows that this is also the case in the control integration

of HiGEM1.2: note the maxima in the reflected solar off the west coasts of the continents, particu-

larly off North and South America. The difference plot showspositive values close to these coasts

and negative values further West, indicating that the cloudin HiGEM1.2 is concentrated closer to

the land than in HadGEM1.2, in better agreement with the ERBEobservations shown by Martinet

al. (2006). Although the changes appear to be small, it is known that the simulation of sea surface

temperatures in this region and in the eastern tropical Pacific, in general, are very sensitive to the

cloud distribution (Ma et al. 1996).

There are also both positive and negative differences in thereflected solar and outgoing thermal

fields over the tropical Indian and Pacific oceans, due to systematic shifts in cloud cover. The large

differences in both fields close to Antarctica are not due to cloud but to the smaller amounts of sea
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ice in HiGEM1.2. The effects of both the cloud and sea ice changes are readily apparent in the net

flux differences, although the changes in the tropics disappear because of the tendency for the solar

and thermal effects of clouds on top of atmosphere fluxes to cancel over regions of deep tropical

convection. This cancellation was first observed by ERBE andthe fact that it occurs in the model

is a further positive aspect of the simulations.

3.2 Surface climate

As already noted, globally HiGEM1.2 has slightly less cloudthan HadGEM1.2 (see Table 2),

which results in warmer surface temperatures. This can be seen in more detail in Figure 3, which

shows the annual mean sea surface temperature (SST) errors versus the WOA 2001 (Conkright

et al. 2002) climatology from both models and the difference between them. The warming of

HiGEM1.2 relative to HadGEM1.2 means that the cold biases inthe Tropical and Subtropical

Pacific, Atlantic and Indian Oceans in HadGEM1.2 are somewhat alleviated. In common with

most coupled models (e.g. IPCC 2007), there are warm biases in the upwelling zones off the

Peruvian, Namibian and Californian coasts, where the subtropical stratocumulus cloud decks are

prevalent, but are poorly captured by models. The warm bias is slightly weaker in HiGEM1.2

in association with increased cloud cover and better resolved coastal upwelling (Robertset al.

2008c).

Overall the east-west temperature gradient across the equatorial Pacific is better represented in

HiGEM1.2, as is evident from the slight warming in the west and cooling in the east relative to

HadGEM1.2 (Figure 3c). This has important implications forthe mean state of the coupled system;

the excessively strong trade winds in HadGEM1.2 are reducedand the thermocline is less steeply

tilted. Both aspects have proved crucial for producing a significant improvement in El Nino and

its global impacts (see Section 4). The mean state of the tropical Pacific in HiGEM is described in
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more detail in Roberts et al. (2008a) and its importance for the simulation of El Nino in Robertset

al. (2008b).

The higher resolution ocean model in HiGEM1.2 also allows a tightening of the SST gradients

in the Gulf Stream, some improvements in the orientation of the Gulf Stream and North Atlantic

Drift, and consequently to a reduction in the temperature errors in the North Atlantic. This has

a large impact on the wintertime cyclogenesis over the NorthAtlantic, discussed in more detail

in Shaffreyet al. (2008). Another difference between the models is the markedSouthern Ocean

warm bias in HiGEM1.2, which is associated with a reduction in Antarctic sea ice (see section

3.6). This bias reduces in magnitude in the last few decades of the integration as the Antarctic sea

ice partially reforms.

The annual mean Sea Surface Salinity (SSS) errors versus Levitus are shown for both HiGEM1.2

and HadGEM1.2 in Figure 3. The SSS errors in HiGEM1.2 are generally smaller than those in

HadGEM1.2 which tends to be too fresh. However the saline error in the Tropical Pacific, which

occurs in both models, is larger in HiGEM1.2. Both HadGEM1.2and HiGEM1.2 are too saline

in the Arabian Sea and the Bay of Bengal, associated with the lack of precipitation in the sum-

mer Indian monsoon in both HadGEM1.2 and HiGEM1.2 (see Figure 6), a persistent feature of

this family of Met Office Hadley Centre models (see Martinet al. 2006). The differences in SSS

between the two models can be attributed in part to a slightlyhigher excess of evaporation over

precipitation over the oceans in HiGEM1.2 (see Table 1), butmay also be due to differences in

upper ocean mixing described in more detail in Stevenset al. (2008).

The annual mean 1.5m temperature errors over land for both HiGEM1.2 and HadGEM1.2

versus the CRU land temperature climatology for 1961 - 1990 (New at al. 2002) are shown in

figure 4. Similar to the global mean surface temperatures andSSTs, the land surface of HiGEM1.2

is slightly warmer than HadGEM1.2, although both models aregenerally colder than the CRU
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dataset, especially over the Sahara, Saudi Arabia and Central Asia and at high latitudes over North

America. The increased land surface temperatures in HiGEM1.2 improve some of the cold biases

in HadGEM1.2, particularly over Australia, central and southern Africa and South America. In a

few places HiGEM1.2 is now warmer than the CRU dataset, for example over the Indian subcon-

tinent and the Guiana Highlands in South America, which may be associated with soil drying due

to deficient rainfall (Figure 6). Both models have deficient rainfall in these regions, so the temper-

ature biases suggest that HiGEM1.2 has an overall more realistic land surface energy budget than

HadGEM1.2. It is also worth noting that the cold temperaturebiases over the Sahara, West Africa

and Saudi Arabia are now substantially less than those in theoriginal version of HadGEM1 used

in IPCC AR4, primarily as a result of including the MODIS derived soil albedos instead of the

constant values used in HadGEM1.

The annual mean precipitation distributions from HiGEM1.2and from a 10 year climatology of

merged TRMM satellite and rain gauge observations (Huffmanet al. 2007) are shown in Figure 5.

The improved representation of orographic forcing in HiGEM1.2 is evident in a comparison of

the observed and modelled distributions of precipitation.The spatial pattern of precipitation in

the vicinity of mountain ranges such as the foothills of the Himalaya, the Ethiopian Highlands or

those on the islands of the Maritime Continent are well captured in HiGEM1.2. Similarly spatial

patterns of precipitation are well captured over strong SSTfronts such as the Gulf Stream and

along coastlines facing the prevailing winds, for example the Eastern coastline of the Black Sea or

the South Island of New Zealand.

However it is clear in Figure 5 that there are large scale errors in the modelled distribution of

precipitation. This can be seen more clearly in figure 6 whichshows the annual mean errors for

HiGEM1.2 and HadGEM1.2 versus the CMAP climatology (Xie andArkin 1997). The global

pattern of precipitation errors is generally unchanged with resolution, although the magnitude of
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the errors are slightly reduced in HiGEM1.2. There is a marked reduction in precipitation errors

along the Tropical Pacific ITCZ and over the Tropical Indian Oceans, consistent with the pattern

of SST errors shown in Figure 3. Although the east-west SST gradient is improved in HiGEM1.2,

it is still sufficiently in error that rainfall remains enhanced over the Maritime Continent. A recent

study by Strachan (2007) has demonstrated that the pattern of errors in the Indian Ocean can be

linked dynamically to those over the Maritime Continent, soit is not surprising that the Tropical

error pattern is largely unchanged in HiGEM1.2.

One of the most serious and persistent errors in all versionsof HadGEM is the lack of summer

monsoon rainfall over India. This is clearly evident in the annual mean error patterns and is not

alleviated by the higher resolution and improved representation of orography in HiGEM1.2. As

will be shown later, the low level monsoon flow is, if anything, slightly too strong. Analysis of

both integrations suggests that the lack of rainfall is not due to inadequate moisture supply, but to

anomalous advection of dry air aloft which acts to cap the convection. The lack of monsoon rainfall

leads to strong summertime drying of the Indian land surface, which creates a further feedback on

the monsoon precipitation. The impact of precipitation errors on soil moisture, and other details of

the land surface processes in HiGEM1.2, will be discussed further in Clark et al (2008).

Outside the tropics, however, HiGEM1.2 does show some improvements, especially over the

North Atlantic where the improved structure and orientation of the Gulf Stream and North Atlantic

Drift in HiGEM1.2 has led to changes in the storm track and therain bearing systems.

3.3 Atmosphere

Even though the increase in the horizontal resolution of HiGEM1.2 is less marked for the atmo-

spheric component than it is for the ocean, it is nonethelessimportant to characterise and under-

stand the changes in the atmosphere due to an increase in the resolution. A number of previous
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studies have investigated the sensitivity of different aspects of atmospheric models to horizontal

resolution (e.g. Pope and Stratton 2002) but none of these studies have considered this in the con-

text of a fully coupled ocean-atmosphere system where the SSTs can respond to the atmospheric

scales of motion.

The differences between the atmospheric circulation in HadGEM1.2 and HiGEM1.2 are most

pronounced during boreal winter. The differences at the surface can be seen in Figure 7 which

shows the DJF mean sea level pressure errors against ERA-40 for HiGEM1.2 and HadGEM1.2.

The mean sea level pressure errors in HiGEM1.2 have some similarities with those in HadGEM1.2

but are mostly smaller in magnitude, and some major errors inHadGEM1.2, and indeed in earlier

versions of HadGEM1 (Johnset al. 2006) are largely eliminated in HiGEM1.2. The Aleutian Low,

which is very weak in HadGEM1.2, is better represented in HiGEM1.2, while the Icelandic Low,

which is too strong in HadGEM1.2, is largely corrected in HiGEM1.2. However, the high pressure

error over the Azores remains, implying that the surface westerlies over the North Atlantic are still

slightly too strong in HiGEM1.2. There are also some improvements in the mean sea level pressure

errors over the Southern Oceans in HiGEM1.2, particularly to the east of the Drake passage.

The improvements in the mean sea level pressure errors in HiGEM1.2, especially over the

North Pacific, can be interpreted in terms of a Rossby wave train emanating from the tropical Pa-

cific. Figure 9a shows the difference in 500hPa geopotentialheight between the two models, which

clearly demonstrates a PNA-type pattern with a succession of anticyclonic and cyclonic anomalies

extending as far as the North Atlantic. The substantial improvement in the representation of the

Aleutian Low in HiGEM1.2 is clearly linked to this pattern.

There is good evidence to link this pattern of geopotential height anomalies with significant

changes in tropical precipitation between the two models inboreal winter. Figure 9b shows the

difference in DJF precipitation and 200hPa divergence for HiGEM1.2 minus HadGEM1.2. The
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most noticeable changes in precipitation are over the north-west Tropical Pacific where there is

a strong increase in precipitation over the seas surrounding the Philippines. Associated with the

differences in tropical precipitation are changes in the upper level divergent flow. Regions where

the changes in the upper level divergent flow impinge upon thegradient of absolute vorticity (e.g.

near the flanks of the subtropical jet) will act as Rossby wavesource regions (Sardeshmuhk and

Hoskins 1988). The region of anomalous upper level divergence around the Phillipines is one such

Rossby wave source region, and the cyclonic response over the North Pacific is reminiscent of

the Rossby wave response generated by anomalous heating in the Tropics (Hoskins and Karoly

1981). It seems reasonable to argue therefore that the improvements in the northern hemisphere

extratropical circulation during boreal winter in HiGEM1.2 can be attributed to improvements in

the SST patterns and hence precipitation distributions over the Pacific warm pool.

On the other hand, the reduction of precipitation in the Tropical Pacific ITCZ evident in Fig-

ure 6, appears to be associated with a weakening of the North Pacific trade winds, which in turn

may be related to a slight weakening of the North Pacific High in HiGEM1.2. This suggests that

the reduction in precipitation in the Tropical Pacific ITCZ is a response to changes in the circu-

lation induced by the increase in precipitation around the Phillipines. The improvement in the

representation of the Icelandic Low in HiGEM1.2 might also be interpreted as part of the Rossby

Wave response emitted from the Tropical Pacific. However there are also significant anomalies of

precipitation in the Tropical Atlantic that might force remote response over the North Atlantic (e.g.

Suttonet al. 2001) and also changes in the North Atlantic SST which have animpact locally on

the atmosphere (e.g. Kushniret al. 2002).

The improvement in boreal wintertime circulation in HiGEM1.2 is further demonstrated in the

200hPa zonal wind shown in Figure 8. The location of the subtropical jet over the North Pacific

is substantially improved, as expected from the stationaryRossby wave pattern shown in Figure 9.
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The strength and orientation of the subtropical jet is also improved over the North Atlantic.

In terms of the boreal summer climate, the impact of higher resolution is less evident. Figure 10

shows the JJA errors in the 850hPa wind field in HiGEM1.2 and HadGEM1.2 versus ERA-40.

Both models have an overly intense South Asian Monsoon flow, despite the lack of rainfall over

the Indian subcontinent. This westerly bias is more pronounced in HiGEM1.2 and extends further

into the north west Pacific. On the other hand HiGEM1.2 shows areduced bias in the equatorial

easterly Pacific trades, associated with the improvements in the east-west SST gradient. Over the

southern oceans the notable feature is the reduction of the cyclonic anomaly to the west of South

America in HiGEM1.2, which can be interpreted as a Rossby wave response to the improved heat-

ing pattern over the Indo-Pacific warm pool in the same mannerthat the NH wintertime circulation

was improved.

Overall the impacts of higher resolution on the mean circulation in the atmosphere are felt

mostly through the remote effects of the improved heating patterns over the Indo-Pacific warm

pool. There are more subtle adjustments in the sub-tropicaljets which can be linked to changes in

storm track activity which will be described in more detail in Shaffreyet al. (2008).

3.4 Aerosols

The interactive aerosol scheme in HiGEM1.2 is the same as forHadGEM1, described in Martinet

al. (2006). No changes were made to the parametrisations in the aerosol schemes to allow for the

increased horizontal resolution in HiGEM1.2, and differences in total global burdens were found to

be small (<6%, see Table 2), indicating that the schemes are robust in this respect. However, there

are some regional differences in the aerosol distributionsin HiGEM1.2 and HadGEM1.2, as can be

seen in Figure 11, which shows the annual mean column loadings of sulphate and biomass aerosols

in HiGEM1.2 and differences from the HadGEM1.2 control. Some of the differences in aerosol
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loadings are associated with changes in circulation between HiGEM1.2 and HadGEM1.2. In par-

ticular, the increases in sulphate aerosol over the North West Pacific may be related to increased

advection from local sources over East and South Asia through intensification of the subtropical

North Pacific jet (Figure 8) and stronger monsoon westerlies(Figure 10). Similarly, changes in

biomass-burning aerosols over the North Tropical Atlanticappear to be related to a southward

shift and intensification of the African Easterly Jet (Figure 10). However, the increase in sulphate

aerosol around Antarctica in HiGEM1.2 is due to the reduction in sea ice relative to HadGEM1.2

(Figure 17), allowing more dimethyl sulphide to be emitted from the open sea surface.

Sulphate, black carbon, biomass-burning and sea-salt aerosols all feed back on the models

via the direct radiative effect (scattering and/or absorption of radiation) and all but black carbon

contribute to the first and second indirect effects (cloud albedo and precipitation efficiency, see

IPCC 2007, Chapter 2). Figure 11 (bottom panel) shows the annual mean cloud droplet effective

radius(re) from HiGEM1.2 and differences from the HadGEM1.2 control. In both models,re is

calculated as a function of the cloud liquid water content and the aerosol concentration (Joneset al.

2001). Martinet al. (2006, their Figure 18) show that the simulated distributions from HadGEM1

compare reasonably well with the satellite retrievals fromHanet al. (1994). Differences between

HiGEM1.2 and the new control HadGEM1.2 demonstrate a clear negative correlation between

aerosol concentration andre, with more/less polluted air giving rise to smaller/greater values of

re, e.g. across the Northern Pacific, off the East coast of Africa, and around Antarctica. In other

regions, e.g. off the West coasts of Africa and South America, it is the improved representation of

marine stratocumulus cloud in HiGEM1.2 (noted above) whichaffects values ofre, as seen from

the positive correlation with the reflected solar radiation(see Figure 2) in these areas.

An interactive dust scheme has not been included in this version of the model, but has been

tested extensively in the atmosphere-only version, HiGAM1.2, where the increased atmospheric
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resolution and improved surface topography have yielded very good results, especially for Saharan

dust (see Woodageet al. 2008). Results suggest that including dust in the model might offset some

of the cold land surface temperature errors over the Sahara shown in Figure 4.

3.5 Ocean

The increase in resolution for the ocean is more substantialthan for the atmosphere, and a key

question is whether the ability to permit the effects of eddies to be resolved more completely has

a fundamental effect on the basic ocean circulation. Furthermore, the higher resolution allows a

better representation of key aspects of the bathymetry, including channels and sills. The transports

through important straits and passages around the worlds oceans are shown in Figure 12. There is

a general improvement in the transports through the straitslinking the Arctic to the south (Fram

Strait, Denmark Strait, Iceland to Scotland Ridge System and Bering Strait). In particular the

transport through the Fram Strait is much better represented in HiGEM1.2 than in the coarser

resolution HadGEM1.2.

The modelled transports through the Florida Strait are lower than observed. This is primarily

due to the poor representation of transports through the narrow passages which link the North

Atlantic and the Caribbean Sea, and eventually feed into theFlorida Current. In HiGEM1.2

and HadGEM1.2 the flow through the Windward Passage is northward out of the Caribbean Sea,

whereas the observed flow is10.1 ± 2.4Sv southward into the Caribbean Sea (Johnset al. 2002).

The strength and direction of the transport through the Windward Passage has been shown to be

sensitive to the frictional effects associated with the narrow passages into the Caribbean Sea (Wa-

jsowicz 2002), but even at 1/10◦ horizontal resolution, Maltrud and McClean (2005) found that

the Florida Strait transport was weaker than observed, since most of the transport passed out of

the Caribbean Sea via the Windward Passage. The Indonesian Through Flow provides a important
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connection between the Pacific and Indian Oceans on both the local and large scale. Even at higher

resolution it is still not possible to resolve the complex topography of this region, and the transports

in both models exceed the observed values by 3-4Sv.

The strength of the Antarctic Circumpolar Current (ACC), asindicated by the transport through

the Drake Passage, is 187Sv for HiGEM1.2 and 169Sv for HadGEM1.2. This is significantly

higher than the 138±13 Sv found from observations (e.g. Naveira Garabatoet al. 2003), but well

within the range of values found within the CMIP3 coupled climate models (Russellet al. 2006).

In both models the wind stresses over the Southern Ocean are too strong, which contributes to

the excessive ACC transport. In addition, the ACC transportin HiGEM1.2 is somewhat stronger

than that found in HadGEM1.2. The stronger transport in HiGEM1.2 is partly due to thetop to

bottomwater mass transformations through deep convective eventsin the Ross and Weddell Seas

associated with the formation of persistent polynyas during the first few decades of the HiGEM1.2

integration (see Section 3.6). The deep convective events act to increase the meridional density

gradient and coincide with an upturn in the ACC transport in HiGEM1.2 (see Stevenset al. (2008)

for more details).

Figure 13 shows the Atlantic overturning streamfunction for HiGEM1.2 and HadGEM1.2

overlayed with the zonal mean potential temperature differences from climatology (Conkrightet

al. 2002). Recent observational estimates from moored array instruments at 26◦ N, have been

used to establish a relatively robust value for the Atlanticmeridional overturning circulation of

18.7Sv ± 5.6 (Cunninghamet al. 2007), which compares favourably with both the HadGEM1.2

(18.2Sv ± 3.0) and HiGEM1.2 (19.5Sv ± 2.8). The patterns of overturning streamfunction in

both model are grossly similar, but there are a few minor differences. HiGEM1.2 has slightly

weaker overturning than HadGEM1.2, and the overturning in HiGEM1.2 penetrates further into

the Subpolar North Atlantic. The overturning in both modelsis relatively deep for az-level model,
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exceeding 3500m in both models. Observational estimates at26◦N in the Atlantic suggest that

below 3000m there is a 7.8Sv southwards flow (Cunningham 2007). This compares to the negligi-

ble southward flow below that depth seen in HadCM3 (Gordon et al 2000) and the approximately

4Sv southward flow in both HadGEM1.2 and HiGEM1.2. It is possible, however, there may be

further changes in the deep Atlantic water-masses if the HiGEM1.2 and HadGEM1.2 integrations

described here were extended.

The temperature differences from climatology are shown in Figure 13 (salinity errors are not

shown but have a very similar spatial pattern). The high latitude dense overflows in HadGEM1.2

are too warm and salty, moreso than in the higher horizontal resolution HiGEM1.2 model. Z-level

models have difficulty resolving the dense overflows in the northern North Atlantic (Beckmann

and Doscher 1997) and coarser horizontal resolution will result in more spurious mixing in these

sensitive regions. Figure 13 also shows the subsurface warming, mentioned previously in section

3.1, that develops in both HadGEM1.2 and HiGEM1.2 during thefirst few decades of the model

integration.

Mesoscale eddy variability in the ocean is characterised bythe sea surface height variability.

To investigate how much variability is present in HiGEM1.2 and HadGEM1.2 the standard devia-

tion in the model sea surface heights have been compared withsatellite altimetry data (Figure 14).

The satellite variability field is calculated from 3 years (1993-1995) of 10 day fields of sea sur-

face height anomaly data from TOPEX/POSEIDON (AVISO, 1996,1998; Le Traonet al. 1998),

gridded at a resolution of1
4

◦

and therefore comparable to the resolution of HiGEM1.2. Themodel

variability field is calculated as the standard deviation of5 day mean sea surface height fields over

years 21-70.

The observations (Figure 14a) show high levels of mesoscaleeddy variability associated with

the western boundary currents (e.g. the Gulf Stream, the Kuroshio and the Agulhas) and along the
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Antarctic Circumpolar Current. Lower levels of variability are found in the eastern basins of the

Pacific and Atlantic and in the Tropics. HadGEM1.2 with its low resolution does not explicitly

permit eddies, except partially in the tropics where the resolution is increased in the meridional

direction. The sea surface height variability (Figure 14b)is much lower everywhere than obser-

vations. This is to be expected as the baroclinic instability processes that form eddies are not

represented.

Increasing the horizontal resolution to the eddy permitting 1/3◦ scale of HiGEM1.2 has en-

hanced the eddy activity in the ocean, and in places resolvedlarger scale eddy features (Fig-

ure 14c). The maximum values found along the western boundary currents and along the path

of the Antarctic Circumpolar Current are comparable with observations. However, in common

with other eddy permitting models (e.g. Maltrud and McClean, 2005; Hallberg and Gnanadesikan,

2006) there are a number of deficiencies. Regions of maximum variability tend to be spatially

confined, since models of this resolution do not correctly propagate energy away from the high

energy source regions. The Gulf Stream separates too far north with a persistent anticyclonic

eddy. The eddies formed by the retroflection of the Agulhas Current follow too similar paths into

the South Atlantic, as indicated by the narrow path of high variability. These deficiencies are

known to be improved with further increases in resolution (Maltrud and McClean, 2005, OCCAM

1/12◦, http://www.soc.soton.ac.uk/JRD/OCCAM/). However, as will be shown later, the presence

of these eddies in HiGEM1.2 and hence variations in SST on thesame scale, leads to features in

the atmosphere which have important implications for the fully coupled system.

The meridional heat transport by the oceans is a key factor inthe accurate simulation of SSTs

and indeed in the global energy cycle. The oceanic northwardheat transports in HiGEM1.2 and

HadGEM1.2 (Figure 15) are broadly comparable with the direct estimates of Ganachaud and Wun-

sch (2003) and the NCEP derived indirect estimates of Trenberth and Caron (2001). Note however,
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that there is considerable uncertainty in the observational estimates. The global peak poleward

heat transports produced by both models are weaker than the observations though within the range

of uncertainty. The peak northward heat transport is 1.13 PWfor HiGEM1.2 and 1.26 PW for

HadGEM1.2 compared with estimates of 1.18 PW by Trenberth and Caron (2001) and 1.27 PW

by Ganachaud and Wunsch (2003). The lower value for HiGEM1.2is consistent with its slightly

weaker meridional overturning circulation (Figure 13) andweaker overturning component of the

heat transport. North of 40◦N the northward heat transport is too large in both models forboth the

Atlantic and the global ocean. This is largely due to overly vigorous subpolar gyres, as evidenced

by the large gyre component of the heat transport that dominates the northern North Atlantic (Fig-

ure 15a). A partial explanation for the strong subpolar gyretransports may be the excessively

strong westerly winds over the North Atlantic Ocean seen in both HadGEM1.2 and HiGEM1.2

(e.g. Figure 7).

Both HadGEM1.2 and HiGEM1.2 exhibit a convergence of heat onto the equator due to eddy

heat transport (actually all transient motionsv′T ′) (Figure 15(b)). This convergence is somewhat

larger at higher resolution since tropical instability waves, which flux heat towards the equator,

are better resolved by HiGEM1.2 (see Section 4.1). The larger convergence of heat is partially

responsible for the improved simulation of equatorial SSTsseen at higher resolution, alleviating

the cold SST errors in the equatorial Pacific (Robertset al. 2008a), and which are common in

climate models without flux correction (Guilyardi 2006).

The other region where the eddies play an important role in transporting heat is the South-

ern Ocean. Here the eddy component is negligible in HadGEM1.2, whereas it fluxes up to 0.5

PW poleward in HiGEM1.2. As can be seen in Figure 14, eddy variability is negligible in the

Southern Ocean for HadGEM1.2. The diffusive component in HadGEM1.2, however, includes

the eddy parametrisation of Gent and McWilliams (1990) which appears to provide a reasonable
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representation of the heat transport from the partially resolved eddies of HiGEM1.2.

Overall, the impact of increased resolution in the ocean component of HiGEM1.2 has been

relatively small in terms of the overall global heat transport and mean overturning circulation.

However, it is clear that the capability to represent ocean eddies and strong SST gradients in key

regions, such as the eastern equatorial Pacific and the Gulf Stream, has a significant impact on

the heat budget of the Tropical Pacific (Robertset al. 2008a) and the North Atlantic. In turn

this leads to important improvements in the mean climate of these regions, which has both global

implications and substantial impacts on the regional weather and climate variability.

3.6 Sea ice

As noted in Section 2.4, the sea ice component in HadGEM1 is based around the CICE elasto-

viscous-plastic model (Hunke and Lipscomb 2004), and a moredetailed description of the sea ice

model and comprehensive evaluation against observations is given in McClaren et al (2006). The

seasonal evolution and distribution of sea ice area and fraction in HiGEM1.2 and HadGEM1.2 is

compared with those derived from satellite passive microwave observations using the bootstrap

algorithm (Comiso 1999) for the Northern and Southern Hemispheres. Figures 16 and 17 show

the distributions of sea ice fraction in the Northern and Southern Hemispheres for the months of

March and September (i.e the months of maximum/minimum extent) for HiGEM1.2, HadGEM1.2

and observations. Overall there is greater sea ice area in HadGEM1.2 than in HiGEM1.2 in

both hemispheres, which is consistent with the global mean surface temperatures being colder

in HadGEM1.2.

The amplitude of the seasonal cycle of NH sea ice area (not shown) is larger than observa-

tions in both models. The net result is that the magnitude of the sea ice area is well modelled

in HiGEM1.2 in wintertime but underestimated in summertime. On the other hand, consistent
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with the results of HadGEM1 (McClaren 2006), the wintertimesea ice area is overestimated in

HadGEM1.2 while the summertime modelled sea ice area is close to that observed. For all months

in the Southern Hemisphere, the sea ice area is severely underestimated in HiGEM1.2, but overes-

timated in HadGEM1.2.

In terms of the spatial distribution of sea ice fraction, theNorthern Hemisphere fraction looks

realistic in HiGEM1.2, but the sea ice melts back too far in September, particularly along the

Russian coastline in the Arctic Sea. In HadGEM1.2 there is too much sea ice in March, particularly

in the Labrador Sea, around the Bering Straits and in the Sea of Okhotsk. Even though the total

September sea ice area in HadGEM1.2 is comparable with observations, Figure 16 shows that there

too much sea ice in the Labrador Sea and not enough in the central Arctic.

For the Southern Hemisphere, although the total sea ice areain September in HadGEM1.2

is overestimated, the actual values of sea ice fraction are lower than the observed values over

most of the Antarctic. In HiGEM1.2 the underestimation of Antarctic sea ice can be clearly seen

by comparing the observed and modelled distributions of seaice fraction (Figure 17). The most

striking feature of the September distribution of sea ice inHiGEM1.2 is the lack of ice in the Ross

and Eastern Weddell Seas, which, in individual years, appears as persistent open-ocean polynyas.

These polynyas start to appear in year 8 of the run and, by year14, much of the winter ice cover

has disappeared from the Ross and Weddell Seas. The sea ice cover in the Weddell Sea starts

to recover and, by year 21, a more realistic winter ice cover is reestablished. In the Ross Seas,

however, sea ice fractions remain low although they partially recover in the last few decades of the

run (Figure 1f).

Once the polynyas have appeared in the Weddell and Ross Seas,strong local feedbacks dis-

courage the sea ice from reforming. In particular, an increased surface heat flux over the polynya

region leads to increased ocean convection and entrainmentof relatively warm and salty deep water
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into the upper ocean. The homogenisation of the water column, and warming of the upper ocean

by convection discourages sea ice formation, and the weak ocean stratification implies that an ex-

tensive heat loss from the polynya region is required beforesea ice can reform. It is also possible

that other local feedbacks such as sea ice import/export into the polynyas or the coupled ocean-

atmosphere feedback described by Timmermanet al. (1999) might play a role in maintaining the

open-ocean polynya in HiGEM1.2. Although open-ocean polynyas with multi-annual persistence

have been observed in the Weddell Sea (Gordon and Comiso 1988), it is unclear why they form so

readily in HiGEM1.2. This issue will be dealt with in greaterdepth in a later paper.

The lack of Antarctic sea ice in HiGEM1.2 has a large impact both globally and locally on

the model. The reduction in sea ice results in a reduction in surface albedo and an increase in net

surface solar radiation and so a warming of the upper ocean ofthe Southern Hemisphere, particu-

larly in Austral summertime. This can be seen, for example, in the difference in the SSTs between

HiGEM1.2 and observations (Figure 3). It is also worth pointing out that the underestimation of

sea ice in HiGEM1.2 has a global impact on the model. As noted in section 3.1 the differences

in Antarctic sea ice, along with the differences in total cloud amount, result in a reduction in the

global albedo of HiGEM1.2 and contribute to the slight positive bias in the net TOA radiation

(Table 1). The gradual reformation of sea ice around Antarctica during the run also leads to slow

reduction in net surface solar and net TOA in the later part ofthe HiGEM1.2 integration.

Sea ice has proved to be the most challenging part of the development of HiGEM1.2, and

although some aspects of the results show improvements in the simulation, the possibility for new

feedbacks involving the formation of polynyas has raised a number of new and interesting research

questions about the coupled behaviour of the ocean-sea ice-atmosphere system and the potential

for the coupled system to rapidly lose ice as a result of non-linear feedbacks, which merit further

investigation.
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4. Atmosphere-ocean coupling

In the previous section the time-mean state of the individual components of HiGEM1.2 were eval-

uated against HadGEM1.2 and observations. One interestingaspect of HiGEM1.2 is whether the

local interactions that occur on smaller scales between components have an significant impact upon

the model. In particular, one important question that is raised is whether the smaller scale features

that can be resolved by the eddy-permitting ocean in HiGEM1.2 have an impact on the high reso-

lution atmosphere. This section describes a number of examples of where such small-scale ocean

atmosphere interactions are important.

4.1 Tropical Instability Waves

Since HiGEM1.2 has a high resolution atmosphere coupled to ahigh resolution ocean, it can simu-

late local, coupled air-sea interactions on relatively finescales. One of the scales that is resolved by

HiGEM1.2 is the interaction of Tropical Instability Waves (TIWs) with the tropical atmosphere, an

interaction that has been inferred from satellite observations of surface wind stresses for some time

(Hashizumeet al. 2001, Cheltonet al. 2001). TIWs are mixed barotropic-baroclinic instabilities

that form in the tropical counter-current system. In the tropical East Pacific Ocean, TIWs can be

seen forming along SST gradients and strong shears flanking the cold tongue, and then travelling

westwards along the SST gradient.

TIWs are associated with substantial SST anomalies that canthen have an impact on fluxes

of moisture and heat into the atmosphere. The warming of the boundary layer, and subsequent

decrease in static stability associated with a warm SST anomaly will act to increase the vertical

mixing of momentum, so that warm SST anomalies will be associated with an increase in surface

winds (Wallaceet al. 1989). However, observations (Cronin 2003) have also suggested that TIWs

36



are associated with surface pressure anomalies, thus a component of the surface wind response

will be forced by pressure gradients (Linzden and Nigam 1987).

Oceanic TIWs have previously been resolved by ocean-only models and high resolution ocean

(but standard atmosphere resolution) coupled models (Roberts et al. 2004), and the impact of

TIWs on the atmosphere has only been studied in high resolution atmosphere-only integrations

(Small et al. 2003). Coupled ocean-atmosphere models have not had sufficient resolution to re-

solve the small-scale coupled interaction between TIWs andthe tropical atmosphere. Figure 18b

shows instantaneous Equatorial Pacific SSTs and windstressdivergence from HadGEM1.2. Some

TIW activity is resolved along the Tropical Pacific cold tongue in HadGEM1.2 where the merid-

ional ocean resolution is enhanced, and where there are strong SST fronts, there is some indication

of an atmospheric response. However, the low level of TIW activity in HadGEM1.2 contrasts with

that found in HiGEM1.2 (Figure 18a), which shows a series of TIWs along the northern, and to

a lesser extent the southern flanks of the cold tongue. The structure of the TIWs in HiGEM1.2

compares favourably with that seen from TMI SST satellite imagery (Cheltonet al. 2001). The

structure of the atmospheric response to the TIWs is also very similar to that seen in QuikSCAT

imagery with regions of windstress divergence seen along the cross-wind SST fronts, suggest-

ing that HiGEM1.2 is capable of simulating the coupled small-scale interactions between oceanic

TIWs and the tropical atmosphere.

There is good evidence to believe that the faithful representation of the TIWs and the associated

atmospheric response in HiGEM1.2 are essential componentsof the marked improvement in the

SSTs in the central and east equatorial Pacific and hence in the east-west temperature gradient.

As discussed in Robertset al. (2008a) and Harleet al. (2008), the TIWs act to mix heat both

zonally and meridionally in to the cold tongue region thereby improving the local heat budget and

the structure of the thermocline. Furthermore, the atmospheric response to the TIWs acts to break
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up the strong easterly trades in the model and potentially reduce the positive feedback between

easterly windstress, ocean upwelling and cold SSTs.

One question raised by these results is how the interaction between TIWs and the atmosphere

in HiGEM1.2 might be parametrised in a lower resolution model such as HadGEM1.2. Developing

such a parametrisation would be difficult since it would needto be sufficiently complex to capture

the nature of this coupled interaction, which emerges from being able to resolve motions in both

ocean and atmosphere at the appropriate scale, and also realistically representing the small scale

non-linear fluxes of heat, moisture and momentum between components.

4.2 ENSO Variability

One of the most important results of this study is the marked improvement in the simulation of El

Nino and its global influence in HiGEM1.2. Figure 19 shows themonthly Nino3.4 SST timeseries

from the 70 year integrations of HiGEM1.2 and HadGEM1.2, as well as the power spectra for

Nino3 from the extended integrations of HiGEM1.1/HadGEM1.1 on the Earth Simulator. The

spectra also include two estimates from observations including one for the latter half of the 20th

century which would be more commensurate with the current GHG forcing used in the simulations.

The spectra have been normalised in terms of the peak power and the figure also includes the

standard deviation of the Nino3 SSTs.

As described by Johnset al. (2006) and evident in Figure 20, El Nino events in HadGEM1.2 are

smaller in magnitude and less coherent in structure than in the observations. This can be attributed

to the excessively strong easterly windstresses in the model that induce too much upwelling of cold

water along the Equatorial Pacific and confine the convectiveactivity to the Maritime Continent.

This means that the air-sea interaction and relaxation of the trades which lie at the heart of El Nino

is inhibited in HadGEM1.2.
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The corresponding 70 year Nino 3.4 SST timeseries from HiGEM1.2 is shown in Figure 19b.

At the beginning of the integration there is a series of strong anomalies that indicate the model

adjustment in the Tropical Pacific. Thereafter, there is much more interannual variability in

HiGEM1.2 than in HadGEM1.2, as is evident also in the higher standard deviation for Nino3.

Figure 19 also shows that large positive SST anomalies in theTropical Pacific are greater than

the large negative anomalies, a characteristic seen in the observations, although the HiGEM1.2

timeseries is not as skewed as observed.

The power spectra from the extended integrations confirm thesubstantial improvement in El

Nino implied by the timeseries. In HadGEM1.1 there is very little power at the frequencies gen-

erally associated with El Nino whereas in HiGEM1.1 there is astrong spectral peak between 3

and 5 years. The reasons for the dramatic shift in El Nino timescales between HadGEM1.1 and

HiGEM1.1 is discussed in detail in Robertset al. (2008b).

The difference in El Nino between HadGEM1.2 and HiGEM1.2 is further highlighted by com-

posites of DJF SST and precipitation (Figure 20) based on the8 largest El Nino events (after year

20), as measured by the DJF Nino3.4 SST anomalies. Relative to HadGEM1.2, the representation

of El Nino is substantially improved in HiGEM1.2. In comparison to observations the DJF El Nino

SST composite anomalies in HadGEM1.2 is weaker than observed, particularly in the East tropical

Pacific, whereas the El Nino SSTs in HiGEM1.2 have a spatial pattern and amplitude much closer

to that observed. However, the El Nino SSTs still extend too far into the West Tropical Pacific,

which is a common failing of most climate models (Guilyardiet al. 2004).

The DJF precipitation composite anomalies for the models and observations (Figures 20b, d

and e) also indicate that the distribution of precipitationduring an El Nino event in HiGEM1.2

is closer to observations than in HadGEM1.2. In HadGEM1.2 the precipitation over West Pacific

does not move as far eastwards into the central Pacific as it does in HiGEM1.2 and the observations,
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due to the strong negative SST biases in that region. However, there are still significant differences

between observations and HiGEM1.2, particularly over the West Pacific where the absolute SSTs

are erroneously warm and are able to continue to support strong convection even during an El Nino

event. In terms of tropics-wide teleconnections, it is notable that HiGEM1.2 is able to capture some

aspects of the observed remote response of precipitation during an El Nino event, suggesting the

model has some skill in replicating the observed transitions of the Walker Circulation. For example,

the excessive response over the Indian Ocean in HadGEM1.2 ismuch improved in HiGEM1.2.

The improvements in the precipitation response to El Nino inHiGEM1.2 translate into a signif-

icantly better simulation of the global ENSO teleconnections. Figure 21 shows the DJF composite

mean sea level pressure anomalies from ERA-40 and both simulations. HiGEM1.2 has success-

fully captured the deepening of the Aleutian Low and the response over the Eurasian sector during

El Nino events. However, the deepening of the Aleutian Low inHiGEM1.2 occurs to the west

of the observations, which may be related to the rainfall notmoving as far eastwards into the

central Tropical Pacific (Spencer and Slingo 2002). The response in the Northern Hemisphere in

HiGEM1.2 is in stark contrast to that seen in HadGEM1.2, which fails to capture the observed

extratropical teleconnections during an El Nino.

5. Concluding Discussion

This paper describes the development and basic performancein a multi-decadal simulation of

the UK’s new high resolution global coupled model, HiGEM. More detailed analyses of specific

aspects of the simulations will be presented in subsequent papers. Nevertheless there are some

important conclusions that can be drawn from this study.

Unlike most resolution studies, which have been largely based on atmosphere-only or ocean-
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only models, or on increased resolution in one component only, this is one of the first times that

the resolution of both components has been increased simultaneously. This is an important point

because a previous study by Robertset al. (2004), in which only the ocean component was taken

to higher resolution (1/3◦ as here), showed very little impact on the mean climate of thecoupled

model. One of the most striking results of this study is that when the atmosphere resolution is

also increased, then the atmosphere is able to respond to thefine-scale detail in the SST field in a

coherent way, with important implications for the mean climate and its variability. For example, it

has been shown that tropical instability waves and the response to them of the near surface winds,

both now well resolved in HiGEM, have a significant effect on the mean state of the equatorial

Pacific Ocean and hence on the global mean climate and ENSO (Robertset al. 2008a,b).

The existence of coherent coupling between the ocean and atmosphere on fine spatial scales

and on relatively short timescales challenges the conventional approach to climate modelling which

assumes that sub-gridscale processes can be parametrised within a single component of the system.

The results from HiGEM suggest that there may be important scales ofcoupledbehaviour that

cannot be parametrised and that will therefore need to be resolved adequately. The implication

of this is that there may be a minimum resolution for modelling thecoupledsystem that may be

higher than, or at least different from that for the individual components. This also means it may

be important for the atmosphere and ocean components of coupled models to have resolutions

that are roughly equivalent, so that the atmosphere can respond to, and in turn force the ocean on

commensurate time and space scales.

The multi-scale nature of the coupled processes demonstrated by HiGEM also has wider impli-

cations for the extension of physical climate models to fullearth system models. As a demonstra-

tion of this point, Figure 22 compares the annual mean surface windstress curl and SSTs observed

by QuikSCAT (Risien and Chelton, 2008) and simulated by HiGEM1.2 and HadGEM1.2. The
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windstress curl is important for forcing upwelling in the ocean which is critical for biological

production. In the QuikSCAT observations there is considerable structure in the windstress curl

along coasts, around islands and in association with strongSST gradients (e.g. Gulf Stream) and

large ocean eddy activity (e.g. Southern Oceans). Many of these features are captured well by

HiGEM1.2, but to a much lesser extent by HadGEM1.2, particularly those associated with islands

and persistent small-scale SST structures (e.g. oceanic fronts). These deficiencies could be im-

portant when the model is coupled to ocean biology where the strength of upwelling regions are

crucial for providing nutrients.

Figure 22 demonstrates again that the atmosphere in HiGEM1.2 is capable of responding to

small scale structures in the SST in a more realistic way, as has already been shown for tropical

instability waves. Important features such as the Gulf Stream and the windstress curl associated

with it are better represented in HiGEM, with tighter SST gradients and a more realistic orientation;

in HadGEM1.2 the Gulf Stream is too zonal and the region of high SST gradients extends too far

into the Atlantic Ocean.

Although HiGEM has demonstrated substantial benefits for some aspects of the climate system

and its variability, some significant model problems remain, and some new ones have emerged. Er-

rors in tropical rainfall patterns are particularly stubborn and are largely unaffected by increased

resolution, apart from some improvements over the Warm Poolassociated with a better simula-

tion of the equatorial Pacific SSTs. It is becoming clear thatcurrent approaches to parametrising

tropical convection may be inadequate for representing thestrong physical-dynamical coupling

involved in the organised convection that forms the basis oftropical weather systems (e.g. Slingo

et al. 2003). This organisation occurs on scales much smaller thanmost global models can hope to

represent at the current time. So increasing resolution is not a panacea for all climate model errors,

and much fundamental research on physical parametrisations, especially convection, remains to be
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done.

One of the most challenging aspects of developing HiGEM was the complexity of representing

sea ice in a high resolution coupled system. Considerable work was needed to reach a stable

solution and even then the model has produced unexpected non-linear feedbacks that have resulted

in a substantial loss of Antarctic sea ice, particularly in the Ross Sea. The formation of large

and persistent polynyas in HiGEM led to a chain of responses which affected the Antarctic Ocean

circulation and the subsequent ability of the system to formseasonal sea ice. In the last decade

or so of the simulation the sea ice is recovering, which provides an opportunity to analyse these

feedbacks in more detail. It is interesting to note that the development of large multi-year polynyas

is observed in the real system, for example in the Weddell Seaduring the 1970s, and it is possible

that instabilities, such as those demonstrated by HiGEM, may be one way in which Antarctic sea

ice may evolve in the future. This demonstrates again the importance of exploring high resolution

coupled processes to find out whether there are non-linear feedbacks in the climate system that

have hitherto been undetected in low resolution models.

The development of HiGEM to produce a coupled model capable of stable multi-decadal sim-

ulations presented a much bigger challenge than originallyanticipated because of issues of nu-

merical stability and computational performance. The computational resource required for such

models is still at the limit of what is feasible for the long production runs required for climate

change projections. However, there is sufficient computer power now for a systematic exploration

of the importance of model resolution in the atmosphere and ocean, together, for simulating the

coupled climate system. In the next phase of HiGEM the intention is to further increase the atmo-

spheric resolution to bring it even closer to that of the ocean. It is only by undertaking these kinds

of studies that the validity of lower resolution climate models can be tested. At the same time,

taking models to higher resolution enables a much more meaningful comparison with the wealth

43



of satellite data that exists on scales much finer than those currently used in models.
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Table Captions

Table 1: Annual global means of radiation and energy budget quantities from observational esti-

mates, HiGEM1.2 and HadGEM1.2 control runs. The observed estimates are taken from Kiehl

and Trenberth (1997) and Wild and Roeckner (2006), adjustedto produce consistency between

between the various components. Uncertainties in the top ofthe atmosphere fluxes are±5Wm−2.

There are larger uncertainties at the surface. For example,estimates of the net surface solar radia-

tion vary from 142 to 168Wm−2. Observed values of precipitation and P-E are from Trenberth et

al. (2007). Unless otherwise stated, all values are in Wm−2.

Table 2: Global annual mean loadings of aerosol in HiGEM1.2 and HadGEM1.2
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Figure Captions

Figure 1: Timeseries of global annual means for HiGEM1.2 (solid line) and HadGEM1.2 (dashed

line) of a) absorbed solar radiation (Wm−2), b) net surface solar radiation (Wm−2), c) global

mean surface temperature (K), d) TOA outgoing thermal radiation (Wm−2), e) net TOA radia-

tion (Wm−2) and f) global sea ice area (1012m2).

Figure 2: Annual mean radiation budget at the top of the atmosphere from HiGEM1.2 (left) and

the differences from the HadGEM1.2 (right) for a) reflected solar radiation, b) outgoing thermal

radiation and c) net downward radiation. The contour intervals have been matched to those in

Figure 13 of Martinet al. (2006), which also shows the ERBE observations. All units are Wm−2.

Figure 3: 21 to 70 year annual mean HiGEM1.2 minus Levitus errors for a) SST and b) SSS. c)

and d) the same but for HadGEM1.2 minus Levitus. HiGEM1.2 minus HadGEM1.2 differences

for e) SST and f) SSS. Units K and PSU.

Figure 4: Annual mean 1.5m temperature errors a) HiGEM1.2 minus 1961-1990 CRU 1.5m tem-

perature dataset b) HadGEM1.2 minus CRU 1.5m temperatures.Units K.

Figure 5: 21 to 70 year annual mean precipitation from a) the TRMM 3B43 10 year climatology

(Huffmanet al. 2007) and b) HiGEM1.2. Units mm day−1.

Figure 6: 21 to 70 year annual mean precipitation errors. a) HiGEM1.2 minus CMAP b) HadGEM1.2

minus CMAP. Units mm day−1.
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Figure 7: 21 to 70 year DJF mean sea level pressure a) HiGEM1.2minus ERA-40 b) HadGEM1.2

minus ERA-40. Units hPa.

Figure 8: 21 to 70 year DJF 200hPa zonal winds for a) ERA-40 andwind differences for b)

HiGEM1.2 minus ERA-40 and c) HadGEM1.2 minus ERA-40. Units ms−1.

Figure 9: a) HiGEM1.2 minus HadGEM1.2 DJF 500mb geopotential height difference. The con-

tour interval is 20m. b) HiGEM1.2 minus HadGEM1.2 DJF precipitation difference (colours) and

200hPa divergence (contours) difference for years 21 to 70.The contour intervals are 1mm day−1

and10−6s−1. For divergence red contours are positive and blue contoursnegative and the zero

contour is not shown.

Figure 10: 21 to 70 year JJA 850hPa wind vector and windspeed differences for a) HiGEM1.2

minus ERA-40 and b) HadGEM1.2 minus ERA-40. Units ms−1.

Figure 11: Annual mean vertically integrated loadings (mg m−2) from HiGEM1.2 (left) and the

differences from HadGEM1.2 (right) of a) sulphate and b) biomass burning while c) shows the

corresponding cloud droplet effective radii (microns).

Figure 12: Mean transports through critical sections of theworlds oceans for HadGEM1.2 and

HiGEM1.2. Observational values were obtained Gordon (Indonesian Through Flow: 2001), Hansen

and Osterhus (Iceland-Scotland: 2000), Baringer and Larsen (Florida Strait: 2001) , Fahrbachet

al. (Fram Strait: 2001), Rundick (Samoa Passage: 1997), Cunninghamet al. (Drake Passage:

2003), Macrander at al (2005) and Jonsson and Briem (DenmarkStrait: 2003), Woodgateet al.
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(Bering Strait: 2005). Note the scaling on the x-axis is not linear.

Figure 13: Meridional Overturning Circulation from the Atlantic Ocean (contours) and Potential

Temperature difference from WOA 2001 in a) HiGEM1.2 and b) HadGEM1.2. Units Sv.

Figure 14: Sea surface height variability from a)TOPEX/Posiedon b) HiGEM1.2 (Years 21 to 70)

and c) HadGEM1.2 (Years 21 to 70). Units cm.

Figure 15: Northward heat transport in PW (1PW=1015W) for (a) the Atlantic Ocean and (b)

the Global Ocean. In both panels the total HiGEM1.2 transport is the solid black line, the to-

tal HadGEM1.2 transport is the solid grey line, and the NCEP derived estimate of Trenberth and

Caron (2001) is the dashed black line. Other components of the total transport are also shown. The

error bars indicate the direct ocean estimates of Ganachaudand Wunsch (2003).

Figure 16: The distribution of Northern Hemisphere sea ice fraction in a) March and b) September

from HiGEM1.2, observations (Comisoet al. 1999) and HadGEM1.2

Figure 17: The distribution of Southern Hemisphere sea ice fraction in a) March and b) September

from HiGEM1.2, observations (Comisoet al. 1999) and HadGEM1.2

Figure 18: Instantaneous fields of surface windstress divergence (colours) and SST (contours) from

a) HiGEM1.2 and b) and HadGEM1.2.

Figure 19: The monthly (thin solid) and 12-month running mean (thick solid) timeseries of Nino3.4
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SSTs from a) HiGEM1.2 and from b) HadGEM1.2. c) The normalised power spectrum of Nino3

SSTs from HiGEM1.1 (red), HadGEM1.1 (blue) and from the HadISST observations for the pe-

riod 1870-2002 (solid black) and 1958-2002 (dashed black).

Figure 20: El Nino DJF composite anomalies for SST and precipitation from a) the HadISST

SST dataset and b) the CMAP precipitation dataset and from c)and d) HiGEM1.2 and e) and f)

HadGEM1.2. Units K and mm day−1.

Figure 21: El Nino DJF composite anomalies for mean sea levelpressure from a) ERA-40 b)

HiGEM1.2 and c) HadGEM1.2. Units hPa.

Figure 22: Annual mean windstress curl (colours) and SSTs (contours) from a) QuikSCAT wind-

stresses (from Risien and Chelton 2008) and 0.25◦ WOA 2001 SSTs (Conkrightet al. 2002), b)

21 to 70 year mean of HiGEM1.2 and c) 21 to 70 years mean of HadGEM1.2. Units Nm−2 per

104km and K.
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Parameter Observed HiGEM1.2 HadGEM1.2
Incoming Solar (TOA) 342 341.39 341.39
Outgoing Solar (TOA) 107 97.06 99.81
Absorbed Solar (TOA) 235 244.33 241.57

Outgoing Thermal (TOA) 235 243.66 241.33
Net Radiation (TOA) 0 0.67 0.25

Solar cloud radiative forcing (TOA) -48 -43.37 -44.91
Thermal cloud radiative forcing 25 23.67 23.99

Net solar (Surface) 154 172.20 169.91
Net thermal (Surface) -50 -61.93 -61.75
Net radiation (Surface) 104 110.27 108.16

Sensible heat flux 25 18.74 18.49
Latent heat flux 79 89.89 88.36

Precipitation (mm day−1) 2.60 3.11 3.05
P-E over Land (mm day−1) 0.73 0.72 0.70
P-E over Ocean (mm day−1) -0.30 -0.30 -0.28

Cloud Cover (%) 60 52 53

Table 1: Annual global means of radiation and energy budget quantities from observational esti-
mates, HiGEM1.2 and HadGEM1.2 control runs. The observed estimates are taken from Kiehl
and Trenberth (1997) and Wild and Roeckner (2006), adjustedto produce consistency between
between the various components. Uncertainties in the top ofthe atmosphere fluxes are±5Wm−2.
There are larger uncertainties at the surface. For example,estimates of the net surface solar radia-
tion vary from 142 to 168Wm−2. Observed values of precipitation and P-E are from Trenberth et
al. (2007). Unless otherwise stated, all values are in Wm−2.
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Aerosol Type HiGEM1.2 HadGEM1.2
S in Sulphate 0.52Tg 0.53Tg

Biomass 1.59Tg 1.51Tg
Black Carbon 0.30Tg 0.31Tg

Table 2: Global annual mean loadings of aerosol in HiGEM1.2 and HadGEM1.2
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Figure 1: Timeseries of global annual means for HiGEM1.2 (solid line) and HadGEM1.2 (dashed
line) of a) absorbed solar radiation (Wm−2), b) net surface solar radiation (Wm−2), c) global
mean surface temperature (K), d) TOA outgoing thermal radiation (Wm−2), e) net TOA radiation
(Wm−2) and f) global sea ice area (1012m2).
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a)

b)

c)

Figure 2: Annual mean radiation budget at the top of the atmosphere from HiGEM1.2 (left) and
the differences from the HadGEM1.2 (right) for a) reflected solar radiation, b) outgoing thermal
radiation and c) net downward radiation. The contour intervals have been matched to those in
Figure 13 of Martinet al. (2006), which also shows the ERBE observations. All units are Wm−2.
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a) b)

c) d)

e) f)

Figure 3: 21 to 70 year annual mean HiGEM1.2 minus Levitus errors for a) SST and b) SSS. c)
and d) the same but for HadGEM1.2 minus Levitus. HiGEM1.2 minus HadGEM1.2 differences
for e) SST and f) SSS. Units K and PSU.
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Figure 4: Annual mean 1.5m temperature errors a) HiGEM1.2 minus 1961-1990 CRU 1.5m tem-
perature dataset b) HadGEM1.2 minus CRU 1.5m temperatures.Units K.
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Figure 5: 21 to 70 year annual mean precipitation from a) the TRMM 3B43 10 year climatology
(Huffmanet al. 2007) and b) HiGEM1.2. Units mm day−1.
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Figure 6: 21 to 70 year annual mean precipitation errors. a) HiGEM1.2 minus CMAP b)
HadGEM1.2 minus CMAP. Units mm day−1.
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Figure 7: 21 to 70 year DJF mean sea level pressure a) HiGEM1.2minus ERA-40 b) HadGEM1.2
minus ERA-40. Units hPa.
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Figure 8: 21 to 70 year DJF 200hPa zonal winds for a) ERA-40 andwind differences for b)
HiGEM1.2 minus ERA-40 and c) HadGEM1.2 minus ERA-40. Units ms−1.
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Figure 9: a) HiGEM1.2 minus HadGEM1.2 DJF 500mb geopotential height difference. The con-
tour interval is 20m. b) HiGEM1.2 minus HadGEM1.2 DJF precipitation difference (colours) and
200hPa divergence (contours) difference for years 21 to 70.The contour intervals are 1mm day−1

and10−6s−1. For divergence red contours are positive and blue contoursnegative and the zero
contour is not shown.
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Figure 10: 21 to 70 year JJA 850hPa wind vector and windspeed differences for a) HiGEM1.2
minus ERA-40 and b) HadGEM1.2 minus ERA-40. Units ms−1.
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Figure 11: Annual mean vertically integrated loadings (mg m−2) from HiGEM1.2 (left) and the
differences from HadGEM1.2 (right) of a) sulphate and b) biomass burning while c) shows the
corresponding cloud droplet effective radii (microns).
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Figure 12: Mean transports through critical sections of theworlds oceans for HadGEM1.2 and
HiGEM1.2. Observational values were obtained Gordon (Indonesian Through Flow: 2001),
Hansen and Osterhus (Iceland-Scotland: 2000), Baringer and Larsen (Florida Strait: 2001) ,
Fahrbachet al. (Fram Strait: 2001), Rundick (Samoa Passage: 1997), Cunninghamet al. (Drake
Passage: 2003), Macrander at al (2005) and Jonsson and Briem(Denmark Strait: 2003), Woodgate
et al. (Bering Strait: 2005). Note the scaling on the x-axis is not linear.
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Figure 13: Meridional Overturning Circulation from the Atlantic Ocean (contours) and Potential
Temperature difference from WOA 2001 in a) HiGEM1.2 and b) HadGEM1.2. Units Sv.
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Figure 14: Sea surface height variability from a)TOPEX/Posiedon b) HiGEM1.2 (Years 21 to 70)
and c) HadGEM1.2 (Years 21 to 70). Units cm.
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Figure 15: Northward heat transport in PW (1PW=1015W) for (a) the Atlantic Ocean and (b)
the Global Ocean. In both panels the total HiGEM1.2 transport is the solid black line, the total
HadGEM1.2 transport is the solid grey line, and the NCEP derived estimate of Trenberth and
Caron (2001) is the dashed black line. Other components of the total transport are also shown. The
error bars indicate the direct ocean estimates of Ganachaudand Wunsch (2003).77



a)

b)

Figure 16: The distribution of Northern Hemisphere sea ice fraction in a) March and b) September
from HiGEM1.2, observations (Comisoet al. 1999) and HadGEM1.2
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Figure 17: The distribution of Southern Hemisphere sea ice fraction in a) March and b) September
from HiGEM1.2, observations (Comisoet al. 1999) and HadGEM1.2
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Figure 18: Instantaneous fields of surface windstress divergence (colours) and SST (contours) from
a) HiGEM1.2 and b) and HadGEM1.2
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Figure 19: The monthly (thin solid) and 12-month running mean (thick solid) timeseries of Nino3.4
SSTs from a) HiGEM1.2 and from b) HadGEM1.2. c) The normalised power spectrum of Nino3
SSTs from HiGEM1.1 (red), HadGEM1.1 (blue) and from the HadISST observations for the period
1870-2002 (solid black) and 1958-2002 (dashed black).
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Figure 20: El Nino DJF composite anomalies for SST and precipitation from a) the HadISST
SST dataset and b) the CMAP precipitation dataset and from c)and d) HiGEM1.2 and e) and f)
HadGEM1.2. Units K and mm day−1.
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Figure 21: El Nino DJF composite anomalies for mean sea levelpressure from a) ERA-40 b)
HiGEM1.2 and c) HadGEM1.2. Units hPa.
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Figure 22: Annual mean windstress curl (colours) and SSTs (contours) from a) QuikSCAT wind-
stresses (from Risien and Chelton 2008) and 0.25◦ WOA 2001 SSTs (Conkrightet al. 2002), b)
21 to 70 year mean of HiGEM1.2 and c) 21 to 70 years mean of HadGEM1.2. Units Nm−2 per
104km and K. 84


