ih
 Hydrological data UK

1989 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1989 YEARBOOK

An account of rainfall, river flows, groundwater
levels and river water quality
January to December 1989

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0948540257

Design: P A Benoist
Graphics: J J Carr
Typeset and printed by Burgess \& Son (Abingdon) Ltd. ,

FOREWORD

1989 saw the completion of a major re-organisation of the water industry in England and Wales. The creation, under the Water Act 1989, of the National Rivers Authority and the Water Service PLCs coincided with a period of significant hydrological stress with drought conditions affecting much of eastern and southern Britain through the latter half of the year. The persistent rainfall deficiency over the last couple of years, and the notably wet episodes which have punctuated the drought, have attracted unprecedented media attention and public interest. Not least this reflects a growing awareness of hydrological issues and concern regarding the possible impacts of climate change on river flow regimes and water resources in the United Kingdom.

A principal function of the Hydrological data UK series is to document and disseminate information relating to contemporary hydrological conditions and to provide both a perspective within which to examine the recent exceptional events and a benchmark against which any future changes may be assessed.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the Natural Environment Research Council (NERC). Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the national Surface Water Archive, at IH, and their counterparts at BGS concerned with the national Groundwater Archive. The work is overseen by a steering committec which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland.

The published series includes an annual yearbook and, every five years, a catalogue of river flow gauging stations and groundwater level recording sites together with statistical summaries. These six volumes of the 5 -year cycle are available individually but are also designed to be inserted in a ring binder. Further details of these arrangements are given on page 199.

Professor W.B. Wilkinson
Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL REVIEW 3
Summary 3
Rainfall 6
Evaporation and soil moisture deficits 9
Runoff 12
Groundwater 21
1989 Hydrological diary 24
THE 1988/89 DROUGHT - A Hydrological Review 27
RIVER FLOW DATA 45
Computation and accuracy of gauged flows 45
Scope of the flow data tabulations 45
Gauging station location map 50
Daily flow tables 52
Monthly flow tables 102
THE SURFACE WATER DATA RETRIEVAL SERVICE 143
List of surface water retrieval options. 143
Concise register of gauging stations 154
Summary of archived data 160
GROUNDWATER LEVEL DATA 169
Background 169
The observation borehole network 169
Measurement and recording of groundwater levels 169
Index borehole location map 171
Observation well hydrographs 1987-89 172
Register of selected groundwater observation wells 174
Network changes 178
Hydrographs of groundwater level fluctuations 174
The Register 178
THE GROUNDWATER DATA RETRIEVAL SERVICE 181
List of groundwater retrieval options 181
SURFACE WATER QUALITY DATA 185
Background 185
Data retrieval 185
Scope of the water quality data tabulations 186
Water quality data tables 188
DIRECTORY OF MEASURING AUTHORITIES 196
PUBLICATIONS in the Hydrological data UK series 199
ABBREVIATIONS 200

The 1989 Yearbook is the first edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the National Rivers Authority.

This volume is the ninch Yearbook in the Hydrological data UK series and the fourth volume in the second five-year publication cycle (1986-90).

The 1989 Yearbook represents the thirtieth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the fourteenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1989 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also included are water quality data for a selection of monitoring sites throughout the UK. A comprehensive hydrological review of the year is presented and a feature article reviews the 1988/89 drought within a hydrological framework

A description is given of the surface water and groundwater archives together with illustrative examples of the standard data retrieval options developed to service user requirements.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then reformed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and publishing surface water information in England and

Wales then passed to the newly created Water Data Unit of the Department of the Environment (DOE). Yearbooks were published jointly each year by these organisations and the Scottish Office for the water years 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983 to 1988 - were published over the following four years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain prior to its incorporation into the Institute of Geological Sciences, was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition, and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

The format of the 1989 Yearbook follows that of the recent editions in the Hydrological data LK series. The rainfall, runoff and groundwater review material - compiled in separate sections prior to 1986 is incorporated in a single hydrological review of the year. Data presentation in the water quality section is consistent with the established Yearbook pattern data are given both for the featured year and, to provide a suitable perspective, for the preceding period of record.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the first edition (for 1981-5) was published in 1987, see page 199.

The Yearbook contents have been abstracted primarily from the Surface Water and Groundwater Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is currently maintained by Her Majesty's Inspectorate of Pollution (DOE). Similar data from Northern Ireland have been provided by the Dept. of the Environment (NI).

Much of the data for England and Wales featured in this volume were assembled, initially, under the aegis of the former regional Water Authorities. From the 1st September 1989 their regulatory and river management functions passed formally to a new body, the National Rivers Authority (NRA). The NRA is now responsible for the initial collection and processing of most river flow and groundwater level data.

The new Water Service PLCs have assumed responsibility for a small number of important monitoring sites for which historical - and a few contemporary data sets are held on the Surface Water and Groundwater Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1989.

The majority of the rainfall data, and some of the material incorporated in the hydrological review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Additional material has been provided by various research bodies and public undertakings.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 47). For details of monthly and annual rainfalls associated with individual raingauge sites reference should be made to the 'RAINFALL' series published regularly by the Met. Office. Brief details of the contents and availability of this publication, together with a short description of other rainfall and climatological data sets published by the Met. Office, are given below.

The National Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to the Commercial Services Division. Summaries of the data are also published regularly and a list of current titles is given below:

1. RAINFALL 19__

This contains monthly and annual rainfall totals for some 5000 raingauges and is available approximately one year after the title year at a cost of $£ 8.50$ (for the 1989 edition).
2. Snow Survey of Great Britain 19_1_

This contains the daily and monthly reports of snow conditions from selected stations covering the winter and costs about $£ 4$.
3. Monthly Weather Repont

This is published monthly and contains climato-
logical means for more than 550 UK observing stations, in addition an introduction and annual summary are produced yearly. The publication should be available six to nine months after the month concerned, costs around $£^{2}$ and is available only from Her Majesty's Stationery Office (HMSO) or their stockists.
4. M.O.R.E.C.S. (Meteorological Office Rainfall and Evaporation Calculation System).
This is a weekly issue of maps and tables of evaporation, soil moisture deficit, effective rainfall and the weather variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements.

Further information about these and other publications may be obtained from:

Meteorological Office, Commercial Services, London Road, Bracknell,
Berks RG12 2SZ Tel: (0344) 420242

HYDROLOGICAL REVIEW

Summary

Climatologically 1989 was an extraordinary year in the United Kingdom. Sunsbine hours were the highest on record for England and Wales and very warm conditions prevailed throughout much of the year, for central England it was the warmest year in a series extending back to 1659 . Hydrological conditions were notable also. Over the UK as a whole 1989 was the driest year since 1976 but more remarkable were the variations - both temporal and spatial - in rainfall and runoff amounts through the year. Sustained dry periods were a feature of the 1989 UK weather in most regions, especially during the summer half-year and many parts of lowland Britain experienced their most severe drought since 1976. There were, however, several very wet interludes particularly in the spring and in December when the contrast in hydrological conditions within the month was extreme.

Potential evaporation (PE) rates were well above average for extended periods and soil moisture deficits (SMDs) were notably high early in the year, in the late summer and again at the autumn/winter transition. Broadly speaking these deficits served to inhibit actual evaporation (AE) rates in the lowlands but, elsewhere, evaporative losses at the catchment scale were amongst the highest on record.

A substantial number of rivers recorded unprecedented annual runoff totals in 1989 - several catchments in north-west Scotland established new annual maxima, many more - predominantly in eastern Britain - registered totals below the previous minimum. Low, to very low, flows characterised most of lowland Britain throughout much of the latter half of the year and, in the more maritime regions, the notable low flows recorded during the 1984 drought were closely approached and, in some catchments, eclipsed. Many record monthly low flows were superseded and daily flows were often very depressed - particularly in July and December. Flood events were relatively rare being confined largely to Scotland, especially in February, but spate conditions were widespread in southern Britain over the Christmas period.

Having, in a number of regions, declined from near record levels in the spring of 1988, groundwater levels began and, in the east, ended 1989 at low or very low levels. In the interim the continuing benefit of the moderate - but late recharge in the spring kept water-tables above historical minima. Recharge to western aquifers generally recommenced in October but, elsewhere, groundwater recessions continued unabated and
levels in a number of wells and boreholes, especiaily in the Chalk of eastern England, were extremely depressed at the year-end

The Drought

Following below average rainfall in the autumn of 1988, a significant drought developed over southern and eastern Britain through the 1988/89 winter. By early February the drought was of a substantial magnitude but sustained spring rainfall caused a marked amelioration. Subsequently, however, the drought re-intensified as evaporation rates climbed into the dry, hot summer. The water resources outlook became a matter of concern when rates of runoff and recharge failed to increase as evaporation rates declined into the autumn. By October severe droughts (with associated return periods exceeding 50 years) could be recognised in southern Britain and along the north eastern seaboard. Substantial rainfall deficits characterised all regions apart from the north-west. Very large soil moisture deficits also existed in all but western coastal areas - these served to limit the effectiveness of the significant October and early November rainfall. This wet episode was followed by an extremely dry spell which, by early December, resulted in many rivers recording their lowest winter (December-February) daily mean flow on record; in a few catchments absolute minima were established. Groundwater levels were similarly depressed. The water-table response to the spring rainfall had been only moderate over wide areas, and barely discernible along parts of the eastern seaboard. The ensuing groundwater recessions continued through the summer and - in the east - the autumn such that, by the beginning of winter, groundwater levels stood close to, or below, the lowest on record (for the time of year) over wide areas. In a few eastern wells and boreholes, new minima were established in records exceeding 100 years. Heavy and sustained rainfall from mid-December served to change the complexion of the drought in southern and central Britain but rainfall deficiencies in some, mostly central and eastern districts, remained considerable. With recoveries in groundwater levels needing to be generated from a very low base the water resources outlook remained fragile at the turn of the year.

A comprehensive review of the 1989 drought is presented on pages 27 to 44

Figure 1. Annual rainfall in 1989 as a percentage of the 1941-70 average.
Source: Meteorological Office

Figure 2. Annual rainfall in 1989.
Source: Meteorological Office

Rainfall

United Kingdom rainfall in 1989 totalled 1045 mm , a little below the 1941-70 average. Scotland was somewhat wetter than average, Wales a little drier and Northern Ireland and England appreciably so. With the exception of western Scotland all regions registered below average rainfall in 1989 - commonly the annual total was the lowest since 1975 or 1976. A tendency for the normal west-to-east rainfall gradient to be exaggerated was also evident. The rainfall pattern throughout the United Kingdom in 1989 relative to the 1941-70 average is illustrated in Figure 1; Figure 2 shows actual rainfall totals. Both in absolute and percentage terms the illustrated ranges are notable and in some areas extreme. The area bounded by the 600 mm isohyct in Figure 2 is the most extensive since 1975. 1989 rainfall totals below 450 mm were relatively common in eastern coastal districts from the Humber to Aberdeen. Annual totals of this magnitude represent only about 60 per cent of the 1941-70 average rainfall; such deficiencies might be expected, on average, perhaps little more than once every 100 years. Figure 2 suggests a modest reinforcement of the normal easterly rainfall gradient over southern Britain. To the north this tendency was greatly strengthened leading to exceptional rainfall contrasts along a transect from the western Highlands to the Grampian coast. Over a distance of little more than 100 km annual rainfall totals decreased from well in excess of 4000 mm to below 500 mm inland from Aberdeen. Even at sea level the westward increase in precipitation was remarkable - the Kinloch Hourn raingauge (altitude 5 metres) registered a rainfall total of 3772 mm in 1989. In large part, this total testifies to the influence of the adjacent mountains on local rainfall amounts; the orographic effect was, as in 1988, enhanced in many maritime areas during 1989 - a reflection of the predominance of westerly rain-bearing systems across north-western Britain. Elsewhere, their failure to penetrate to the eastern seaboard - except as greatly weakened systems tended to produce very moderate rainfall totals.

Table 1 provides a breakdown of monthly and half-yearly rainfall totals in 1989 both on a countrywide basis and according to the major administrative divisions within the water industry (see frontispiece). In 1989 the principal features of the temporal distribution were: an early reinforcement of significant rainfall deficiencies which had developed in the latter-half of 1988 throughout much of England and Wales, a notably wet spell in the latewinter and early-spring; a very dry sequence of months from May to the early autumn and an erratic monthly pattern to conclude the year.

In Scotland persistent and heavy rainfall commenced earlier in the year than in southern Britain and the January to March period was the wettest in a rainfall series extending back to 1869 . Precipitation -
which fell mostly as rain - was particularly abundant in the western Highlands. Glenshiel Forest recorded 1000 mm in January which is equivalent to the combined 1988 and 1989 rainfall total over large tracts of eastern Britain. For Scotland as a whole, February was substantially wetter, the monthly total being the highest, for February, in the 121-year general rainfall series. Flooding was widespread and common especially early in the month when a number of 'very rare' daily rainfall totals were recorded (see Table 2). From mid-month, vigorous rain-bearing systems penetrated into the remainder of the UK, causing some localised floodplain inundation - flooding was somewhat more extensive in western catchments.

Notwithstanding this wet spell, winter (Decem-ber-February) rainfall totals were well below average throughout southern and eastern Britain - the return periods associated with the winter precipitation for parts of the English lowlands are in excess of 50 years. Whilst similar deficiencies had developed in restricted areas of eastern Scotland, for the country as a whole winter rainfall was greatly in excess of the average. The December to February precipitation total for Scotland was the highest this century by a considerable margin. Wet conditions persisted into March throughout the British Isles and again the Scottish rainfall total was outstanding. Notwithstanding a relatively dry conclusion to 1988, Scotland extended a remarkable sequence of wet winter half-years. Eight of the fifteen wettest, in a series beginning in 1869, occur in the decade commencing 1979/80 - over this period the Octo-ber-March Scottish rainfall was 20 per cent above the 1941-70 average. By contrast, in England and Wales the February and March rainfall was insufficient to make up the October 1988 - January 1989 shortfall and the 1988/89 winter half-year was the driest for thirteen years, albeit considerably wetter than 1975/76.

Dry conditions became re-established in the latter half of April and May which was exceptionally hot and dry - some districts in central and southern England recording less than 5 mm of rainfall. The shortage of rainfall in the late spring was most significant over eastern and southern areas where long term rainfall deficiencies, often extending back to the spring of 1988 , could be recognised. The incipient drought intensified through the summer, and by the end of August moderate to severe drought conditions existed in all regions remote from the north-west of Scotland. For the UK as a whole, the summer (June-August) rainfall was significantly below average but still within the normal range. Over the summer half-year (April-September) rainfall deficiencies of "a considerably greater magnitude characterised all regions of mainland Britain and Northern Ireland, typically accumulated rainfall totals were between 60 and 80 per cent of the long term average.

TABLE 1 1989 RAINFALL IN MM AND AS A PERCENTAGE OF THE 19A1-70 AJERAGE

Table 2 very rare' daily rainfall totals in 1989

Date ($R_{210-d 2 y)}$	Ranegacge Nurbes	Sane	Curs	(i:w Re:erence	$\begin{aligned} & \text { A:тодал } \\ & \text { (:x:m) } \end{aligned}$	Reluen P'erims (: ir X years)*
05.02.89	692560	Clunes Forest	Highland	NN 186896	136.6	250
05.02 .89	705926	Kinloch Hourn, The Garden	Highland	NG 951066	185.5	600
05.02 .89	713544	Kinlochewe, Estate Manager's Office	Highland	NH 032623	160.1	940
05.02.89	713571	Kinlochewe	Highland	NH 024630	170.4	1430
05.02.89	781338	Cassley Power Station	Highland	N.N 396232	145.0	500
05.02.89	798224	South Laggan	Highland	NN 299978	128.9	190
06.02 .89	692560	Clunes Forest	Highland	NiN 202886	148.8	440
06.02 .89	697289	Fort William, The Factory No 2	Highland	NN 130751	131.7	270
06.02.89	798224	South Laggan	Highlard	NN 299978	132.2	230
24.05.89	337068	Swallowclifte	Wilishire	ST 973267	110.4	390
11.09 .89	365364	Slapton, Ley Field Centre	Devon	SX 824449	98.2	190
11.09 .89	366134	Holsome	Devon	SX 732558	123.5	340
30.10 .89	729865	Scalpay; Secondary School	Western Isles	NG 215967	102.5	460

* Based on the methods and findings of the Flood Studies Report Vol' (as implemented on the Meteorological Office Computer') whereby a return period can be assigned to the catch at a particular raingauge 'Those exceeding a 160 year return period are classified as 'very rare' events (the return periods in Table 2 have been rounded to the nearest 10 years).
${ }^{1}$ Flood Studies Report 1975. Natural Environment Research Council (5 vols)
${ }^{2}$ Keers, J.F. and Wescott, P. 1977. A computer-based model for design rainfall in the United Kingdom: Meteorological Office Scientific Paper No. 36.

Regional variations in drought severity - which were somewhat muted during the summer were strongly reinforced during September and, especially, October. Significant rainfall in western and northern Britain lowered the intensity of the meteorological droughts in these regions. Conversely, rainfall deficiencies increased moderately in the east and the water resources situation deteriorated as a result of the very limited hydrological effectiveness of the early autumn rainfall. Sustained rainfall across much of the United Kingdom early in November provided a realistic prospect of a general termination to the drought, but the subsequent re-establishment of anticyclonic conditions heralded a further remarkably dry episode. Some districts recorded little or no rainfall in the four or five weeks ending around the 9 th of December and the prospect of a second successive dry winter was a matter of considerable concern in relation to water resources. However, a further abrupt change in weather patterns brought widespread and persistent rainfall to southern Britain. The passage of the most vigorous of a series of active cyclonic systems - on the 13 th - resulted in the highest daily rainfall over England and Wales for three years. Rainfall accumulations over the period ending around Boxing Day were remarkably high; in some parts of lowland England this very wet spell accounted for up to a quarter of the rainfall over the rest of the year.

Rainfall in the 1980s

Placed in the perspective provided by the 1980s as a whole, 1989 was very atypical in terms of annual precipitation amounts but the distribution of rainfall - in space and in time - displayed rather more affinity with the rest of the decade. United Kingdom rainfall in the 1980s was the highest for any decade this century; only 1987 and 1989 recorded below average annual totals relative to the $1900-79$ mean. Notwithstanding the preponderance of wet years, the decadal average rainfall remained less than five per cent greater than the preceding mean - testimony to
the limited variability of rainfall within this timeframe. The positive anomaly for the 1980-89 period mainly reflects the abundant precipitation in Scotland which experienced its wettest decade on record by an appreciable margin; the 1980-89 annual average of 1526 mm is about 15 per cent greater than the preceding average (from 1900).

A tendency for the west-to-east UK rainfall gradient to be accentuated was a feature both of 1989 and the 1980s as a whole. This is particularly true of Scotland where the western Highlands have been persistently wet and the eastern lowlands somewhat drier than in the preceding decades. Also of significance in relation to water resources is the tendency for a greater proportion of the overall rainfall to be concentrated within the winter half-year. This achieved an extreme expression in some Highland areas where, over the ten years, winter rainfall was 30 per cent greater than the average whereas the 1980-89 April-September rainfall was somewhat below the long term mean. As a consequence the mild seasonality, which characterises much of the UK, was reinforced in the 1980s with some of the more maritime and mountainous districts (mostly in Scotland) registering up to two-thirds of their rainfall over the winter half-year. For England and Wales, seasonal contrasts were much less exaggerated but relatively low rainfall in the summer halfyear, especially over the July-September period, together with above average winter rainfall enables a modest seasonality to be identified in most regions.

The ratio of winter rainfall (1979/80-1988/89) for England and Wales to that of the ensuing summer is 1.34; substantially greater than the long termaveragein the 19th century decadal values close to unity were typical - and continues a sequence (beginning with 1977) of years with winter rainfall in excess of that for the summer half-year. The present 14 -year sequence is without precedent and the average for the 1980s is the highest for any decade in the general England and Wales rainfall series. The greater hydrological effectiveness implied by such a pronounced tendency for
precipitation to occur at times oflow evaporative loss is reflected in the elevated runoff totals which typified large parts of northern Britain (see below). By contrast, in much of lowland Britain - where the potential benefits of increased winter rainfall to water resources are considerable - little or no appreciable departure from the long term half-yearly means was evident for the 1980 s as a whole.

Evaporation and Soil Moisture Deficits

Weather conditions throughout the greater part of 1989 were particularly conducive to high rates of evaporation; temperatures and sunshine hours were both remarkably high. Potential evaporation (PE) totals were well above average, substantially so in many districts, both for the year as a whole and on a seasonal basis. In some mountainous western areas, especially the Scottish Highlands and the Lake District, actual evaporation totals were also notably high. Elsewhere the persistence of large soil moisture deficits (SMDs) were an important inhibiting factor, particularly in the latter two-thirds of the year; with the exception of the hills of north-western Britain, soils remained at or close to field capacity for a very truncated period. As a result actual evaporation (AE) losses were typically within the normal range and somewhat below average throughout the greater part of lowland England. Soil moisture deficits were unusually high early in the year and in eastern districts remained significant well into the winter of 1989/90.

Figure 3 shows 1989 potential evaporation totals for a network of climate stations throughout the UK together with the corresponding percentage of the 1956-75 mean (percentages are omitted where the historical record is incomplete). With the exception of a few localities in Northern Ireland, the 1989 PE values are well above average with record, or near record, totals common; totals appreciably above 700 mm are rare in the UK. Generally the 1989 totals comfortably exceed those registered in 1988 another exceptionally warm year - and are somewhat greater than the corresponding totals for 1976. In terms of potential evaporation, 1989 provided a suitable climax to a notable decade with above average PE being registered in all but one or two years in most regions.

Of greater hydrological significance than the elevated PE totals in 1989 were the very large shortfalls of actual evaporation relative to PE. Shortfalls were modest in the hills of the maritime west but increased in a south-easterly direction (see map on page 34) and most regions registered their largest difference between calculated PE and AE totals since 1976. The large geographical variation in the shortfall implies that - even more than in a typical year - actual evaporation losses diverged considerably from the pattern suggested by Figure 3. The SE-NW trend towards lower PE totals was

Figure 3. Potential evaporation in 1989-in mm and as a percentage of the long term average.
largely counterbalanced by the effect of SMDs and regional variations in actual evaporative losses were very modest - annual totals for most regions falling in the range $450-550 \mathrm{~mm}$. However, significant positive anomalies occurred in north-west Scotland and AE losses were five per cent or more below average throughout the English lowlands. Considering the decade as a whole actual evaporative losses were marginally greater than for the preceding record. This was particularly true of eastern Britain but generally the decadal difference with the 1970s could be largely attributed to the very low actual evaporation totals for 1976.

There was a considerable divergence from the normal seasonal growth and decay of SMDs during 1989 reflecting the unusual climatological conditions. Figure 4 illustrates the variation in PE, AE and SMD for five MORECS (Meteorological Office Rainfall and Evaporation Calculation System - see page 2) squares; the locations of the featured squares are indicated on Figure 3. In some eastern lowland districts, significant deficits existed throughout the year and exceptionally high deficits were registered in the summer and autumn. SMDs in eastern and southern regions reached their highest levels since 1976. In the west the peak values registered during the 1984 drought were commonly exceeded.

Figure 4. The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares. (The location of the featured grid squares is shown on Figure 3.)

TABLE 31989 WATER BALANCES FOR SELECTED CATCHMENTS IN GREAT BRITAIN

Sution Number	Ruree and Siano Niame			Rentall	Ranoff	toss	Rasoff na \% of Rainfall		Absuracioas: n Dactiarges
							1959	to	
12001	Dee	Woodend	1989 mm	932	609	323	65	74	N
			as a \% of lta	83	72	115			
15006	Tay	Ballathie	1989 mm	1509	1236	273	81	75	SPIH
			2s 2\% of lia	105	111	84			
19001	Almond	Craigiehall	1989 cm	807	424	383	52	54	PEI
			as 2% of lta	91	87	95			
21012	Teviot	Hawick	1989 mm	1094	750	344	68	68	N
			2s 2% of tia	92	92	93			
23004	South Tyne	Haydon Bridge	1989 mm	940	517	423	54	64	N
			as 2% of lta	79	68	99			
27002	Wharfe	Flint Mill Weir	1989 mm	1009	521	488	51	62	SRPI
			as a \% of lta	87	71	113			
27041	Derwent	Buttercrambe	1989 mm	539	157	382	29	43	P
			25 2% of lta	66	44	84			
28008	Dove	Rocester Weir	1989 mm	943	50.4	439	53	57	GE
			as 2% of lta	90	84	98			
29003	Lud	Louth	1989 mm	535	143	392	26	39	
			as a \% of lia	76	51	93			
30001	Witham	Claypoie Mill	1989 mm	573	12.4	449	21	30	P
			as a \% of lia	91	65	10			
31002	Glen	Kates Br. and King St.	1989 mm	590	40	550	6	17	G
			25 2% of la	95	36	107			
37005	Colne	Lexden	1989 mm	529	115	414	21	24	RPI
			as a \% of ta	91	81	95			
38003	Mimram	Panshanger Park	1989 mm	602	104	498	17	19	Gl
			as a \% of lia	92	81	94			
39020	Coln	Bibury	1989 mm	813	275	538	33	49	GE
			as a \% of lia	101	69	133			
40003	Medway	Teston	1989 mm	623	153	470	2.4	37	SPG
			as a \% of Ita	81	53	98			
42010	Itchen	Highbridge + Allbrook	1989 mm	765	329	436	43	54	RPG
			as 2% of lia	89	71	112			
43007	Stour	Throop Mill	1989 mm	818	300	518	36	45	PGE
			as a 90 of lta	95	76	111			
45001	Exc	Thorverton	1989 mm	1188	684	50.4	57	65	SRPGEI
			as a \% of lea	93	81	115			
54029	Teme	Knightsford Bridge	1989 mm	765	288	477	37	45	P.
			as a \% of lta	92	76	106			
56001	Usk	Chain Bridge	1989 mm	1391	950	441	68	69	S
			as a \% of lta	100	98	$\cdot 103$			
67018	Dee	New Inn	1989 MM	1907	1598	309	83	94	N
			as a \% of lia	98	87	279			
72004	Lune	Caton	1989 mm	1337	936	401	70	74	SRP
			25 2% of lia	90	84	107			
76007	Eden	Sheepmount	1989 mm	1031	593	438	57	57	SP
			as 2% of lta	86	86	87			
79002	Nith	Friars Carse	1989 mm	1462	983	479	67	68	SP
			as a \% of lta	96	94	99			
85001	Leven	Linnbrane	1989 mm	2205	1793	412	81	81	S
			as a \% of lia	106	107	105			
94001	Ewe	Poolewe	1989 mm	2886	2556	330	88	83	N
			as 2% of lta	119	126	83			
Ita - long term average						For an explamation of the code letters see page 48.			

The dry and mild 1988/89 winter prevented any return to field capacity over large areas of lowland Britain. Significant SMDs (relative to the winter average), albeit still modest in numerical terms, were maintained, for instance, over much of Lincolnshire, the lower Trent Valley and the area around the Thames estuary. In eastern Kent the MORECS deficit (for grass) at the end of January was the highest on record, comfortably exceeding the corresponding figure for 1976 . The spring rainfall generally eliminated the deficits carried over from 1988 but in a few eastern districts field capacity was not reached and SMDs subsequently increased sharply as the cool April conditions gave way to a persistent spell of hot and dry weather. Very steep increases occurred in May and maximum deficits (approximately 125 mm for grass) were maintained over large areas of lowland Britain from late June until

September. By the end of the summer SMDs exceeded the long term average by $20-80 \mathrm{~mm}$ and remained substantial well into the autumn. The maximum SMDs for 1989 occurred, typically, in September. A brisk decline in the west during October had no real counterpart in the eastern lowlands and extraordinarily high deficits, approaching 100 mm in a few eastern coastal localities, persisted into December. The heavy end-of-year rainfall led to a rapid decline but appreciable deficits were still carried over into 1990 throughout much of southern and eastern Britain. In some districts there had been no return to feld capacity since the end of the 1987/88 winter.

Broadly speaking a similar picture to that described for evaporation emerges from the geographical pattern of catchment losses presented in Table 3. Because of the effect of natural and artificial storages
which disturb the relationship between rainfall and runoff in many catchments, annual losses may not equate closely to computed totals of annual evaporation. Where baseflow is limited however, and the net impact of abstractions and discharges is negligible, the loss may be regarded as a reasonable guide to annual AE totals especially in those areas where SMDs are modest at year-end. The essentially conservative nature of annual catchment losses is revealed by Table 3, most catchments registering percentages in the $90-100$ range. Figures for a few of the wetter catchments appear anomalous e.g. on the Rivers Dee and Ewe. Such data need to be treated with caution in view of the substantial impact on losses which result from even minor systematic errors in the assessment of rainfall and runoff totals.

Runoff

Runoff in 1989 for the United Kingdom totalled approximately 630 mm , the lowest since 1976 but still only a little below the 1961-88 average. 1987 is the only other year to record below average runoff since 1978. Whilst on a nationwide basis the annual total was well within the normal range, the spatial and temporal variations in runoff were very unusual.

Figure 5 provides a guide to 1989 runoff totals expressed as a percentage of the 1961-88 average. The map is least precise in northern Scotland, the Welsh mountains and some of the coastal lowlands of eastern England where the gauging station network is sparse or where data availability was limited. In these areas assessments of residual rainfall (rainfall minus evaporation) totals were used to help delineate isopleths. Insufficient confirmatory flow data exist for the Scottish islands to allow the drawing of runoff isopleths with any confidence. The range of annual percentage runoff illustrated on Figure 5 is without recent parallel; percentage runoffs outside the $50-150$ band are normally confined to regions of very low runoff where small absolute differences from year to year produce relatively large percentage changes. The wider range of runoff percentages for 1989 compared to those for rainfall (sec Figure 1) serves to emphasise the greater hydrological sensitivity of the eastern lowlands to limited rainfall. With evaporative losses being relatively stable a shortfall in rainfall of, say, 200 mm has a disproportionate impact on annual percentage runoff in regions where residual rainfall even in a normal year is modest. Such an effect was clearly evident in 1989 when areas of low runoff, in actual and percentage terms, tended to coincide.

The broadly meridional pattern of isopleths on Figure 5 testifies to a very notable exaggeration in the normal west-to-east runoff gradient across Great Britain. An extreme expression of this tendency may be identified along a NW-SE transect across mainland Britain. The 1989 runoff for the Poolewe gauging station, which monitors the outflow from

Loch Maree in Wester Ross, just exceeded the previous maximum established in 1983, whereas the Kent Stour, for example, recorded a new annual minimum runoff total (in a 26 -year record).

In water resources terms the most important feature of Figure 5 is the large area with runoff below 70 per cent of the average - a significant proportion of eastern catchments recorded runoff below half the long term mean. One important consequence was that the 1989 drought bore most heavily on those regions characterised by concentrations of population, commerce and intensive agriculture. Such areas are associated with high, and increasing, water demand and the drought's potential impact was therefore considerable. An obvious contrast may be drawn with those districts where resources are abundant and total demand constituted only a minor proportion of the available runoff. Runoff totals in western Scotland were often exceptionally high and exerted an appreciable influence on the overall UK runoff total; a number of gauging stations recorded their highest annual runoff on record. Perhaps more remarkable are the catchment contrasts within Scotland itself. Those rivers sustained by headwaters in the western Highlands and the Cairngorms often registered unprecedented runoff totals. To the east, runoff rates declined dramatically so that catchments located mainly in the eastern lowlands recorded new minimum annual runoff totals, examples include the catchments of the Rivers Ugie and Dee; they represent the northerly extension of a zone of extreme runoff deficiency along the eastern seaboard of Great Britain. In southern and eastern England, where runoff is normally only around 10 per cent of that in the western Highlands, new minimum annual runoff totals were established for a relatively large number of rivers.

Whilst the main features of Figure 1 may be recognised on Figure 5, the correlation with the rainfall map is less compelling in eastern and central England. This reflects the greater importance of evaporation in southern Britain, the effect of substantial SMDs carried-over from 1988 and, importantly, geological and pedological contrasts between catchments which influence their ability to store and release water. The relatively depressed levels of water-tables entering 1989 ensured that runoff totals for the year benefited only modestly from infiltration occurring in the autumn and early winter of 1988/89. This tended to increase catchment losses over a calendar year accounting period. In some lowland catchments, losses were further accentuated by the inhibiting influence of seasonally high SMDs towards the end of the year when the contrasting ability of rivers draining permeable and impervious catchments to respond to the exceptional December rainfall was also very evident. For this reason the 1989 percentage runoff is commonly somewhat lower in high baseflow rivers and the influence of the

Figure 5. A guide to 1989 runoff expressed as a percentage of the 1961-88 average.
chalk and limestone outcrops may be discerned in the percentage runoff patterns exhibited on Figure 5 (the outcrop areas are shown in Figure 17).

With the notable exception of the Scottish floods early in the year, flood events of significant magnitude were uncommon in 1989. Spate conditions were, however, widespread in western catchments in February and March, and again in October when particularly high flows were recorded in Northern Ireland. Localised flooding was also common in southern Britain around Christmas but the great majority of the many new hydrometric records established through the year related to low flows. Table 4 provides a summary of river flow and runoff records established in 1989 at primary gauging stations. Entries are confined to monitoring sites having at least 15 years of data on the Surface Water Archive; stations in the annual runoff section are listed in numerical order, the monthly, daily and peak flow sections are ordered chronologically. New minimum annual and monthly runoff totals are very common - representing the most widespread extension of low flow records since the 1976 drought. Of particular note is the margin by which some of the previous minima have been superseded, especially for rivers in the north-east of England. A number of entries in Table 4 may be subject to revision particularly as low flow stage-discharge relations are reviewed in the light of recent current meter gaugings - in many rivers, weed-growth had a major impact on water levels over the summer half-year.

The regional diversity in runoff amounts implicit in Figure 5 is less evident in relation to the pattern of flows through the year. A reasonable uniformity regarding runoff distribution may be recognised but considerable departures from the normal seasonal cycle are also evident. Figure 6(a-d) illustrates the variation in flows through 1989 for four representative gauging stations in Scotland, England, Wales and Northern Ireland. Data featured for the Kingston gauging station have been adjusted to account for the major water supply abstractions from the Thames above London. Daily and monthly hydrographs are shown for each monitoring site together with the corresponding extremes for the preceding period of record. The monthly hydrograph shows the 1989 flows as a solid black line and the blue line represents the 30 -day running mean for the pre-1989 record. A common feature of the daily flow hydrographs are the notable low flows - relative to the seasonal average early in the year, in the late summer and, most remarkably, in early December. In a more typical year periods of significantly reduced flow are largely confined to the summer months when evaporation losses are at their maximum.

Except in north-western Britain, the recovery in runoff rates following the summer of 1988 was inordinately delayed and only in the mid-February to mid-April 1989 period did flow rates reach the winter average in many catchments. In Scotland however spate conditions became established earlier in the year.

Flows on the Tay - the UK's largest river in discharge terms - remained very high until late March; the accumulated January to March runoff being the third highest for any three-month period in a record from 1958. This wet interlude was succeeded by prolonged summer recessions which resulted in exceptionally low summer discharge rates in relatively impervious catchments. In lowland England where - in many catchments - baseflow provides a substantial proportion of low flows, the continuing benefit of spring recharge commonly postponed the minimum flows until well into the autumn.

October minima were common in the South-East at a time when some seasonal upturns were occurring to the west. Rather more unusual were the November minima, for example in Sussex (on the Ouse) and the absolute minimum (after allowing for artificial augmentation) registered on the Itchen towards the middle of December. In large part the delayed seasonal increase in river flows was a consequence of the very substantial SMDs which served to restrict the runoff response to the October rainfall in all but the more maritime areas. Hydrologically the situation was then exaccrbated by the onset of the remarkably dry four-week period beginning in mid-November which led to sustained recessions throughout the UK - in a few western catchments these recessions were steep but more generally they represented a further decline from already depressed runoff rates. Over the majority of the UK, early December flows were, as in 1988, more typical of the summer and a number of new minimum December flows were established. In some castern catchments accumulated runoff totals for the year stood well below the previous annual minimum and with soils extraordinarily dry - for the winter - there was little expectation of any substantial upturn before the end of the year. In the event, the transformation in hydrological conditions, especially in central southern districts, over the next three weeks was very dramatic. Flows in a number of rivers increased from the lowest (for the winter) to bankfull in less than a fortnight; moderate flooding occurred in the Severn and Thames Valleys. The unusual distribution of runoff throughout 1989 is emphasised by the fact that this very wet episode accounted for up to half the yearly total in some central southern catchments.

The flow duration curves illustrated in Figure 6 allow the proportion of time that river flows fell below a given threshold to be identified. In 1989 low flows (those exceeded for 95 per cent of the time) were below average in all but a few catchments in north-west Scotland. Typically the 95 per cent exceedance flows were the lowest since 1984 in the more maritime regions of Britain and the lowest since 1976 elsewhere; for a few mostly eastward draining rivers, notably the Dee and the Yorkshire Derwent, new period-of-record minima were established. Similarly, the 50 per cent exceedance flow was normally considerably below the long term median value but in most areas well above the corresponding figure for 1976.

TABLE 4 RIVER FLOW AND RLUNOFF RECORDS ESTABLISHED IN 1989

Sution Nember	Rivet end Scacon Niarre		Fur Year of Record	Ne Recores (a)		Pr. 1989 Record (m)	Yeat
Highest Annual Runoff 1942							
4001	Conon	Moy Bridge	1947	2073		$19+2$	1981
6007	Ness	Ness Side	1973	1865		1755	1983
94001	Ewe	Poolewie	1970	2556		2542	1983
Lorrest Annual Runoff							
2001	Helmsdale	Kilphedir	1975	496		545	1976
8004	Avon	Dalnashaugh	1952	513		576	1971
9001	Deveron	Avochie	1959	289		374	1972
9002	Deveron	Muiresk	1960	249		294	1972
9003	Isla	Grange	1969	231		234	1972
10002	Ugie	Ioverugie	1971	201		286	1972
11001	Don	Parkhill	1969	219		265	1973
11002	Don	Haughton	1969	268		324	1973
11003	Don	Bridge of Alford	1973	331		519	1975
21027	Blackadder Water	Mouth Bridge	1973	134		201	1975
22009	Coquet	Rothbury	1972	263		374	1975
24005	Browney	Burn Hall	1954	139		150	1973
25004	Skerne	South Park	1956	75		104	1975
25005	Leven	Leven Bridge	1959	110		125	1964
25019	Leven	Easby	1971	177		305	1975
25020	Skerne	Preston le Skerne	1972	57		120	1973
25021	Skerne	Bradbur;	1973	50		123	1982
26002	Hull	Hempholme Lock	1961	87		114	1973
27038	Costa Beck	Gatehouses	1970	1601		2066	1973
27041	Derwent	Buttercrambe	1973	157		233	1975
27042	Dove	Kirkby Mills	1972	307		341	1973
27044	Blackfoss Beck	Sandhills Rrıdge	1974	91		146	1975
27048	Derwent	West Ayton	1972	43		48	1974
27049	Rye	Ness	1974	217		313	1975
27050	Esk	Sleights	1970	228		389	1971
27051	Crimple	Burn Bndge	1972	269		323	1973
27054	Hodge Beck	Cherry Farm	1974	298		496	1983
27055	Rye	Broadway Foot	1974	254		353	1975
27056	Pickering Beck	Ings Bridge	1974	177		304	1976
27057	Seven	Normanby	1974	182		389	1983
27058	Riccal	Crook House Farm	1974	137		160	1975
28040	Trent	Stoke on Trent	1968	277		301	1984
33006	Wissey	Northwold	. 1956	128		138	1976
33007	Nar	Marham	1953	14.4		146	1964
40003	Medway	Teston	1956	153		190	1962
41003	Cuckmere	Sherman Bridge	1959	104		105	1973
44009	Wey	Broadwey	1975	847		865	1976
47013	Withey Brook	Bastreet	1973	816		901	1987
48004	Warleggan	Trengoffe	1969	760		778	1983
48007	Kennal	Ponsanooth	1968	363		411	1976
48011	Fowey	Restormel	1961	632		651	1964
49004	Gannel	Gwills	1969	376		386	1973
52014	Tone	Greenham	1967	400		403	1987
84023	Bothlin Burn	Auchengeich	1973	489		542	1975
97002	Thurso	Halkırk	1972	392		399	1972
203017	Upper Burn	Dynes Bridge	1970	278		335	1983
205005	Ravernet	Ravernet	1972	303		308	1983
Station	Rivet atd Station Niowe		First	Nex	Month	Pre-1989	Mocth/
Surter			Yest or	Record		Record	Year
			Record	(mun)		(mm)	
Highest Monshly Runoffs 1968							
Lowest Monthly Runoffs							
25018	Tees	Middleton in Teesdale	1971	26	MAY	26	JUN 88
82002	Doon	Auchendrane	197.4	18	JUN	20	MAY 84
20002	West Peffer Burn	l.uffness	1966	0.2	JUL	0.4	AUG; 74
21012	Teviot	Hawick	1963	5.6	JUL	6.1	AUG 83
22009	Coquet	Rothbury	1972	5.0	JUL	5.0	AUG; 76
76002	Eden	Warwick Bridge	1966	9.0	JUL	9.2	ALG 76
80001	Urr	Dalbeatte	1963	1.9	JLL	1.9	JUi. 84
82001	Girvan	Robstone	1963	2.8	以上	3.3	ALG 84
84003	Clyde	Hazelbank	1956	8.9	JI.	9.4	ALG 84
201005	Camowen	Camowen Terrace	1972	5.4	JUI.	6.4	SEP 72
201006	Drumragh	Campsie Bridge	1972	3.3	JUL.	3.8	AUG 76

TABLE 4-(continued)

Statros	Rivet and Stator .iame		Fins:	New	Hor:h	Pre-:949	Muats
Nurnter			Yeat ol	Recose		Recoer	Yest
			Recser	(10\%)		(mm)	
L-ovest Monthly Runoffs (continued)							
203024	Cusher	Gambles Bridge	1971	1.0	JUL	1.2	ALC; 76
40013	Darent	Otiord	1969	2.7	AUG	2.9	JLL 76
41010	Adur W. Branch	Hatterell Bridge	1961	0.3	Alic	0.3	ACG 76
41017	Combehaven	Crowhurst	1969	0.9	Alig	1.5	AUG 82
2001	Helmsdale	Kilphedir	1975	10	SEP	11	AUG 76
27049	Rye	Ness	1974	6.8	SEP	7.7	ALG 76
27055	Rye	Broadway Foot	1974	8.3	SEP	9.1	AUG 76
28040	Irent	Stoke on Tient	1968	6.3	SEP	7.6	JUL. 84
28061	Churnet	Bastord Bridge	1975	9.5	SEP	11	AUG 76
39042	Leach	Prory Mill Lechlade	1972	1.0	SEP	1.7	AUG 76
42011	Hamble	Frog Mill	1972	2.3	SEP	2.4	AUG 76
48007	Kennal	Ponsanooth	1968	3.9	SEP	6.0	AUG 84
52017	Congresbury Yeo	Jwood	1973	8.2	SEP	9.7	SEP 87
68004	W'istaston Browk	Marshfield Bridge	1957	6.2	SEP	6.9	AUG 77
71010	Pendle Water	Barden Lane ${ }^{\text {c }}$	1971	9.6	SEP	15	JUN 75
23002	Derwent	Eddys Bridge	1954	25	OCT	3.4	AUG 59
40004	Rother	Udiam	1962	2.0	OCI	2.3	AUC; 76
27038	Costa Beck	Gatehouses	1970	113	NOV	125	AUG 82
Statur	Ruvet and Sazion Name		Fus:	Vex	Day ${ }^{\prime}$	Pte: 9 9\%	DaysMorit,
Nurbe:			Vezaul	Resord	Mxath	Resors	Ye=,
			Resord			(mis)	
Highest Instantaneous Fiowis							
15011	Lyon	Comrie Bridge	1972	315	06 FEB	271	15 NOV 78
9.4001	Ewe	Poolewe	1970	248	07 FERB	180	31 DEC 83
6007	Ness	Ness Side	1973	801	08 FEB	619	02 JAN 84
76001	Haweswater Beck	Burnbanks	1953	30.8	$09.11 A R$	27.1	09 Mar 82
76015	Famont	Pooley Bridge	1970	72.4	O) MAR	721	21 DEC 85
86002	Eachaig	Eckford	1968	112	20 SEP	95.4	11 SEP 78
Stat:or.	River and Siaten ${ }_{\text {Name }}$		Firy	Nicu	Day	Pre: 9 9\%	13a/Morib/
Viumite:			leat of	Record	Mosth	Rewerd	Yeal
			Recots	(O', ' $^{\prime}$)		(m'v)	
Highest Daily Mean Flow's							
$\begin{aligned} & 18003 \\ & 65001 \\ & 65004 \\ & 36013 \\ & 55026 \end{aligned}$	Teth	Bridge of Teith	1957	227	06 FFB	208	21 DEC 85
	Glaslyn	Beddgelert	1961	86.3	$09 . M A R$	85.9	27 OCT 80
	Guryrfal	Bontnewydd	1970	28.7	6) MAR	27.1 .	18 OCI 87
	Brett	Higham	1971	6.02	16. MAR	4.62	30 MAR 88
	Wye	Ddol Farm	1937	199	28 OCH	147	03 DEC 80
Lowest Daily Mean Flows							
82002	Doon	Auchendrane	1974	2.00	19 JUN	2.14	01 AUs; 74
14002	Dighty WaterIeviot	Balmossie Mill	1969	0.133	08 JLL	0.134	15 SEP 75
21012		Hawick	1963	0.437	24 Jlit .	0.509	15 JCL 78
80001	LirrI.une		1963	0.058	24 JLL	0.076	21 JCL 78
72005		Dalbeattic Killington New Bridge	1969	0.331	25 Jil.	0.395	25 JCl 8.4
76002	I.une Eden	Killington New Bridge W'arwick Bridge	1966	2.94	25 JUL	3.35	29 AUG 76
17003	Eden Bonny W'ater	Bonny Bridge	1971	0.151	26 JUL	0.152	20 SEP 78
14001	Bonny W'ater Eden	Kemback	1967	0.575	04 AUG	0.638	30 AUS 73
15010	Isla West Peffer Burn	Wester Cardean	1972	0.977	04. AUG	1.098	27 AUG 84
20002		I.uffness	1966	0.001	04 Aud	0.002	22 AUG 74
73008	West Peffer Burn Bela	Beetham	1969	0.294	07 AUG	0.300	20 AUG 8.4
19007	Bela Esk	Musselburgh	1962	0.671	08 Auci	0.675	31 MAY 82
60005	Bran	Llandovery	1968	0.003	08 AUG	0.019	03 JCL 76
33031	Broughton BrookLeach	Broughton	1971	0.003	07 SEP	0.016	13 JCL .76
39042		Priory Mill Lechlade	1972	0.020	09 SEP	0.035	26 AUG 76
57004	C.ynon Wiston Brook	Abercynon	1957	0.252	12 SEP	0.283	23 AUG 76
68004		Marshfield Bridge	1957	0.127	14 SEP	0.147	02 SEP 84
34012	Wiston Brook Burn	Burnham Overy	1966	0.054	19 SEP	0.064	10 OC゙I 74
35008	Burn Gupping	Stowmarket	1964	0.048	23 SFP	0.053	26 AUG 73
27055	Gupping Rye	Broadway loot	1974	0364	02 OCT	0.395	27 AUG 84
28040	Trent	Stoke on Trent	1968	0.090	04 OCT	0.095	25 JUL 84
27049	Rye	Ness	1974	0558	05 OC.1	0.596	26 AUG 76
44009	Wey	Broadwey	1975	0.056	08 OCT	0.060	04 NOV 84
40004	Rother	Lidam	1962	0.083	14 OCT	0.113	01 NOV 69
41017	Combehaven	Crowhurst	1969	0004	180 OC	0.010	29 Alic 82
41026	Cockhaise Brook	Holywell	1971	0.008	18 OCI	0.019	29 JUN 76
27038	Costa Beck	Gatehouses	1970	0322	21 NOW	0.341	02 OCT 85
11001	Don	Parkhill	1969	3.55	15 DEC	3.91	27 ALG 76
11002	DonDon	Haughton	1969	2.43	15 DEC	2.85	27 AUG 76
11003		Bridge of Alford	1973	1.76	15 DEC.	2.12	26 ALiG 76

Note: Highest daily mean flows are only featured where no corresponding highest instantaneous fow record occurred. Only the highest or lowest value is featured where more than one record was established at a station during the year. In some instances, rounding causes the new record runoff value to equal the pre- 1989 value.

Figure 6(a). River flow patterns: Tay at Ballathie.

Figure 6(b). River flow patterns: Thames at Kingston.

Figure 6(c). River flow patterns: Usk at Chain Bridge.

Figure 6(d). River flow patterns: Camowen at Camowen Terrace.

Runoff in the 1980s

For the greater part of the decade begianing in 1980, runoff rates have been above the preceding average especially in northern Britain. The result of the dry phase which began, over large parts of the country, in the spring of 1988 bas been to produce catchment runoff totals for the 1980s which are broadly similar but still somewhat greater than those for the preceding period of record. In runoff terms the positive anomalies were largest in western Scotland but appreciable percentage increases also occurred in England and Wales. Rather more substantial differences emerge where the preceding record is of limited duration; in part this reflects the relative dryness of the decade commencing in 1970. Many rivers in Scotland, including the Tay, Tweed and Nith, registered runoff totals over the 1980-89 period more than 20 per cent greater than that recorded for the 1970s. Further south such differences are less apparent and in a few southern catchments, including the Kent Stour and Hampshire Test the decadal mean flow in the 1980s fell a little short of that for the preceding record. More typically a modest increase in runoff may be identified and, at least in western catchments, this may be attributable to the enhanced hydrological effectiveness of the rainfall consequent upon an appreciable change in its seasonal distribution. The benefit, in runoff terms, resulting from a greater proportion of annual precipitation falling in the winter half-year is greater for some catchments (e.g. the Nith and the Clyde) than the corresponding increase in catchment rainfall between the 70s and 80 s .

In broad terms the 1980s may be categorised as having enhanced runoff relative to the previous two decades. This is especially true of northern Britain and principally reflects high runoff in the winter and spring periods. Some evidence also exists to indicate that seasonal runoff has been more variable in the 1980s. Prior to 1960 the gauging station network was relatively sparse but sufficient long term records exist - supplemented by rainfall and groundwater data - to demonstrate that the 1980 s were less outstanding when viewed in the context of the century as a whole ${ }^{1}$. On the River Thames, for instance, runoff in the 1980s was a little above that for the preceding decade but some 15 per cent below that registered in the decade commencing in 1910.

A discernible departure from the mean distribution of runoff through the year was a feature of the 1980s. The limited record lengths and significant year-on-year variability constrains the deductions that can be drawn but these departures are consistent with the rainfall distribution through the years. In many areas however, precipitation contrasts have been moderated by the effects of aquifer storage enhanced March to June rainfall (a feature of many castern catchments) leading to increased baseflow support for rivers through the summer and into the autumn. Snowmelt accumulations (which can delay
the impact of additional winter precipitation especially in Scotland) can have a similar effect in the spring. In a few high baseflow catchments, for instance the Witham in Lincolnshire, the lag effect has served to somewhat reduce the within-year range of flows compared to the pre-1980 average. More commonly a modest increase in the range of flows occurred during the 1980 s. Using the 10 per cent exceedance and 95 per cent exceedance flows as yardsticks, high flows in Scotland were a little above the preceding average and low flows marginally below; in the context of the normal decadal variability neither change is particularly significant. A similar picture emerges in northern England and parts of Wales. Many catchments in the Midlands and central southern England recorded 10 per cent and 95 per cent exceedance flows very close to the preceding average. In the eastern lowlands, however, notable increases in low flows could be recognised. The drought conditions experienced in 1983, 84 and 89 were more than counterbalanced by the enhanced low flows recorded during the rest of the decade. In assessing the implications of such an overall increase in low flows, it is necessary to take account of the dominant influence of 1976 flows on the 95 per cent exceedance flow; it is not unexpected that runoff rates would increase in relation to conditions experienced during such an extreme drought.

Groundwater

Following the drought of 1976, when unprecedentedly low groundwater levels were recorded throughout both major and minor aquifers, water-tables generally remained close to, or a little above, average levels until the autumn of 1987. Abundant recharge over the $1987 / 88$ winter half-year then resulted in peak levels - in the spring of 1988 - well above the seasonal mean. As a consequence bourne flows broke in some districts where they had not been seen for up to twenty years and, more generally, groundwater levels stood at their highest level since at least 1977.

The contrast of the effects of the winter recharge of 1988/89 compared to that of the previous winter is striking. This contrast was accentuated by the subsequent recessions which persisted well into the winter of 1989/90 and resulted in very depressed water-tables at the end of 1989. The groundwater level decline over the preceding 24 months has no recent parailel in many areas (see page 40).

The very low rainfall totals over the three months commencing in November 1988 effectively delayed the onset of groundwater recoveries until late in February. The exceptionally late upturn is well illustrated in most of the groundwater hydrographs illustrated on pages 174 to 177. Prior to the spring upturn, the water level at the Dalton Holme site in Humberside was near to the seasonal minimum recorded. At the south-western extremity of the Chalk outcrop, in east Devon, the Lime Kiln Way borehole registered new period-of-record
(1969-88) minimum levels for January and February. Elsewhere levels in the Chalk were very low, especially in Kent, but somewhat less severely depressed - see the hydrographs for Little Brocklesby, Washpit Farm and Fairfields for example. Inland from the east coast, along the south coast and in the south-west of England, the hydrographs show groundwater levels rather closer to the seasonal norms - see the traces for Rockley, The Holt and Alstonfield.

Recharge rates increased through the early spring and, generally, significant infiltration continued until towards the end of April. The cessation of the recharge season was signalled by the widespread lack of rainfall during May, when only in Scotland did the monthly rainfall values exceed 50 per cent of the mean. In the 'Hydrometric Register and Statistics 1981-85' (see page 173), a method was proposed which both permitted comparisons between groundwater levels in different observation wells and related those fluctuations to aquifer replenishment expressed as a percentage of the long term average. Using this same method, the apparent replenishment for the winter of 1988/89 has been estimated and is shown in the Register of Observation Wells (pages 178 to 180). The figures are intended as a guide only and because of the particular difficulties associated with the interpretation of very limited amounts of recharge, no differentiation is attempted between recharge percentages in the range up to ten per cent. Over the greater part of the major aquifers, recharge through the 1988/89 winter half-year was the lowest since $1975 / 76$ when recharge was negligible throughout much of central southern England and, until the late autumn, water-tables remained well below the levels recorded in 1989. In interpreting the recharge percentages listed in the Register, account should be taken of the period over which the mean annual range of fluctuation has been established; for example, the substantial 1987/88 recharge would appear less impressive for observation wells whose records commenced during the sequence of wet winters following the 1975/76 drought. Long term changes in rainfall may also cause variations; the mean annual range of fluctuation calculated for a period of record of over 100 years may differ substantially when determined over a period of, say, 30 years.

A map (Figure 7) showing the generalised areal recharge was prepared for the principal outcrop areas of the Chalk and Upper Greensand aquifer based upon the 1988/89 replenishment percentages detailed in the Register. Using the same figures, combined with the mean annual replenishment values cited in Monkhouse and Richards ${ }^{2}$, the recharge to the major aquifers of England and Wales has also been calculated (Table 5). This confirms that below average recharge was a characteristic of all regions with particularly modest groundwater recoveries in eastern aquifer units.

Figure 7. Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk and Upper Greensand aquifer for 1988/89.

Whilst recoveries were very modest in 1989 commonly the peak recorded over the half-year was the lowest since 1975/76 - the limited magnitude of the peak was, in part, offset - with regard to water resources - by its lateness. Thus in many areas groundwater levels were rising during April whereas, in a more typical year, a recession would have become established. Consequently, water-tables often stood close to, or above, average levels in the late spring and remained within the normal range through the summer. Little recharge normally takes place through the summer months. Even in aquifers such as the Jurassic Oolites (typified by the Ampney Crucis site) and the Carboniferous Limestone (typified by the Alstonfield site), where groundwater levels generally respond rapidly to short periods of intense rainfall even in the summer, the recession of 1989 continued steadily. By the end of November, levels had fallen to near-1976 values in Humberside (Dalton Holme) and were still falling generally with the exception of Northern Ireland where levels appeared to be rising (at the Dunmurry and Killyglen sites). In most regions it was not until the end of December that the recession generally ceased and levels began to rise. Some sites are known to exhibit a lag between the onset of infiltration and the consequent rise in groundwater levels; of these, Therfield Rectory (a lag of about three months) and Fairfields (a lag of about one month) are examples.

TABLE 5. ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALFS FOR THE YEAR 1988/89

NRA Region	Alean annual replenishment	1988-89 replenishment
Chalk and Upper Greensand aquifer		
Anglian	953	345 (36)
Southern	1231	651 (53)
South West	202	93 (46)
Thames	975	483 (50)
Wessex	947	719 (76)
Yorkshire	322	89 (28)
Total	4630	2380 (51)
Lincolnshire Limestone aquifer		
Anglian	86	46 (53)
Permo-Triassic sandsiones aquifer		
Northumbrian	123	54 (44)
North West	331	149 (45)
Severn-Trent	528	297 (56)
South West	205	109 (53)
Welsh	27	14 (52)
Wessex	39	14 (36)
Yorkshire	301	117 (39)
Total	1554	754 (49)
Magnestan Limestone aquifer		
Northumbrian	80	52 (65)
Severn-'Trent	40	15 (37)
Yorkshire	127	32 (32)
Total	247	99 (40)

(Units in in'10'. Percentages of the annual mean in parentheses)

In such wells, the upturn in groundwater levels was delayed into 1990.

At the start of the 1989/90 recharge period, groundwater levels appear everywhere to have been below average, and in many places severely so. At Dalton Holme, levels were below their seasonal 1976 equivalents, and, indeed, at their lowest recorded values in a 100 -year period of record. Along the east coast as far as eastern Kent, in the eastern Midlands and along much of the south coast, levels were close to, or at, the seasonal recorded minima. Although infiltration rates increased rapidly in December only very modest recoveries were recorded in many eastern aquifer units. Fissured aquifers - the Middle Jurassic Limestone (Ampney Crucis), the Lincolnshire Limestone (New Red Lion) and the PermoTriassic sandstones responded smartly and by yearend levels were well within the normal range. To the east, throughout most of the Chalk and Upper Greensand aquifer the December levels were the lowest (for the month) on record. Whilst the rapid decline in soil moisture deficits through December created an expectation of significant recharge early in 1990, the widespread exceptionally low groundwater levels remained a matter of concern regarding the water resources outlook in eastern and some southern arcas.

Groundwaters Levels in the 1980 s

The very large, often unprecedented, decline in water-tables over the 1988-89 period provides a clear counterpoint to the healthy groundwater levels recorded throughout most of the 1980s. Although winter recharge totals rarely approached those which immediately followed the 1976 drought, above average recharge was a feature of most years in the 1980s - notably in 1983/84 and 1987/88. Some moderately low groundwater levels were recorded in the autumns of 1982-84 but water-tables remained relatively depressed for only a very brief period; winter recoveries tended to be brisk and sustained. Whilst regional variations have been important, the record of levels at the Rockley borehole, which penetrates the Chalk and Upper Greensand aquifer near Marlborough, is broadly representative of the major aquifers in England. Following the 1976 drought - during which the borehole was dry for a period of almost twelve months - levels recovered dramatically and the late winter/early spring peak levels were well above average in 1977-79. Subsequently the water-table remained relatively close to the seasonal mean - although levels were substantially below average in the autumn of 1984 - until the highest level in the decade was recorded in February 1988. By December 1989 the borehole was dry, albeit for a short period only.

Winters during recent years have tended to be very mild, and in consequence the evaporative losses have been higher albeit still modest in absolute terms; this is likely to have caused a small reduction in the annual aquifer replenishment. The recharge calculated for 1985/86, 1986/87 and 1987/88 (using the method outlined above) was, in most areas, rather below average, whilst the winter rainfall was typically rather above average. While it is possible that the difference may lic within the limits of error, it is feasible that the method of calculation may, to some degree, underestimate the annual replenishment, and some refinement will be necessary in the future. However, the determinations for 1988/89 (Table 5) do seem to equate well with the rainfall and evaporation data.

References

1. Arnell, N. W., Brown, R.P.C. and Reynard, N. S. 1990. Impact of climatic variability and change on river flow regimes in the UK. Report to the Department of the Environment. Institute of Hydrology, NERC. 170 pages.
2. Monkhouse, R. A. and Richards, H. J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer druckerei GmbH , Hanover. 252 pages.

1989 Hydrological Diary

Abstract

January 11th-16th: A series of active depressions following a north-easterly track around a persistent anticyclone over Europe brought several heavy rainfall episodes to northern Scotland. In the upper Spey valley, a total of 148 mm fell over four days at Glenshero - an estimated return period in excess of 100 years was ascribed to this event. Further downstream at Kingussie precipitation was particularly heavy on the 13 th when 71 mm was recorded over eight hours. The intense rainfall on already saturated catchments caused rapid runoff and flooding throughout a large part of the central Highlands; in the uplands meltwater contributed significantly to the spate conditions. Return periods of about 15 years were attributed to the floods in the headwater tributaries of the River Spey. The Inverugie gauging station (on the River Ugie) registered its second highest flow in a 37year record. Peak flows on the Rivers Nevis and Lochy were unprecedented; on the latter a flow in excess of $1400 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$ was recorded at Camisky. Several rivers in the Highland Region recorded their highest January peak discharge on record; the Conon, gauged at Moy Bridge, registered a peak flow which greatly exceeded its previous January maximum. Inundation of agricultural land was widespread and transport disruption severe At Spean Bridge near Fort William, the railway track was undermined as floodwaters washed out ballast leaving the track unsupported over a considerable length.

February

Sth-8th: On the 5th, a vigorous depression intensified over Iceland and an associated warm front tracked across Scotland followed by a cold front on a strong south-westerly airstream. Rainfall was extremely heavy and prolonged in parts of Scotland. Several 'very rare' daily rainfalls were recorded in the Highland Region (see page 8). On the 5 th, 170 mm fell at Kinlochewe - a return period of greater than 1000 years was associated with the event. Further south at Kinloch Hourn, the total rainfall during the 5th and 6th was 306 mm - the highest 2-day rainfall ever recorded in Britain. Notable 2-day rainfalls of 285 mm and 261 mm were also recorded at raingauges close to Loch Lochy. Return periods ascribed to these 2 -day events were well in excess of 1000 years. The rainfall combined with snowmelt resulted in some exceptional discharges - a peak flow of $704 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$ was registered on the Conon (at Moy Bridge), some 230 m 's 'greater than the existing February maximum. Severe flooding occurred in Strathconon and residents in low-lying properties along the lower Conon were evacuated; many roads were blocked by landslides. At Inverness, flows in the River Ness exceeded $700 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$ and the 127 -year old Ness railway viaduct collapsed isolating the railway network north of the river. The following day a peak flow of $801 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$ was recorded; the highest peak discharge recorded on the Ness - by $180 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$ - since flow gauging was instigated at Ness-side in 1953. Emergency sandbagging limited the overbank flow and contained the threat of a severe fluvial/tidal inundation. In the headwaters of the River Tay some of the highest discharges since the development of the hydro-electric power schemes were recorded. The River Lyon, gauged at Comrie Bridge, and the Tummel, gauged at Port-na-craig, both recorded new maximum peak flows - in records extending back to 1972 and 1973 respectively. The close coincidence of flood peaks on the Tay and Tummel resulted in widespread inundation of agricultural land and damage to property downstream of the confluence. Near the estuary, the high tide exacerbated the situation and contributed to localised flooding in Perth.

17th: A complex frontal system associated with an Atlantic depression moved over western areas of the British Isles. Rainfall was especially heavy in South Wales and many rivers draining the Brecon Beacons recorded their highest February flow on record.

24th: An Atlantic depression tracked eastwards across southern England. In Devon the Rivers Axe and Otter both registered maximum peak February flows - in records extending back more than 26 years.

March

4th-10th: Frontal systems associated with a complex area of low pressure in the Atlantic crossed the British Isles bringing widespread, heavy rainfall to the western regions. More than 50 mm was recorded on the 8 th at Nantmoor, subsequently the River Glaslyn registered its highest daily mean flow in a record commencing in 1961. Just to the north, the River Gwryrfai also recorded a new maximum daily mean flow. In Cumbria, new maximum discharges were measured on the Haweswater Beck and the River Eamont and, in the headwaters of the Tweed, the Rivers Teviot, Ale Water and Tima Water established new instantaneous peak flows for March in records extending back 27,18 and 17 years respectively.

14th: Many places received heavy rainfall as Atlantic depressions moved rapidly eastwards across the UK. In Princetown (Devon), a daily rainfall of 54 mm was recorded. The Rivers Lynher, gauged at Pillaton Mill and the Yealm, gauged at Puslinch, recorded new maximum March discharges - both records commence in 1963.

22nd-24th: A sequence of active frontal systems brought heavy rainfall to much of Scotland. In Lothian, the North Esk (at Dalkeith Palace) registered a peak discharge greater than twice the previous highest March maximum - in a 13 -year record.

April

Unsettled weather conditions and several episodes of prolonged steady rainfall helped to further ease the water resources situation which had been gradually improving since mid-February.

May

High temperatures and exceptionally low rainfall during the month caused the drought to re-intensify. A new minimum monthly flow (for any month) was registered on the Tees at Middleton-in-Teesdale (in a 19-year record) and the Yorkshire Derwent closely approached its lowest May runoff total in 16 years of record.

19th: A strengthening anticyclone centred over the North Sca with a residual front close to the Scottish Borders resulted in hot, overcast conditions in the Pennines. As warm humid air developed south of the front an intense and very localised storm was experienced in the headwaters of the River Calder above Halifax. At 1500 BST a storm occurred in the vicinity of the Walshaw Dean Reservoir and lasted around two hours. A single daily raingauge, on a rather exposed site close to Walshaw Dean Lodge, filled to capacity; equivalent to about 193 mm - the largest rainfall of that duration ever registered in the UK (as with the great majority of large magnitude events reservations have been expressed over the accuracy of this measurement but geomorphological and other evidence testify to a storm of extraordinary magnitude ${ }^{1,2}$). The storm tracked south-eastwards towards Halifax and a second remarkable fall was recorded at Northowram - 83 mm in two hours which has an estimated return period of greater than 1000 years. Generally however, storm totals in the area were modest - four km to the south-west of Walshaw Dean Reservoir a daily total of only 7 mm was measured. Headwater streams were particularly affected - a peak discharge rate of $29 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was estimated for a $4.8 \mathrm{~km}^{2}$ catchment adjacent to Walshaw Dean drained by the River Clough - equivalent to a runoff of 26 mm per hour, which would qualify the event as one of the most notable floods in the UK. Levels in the Hebden Water rose dramatically to spate conditions carrying away trees and demolishing foot-bridges. The Luddendon Brook rose 3.5 m in 20 minutes and flood damage was severe in the village of Luddendon - surface drainage was unable to cope with the extreme conditions and vehicles were washed away as the brook engulfed the main street. In Halifax similar problems occurred as the Hebble Brook overtopped its banks. Overall the flood. damage was estimated at several million pounds.

June

Hot and dry conditions prevailed during much of June and in those catchments with little natural storage, river flow recessions, which had been established since April, continued unabated. Rivers draining much of lowland England continued to benefit from significant baseflow support following aquifer recharge in the spring.

July

Several rivers in northern England, southern Scotland and Northern Ireland registered new minimum monthly flows.

6th: An area of low pressure moved northwards into southern Britain giving rise to heavy thunderstorms. At Aldermaston, Berkshire, over 75 mm of rain fell during the night of the 5 th/6th. Two ornamental lakes burst their banks and several properties were flooded. Daily rainfall totals of 85 mm and 64 mm were recorded at Oswestry (Shropshire) and at Yeovilton (Somerset) respectively causing extensive surface flooding.

30th: A cold front moved south-eastwards crossing the whole of the UK; its passage resulted in heavy rainfall in a number of areas. In Humberside over 50 mm fell in 15 hours causing local flooding. Suffolk and Essex were also affected and surface runoff produced modest flow increases in a few East Anglian rivers.

August

Frontal systems on the western seaboard brought abundant rainfall to western Scotland and north-west England during the month. River flows in these areas rose in response. Elsewhere flows continued their seasonal decline.

September

10th-14th: Low pressure moved slowly northwards into southern England bringing unsettled weather with severe localised thunderstorms. Rainfall, particularly in the South-West, exceeded the infiltration capacity of the soil and caused river levels to rise dramatically. Flows in the River Dart, gauged at Austins Bridge, for example, exceeded 21 m 's ' on the 14 th ; six days earlier it had recorded its lowest daily mean flow of the year ($0.835 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$). Drainage systems were overloaded in many parts of southern Britain and localised flooding was common.

October

A sequence of depressions and associated frontal systems affected the UK during the month, particularly from the 20 th onwards, bringing heavy rainfall mainly to northern and western areas. The River W ye at Ddol Farm recorded a daily mean flow, on the 28 th , over $50 \mathrm{~m}^{\prime} \mathrm{s}^{-1}$ greater than its previous maximum - in a record which extends back to 1937. In Northern Ireland many rivers recorded their highest daily mean flow for the year during the month. Floodplain inundation was widespread and transport disruption severe. By way of contrast, in the Southern NRA region flows on the Rother (at Udiam) fell below the previous minimum - in a 28-year record - for ten days in the first half of the month. More notably, the River Combehaven (at Crowhurst), which has a 20 -year record, remained below the pre- 1989 minimum flow for 51 days during the period from the 9 th of August to the end of October.

November

From the 10 th, high pressure extending from western Europe dominated weather patterns over the UK and steep recessions once again characterised relatively impermeable catchments. Several rivers, particularly in the east of the UK, recorded their lowest November runoff on record. In Yorkshire, the Costa Beck registered a new minimum monthly flow (in a 20 -year record) at Gatehouses. Groundwater levels in the South and East continued to fall and many monitoring boreholes recorded levels close to, or below, their minimum for late November.

December

Anticyclonic conditions persisted for the first 10 days of the month - substantial river flow recessions, continuing from November were evident over wide areas of the country. Many rivers recorded their lowest December daily mean flows on record. The River Severn, gauged at Bewdley since 1921, recorded 10 days below its minimum December flow.

10th-26th: A series of vigorous Atlantic fronts crossed much of the UK resulting in persistent and heavy rainfall. The 15 days up to the 24th were the second wettest such sequence at W allingford in a 28 -year record; prior to the 10 th, no rainfall had been received for 30 days. Rivers exhibited abrupt increases in flow and groundwater levels began a late seasonal upturn. In Berkshire the Kennet, which registered new December minima for the first 11 days of the month, recorded a daily mean discharge on the 21 st which is unsurpassed in December since 1972. Floodplain inundation was common in the south of Britain and transport disruption considerable.

[^0]
THE 1988/89 DROUGHT A Hydrological Review

M. L. LeEs, S. J. BRYANT and T. J. MARSH
Institute of Hydrology

The very dry and exceptionally warm late autumn and early winter in 1988 gave rise to considerable concern regarding the water resources outlook. In order to chan the progress of the developing drought and to assess regional variations in its intensity, the Department of the Environment requested that the Institute of Hydrology and the British Geological Survey undertake a hydrological monitoring programme and provide monthly reports dealing with rainfall, river flows and groundwater levels throughout England and Wales (coverage was subsequently extended to include Scotland). Hydrometric data for these reports are provided principally by the regional divisions of the National Rivers Authority (NRA) and the River Purification Boards (RPBs). Rainfall, evaporation and soil moisture information are provided by the Meteorological Office. Monthly Hydrological Summaries have been provided routinely since fanuary 1989 and much of the material featured in the following article was assembled initially as part of the monitoring programme.

Over wide areas, the drought was well into its development phase by Ganuary 1989 and undervent a sharp amelioration at the end of the year. Unusually therefore, the calendar year provides a productive, if incomplete, timeframe within which to examine the drought's extent and severity. Consequently the 'Hydrological review of 1989' (pages 3 to 29) constitutes a valuable source of additional material; reference to various figures and tables in the review is made in the following article.

Hydrological Background

For its size, the UK experiences large regional variations in rainfall. The higher rainfall totals are associated with the maritime west, with the east within the lee of the rain shadow from the Scottish Highlands, Pennines and Welsh mountains - becoming progressively drier with decreasing elevation. Annual average rainfalls vary from about 500 mm around the Thames estuary to more than 4000 mm in parts of the Scottish mountains, the Lake District and Snowdonia. Whilst in a global context UK rainfall may be considered to be evenly distributed, seasonal contrasts are appreciable, especially in the west where heavier falls are experienced through the winter, the wettest months being November to January. The contrasts are less strong in the drier areas, where August or November are typically the wettest months and spring the driest season.

A substantial proportion of the rainfall is accounted for by evaporative losses. Evaporation may occur directly from the soil, from open water surfaces, or as transpiration from plants. Knowledge of the soil moisture status and evapotranspiration rates are essential factors in any evaluation of water resources. Potential evaporation (PE) is the maximum evaporation which would occur from a continuous vegetative cover. amply supplied with moisture. PE is a function of solar radiation, temperature, windspeed and humidity. It is most strongly influenced by radiation and temperature and the pattern is distinctly. cyclical, with a peak normally in June or July. Typically, only 10-20 per cent of evaporation occurs during the winter halfyear (October - March). In a normal year annual potential evaporation totals would be between 350
and 550 mm , and be greatest in the south and east of the country, especially in coastal areas where windspeed is an important factor. A decrease is seen northwards and with increasing altitude; 350 mm being typical over the Scottish mountains. The ability of evapotranspiration to proceed at its potential rate is reduced as a result of drying soil conditions, the ability of vegetation to take up water and the measures plants take to restrict transpiration under such conditions. Thus in the absence of favourable soil moisture conditions, actual evaporation (AE) will fall below PE.

The change in evaporation rates through the year imposes a marked seasonality upon river flows, reservoir replenishment and groundwater recharge, each is concentrated in the winter and early spring. During the late spring and summer, the high evaporation demand causes a decline in river flows and leads to a progressive drying of the soil profile and the creation of what is termed a Soil Moisture Deficit (SMD); surface runoff and infiltration to aquifers is greatly reduced. When plant activity and evaporation slackens in the autumn, the higher rainfalls wet-up the soil profile and the cycle begins again.

It is arguable that Great Britain's geology and weather patterns are in harmony as regards the provision of water supply. Thus the older, more indurated lithologies characterising the west and north-west, with their relief and flashy runoff response from predominantly impermeable bedrock, are graced with substantial and regular amounts of precipitation from Atlantic frontal systems. The relief affords opportunities for natural or artificial
impoundment to protect against supply difficulties during unusually long recessions. In eastern, southeastern and southern areas, many of the more youthful lithologies are less tectonically disturbed, have been less well-cemented and show favourable water transmission characteristics; examples include the Jurassic and Cretaceous limestones and the Triassic, Cretaceous and Tertiary sandstones. These ensure more moderate river responses and a longer delay between seasonal aquifer recharge and baseflow to rivers, plus the opportunity for direct abstraction from aquifers, independent, as it were, of the obtaining meteorological conditions. The significantly lower rainfall in these areas may be separated into a winter component - providing aquifer recharge and insurance for the following summer via river and spring flow - and the summer half-year rainfall, the principal impact of which is in controlling the soil moisture conditions.

As a consequence of the geographical contrasts, regional susceptibility to drought varies considerably. In the west, very low rainfall for two or three months encourages steep recessions and leads to very low river flows; large rainfall deficiencies over longer periods of, say, five to seven months starting in the spring, puts stress upon reservoir systems (usually full at the end of the winter), excepting the largest. In the east, such deficiencies may normally be borne more easily (although the strains upon soil moisture conditions and plant growth may be severe). A substantial reduction in winter recharge can provoke more stress, leading to reduced baseflows during the following summer and a lower base to commence the next recharge cycle. Such a winter drought could also be a problem in the west but as winter rainfall depths are considerable even in a dry year, reservoirs are still likely to fill to acceptable levels which should provide supplies through all but severe spring and summer droughts.

The water industry, faced with the likely problems associated with the above drought scenarios, has developed a range of storage mechanisms and operational strategies to maintain levels of service linked to the probabilities of various drought intensities. Extending the role of reservoirs from direct supply impoundments to river regulators, the development of pumped storage schemes, increased networking of supply sources, cross-basin transfers, the integration of groundwater and surface water supply schemes and the evaluation of stand-by emergency sources together provide a flexible range of options to combat the effect of droughts. It follows therefore that the relationship between rainfall deficiencies, stress on water resources and impacts on the community is not a direct one.

The 1988/89 Drought in Summary

Following a wet winter and early spring in 1988, rainfall amounts were generally below average until
the end of the year. A very wet July was limited in its hydrological effectiveness owing to high evaporative demand. The resources situation in the autumn was thus rather worse than the year's rainfall accumulation implied. Rainfall from August was modest through until the end of the year and, as a result, the anticipated strong seasonal increase in runoff and recharge rates failed to materialise. The winter of 1988/89 was exceptionally dry and by mid-February the English lowlands and the easternmost areas of Scotland were suffering from a notable drought. River flows were unseasonably low, groundwater levels had registered no appreciable seasonal upturns and the mild nature of the winter admitted record, or near record, evaporation rates creating large, persistent soil moisture deficits. A late-winter/earlyspring interlude of substantial rainfall allowed reservoirs to fill, river flow rates to increase and some recharge of groundwater storage, whilst not satisfying all SMDs. Subsequently, the year to September was characterised by substantial hydrological recessions in most of the UK, a continuation of record evaporation levels and the widespread development of large SMDs. October rainfall lessened drought conditions in the west but deficiencies continued elsewhere into early December, when the conditions in many areas were those of severe drought. A distinct recovery generally took place in December but the water resources outlook in the east entering 1990 was fragile and the prospect of a second dry winter was a daunting one, especially in those areas predominantly dependent upon ground-water supplies.

Details of the development, extent and intensity of the 1988/89 drought are presented below within a hydrological framework.

Rainfall

The National Perspective

Whilst the seeds of the 1989 drought were sown in the late spring of 1988 in the lowlands, for England and Wales as a whole the rainfall deficiency beginning in August was more significant. By the middle of autumn, an incipient drought could be recognised but a general intensification occurred through the early winter. Table 6 shows four periods which best characterise the development of the 1988/9 drought. The ranking relates to the England and Wales rainfall series from 1766.

The November to January rainfall total was the lowest since 1879 and eclipsed the twentieth century record established during the 1933/34 drought. Particularly notable 1988/89 rainfall deficiencies may also be recognised over the seven and 13 -month periods ending in November 1989. Within both timeframes - which broadly represent the duration over which the drought achieved its greatest intensity - the drought of 1920/21 may be seen as more

TABLE 6 ENGLAND AND WALES RAINFALL FOR SELECTED PERIODS

Rank	Aug.Jan.		Nov.-Jan:		May-Nov,		Nov--Nov.	
	mm	Year	mm	Year	mm	Year	mm	Year
1	325	1784/5	91	1879/80	344	1921	690	1920/1
2	328	1854/5	120	1857/8	355	1947	697	1853/4
3	343	1834/5	126	1829/30	371	1989	736	1780/1
4	345	1933/4	135	1780/1	385	1978	740	1933/4
5	349	1788/9	140	1788/9	391	1919	743	1802/3
6	364	1904/5	142	1988/9	395	1884	744	1857/5
7	371	1879/80	147	1812/3	399	1964	777	1988/9
8	376	1975/6	150	1783/4	402	1959	781	1784/5
9	377	1972/3	156	1933/4	406	1975	791	1892/3
10	379	1988/9	160	1834/5	410	1803	793	1863/4

For the Great Britain series beginning in 1869 , the accumulations and rankings for 1988/9 are:

$$
572 \text { 35th } 248 \text { 10th } 487 \text { 9th } 1076 \text { 27th }
$$

severe; over the longer duration the 1933/34 drought was also more intense. Considering intermediate and longer durations there are a substantial number of droughts which were more severe and/or of longer duration than the 1989 event. 1975/76 is outstanding in this regard but, taking as a yardstick the 1988/89 November to November accumulated rainfall total for England and Wales, there have been
about 35 occasions this century on which lower 13month rainfalls (starting in any month) have been recorded; the droughts of $1920 / 21,1933 / 34,1938$, 1944,1949 and $1955 / 56$, as well as $1975 / 76$, figure in this category.

A Regional View

Figures 8 and 9 show maps of rainfall, expressed as a percentage of the 1941-70 average, over the UK for November 1988 to November 1989 and MayNovember 1989. As with most droughts, a distinct regional dimension to the 1988/89 event is readily apparent. Certain common features may be recognised in both figures and also the annual percentage rainfall map (Figure 1 - see page 4). The largest areas of maximum rainfall deficiency are found along the eastern seaboard from the Wash to the Aberdeen coast; large deficiencies also typify the south-eastern corner from Great Yarmouth to Chesil Beach, the Eden valley in Cumbria and the Solway Firth, and the Welsh Borders around Herefordshire, all of which remained dry or relatively dry. In contrast, rainfalls were generally higher in Leicestershire and Northamptonshire, within a wetter band extending from the Bristol Channel to north Norfolk, with a

Figure 8. Rainfall from November 1988 to November 1989 as a percentage of the thirteen-month (1941-70) mean.

Figure 9. Rainfall from May to November 1989 as a percentage of the seven-month (1941-70) mean.
spur extending to the south-east Essex coast. Twothirds of the UK recorded less than 70 per cent of average rainfall for the May to November period, with a further quarter below 80 per cent. The only area which was above average for all of the periods was western Scotland.

Table 7 provides national and regional rainfall statistics with estimates of return periods for a selection of durations corresponding to the periods of greatest drought severity and the wet period February to April 1989. In terms of rainfall anomalies over the widest area, the drought showed its greatest severity over the duration May-September 1989. Return period estimates are based on tables provided by the Meteorological Office; the tables reflect rainfall variability over the period 1911-70 only and assume a sensibly stable climate. The quoted return periods refer to the specified range of months only; the return period for any ' n ' month sequence (as opposed to a particular sequence) would be about an order of magnitude less'.

It is understandable that the extent of the deficiencies at the end of January provoked comparison with the droughts of 1933/4 and 1975/6 in central southern England. Although the greatest deficiencies over the November to January period were in these areas, it was notably dry along the whole of the eastern seaboard from the Grampian coast southwards. Western Scotland was experiencing very different conditions with a substantial steepening of the rainfall gradient towards the east.

The onset of heavy rainfall (from January in Scotland, mid-February in England and Wales) dispelled fears of a repeat of the 1975/6 winter halfyear (the driest since 1879/80), although rainfall was not as heavy in the east, particularly the northeast of Scotland. The late spring saw a further transformation with the hot and dry conditions, which were a feature of the weather in May, persisting through the summer. Over England and Wales, the May to September period in 1989 ranks second driest, behind 1959, in the record from 1766; notably severe droughts could be recognised in both the northernmost and the Southern NRA regions (see Table 7).

From October through into December, rainfall was very much more abundant in the west of Britain than in the east. Rainfall accumulations of increasing rarity characterised many areas close to the eastern seaboard. Of particular note are the Northumbria NRA and the Tweed and North East RPB areas for the May to November period - each of the seven months falls were below average in these areas - and given the easterly rainfall gradient it is to be expected that even more extreme deficiencies would have developed in some low-lying coastal districts.

With the exception of parts of Scotland, the sustained, heavy rainfall which began in midDecember brought about a cessation of severe drought conditions; the dry weather continued in
eastern Scotland through to the end of the year but rainfall in January and, especially, February effectively terminated the drought over all but a few extreme eastern districts of great Britain.

As regards the overall magnitude of the drought, the Southern NRA region registered the longest return periods for the widest range of durations; in England and Wales only the Northumbria region was comparable. In Scotland, the drought achieved its greatest severity over durations ending in December. Indeed, the Tweed and North East RPB areas recorded only two months above average rainfall in the period November 1988-December 1989, establishing a number of very large rainfall deficiencies associated with exceptionally long return periods, as presented below:

	1)u02:100	Ran?\{all * $1: 1$	Return perkav yess
North East RPB	Apr. $89-$ Dec. 89	63	180-220
	May 89 - Dec. 89	61	180-220
	Nov. 88 - Dec. 89	71	>200
Tweed RPB	Apr. 89 - Dec. 89	64	180-220

Catchment Rainfall

The rarities of the 1988/89 regional rainfall accumulations discussed above are supported by areal rainfall figures for catchments above gauging stations (see Table 8 - the location of most of rivers may be found on Figure 16). Of 102 catchments examined from Hydrometric Areas 9 through to 83 (see Frontispiece), with record lengths generally greater than 20 years, 72 recorded new NovemberJanuary minima; 17 were of rank 2, 5 of rank 3 and 8 had less exceptional falls. For May-September, 54 recorded new minima and 24 ranked second. Given that the weight of a 'driest' ranking should be moderated by the length of record and that the stations selected are those which personify best the drought conditions during 1988/89, the uniformity of the 'driest' rankings for the four 'dry' accumulations provide evidence of a substantial drought embracing much of lowland England, with significant rainfall deficiencies extending north, west and north-east into Scotland. Of the regions not well represented by catchments in Table 8, the area from Leicestershire and Northamptonshire eastwards generally had more than 50 per cent of average rainfall but, for November 1988 to January 1989, catchment accumulations were, mostly, still the lowest on record.

The February to April period of heavy rain (January to March in Scotland) is seen to be amongst the wettest on record for these three months, with new maxima being recorded along the south coast

TABLE 7 NATIONAL AND REGIONAI. RAINFALL ACCUMULATIONS FOR SELECTED DURATIONS FTTH ESTIMATES OF RETURN PERIODS

		$\begin{gathered} 11 / 88 \\ 101 / 89 \end{gathered}$	$\begin{aligned} & R P \text { R } \\ & (y m) \end{aligned}$	$\begin{gathered} 2 / 69 \\ 101 / 59 \end{gathered}$	R. \mathbf{P}. (rrs)	$\begin{gathered} 3 / 59 \\ 109 / 69 \end{gathered}$	$\begin{aligned} & \text { RP. } \\ & \text { (! } \mathrm{P} \text {) } \end{aligned}$	$\begin{gathered} 3 / 89 \\ 1011 / 59 \end{gathered}$	$\begin{aligned} & R P \\ & (\mathrm{~m}) \end{aligned}$	$\begin{gathered} 11 / 85 \\ 1011 / 89 \end{gathered}$	$\begin{aligned} & \text { RP } \\ & (\mathrm{gr}) \end{aligned}$
England and	mm	142		264		212		371		737	
Wales	\%la	52	20-50	145	20-50	57	20-30	67	20-50	77	20-50

NRA Regions

Nortb West	mm	261		373		297		526		1160	
	\%1t2	74	5-10	162	50-100	58	$50 \cdot 100$	70	20-50	87	5-10
Northumbria	mm	158		206		189		295		659	
	\%la	63	10-20	119		49	>200	54	>200	68	180-200
Yorkshire	mm	129		226		192		314		669	
	\%la	54	20-50	131	5-10	55	50-100	62	50-100	73	30-70
Severn-Trent	mm	105		224		200		33.4		663	
	\%olta	48	20-50	143	10-20	60	20-50	70		78	10-20
Anglan	mm	87		160		176		253		500	
	9612	52	20-50	131	5-10	65		66	20-50	74	20-50
Thames	mm	78		206		162		264		548	
	\%lta	39	$50-100$	148	10-20	54	3070	00	30-70	71	30-70
Southern	mm	81		226		140		269		576	
	\%olta	32	100-200	144	10-20	45	100-200	56	80-120	65	100-200
Wessex	mm	98		261		182		341		700	
	961ta	36	50-100	153		53	20-50	65	20-50	72	2050
South West	mm	180		359		252		500		1039	
	\%1ta	45	20-50	147	20-50	58	20-50	73	10-20	78	$10 \cdot 20$
Welsh		230		413		293		582		1225	
	qulta	54	20-50	154	20-50	57	50-70	74	10-20	83	5-10
		$\begin{aligned} & 1: / 88 \\ & 101 / 89 \end{aligned}$	$\begin{aligned} & \text { R P } \\ & (y: s) \end{aligned}$	$\begin{gathered} 1 / 89 \\ 10+/ 89 \end{gathered}$	$\begin{aligned} & R P \\ & (: \times r) \end{aligned}$	$\begin{gathered} 589 \\ 109.59 \end{gathered}$	$\begin{aligned} & \text { RP } \\ & (\mathrm{y}: \mathrm{s}) \end{aligned}$	$\begin{gathered} \text { 5/49 } \\ : 0: 1 / 89 \end{gathered}$	$\begin{aligned} & K P \\ & (y m) \end{aligned}$	$\begin{gathered} :: / 58 \\ \text { to } 1: / 89 \end{gathered}$	$\begin{aligned} & R P \\ & \text { (vs) } \end{aligned}$
Scotland	mm	454		633		458		705		1649	
	96la	104	2-5	190	$\gg 200$	82	5-10	83	10	105	2-5

RPBs

Highland	mm	664		907		563		900		2212	
	\%olta	126	5-10	221	$\gg 200$	87	5-10	90		117	10-20
North East	mm	169		248		280		396		815	
	\%lta	57	20-50	109		65	20-50	63	100-200	72	100-200
Tay	mm	334		526		353		540		1289	
	\%ola	90		180	>200	69	10-20	72		94	
Forth	mm	291		442		340		491		1135	
	\%olta	92		180	$\gg-200$	71	10-20	71	$20 \cdot 50$	93	
Tweed	mm	189		281		277		375		822	
	\%lta	66	10-20	128	5-10	63	20-50	59	180-220	74	50-100
Solway	mm	361		491		401		605		1405	
	\%ela	83		152	20-50	. 20	10-20	70	20-50	89	
Clyde	mm	538		723		571		888		1999	
	\%lta	105	2-5	191	$\geq->200$	88	2-5	89	2-5	109	2-5

TABLE 8 CATCHMENT RAINFALL AND RLNOFF FOR SEI.ECTED DCRATIONS IN 1988/89

River ${ }^{\prime}$ Station name	Rainfa:l								Ruaor:									
	$\begin{gathered} 11 / 85 \\ 10: / 89 \end{gathered}$		$\begin{gathered} 2 / 89 \\ \text { 10 1/89 } \end{gathered}$		3/89		$\begin{gathered} 11 / 85 \\ 1011 / 89 \end{gathered}$		$\begin{gathered} 11 / 24 \\ : 0: 189 \end{gathered}$		$\begin{gathered} 2 / 50 \\ 104140 \end{gathered}$		$\begin{gathered} 5 / 89 \\ 109 / 89 \end{gathered}$		$\begin{gathered} 11 / 84 \\ \text { to } 11 / 89 \end{gathered}$			
			109															
	mm	rank			mm	rank	mm	rank	mm	rank	mm	rank			mm	rank	mm	rank
	\%olta	/yrs	\%lta	/yrs	\%lta	/yrs	\%olta	'yrs	Folta	'yrs			\%olta	/yrs	Folta	/yrs		
Ligie at	106	1	139	12	218	2	560	1	105	3	71	2	58	3	259	2		
Inverugie	43	128	86	$/ 29$	70	/ 29	63	128	58	18	54	/19	57	19	51	118		
Whiteadder Water at	120	3	163	11	234	2	587	2	89	5	78	3	43	1	223	2		
Hutton Castle	53	/28	93	$/ 29$	69	/29	66	128	63	121	57	120	47	$/ 20$	51	120		
Leven at	103	1	137	10	185	2	524	1	60	4	46	2	30	2	147	1		
Leven Bridge	49	/30	86	/30	59	130	63	130	50	130	44	130	48	$/ 29$	43	129		
Foston Beck at	90	1	150	- 14	158	1	488	1	35	4	30	3	45	4	121	2		
Foston Mill	41	130	94	130	56	130	61	130	40	128	21	129	35	$/ 29$	30	127		
Derwent at	104	1	163	7	173	1	549	1	68	2	65	2	42	1	191	1		
Buttercrambe	47	$/ 17$	94	18	56	118	65	117	60	17	54	16	51.	116	52	116		
Trent at	144	1	2.41	17	231	1	803	-1	74	1	104	8	45	1	278	1		
Stoke on Trent	56	/21	124	/21	67	121	83	/21	49	122	86	120	43	/22	63	120		
L.ud at	90	1	149	9	155	1	501	1.	46	7	46.	3	53	4	156	3		
Louth	45.	$/ 21$	91	$/ 22$	56	122	66	121	71	122	43	/21	59	121	55	/21		
Waveney at	93	1	158	21	151	2	462	1	29	5	53	15	15	2	102	4		
Needham Mill	55	/26	124	/26	61	125	71	/25	44	125	93	/26	52	126	59	125		
Thames at	79	1	210	93	165	3	. 566	3	37	12	83	50	42	31	178	18		
Kingston (nat.)	38	1106	140	1106	57	/106	72	$/ 106$	42	1107.		/107	73	107	66	/106		
Mole at	76	1	238	26	141	1	567	1	23	1	116	16	15	2	163	1		
Gatwick Airport	30	/ 28	133	$/ 28$	45	128	63	128	15	129	108	128	24	/28	42	128		
Great Stour at	89	1	209	22	156	1	575	1	42	1	69	5	48	2	177	1		
Horton	39	/ 25	131	/25	55	125	69	/25	41	/25	72	/24	59	/24	54	122		
Ouse at	83	1	237	26	126	1	574	1	33	1	117	9	51	6	218	2		
Gold Bridge	30	129	129	$/ 29$	40	129	60	$/ 29$	21	129	91	/29	67	129	50	127		
Lymington at	79	1	273	29	149	1	653	1	37	1	118	18	13	1	188	2		
Brockenhurst Park	29	129	149	$/ 29$	51	129	71	129	29	129	109	129	23	128	54	128		
Itchen at	81	1	261	30	155	1	638	1	79	1	105	4	125	3	352	2		
Highbridge/Allbrook	30	/29	142	/31	50	131	67	128	64	132	71	131	77	/31	70	131		
Taw at	188	1	343	30	280	2	1059	4	142	2	238	22	39	4	557	3		
Umberleigh	48	131	137	/31	72	131	83	/31	44	132	120	131	37	131	71	131		
Brue at	112	1	272	22	205	1	730	1	78	2	171	20	38	4	308	2		
Lovington	42	/25	140	/ 25	58	125	75	/25	43	/26	121	/25	44	/25	64	125		
Severn at	136	3	282	-63	204	4	793	8	88	3	176	54	40	1	350	4		
Bewdley	48	169	147	169	57	169	78	169	47	169	130	168	42	169	69	168		
Teme at	97	1	226	- 25	182	1	671	-1	64	2	144	19	27	1	259	3		
Tenbury	38	133	117	133	55	133	71	133	39	134	103	133	38	/33	59	133		
Frome at	76	1	160	13	179	1	569	1	26	2	76	4	28	2	138	2		
Yarkhill	37	121	104	/21	62	121	73	121	25	121	74	/20	55	/21	49	120		
Cynon at	288	2	645	32	317	1	1678	4	220	2	536	31	83	1	1139	7		
Abercynon	45	132	164	132	54	132	83	132	41	132	164.	. $/ 31$	33	/31	82	130		
Lune at	364	5	509	27	322	1	1497	6	330	4	446	27	90	1	1091	7		
Caton	79	125	169	$/ 27$	57	127	91	125	75	/26	167	127	30	$/ 27$	87	125		
Eden at	255	2	383	25	198	1	1041	1	204	3	302	24	46	1	645	5		
Temple Sowerty	67	125	159	$/ 25$	47	125	81	125	67	125	158	125	28	/25	78	125		

into Devon and Cornwall and a common occurrence in Wales and the North-West.

Generally, examinations of drought intensity are conducted in terms of departures from the average rainfall or comparisons with corresponding historical rainfal! totals. However, in actual rainfall amounts some exceptionally low seven and 13 -month accumulations were recorded in 1988/89. At the catchment scale - and this may serve to exclude some of the lowest coastal accumulations - the driest areas over the May-September period were the Sussex Ouse (126 mm) and the Medway (134 mm); for November 1988 to November 1989 the lowest falls were from the Ore in Suffolk (447 mm) and the Beam in Essex (449 mm).

For individual raingauges, some exceptionally rare accumulations were reported; mention should be made of three records in the North-East examined by Wheeler ${ }^{2}$. Thus Durham University (record starts 1850), Whittle Dean Reservoir (1850) and Sunderland (1859) all recorded their lowest calendar year totals on record, Sunderland by à substantial margin. Shown below are the annual totals, previous lowest and return period estimates (adapted from Wheeler).

Stauon		Wisa	$\begin{aligned} & \text { Prev } \\ & \text { mm } \end{aligned}$		Return Permat in yea:s
Durham	416	64	440	1959	$100-150$
Sunderland	353	55	417	1949	$\gg 200$
Whittle Dean	426	65	451	1959	$\therefore 200$

Evaporation and Soil Moisture Deficit

Evaporative Losses in 1989

Much of Great Britain registered annual mean temperatures for 1989 between 1 and 1.5 degrees Celsius greater than the 1951-80 average and the central England temperature series contains no warmer year in a 330-year record. High temperatures and a record number of sunshine hours encouraged high rates of evaporative loss in 1989. Figure 3 (page 9) shows the PE totals for a network of climatological stations throughout the UK. In south-western England some PE totals exceeded 750 mm ; such totals are more typical of southern Europe. The MORECS (Meteorological Office Rainfall and Evaporation Calculation System) ${ }^{3}$ model produces estimates of hydrological variables for a network of 40 km squares over Great Britain and uses a modified version of the Penman-Monteith equation to calculate PE for a range of surface covers. The model has been used retrospectively to produce a data series extending back to 1961. Examination of this dataset
reveals that PE totals for 1989 were at record or near record levels over much of Britain. Annual PE totals generally exceeded those totals recorded in 1976. In Scotland and Wales, however, some 1989 PE totals fell short of those for 1984.

Figure 10 illustrates MORECS AE totals for 1989. AE is a conservative variable, generally constrained from very high values by the restrictions imposed by deficiencies in soil moisture and from very low ones by virtue of the limited period over which the soil moisture restrictions inhibit AE. Of particular interest is the effect the rainfall distribution in 1989 had upon AE estimates. The moist latespring allowed evaporation close to the porential rate over wide areas, as significant shortfalls of AE to PE do not generally occur until SMDs exceed 60-70 mm . The rapid rise of SMDs through the late spring into the summer severely curtailed evaporation in the East and South-East and large shortfalls of AE below PE developed, the highest since 1976. The annual shortfall of AE below PE is illustrated in Figure 11; shortfalls were commonly in excess of 140 mm throughout lowland England, the north-eastern seaboard and in the South-West. In the MORECS square encompassing part of the River Itchen catchment in Hampshire, a shortfall of over 260 mm was recorded, some 220 mm greater than that recorded during 1988 - another. very warm year.

Very high AE totals were recorded in the west in 1989 and generally totals decreased south-eastwards, although much of the south and north-east of Britain recorded values above 90 per cent of the 1961-88 average. The apparent inconsistency between the high percentage of average $A E$ and the high summer shortfalls of AE below PE may be explained by the well above average evaporation rates in the winter of 1988/9 and the autumn and winter of 1989/90. For 1989 as a whole, variations in AE totals were subdued in comparison with 1976, as then the drier winter and spring allowed AE shortfalls to develop earlier. For comparison, 1989 AE totals were in the range $450-500 \mathrm{~mm}$; those in $1976,300-550 \mathrm{~mm}$.

Evaporation and the Development of SMDs 1988/89

During the winter period - October 1988 to March 1989 - exceptionally mild temperatures gave rise to record or near record PE totals throughout much of Britain. PE totals for the winter period were in excess of 20 per cent of the average annual total. AE totals were similarly high, as water availability was such as to allow evaporation at, or close to, the potential rate.

Figure 4 (see page 10) shows the development of the shortfall of AE below PE throughout the year for 5 MORECS squares, compared with the more modest conditions over 1985 to 1988.

Figure 11 Shortfall (in mm) of actual evaporation (for grass) relative to potential evaporation for 1989.

Figure 12. Soil moisture deficits for grass at the end of September 1989.

Figure 10 Actual evaporation (for grass) in mm for 1989.

Figure 13. Soil moisture deficits at the end of November 1989 expressed as a percentage of the corresponding long term average.

Data Source: MORECS.

In the north-west of England and south-western Scotland (see Square 55 in Figure 4) the shortfall was high compared with the previous four years bui fell below that of 1984. The remaining squares all demonstrate significantly greater shortfalls persisting late into the year.

The development of SMDs is also illustrated in Figure 4 (see page 10), again using standard MORECS data. Square 108, covering the Lower Trent valley, exhibited persistently bigh SMDs throughout the winter, a characteristic shared with other areas including Humberside, Lincolnshire, the Wash and the Lower Thames valley. The Januaryend deficit of 66 mm for grass (the SMD values presented here all relate to a grass cover - higher deficits would apply for a forest cover) was the highest estimated since the start of the record (1961); the previous maximum was 39 mm in January 1976. Despite a relatively wet spring significant SMDs existed throughout the year in some eastern locations and exceptionally high deficits were registered during the summer and autumn. In Kent (MORECS square 174), SMD remained above average for the whole year, with deficits above 100 mm being attained from June to September. Adjacent to the Thames estuary values exceeded 100 mm from May to November. Further north in Northumberland (MORECS square 66) SMDs reached above 110 mm for two months; previously only single months in a year had registered over 100 mm (1976 and 1984). In the west of the country (MORECS square 134), a new maximum SMD value of 120 mm was recorded in August.

Over the summer months, June to August, calculated SMDs for most of southern Britain and the eastern seaboard exceeded the 1961 to 1988 mean by some $20-80 \mathrm{~mm}$. In western Scotland and northwestern England in particular, rainfall during June, and again in August, restrained the development of unusually large deficits. In southern England the maximum deficit of 125 mm (for the grass model) was reached as early as July. By the end of August, 48 of the 190 MORECS squares were registering such maxima. The areal extent of SMD maxima for grass, aggregated irrespective of the time of year, were almost identical for both 1989 and 1976, the pattern being similar to that illustrated on Figure 12 but extending westwards towards the Welsh Borders and south-westwards to Exeter. In August 1976, however, deficits considerably greater than 125 mm were calculated for ground cover other than grass and, in soil moisture terms, the drought was substantially more severe than in 1989. However, heavy rain early in the autumn of 1976 led to a brisk decline in SMDs whereas in 1989 soils remained very dry and the extent of the area at maximum deficit by the end of September was remarkable.

During October SMDs were reduced - substantially so in the west, where deficits were eliminated in some parts by the end of the month. However, as a result of anticyclonic conditions during November, SMDs began to build once more and achieved a very unusual magnitude entering the 1989/90 winter especially in the east. Figure 13 illustrates actual deficits for November expressed as differences from the 1961-88 average. The largest difference may be recognised in East Anglia and on the north-eastern seaboard, with a general reduction in anomalies moving westwards. Whilst a sharp decline in deficits occurred overall in December, many deficits remained above the December average in the east of Britain at year-end. In the MORECS square 66 (associated with the River Leven catchment), a December SMD value some 40 mm above the longterm average was calculated.

The atypically high temperature and evaporation levels in 1989 were instrumental in reinforcing a substantial rainfall deficiency. The associated growth and decay of SMDs followed an unusual pattern with very high deficits - relative to the seasonal average both at the start and near the end of the year.

Runoff

Runoff from Great Britain as a whole was not significantly below average in 1989, principally reflecting the abundant runoff from the Scottish Highlands throughout a large part of the year. For England and Wales however, the annual runoff total was easily the lowest since 1976. Whilst spatial contrasts were subdued compared with Scotland, clear regional differences may be identified in Figure 5 (page 13), confirmed by the annual runoff section of Table 4 (page 15). The range of catchments recording new minimum annual runoff totals serves to delineate the zone of severe runoff deficiency quite effectively: along much of the eastern seaboard and the south coast to Dorset. Catchments in eastern Scotland and Northumberland south to Yorkshire feature prominently in Table 4, often displaying shortfalls of 40 per cent and above between the 1989 annual runoff totals and previous minima.

It is fortuitous for annual runoff totals to provide more than a general guide to a drought's intensity but the eight hydrographs for 1989 in Figure 14 enable the main features of the drought to be identified; the selected stations reflect the more seriously affected areas (the fainter envelopes are the daily maxima and minima from the previous record). The notable features are: the depressed runoff levels through into February; the higher proportional runoff in the South and West, compared with the East, as evidenced by the scale of the flow upturns during the spring; the duration within the year when the flows

Figure 14. 1989 River flow hydrographs.
were around the minimum recorded; the recovery in the west in September and October; the singular November-December recession, followed by the sharp end of year upturn*.

In some catchments, the onset of below average flow conditions was established early in 1988 and continued substantially unaltered through to the end of 1989; thus the Medway recorded only two monthly flows above average during February 1988 to December 1989 and the Itchen registered 17 months below average from August 1988. The depressed flows at the start and the end of the year caused a loss of riparian amenity as headwaters in baseflow-fed streams contracted. As an example of an affected bourne stream, the Lavant, gauged at Graylingwell (Hampshire), near the Chilgrove borehole, (see also Figure 15) recorded its highest ever flow in February 1988 but was dry by August and remained dry through to the end of 1989, the longest dry sequence since 1973.

Regional and Catchment Runoff

Monthly runoff minima were superseded in 1989 over a wide area, notably.in January, July, September and November; some new absolute minima were established (see Table 4, page 15). November commonly saw lowered monthly minima in some eastern Scottish and north-eastern English catchments and a number of annual minimum daily flows were recorded in November. A few were registered in December but, from the second week, some remarkable river flow recoveries occurred - the Wye in Buckingshamshire and the Quinn in Hertfordshire, for example, recorded their maximum daily flow of the year within 10 days of recording their minimum! Such transformations are rare in the CK and in southern England were somewhat reminiscent of the sharp upturn in runoff rates associated with the record November rainfalls which terminated the 1929 drought.

Table 8 contains runoff accumulations for selected durations and their rank within the period of record (alongside the corresponding rainfall data). In the South and the East, both responsive and baseflow-fed rivers registered record low flow accumulations for the three months beginning in November 1988, the responsive streams owing to the paucity of rainfall and the baseflow streams because of a combination of a long groundwater recession from the spring of 1988 and the lack of winter recharge.

[^1]In relatively few cases was the high rainfall of the February to April period translated into equivalently ranked runoff. This could be anticipated given the unusually dry antecedent conditions for early spring rainfall. Runoff accumulations encompassed a broad range from being among the driest on record (east Scottisb coast, the North-East and baseflow rivers in much of lowland England) to being well within the normal range - wide areas of the Midlands, East Anglia and the South West. Only in those areas which tapped the wetter west did rivers record amongst their highest February to April flows. These included the Tay and the Tweed in eastern Scotland and rivers in western W/ales, Lancashire and Cumbria.

The most exceptional accumulations for MaySeptember 1989 were in the North-East, the Welsh Borders and north western England. Runoff from East Anglia and the East Midlands was below average but generally unremarkable. In southern and eastern Britain, the preponderance of second ranked entries in Table 8 is associated with the dominant influence of the 1976 drought on low flow records; even though 1976 saw heavy rainfall in September, it was not effective enough to generate a widespread runoff recovery. A comparable situation obtained in the east from Yorkshire through to the Grampian region, where many accumulations ranked behind the droughts of 1972/73 and 1964/65.

The combined effects of the very wet early spring and wet autumn in 1989 is noticeable in the 13-month accumulations in the north-west of England, moderating the often exceptionally dry early winter and summer conditions. Elsewhere, rather rarer 13 -month totals were observed; East Anglia and the East Midlands recorded substantially below average totals. Many catchments close to the eastern seaboard and along the south coast registered their lowest, or second lowest, November-November runoff total; over half of more than 100 catchments examined were of rank 1 or 2.

As the catchments featured in the tables and hydrographs were chosen as being representative of their regions, some remarkable statistics have not been featured. The upper Leven - a tributary of the Tees - gauged at Easby since 1971, spent 180 days of 1989 below previous minimum daily values and recorded six new monthly minima in the process. The River Seven which drains from the North York Moors, had a 1989 mean flow less than half that of the previous minimum. The Foston Beck, on the Yorkshire Chalk, spent from April 1988 through to November 1989 in recession, recording new monthly minima for the last three months of 1989 . The upper Trent at Stoke recorded new minima for a whole range of accumulations, including the calendar year 1989, and longer periods, for example from April 1988 to November 1989.

Low Flow Frequency Analysis

Whilst the tabulated rankings give a rough guide to the rarity of accumulations, it is possible to examine frequencies of occurrence of low flow periods within a more rigorous statistical framework. The measurement of low river flows is subject to many influences which may limit its accuracy, from the hydrometric aspects, such as imprecise stage-discharge relations owing to weed growth and/or insensitive controls, to the effects of artificial influences on the flow regime. It is unfortunate that it is not easy to quantify the latter effects for particular flow sequences and that more data sets are not available for rivers where the net impact of abstractions and discharges is minimal.

Frequencies of occurrence for low flow durations may be derived using the methodology recommended in the Low Flow Studies'. The estimation procedure needs to be approached with caution owing to: the accuracy of low flow measurements (see above); variation in record quality over time; and the
inadequacies of short record lengths (and the associated need for uncertain extrapolation), the accomodation of outliers and the omission of historical droughts. Table 9 provides aguide to the likely frequency of river flows in a selection of catchments for a number of durations from 30 to 365 days. The method has the benefit of choosing the lowest sequences from the whole (or selected portion) of the record regardless of arbitrary month boundaries but sequences have to begin and end within the calendar year.

The Scottish and north-eastern English catchments show increasing return periods with longer durations, a feature common to the rainfall pattern, whilst in the west of England and in Wales the highest return periods are associated with the medium durations; the decrease in rarity for the long durations is a reflection of the wetter autumn in these areas. There is relatively little difference in the return periods estimates across the durations between the more responsive and the baseflow dominated catchments.

TABLE 9 LOW FLOW FREQUENCY ANALYSIS: RANKING OF VARIOUS L.OW FLOW DURATIONS IN 1989 AND ESTIMATES OF ASSOCIATED RETURN PERIODS

Statoon Nuraber	Dutation (Day)										2:0		365		Recora t.engt:	Bas Five lasex
	Ra:lk	R P	Rark	R P	Rark	R P	Rack	R p	Rar:k	R ?	Raik	R P	R2:12	R P		
10002	4	5	3	5-10	3	5-10	3	5-10	2	10	2	10.25	2	50-100	18	0.60
21022	4	5	4	5	3	5-10	2	1025	2	10-25	1	10.25	2	10-25	20	0.52
25004	2	25-50	2	10-25	1	25-50	1	2550	1	10-25	1	25	1	50	29	0.53
25005	3	10-25	2	25	3	10-25	2	10-25	2	10-25	2	10-25	1	50	29	0.43
26003	2	25.50	2	25-50	2	25-50	2	25-50	2	25-50	2	25-50	2	50	27	0.95
27041	2	10-25	2	25-50	1	25-50	1	25-50	1	25.50	1	25-50	1	2550	16	0.68
28040	1	25-50	1	$50 \cdot 100$	1	25-50	1	50	-1	2550	2	10-25	1	10-25	21	0.48
29003	3	10	3	5-10	2	10	2	10-25	2	10	2	10	3	10-25	21	0.90
34006	4	5-10	3	5-10	2	10-25	1	25-50	1	25	1	50	1	50	26	0.48
39001 nat.**	2	5-10	2	5-10	2	10-25	2	1025	2	25	2	25-50	2	5-10	39	0.64
39054	2	10	3	10	3	10-25	3	25	2	10-25	2	25	2	10-25	28	0.25
40011	3	10-25	3	25-50	2	25	1	25-50	1	25. 50	1	25-50	2	25-50	2.4	0.69
42003	3	10-25	3	25-50	3	25	2	25-50	2	25	2	25.	4	10-25	28	0.36
42010	2	25	2	25-50	2	25-50	2	50	2	25-50	3	50	3	50	31	0.97
46003	3	5-10	3	10-25	4	10-25	4	5-10	5	10-10	0	5.10	5	5-10	31	0.52
50001	5	10	3	10-25	3	10	4	10	6	10	6	510	8	2-5	31	0.42
52010	2	5-10	2	10.25	2	10	2	10	2	5-10	1	25	2	10-25	25	0.47
54008	2	10-25	2	25-50	2	25-50	2	25	1	10-25	3	10-25	7	10-25	33	0.57
55018	2	10-25	2	25	2	25	2	25-50	- 1	25-50	2	25-50	4	5-10	20	0.50
57004	4	5-10	3	10-25	1	25	1	50	1	25. 50	6	10	14	2	30	0.42
72004	3	10	7	5	3	10-25	2	10-25	2	10-25	2	10-25	8	5	27	0.32
76005	2	25-50	1	25-50	1	25-50	1	50	1	25-50	2	25	5	5-10	25	0.37

R.P. Return Period
*Flow record from 1951 (when mapor structural improvement to the gauging weir was completed) only used in the analysis.
The featured stations montor flows on the following rivers:
10002-Ugie; 21022-Whteadder; 25004-Skerue; 25005-l.even; 26003-Foston Beck; 27041 - Derwent (Yorks); 28040-Trent; 29003-Lud; 34006-Waveney; 39001-Thantes; 39054 - Mole; 40011-Grez: Stour (Kent); 42003 - Lymington; 42010 - Itchen; 40003 - Dart; 50001-Taw; 52010 - Brue; 54008 - Teme; 55018 - Frome (Herefordshire); 57004-Cynon; 72004 - Lune; 76005 - Eden.

Historical Comparisons

Because of the effect of natural and artificial storages in individual catchments, the frequencies of the low flow events for comparable periods may differ substantially from those derived from rainfall data. A major difficulty in providing a satisfactory historical perspective for the recent runoff variability is the dearth of long flows records to provide an adequate geographical coverage; the average record length on the Surface Water Archive is about 22 years. The flow frequency estimation procedure discussed above generally allows valid inter-drought comparisons at the shorter durations. As they increase beyond six months however, the procedure begins to favour drought profiles which fall within a calendar year and address less adequately those droughts which extend over periods substantially greater than one year. For the stations featured in Table 9, the drought of 1976 is widely ranked first for durations of 150 days and less and is still the dominant drought at 180 days, particularly in central and southern England. Return periods for 1976 flows are characteristically 25 to 50 years and above for these durations; for the Itchen and Thames, all durations bar the 365 -day have return periods in excess of 100 years. From the Yorkshire coast northwards, 1976 is supplanted by 1972, 1973 and 1964 as the dominant event(s) at the shorter durations, although return periods are generally less than 100 years. In these areas at the longer durations, the 1989 data indicate a drought of notable severity.

Ranking runoff accumulations from lengthy station records provides a means of generally assessing the relative severity of historical drought events. Table 10 features three catchments, two representing the most affected areas in the east and one in the west. The River Dee record demonstrates that 1988/89 was one of the most significant droughts to have affected eastern Scotland. The effect of two exceptionally dry autumn periods is evident in the 13 -month ranking for the Foston Beck and the primacy of the 1988/89 runoff accumulations for the Kent Stour serves to emphasise both the regional intensity and the persistence of the hydrological drought. As with the Foston Beck, a less extreme picture may have emerged had flow data been available for the 1959 drought and the sequence of very dry episodes in the 1940s.

Compared with previous droughts, 1988/89 over its widest compass is the most severe since 1975/76. As this compass is close to a calendar year (November 1988 to mid-December 1989), it is interesting to note that whilst runoff for 1989 in England and Wales is substantially lower than for the preceding 12 years, runoff in 1976, 1975 and 1973 (especially) was less than in 1989; the 1971 total was closely equivalent. Incorporation of the 1975/76, 1984 and 1988/89 data into the flow frequency analyses has shortened some of the return periods ascribed to the

TABLE 10 MINIMUM RLNOFF TOTALS FOR SELECTED GAUGING STATIONS

dee at TOODEND STARTS 19.9		foston beck AY FOSTON MILI. starts ioso		great stour at horto: STARTS 1904	
November 1988-January 1989					
mm	year	mm	year	mm	year
168	1958/59	31	1964/65	42	1988/89
177	1975/76	32	1973/74	55	1971/72
178	1964/65	34	1972/73	59	1973/74
189	1969/70	35	1988/89	63	1972/73
195	1972/73	40	1962/63	73	1980/81
199	1988/89	43	1977/78	77	1978/79

$\begin{gathered} \text { May - December } \\ 1989 \end{gathered}$		May - November			
mm	year	mm	year	mm	year
279	1989	41	1973	68	1989
314	1937	56	1989	84	1972
324	1955	77	1976	85	1973
326	1971	85	1965	93	1985
340	1975	116	1971	99	1984
353	1933	123	1982	105	1965
November 1988. December 1989		November 1988-November 1989			
mm	year	mm	year	mm	year
685	1972/73	101	1988/89	178	1988/89
735	1988/89	121	1964/65	195	1972/73
755	1970/71	139	1962/63	- 213	1971/72
763	1963/64	282	1961/62	251	1975/76
827	1948/49	286	1970/71	264	1983/84
849	1964/65	291	1971/72	277	1980/81

1975/76 event, but for extent, severity and duration the 1975/76 event remans the dominant drought event in central and southern England. In the northeast of Great Britain, however, the 1988/89 drought should be considered as one of the most severe this century.

A remarkable feature of the 1988/89 runoff pattern is the two successive autumns where runoff rates have declined to very low levels. The protracted delays in the seasonal recovery in runoff rates have implications both for river amenity and for water resources.

Groundwater

In relation to groundwater resources the most salient feature of the 1989 drought was the dramatic contrast between standing water levels at the end-ofyear and the near-record levels obtaining, over wide areas, during the spring of 1988. The singular magnitude of storage depletion over this period is illustrated in Table 11 which includes an assessment of the overall 1988/89 range of groundwater levels for selected borcholes together with its rank relative to other two-year declines in the water-table (from
the peak of one recharge cycle to the minimum of the next cycle, typically $20-22$ months). In most of the listed wells there is no precedent for the recent transformation. Equally, recharge over the 1988/89 winter half-year was notably modest and inordinately delayed. The delay was beneficial in the sense that groundwater levels in April were, generally, rising at a time when the spring recessions are normally well established. As a consequence watertables were only moderately depressed through the summer but the fragility of the groundwater outlook through 1989 may be gauged by considering the implications of an even more protracted delay before rainfall rates increased in mid-February. A further delay of six to eight weeks would have robbed the rainfall of much of its hydrological effectiveness (as evaporation rates climbed) and made for a substantially more sombre resources prognosis.

Whilst a distinct seasonal cycle is the most pronounced feature of groundwater level time series, many display a considerable degree of persistence also - levels commonly remaining above, or below, the seasonal mean for extended periods. Annual recharge amounts are, clearly, the critical factor in determining water-table height (although pumping
effects may be influential locally and regionally) but the level from which the winter recovery needs to be generated, together with the steepness and duration of the seasonal recessions are very important also. Natural groundwater base levels - below which no outflow via springs and streams will occur - may, in some aquifers, only be approached after recessions extending well beyond the normal six to eight months between recharge episodes.

Once groundwater levels become exceptionally depressed, even above average recharge may well not restore water-tables to their normal spring level. Thus, the very limited recharge experienced in 1989 needs to be considered in the perspective of the notably low levels registered in the autumn and early winter of 1988/89 and the sustained recessions following the cessation of infiltration in the spring. In western areas, where heavy October rainfall signalled the onset of the 1989/90 recharge season, the minimum 1989 groundwater levels were generally well within the normal range. By contrast, close to the eastern seaboard late-1989 levels approached the lowest on record and in some localities, from Kent to Northumberland, the December levels were unprecedented.

TABLE 11 1988/89 BOREHOLE LEVEL RECOVERIES AND 1989 MINIMA COMPARED WITH THE PERIOD OF RECORD

Borebule/ aquife:	Firs: year ol :ecord	Average Recoven (m)	19×8.9 rexiveny (W of average)	1.ang let:n :Tir.iricm (n:; ald da:c	Bow M.r.u:Tum (:T.) ame tatr	Yean mi:b ตางเง:ง ต $\cdots!980$ mar.	$\begin{aligned} & \text { Re:1;ge (m) } \\ & 1388-89 \end{aligned}$	Rank of 19:5859 dr; Hetror. ${ }^{*}$
Dalton Holme	1889	7.10	40	10.73	10.73	None	11	
Chalk and CGS				14/12/89	14/12			
Little Brocklesby	1926			4.56	5.77	1 (1976)		
Chalk and CGS				24/09/76	15/12			
Washpit Farm	1950	2.95		41.24	42.13			
Chalk and LGS				24/11/78	04/12			
Rockley Chalk and LGS	1933	10.91		Dry	Dry			
Compton House	1894	21.76		27.62	28.30			
Chalk and LGS				14/10/76	20/12			
Little Bucket Farm	1971	21.09		56.77	5781			
Chalk and LGS				01/11/76	06/12			
Lime Kıln Way	- 1969	0.92		124.09	124.27	1 (1976)		
Chalk and UGS				01/10/76	09/12			
New Red Ition	1964	9.21		3.29	7.20	1 (1976)	1^{7}	
L.ancolnshire				24/08/76	18/12			
Limestone								
Llanfair D.C. Permo-Triassic sandstone	1972	0.74		78.85	79.25	1 (1976)	1	
				01/09/76	23/10			
Bussels No. 7A	1971			22.90	23.19			
Permo-Triassic sandstone				31/08/76	14/10			\div
UGS Upper Greens								$1-\mathrm{min}$.

1989 Borehole Levels in Comparison to Historical Data

The Dalton Holme borehole, which penetrates the Chalk and Upper Greensand aquifer on the outcrop of the Yorkshire Wolds, is representative of monitoring sites in those districts where the 1989 groundwater drought achieved its greatest severity. As Table 12 indicates, the 1988/89 recharge was one of the lowest in the last 30 years and particularly meagre in the context of the post-1976 period. Nonetheless, appreciably lower recharge volumes (see page 173 for details of the procedures used to assess the annual replenishment) were recorded in the winters of $1904 / 05,1913 / 14,1948 / 49,1964 / 65$ and 1972/73. Only in 1964/65 however was the water-table, prior to the onset of the winter recharge, at the extremely depressed levels recorded at the end of 1988. Moreover, 1965 was blessed, especially in northern England, with an early autumn surge in recharge which rapidly brought levels up to the seasonal norm. 1989 witnessed merely a repeat of the excessive delay in the seasonal upturn which occurred the previous year. As a consequence of this

TABLE 12 PERCENTAGES OF THE MEAN ANNUAL REPLENISHMENT FOR GROUNDWATER OBSERVATION WELIS IN ENGLAND AND WALES 1960/61 TO 1988/89

Sise	Dalor. He!me	Compton Hows	Nex ReJ Lion
Aquater	Cbalt	Casalk	1.ancxashice 1.mes:one
1960/61	122	141	---
1961/62	73	75	---
1962/63	98	97	---
1963/64	74	96	---
1964/65	24	42	56
1965/66	148	132	150
1966/67	43	92	52
1967/68	58	86	50
1968/69	88	108	99
1969/70	105	100	91
1970/71	84	107	88
1971/72	103	94	84
1972/73	15	28	42
1973/74	77	107	68
1974/75	90	136	137
1975/76	27	<10	<10
1976/77	161	145	221
1977/78	103	95	95
1978/79	146	98	137
1979/80	125	97	111
1980/81	105	112	82
1981/82	73	77	60
1982/83	98	123	84
1983/84	136	95	100
1984/85	108	100	66
1985/86	112	83	80
1986/87	119	102	83
1987/88	120	. 144	91
1988/89	40	64	50

combination of circumstances, groundwater levels at Dalton Holme - where routine monitoring began in 1889 - had, by early December declined to the lowest ever measured; only in 1905 were broadiy similar end-of-year levels recorded. Figure 15 shows the variations in level over the 1988/89 period compared with the groundwater hydrographs for a selection of historical drought periods. The exceptional magnitude of the drought in this region is confirmed by the water-table levels for the Little Brocklesby borehole (south of the Humber); there is no parallel to the December 1989 minimum in a 64 -year record. The water resources repercussions of these remarkably depressed levels may be felt for a number of years with the prospects for 1990 being especially brittle. That said, it should be noted that at Dalton Holme the two heaviest recharge episodes in recent years, those of 1965/66 and 1976/77, have both followed very severe droughts and generated two of the three greatest year-on-year recoveries this century.

Late-1989 borehole levels in Humberside, Lincolnshire and a few other districts close to the east and south coasts, testified to a drought intensity rarely matched in the twentieth century. Elsewhere, the drought was less severe but late-autumn/earlywinter levels throughout most of the principal aquifers had generally declined below any registered over the previous decade at least. In large part this reflects the healthy state of groundwater resources in the period following the 1976 drought; the annual percentage replenishments listed in Table 12 provide confirmation but serve also, in the case of the New Red Lion site, to underscore the wider range of departures from the mean to be expected in those areas when, even in a normal year, rainfall amounts exceed evaporative losses only by a small margin. In such situations, persistent SMDs through into the following year can severely restrict the time available for recharge before evaporation rates accelerate, once more, in the late spring.

The contrast between 1989 and the rest of the decade appears in sharp relief on the groundwater level hydrograph for the Woodhouse Grange borehole in the Permo-Triassic sandstones near Doncaster (see Figure 18) - all of the 1989 level data are below the minimum for the 1980-88 period. Levels at Woodhouse Grange are, however, somewhat atypical of the natural rise and fall of the water-table throughout most of England and Wales. Normally, annual minima are recorded in early autumn in the west and progressively later towards the east where the need to eliminate significant SMDs delays the recommencement of infiltration. Where recharge is largely through coarse fissures, water-table response is often rather more rapid but in some deep Chalk wells there may be a lag of several months whilst the infiltrate negotiates the unsaturated zone above the water-table. Thus comparisons of groundwater levels for an individual month need to be undertaken with caution. Notwithstanding the above effects, and with the exception of some of the deepest wells, there
was an unusual measure of consistency in the timing of the 1989 minima throughout the Chalk and Upper Greensand aquifer (see Table 11); the great majority of the 1989 recessions continued well into December. Leaving aside 1988 in a few areas, there is no recent winter parallel to the levels registered prior to the 1989/90 upturn. Water-tables were depressed to a comparable degree in 1978 in parts of East Anglia (for example at the Fairfields and Washpit Farm sites) but for most observation boreholes commissioned in the last 25 years, the 1989 minimum ranks as the lowest (for December) on record.

Figure 15. Groundwater levels in 1988/89 compared to those for other selected drought periods.

Where lengthier historical records are available, the late-1989 values are, mostly, seen to be less extraordinary but remain notable. At Rockley (near Marlborough), for instance, the borehole went dry (briefly) in December 1989 for the first time since the 1975/76 drought; routine monitoring began in 1933 and over the ensuing period the water-table also fell below the base of the well in 1945, 1943 and, probably, in 1938. Considering lowland England as a whole, late autumn/early winter levels similar to those of 1989 were recorded over wide areas in the 1959 and 1964 droughts but, in some southern areas, the December levels were almost as remarkable as those in the East Midlands and the North-East. There is no lower December minimum in the 96 -year groundwater level record for the Chalk borehole at Compton in West Sussex than that registered in 1989, although it closely equates to that for 1973. 1989 levels at the nearby Chilgrove well were even more outstanding. The Chilgrove House site has the longest record for any borehole on the national groundwater archive - levels have been measured without significant interruption since 1836; this is thought to be the longest aquifer record in the world. Only in 1973, over this period, has an equivalent winter minimum to that of 1989 been recorded; the December 1989 levels fell to within a few centimetres of the absolute minimum (registered in 1976).

A significantly less severe picture of drought severity emerges from a nationwide examination of annual minimum levels. Of the index boreholes featured on Figure 17 (see page 171), only Dalton Holme recorded levels below the 1976 minimum which, typically, occurred in September or October. The substantially greater severity of the 1976 drought throughout much of central and southern Britain is evidenced by the much lengthier periods during which water-tables stood at extremely low levels. At Rockley, for instance, the borehole was dry for 12 months - longer than the combined dry periods throughout the rest of the record. Except in the extreme east, and some southern districts, lower levels than those experienced in 1989 were registered in the droughts of 1964 and 1959 and, more commonly in the 1940s when water-tables were depressed for extended periods. At the deep Therfield Rectory borehole, where the water-table responds only sluggishly to infiltration, levels remained below the unremarkable 1989 minimum from 1942 to 1951 with the exception of a short interlude in 1947. Interestingly, the heavy recharge responsible for the very high spring levels in 1947 heralded a prolonged recession, an episode of meagre winter recharge and depressed groundwater levels in the latter half of 1948; this probably constitutes the nearest analogue to the 1988/89 situation over a large proportion of England and Wales. Extending the historical perspective further, it is clear from the Chilgrove record that the 1850 s was also a period of persistently low, to very low, groundwater levels.

Conclusion

A persistent tendency for active low pressure systems to follow a more northerly track was a major contributory cause of the 1989 drought which embraced much of Western Europe. Over the British Isles this synoptic background was associated with a strengthening of the normal west-to-east rainfall gradient and a reinforcement of rain-shadow effects. High temperatures and evaporation rates were exacerbating factors. Severe drought conditions were limited in extent and variable in duration, but significantly, the most intense runoff and recharge deficiencies were experienced in those parts of Great Britain which on average experience the driest conditions. Parts of eastern Scotland and Northumberland were afflicted by meteorological droughts with associated return periods in excess of 200 years (for seven or eight months starting in the spring). With a relatively small population and low demand, Scotland experienced no significant threat to water resources. In part this reflects the substantially lower drought intensity in the headwaters of many eastward-draining rivers from which public supplies are abstracted. In north-east England, storage in Kielder Reservoir - which provides security against all but the most extreme, and sustained, rainfall deficiencies - reached its lowest level since its construction in 1982 and other smaller reservoirs were heavily drawn down but few supply problems were reported.

In southern Britain the drought had a significant impact from the late spring through until the early winter. The imposition of hose-pipe bans was widespread in the South, South-West, South Wales and the Midlands affecting 12.5 million consumers by the end of August; bans were extended to Yorkshire in October. Not all hose-pipe bans were introduced principally in response to diminishing resources. Many, especially over the May-July period, were related to distribution frailties often associated with surges in peak demand arising from garden watering. Drought Orders to modify river abstractions or reduce compensation flows .. requiring approval from the Secretary of State for the Environment - were in operation by the end of July in the South, South-West and North-West, extending to the Midlands and Yorkshire in September; Anglian Water applied for their only Drought Order of the year in December. The threat of stand-pipe deployment, to drastically limit demand, in North Cornwall was averted by the September rainfall.

Only in a few eastern districts did the 1989 drought approach the severity of the 1976 event when, over the 16 months beginning in May 1975, parts of central and southern England recorded only
marginally more than half the average rainfall; by comparison the largest regional rainfall deficiencies in the 1989 drought were around 35 per cent over a 13 -month period. In some regions more compelling comparisons may be made with the summer and autumn conditions experienced in 1964, 1972 and 1975. The drought in each of these years was the precursor of substantially more severe conditions in the following year arising in large part from the failure of the winter rain to replenish depressed water resources. The full significance of the 1989 drought may only become evident through, and possibly beyond, 1990.

The occurrence of any very notable hydrological event at a time of burgeoning scientific interest in climate change is bound to focus attention on possible causative links. Whilst it is possible to point to certain features of the 1989 drought - notably the elevated temperatures, persistently high soil moisture deficits and the disruption to the familiar seasonal variations in rainfall, runoff and recharge as being consistent with a number of climate change scenarios, it would be premature to attribute the unusual conditions experienced in 1989 to the Greenhouse Effect. On the one hand the implications for rainfall and water resources of global temperature changes are poorly understood at the continental scale and, as yet, can be only dimly perceived at the national scale. On the other, the national variability of the UK climate is such that it is inappropriate to attempt to identify a trend based upon hydrological conditions experienced over only a few years. Concern regarding the adequacy of the UK's water resources have been expressed before, for instance in the 1930s and, especially, in the mid-1970s. This was an understandable response not only to the extraordinary drought of 1976 but to the less intense events of 1972, 1973 and 1975. Following the termination of the 1976 drought, however, the UK's weather entered a wet phase characterised by notably wet winters particularly in western and northern Britain.

Whether the recent abrupt, and dramatic, changes in weather patterns represent a volatile interlude within the wide range of normal variability or signal a move towards a more erratic climatic regime, remains to be determined. What the 1989 drought has demonstrated is the continuing vulnerability of those parts of the UK with the lowest rates of runoff and recharge to sustained rainfall deficiencies. With population, industry and intensive agriculture concentrated in such areas and water demand rising, the water industry faces a major challenge in restricting the community impact of future droughts especially if the evaporation rates and soil moisture conditions experienced in 1989 become more typical.

Acknowledgements

The continuing co-operation of the measuring authorities (see page 196) in the provision and validation of the hydrometric data upon which this report is based is gratefully acknowledged. Thanks are due also to Dr A. Gustard and Miss A. Wesselink who advised on the estimation of river flow return periods and Mr N. S. Reynard who developed the mapping system for use with the MORECS data. Mr R. A. Monkhouse and Miss P. Doorgakant (British Geological Survey) provided much of the groundwater data and advised on its interpretation.

References

1. Tabony, R. C. 1977. The variability \& long duration rainfall over Great Britain. Scientific Paper No. 37. Meteorological Office.
2. Wheeler, D.A. 1991. Water supply problems in north-east England as a result of the 1989 Drought. Geography (in press).
3. Jones, P.D. and Hulme, M. 1989. Temperatures over the United Kingdom during the period November 1988 to April 1989 compared with previous years. In: The Mild Winter (Ed. M.G.R. Cannell). NERC.
4. Thompson, N., Barric, I.A. and Ayles, M. 1981. The Meteorological Office rainfall and evaporation calculation system: MORECS, Hydrological Memorandum No. 45. Meteorological Office (HMSO).
5. Anon. 1981, Low Flow Studies. Institute of Hydrology.
6. Reynard, N.S., Arnell, N.W., Marsh, T.J. and Bryant S.J. 1990. Hydrological Characteristics of the Summer 1989 and Winter 1989/90. Institute of Hydrology (Report to the Institute of Terrestrial Ecology), NERC. 22 pages.

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At well over half the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less generally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in many areas. Typically, levels are recorded at 15 minute intervals and stored on-site for overnight transmission to allow the initial processing to be completed on the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
i. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's crosssectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The Surface Water Archive exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, project staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows (see page 101) are also tabulated for the River Thames at Kingston. Monthly flow data for a further 160 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 16) is provided on page 50 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given overleaf; those relating to the monthly data are given on page 102.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary
identifier of the station record on the Surface Water Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ireland has a unified numbering system from 1 to 40, commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area.

Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or fivedigit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the provision of river flow data to the Surface Water Archive. Most stations designated with 'Water Authority' codes in previous yearbooks have been transferred to the National Rivers Authority (see page 196). A list of measuring authority codes together with the corresponding names and addresses for all organisations currently contributing data to the Surface Water Archive appears on pages 196 to 198.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.
Note: Irish Grid references - which are italicised have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers - for instance, the use of catchwaters to increase reservoir yields - the actual contributing
area may differ appreciably from that defined by the topographical boundary. In consequence, the river flows whether augmented or diminished, may cause the runoff (as a depth in millimetres) values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the Surface Water Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in some areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sometimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day is also used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantancous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

$$
\begin{aligned}
& \text { Runoff in } \mathrm{mm}= \\
& \frac{\text { Average Flow in Cumecs } \times 86.4 \times \mathrm{n}}{\text { Catchment Area }\left(\mathrm{km}^{2}\right)}
\end{aligned}
$$

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Rainfall: The rainfall over the catchment in millimetres for each month. Except for the Institute of Hydrology's research catchments, each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all daily and monthly rainfall data available from the Meteorological Office. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. A computer program then calculates catchment rainfall by averaging the values at the grid points lying within the digitised boundary of the catchment.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authoritics may occur; these may be due to the different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage* of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stagedischarge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95% exceedance flows (see below) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

- As a consequence of leap years the runoff ard mean flow percer: age may not be identical.

Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the Surface Water Archive. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Reference to Volume IV of the Flood Studies Report' should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the Surface Water Archive.
$\mathbf{5 0 \%}$ exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors affecting flow regime

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which the net variation, i.e. the sum of abstractions and discharges, is assessed in order to derive the 'naturalised' flow from the gauged flow the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

[^2]
CODE EXPLANATION

N Natural, i.e., there are no abstractions and discharges, or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flow's are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow is regulated to suit the need for power generation.

ABBREYIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 200 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydro-
metric Register and Statistics 1981-5' (see page 199). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Gustard, A., Bullock, A. and Dixon, J.M. 1991. Estimating Low River Flows in the United Kingdom. Institute of Hydrology (in press).

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN

 THE RIVER FLOW SECTION| Station | riter same and station same | SEE |
| :---: | :---: | :---: |
| Nimber | | Page |
| 3003 | OYKEL AT EASTER TURNAIG | 103 |
| 4001 | CONON AT MOY bridcce | 103 |
| 7002 | FINDHORN AT FORRES | 103 |
| D 8006 | SPEEY AT BOAT O BRIG | 52 |
| 8007 | SPEY AT INVERTRUIM | 103 |
| 9001 | DEVERON AT AVOCHIE | 104 |
| 10002 | UGIE AT INVERLGIE | 104 |
| 11001 | DON AT PARKHILL | 104 |
| D 12001 | DEE AT KOODFND | 53 |
| 13007 | NORTH ESK AT LOGIE Mill | 104 |
| 13008 | SOIJIH ESK AT BRECHIN | 105 |
| 14001 | EDEN AT KEmback | 105 |
| D 15006 | TAY at batiathie | 54 |
| 15011 | LYON AT COMRIE BRIDGE | 105 |
| 16003 | RLiChill water at Clultybragiand | 105 |
| 16004 | EARN AT FORTEVIOT BRIDGE. | 106 |
| 17001 | CARRON AT HEADSWOOD | 106 |
| 17002 | LEVEN AT I.EVEN | 100 |
| 18003 | teith at bridge of teith | 106 |
| 18005 | alilan water at bridge of ali.an | 107 |
| D 19001 | Al.mond at craigiehal.l. | 55 |
| 20001 | TYNE AT EAST IINTON | 107 |
| 21006 | TWeed at bol.eside | 107 |
| D 21009 | TWFHD AT NORHAM | 50 |
| 21012 | TEviot at hamick | 107 |
| 21018 | LYNE mater at i.yne Station | 108 |
| 21022 | Whiteadder water at hltron | |
| | C.ASTLE | 108 |
| 1) 22001 | COQUET AT MORWICK | 57 |
| 22006 | blyth at hartford bridge | 108 |
| 23001 | TYNE AT BYMELL | 108 |
| D) 23004 | SOLTH TYNE AT haydon bridxie | 58 |
| 24004 | bedburi beck at brioblirn | 109 |
| 24009 | TEAR AT ChESTER I.E STREET | 109 |
| D 25001 | TEES AT BrOkEN SCAR | 59 |
| 25006 | greta at rutherford bridge | 109 |
| 25019 | I.EVFEN AT EASBY | 109 |
| 25020 | Skrinne at preston le skerne | 110 |
| 26003 | FOSTON BECK AT FOSTON MII, | 110 |
| 20005 | gypsey race at boynton | 110 |
| D) 27002 | wharfe at flini mill weir | 60 |
| 27007 | URE AT WESTWICK h.OCK | 110 |
| 27025 | ROTHFR AT WOODHOLSE MILL | 111 |
| 27030 | dearne at admick | 111 |
| D 27035 | AIRE AT KILDWICK BRIDGE | 61 |
| D 27041 | DERWENT AT BUTTEERCRAMBE | 62 |
| 27042 | DOVE AT Kirkby milis | 111 |
| 27043 | Wharfe at addingham | 111 |
| D 27053 | Nidd at mirstwith | 63 |
| 27059 | Laver at ripon | 112 |
| 27071 | SWALE AT CRAKEHILL | 112 |
| D 28009 | trent at colwick | 64 |
| 28018 | dove at marston on dove | 112 |
| 28024 | WREAKE AT SYSTON MILL | 112 |
| 28026 | ANKER AT POLESWORTH | 113 |
| 28031 | MANIFOLD AT ILAM | 113 |
| 28039 | rea at calthorpe park | 113 |
| 28067 | DERTENT AT CHLRCH WILNE | 113 |

Statio	er same and station same	SEE
slimber		Page
28050	Tame at liea marston lakes	114
28082	SOAR at littlethorpe	114
D 28085	DERUENT AT ST MARY'S BRIDGE	65
29003	LUD AT LOUTH	114
D 30001	Witham at Claypole mill	60
30004	Partiey lymi at partiney mill.	114
31002	glen at kates bridge (total)	15
31007	WELiAND at barrowden	115
32003	Harpers brook at old milit.	
	BRIDGE	115
D 32004	ISE BROOK AT HARROWDEN OLD	
	Mlli.	67
D 33002	BEDPFORD OLSE AT BEDFORD	68
33012	KYM AT MEAGRE FARM	115
33013	SAPISTON AT RECTORY BRIDGE	116
33024	CAM AT DERNFORD	116
33032	heacham at heacham	116
34001	YAREAT COLNEY	116
34003	BURE AT INGYORTH	117
D) 34006	Waveney at Needham mili.	69
35003	ALDE AT FARNHAM	117
D 36006	Stour at langhant	70
37001	RODING AT REDBRIDGE	117
37005	Colne at lexden	117
37010	BLACKWATER AT APPLEFORD BRIDGE	118
38001	I.EE AT FEILDES WEIR	118
1) 38003	mimram at panshancer park	71
38018	UPPER LEE AT WATER Hall	118
38021	TURKEY brook at al.baNy park	118
D) 39001	THAMES AT KINGSTON	72
39002	Thames at days weir	119
39005	BEVERIEY BROOK AT WIMBLEDON	
	COMMON	119
D 39007	blackwater at swalloowfiel.d	33
39014	ver at hansteads	119
39016	KENNET AT THEALE	119
39019	Lambourn at shat	120
D) 39020	COLNAT BIBLCRY	74
39021	CHERWELL AT ENSIOW MIIt.	120
39023	WYE AT HEDSOR	120
39029	TILLINGBOLRNE AT SHAI.FORD	120
39049	SILK Stream at colindeer liane	121
39069	mole at kinnersley manor	121
D 40003	medway at teston	75
+0004	ROTHERAT UDIAM	121
+0009	TEISE AT STONE BRIDGE	121
40011	great stour at horton	122
40012	Darent at hawley	122
41001	NuNNINGHAM Stream at tul.ey	
	BRIDGE	122
+1005	OUSE AT GOLD BRIDGE	122
41006	LCK AT ISFIELD	123
D 41016	CUCKMERE AT COW'bEECH	76
41019	arun at alfoldoean	123
41027	ROTHER AT PRINCES MARSH	123
+2003	LYMINGTON AT BROCKENHURST PARK	123

Figure 16. Gauging station location map.

Station	ruer mame and station mame	SF:E
simber		Pagt:
42004	TEST AT BROADLANDS	124
42006	MEON AT MISLINGFORD	124
42008	CHERTTON STRFAM AT SEW'ARIDS	
	BRIICiE	124
D 42010	ITCHEN AT HIGHBRIDGE AND	
	ALLBROOK	7
D 43005	AVON at amesbliky	78
+3006	Nadder at willow park	124
43007	STOLR AT THROOP Mill.	125
44002	PIDDILE AT BAGGS MIII.	125
D) 45001	EXE AT THORVERTON	79
45003	CLLM AT WOODMILI.	125
45004	AXE AT Whitford	125
46003	DART AT alistins gridge	126
D) 47001	Tamar at guinislake	30
47007	yealm at plisinich	126
47008	Thrlishei. at tinhay	126
\$8004	warleggan at trengoffe	126
\$8005	KENKY AT TRURO	127
48011	FOWEY AT RESTORMEI.	127
49001	Camel. AT DENBY	127
+9002	hayi.e AT St erth	127
D) 50001	TAW AT limberlemgh	81
50002	TORRIDGE AT TORRINGTON	128
D szoos	TONE AT RISHOPS HUlII.	$\varepsilon 2$
52007	parreitt at chistiboroligh	128
52010	brite at lovington	128
53004	CHEW AT COMPTON DANDO	128
53006	FROME (BRISTOL.) AT FRENCHAY	129
53007	FROME (SOMERSET) AT	
	TELLISFORD	129
D 53018	AVONAT BATHFORI)	83
D 5400t	StVERN AT BEWDLEY	84
1) 54002	AVON AT EVESHAM	85
54012	TERNAT Walcot	129
54019	AVON ATSTARETON	129
54020	PERRY AT YEATON	130
54022	SHCERN AT PI.YNIIMON FILIME	130
54029	TEMEAT KNIGHTSFORD BRIDGE	130
54034	WOW'LES BROOK AT DOWLES	130
54038	tanat at llanyblodvel	131
55008	WYE AT CEFN BRWY\%	131
55013	ARROW AT TITLEY Mill.	131
55014	LUGG AT BYTON	131
55018	FROME AT YARKHIt.I.	132
55023	WYE AT REDBROOK	132
D 55026	WYE AT DDOL FARM	86
1) 56001	liSk at Chaln bridge	87
56013	YSCIR AT PONTARYSCIR	132
57008	RHYMNEY AT I.IANEDERYN	132
58006	mellte at pont Nedorbchan	133
00002	Cothi at felin mynachisy	133
60003	TAFAT CIOG.Y-FRAN	133
00010	tyulat nantgaredig	133

Stamos	RINER Name and station same	SEE
Stimber		pace
D62001	TEIF: AT GLas teifl	88
6-4001	DYFi AT DYFl bridge	134
64002	DYSYNNI AT PONT-Y-GARTH	134
1) 65001	GIASI.YN AT BEDIDGELFRT	89
65005	ERCH AT PENCAENEUYDD	134
66006	ELWY AT PONT-Y-GWYDIDEI.	134
67008	AI.YN AT PONT-Y'CAPEI.	135
1) 67015	dee at manley haill	90
D 68001	Weaver at ashbrook	91
69002	IREEEI. AT ADEI.PHI Weir	135
69007	MERSEY AT ASHTON WHIR	135
69015	ETHEROW AT COMPSTALL	135
71001	RIBBILE AT SAMI.ESBLURY	136
71004	Cal.jer at whalitey weir	136
72002	WYREAT ST MICHAEIS	136
D 72004	Lline at caton	92
73005	KENT AT SEDGEICK	136
D) 73010	I.FVFN AT NEWBY BRIDCPE	93
74002	1RT AT GALESYKE	137
74005	EHEN AT BRAYSTONES	137
75002	DERWENT AT CAMERTON	137
1) 76005	EDPEN AT TEMPIEE SOWFRBY	94
28003	ANNAN AT BRYDFKIRK	137
76004	KINNEL WATER at redhalit.	138
D79000	NITH AT DRLMLANRIG;	95
80002	DEF AT GIENL.OCHAR	138
81003	I.UCF AT AIRYHEMMMIN;	138
82002	doon at alchendrane	138
\$3003	AYR AT CATRINE:	139
D) 84005	C.I.Yide at bi.alrston	96
84012	White cart water at hawkhead	139
84016	LlGgie water at condorrat	139
25001	IIfVEN AT I.INNBRANE	139
85003	Falioch al glen fallooch	140
90003	nevis at claggan	140
D 93001	carron at new keiso	97
$9+001$	EW'EAT POOLEWE:	140
95001	INTER AT I.TTHEF ASSYNTM	140
96001	hat.i.adaife at haid.adatie.	141
101002	mpidina at uppre Shide	:11
D) 201005	CAMOU'EN AT CAMOU'EN	
	terrace	98
201007	BURN DENNET AT BURNDENNET	
	BRIDCE	141
201008	DERG AT CASIIE DERG	$1+1$
D) 203010	blackwater at mayidours	
	BRIDGE	
203012	Ballinderry at bal.linderry	
	BRIDKE	
203020	MOYOLA AT MOYOLA NEW	
	BRIDCiE:	1.12
D) 203028	AGIVEY AT White hil.i.	:00
205004	I.AGAN AT NEWFORGE	142
205005	Ralernet at ralernet	142

Measuring authority: NERPB First yoar. 1952
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	HEB	MAR	APH	mat	JuN	ur	Aus,	SEP	OCr	NOV	orc
1	54680	41930	234600	103800	64700	31890	29780	17050	30.110	24960	73060	20190
2	48.130	39090	145100	88180	85050	33760	28820	16190	32670	23490	88120	21030
3	44.170	40610	112700	66630	76120	34070	25.720	15580	29950	22480	79890	21.170
4	55410	53.220	102000	56400	62070	30810	23310	15190	26640	21550	63200	20.320
5	57170	75180	149300	50870	53050	31910	21820	15840	24820	21150	56140	20130
6	52.730	154200	265.300	47100	46810	48960	20850	16610	22820	20900	49280	19950
7	59020	246700	173000	47670	43310	40470	20080	17430	21.140	21810	43560	20090
8	53110	227.100	112600	50160	43580	36090	20030	15830	20700	28940	39830	19900
9	50170	133400	121300	50630	43470	33590	19720	15.760	20060	21190	36480	;9900
10	48940	89410	:66200	49350	3909	30640	20050	15.780	19430	24940	34600	20030
11	59580	69880	120500	49510	38440	29840	19420	16240	18790	25570	40180	;9890
12.	89.120	63970	:31100	81300	135200	29660	18130	16470	18360	28810	37710	$: 7700$
13	113800	75550	:35400	58880	110400	4) 160	17340	16610	18400	28030	34710	$: 1400$
14	196200	120300	:01900	49030	65010	61510	16990	16930	18680	31040	32660	-6010
15	312.700	185.700	89220	46730	56610	44100	16500	19120	18560	36430	30430	-6010
16	316400	131600	72.990	44780	60.570	35150	16300	25670	- 8870	$35750{ }^{\circ}$	29060	20280
17	206400	92800	616.0	44740	52200	30720	16210	24710	- 8840	40020	27590	34270
18	125800	106100	61830	45790	47010	27820	16060	24830	- 8310	41500	26850	40790
19	94230	12.4800	90570	45930	44370	25830	15670	24000	25150	47690	25990	30090
20	77720	88080	:03100	45550	42 280	24880	15600	33290	55860	47436	25320	25650
21	82620	69750	70620	41970	42980	24530	16580	41820	65710	52140	24790	25480
22	68.260	68420	63180	59030	40850	23.100	16690	34310	57850	77370	24490	27930
23	63610	62400	66940	52070	38320	21860	15760	29900	128500	55680	24540	29440
24	58140	57790	123900	44550	39360	21230	16210	28500	67520	49310	28300	71590
25	54150	60730	104700	44820	44410	20350	15560	31.340	48230	51200	26.320	114200
26	49960	57520	101000	47180	38520	22290	16690	28470	40000	46.570	24810	75770
27	51360	50820	159300	48370	33900	23030	16310	36140	34960	50960	25960	51800
28	70480	119800	136700	52420	31550	26060	15920	34.830	31450	94.760	24900	37200
29	61.320		101.300	49330	30800	40050	16250	29430	28.880	84020	23530	34480
30	51.570		120300	49940	31190	31980	17130	29.190	26910	72370	21740	30410
31	46720		114.200		31220		17420	33.570		67300		28960
Averege	89470	96670	119800	53980	52010	31960	18670	23.760	33610	41980	37470	31230
Lowost	44.170	39090	61.610	44550	30800	20950	15560	15190	18310	20900	21740	16010
Highest	316400	246700	265300	103800	135200	61510	29780	41820	128500	94760	88.120	114200
Peak flow	33500	27820	32050	10930	17710	6968	3041	4477	17760	107.10	10290	14600
Day of peak Monthly total	15	7	6	1	12	14	1	21	23	28	2	24
(mulion cu m)	23960	2339	32090	13990	13930	82.85	5002	6364	8711	11240	9112	8365
Aurbiff (mim)	84	82	112	49	49	29	17	22	30	39	34	29
Rainfall (mm)	131	212	133	53	59	67	37	97	67	113	30	57

Statistics of monthly data for previous record (Oct 1952 to Dec 1988)

Station and catchment description
Lowest station currently operating on the Spey Cableway rated 65 m wide section with natural control. (limited stability) extreme floods bypass statron on boft bank. 380 sq km . developed for hydro-power with diversions and storage. Mainly granitos and Moinian metarnorphics Some Dalradian and a little Old Red Sandstono Mountain (includes all northern slopes of Cairngorms) moorland, hill grazing and some arable. Forestry.

Measuring authority: NEPPB frist year. 1929

Gide relerence: 37 (NO) 635956
tevel sin. (in OO). 70.50

Catchment atea (sq km): 13700 Max alt. (m OD): 1310

Daity mean gauged discharges \{cubic metres per second)

Day	JAN	ItB	MAA	APR	may	UN	Mr	AISG	SrP	OCJ	MKO	OtC
1	27320	20740	75.530	49960	4) 630	13920	11.170	5.688	14.300	1:860	36350	10470
2	24080	19550	53510	42.970	54.560	13700	10540	5610	15250	10.300	86130	10250
3	22280	19780	53460	33750	44030	14620	9381	5245	12740	10300	48.380	10040
4	43200	28670	52.500	31.630	34680	13150	B. 561	5.075	11.310	9861	36940	9729
5	28.790	39190	112300	29040	29460	15050	8 i54	54.30	10420	9.724	29.740	9864
6	25890	74010	227200	29100	25410	26220	7.679	6.824	9822	9784	24930	9480
7	28000	80250	107200	34840	23300	18100	7299	7413	9063	9565	22620	9930
8	25.110	40600	63590	33620	24460	16250	9044	6551	9141	14450	20450	8590
9	26870	32400	115300	31410	24060	22880	8376	6000	8381	11060	18640	9662
10	23410	21890	103100	29390	20240	16610	8248	6707	7963	9982	21.180	3235
11	48800	24360	58290	41.340	20970	16030	8001	6361	7524	10240	30610	8912
12	46350	23990	68610	55280	58790	15310	6894	7479	7363	11600	26030	1364
13	80080	40410	57500	33.760	41060	23840	6537	6619	8125	10840	31550	6539
14	77070	49640	44870	28620	31250	25740	6417	6.956	8143	10850	24380	ל 1/3
15	101900	92/20	4) 330	29510	33140	16510	6078	17320	7944	11220	20380	5491
16	53770	34490	33380	26530	39710	14040	5852	15370	9722	12850	18570	6964
17	39240	28590	28900	28860	29210	13000	5758	10910	8303	16950	1/030	33020
18	32630	70490	31560	29280	26530	12060	5691	9422	7825	16810	16390	32620
19	29690	57670	86870	28100	24820	11190	5566	8308	24100	20410	16850	17800
20	28640	33900	63180	28140	22960	10600	5407	19570	78180	32910	15640	16230
21	51960	28080	3) 350	27820	2.4010	10020	5393	26380	41860	42640	15100	17590
22	29410	29860	34060	29240	22870	9915	5697	15250	40190	41860	14670	27730
23	30830	22200	- 35680	24410	20580	9176	5647	12650	73110	25440	13580	19660
24	29260	24590	61980	21970	21860	8821	5631	13140	33790	22910	13310	1.34200
25	32760	27670	44260	21790	27390	8673	5204	15300	25640	23110	12.060	93100
26	29300	23820	64200	21440	19240	3509	5 305	13140	21160	18850	11580	476:0
27	30840	21050	119100	21220	16790	10140	6033	16300	$1 / 920$	22200	12070	29020
28	35800	29450	73430	24910	15590	9862.	5340	15850	15500	66120	11160	21130
29	27630		48250	21540	15230	$12 / 10$	5134	13030	13860	47290	11280	22440
30)	24160		78210	20780	14830	11360	5698	12890	12810	41100	10820.	19240
31	22950		55230		14520		5440	200.30		34860		$1 / 510$
Average	37360	37360	68740	30310	27840	14320	6851	1. O8O	19090	20910	22970	22150
Lowest	22280	19550	28900	20780	14520	8673	5204	5075	7.363	9565	10420	5:73
Highest	101900	92720	221200	55280	58790	26220	1:110	26380	78180	66120	86130	134200
Peak flow	21680	16240	31880	7637	6959	4465	1212	4217	13180	8283	15000	26830
Day of peak	13	15.	6	12	12	13	1	2:	20	28	2	24
Menthiy total (milion cuis)	10010	9038	:84 10	7871	7458	3/13	1835	2967	4948	5602	5953	5932
Rustoff (nm)	73	66	134	57	54	27	13	72	36	$4 \cdot$	43	43
Rainfall (m:m)	82	155	133	58	58	48	22	98	67	99	35	77

Statistics of monthly data for previous record (Oct 1929 to Dec 1988)

Mean	Avg	47570	40040	42580	45400	36390	22500	18600	22640	26010	39750	46800	49100
'lows	Low	15450	13420	15160	i 1380	12130	7340	7258	5141	6491	6798	12230	22020
	(yeart	1940	1947	1973	1938	1946	- 340	1984	1984	1977	1972	1983	1976
	Hiģh	127800	9110	98680	1:3300	85950	56 OBO	36710	63850	71830	- 38200	127500	:08400
	(yea')	'937	1945	1977	1941	1986	-948	1958	1948	-930	1982	1984	1954
Runoff	Avg	93	71	83	86	71	43	36	44	49	78	89	96
	Low	30	74	30	22	24	14	14	10	; 2	13	23	43
	High	250	159	173	214	: 68	106	72	125	136	270	241	212
Ramiay	Avg	120	75	77	69	8 ,	67	90	95	94	: $: 9$	114	119
	low	36	10	i6	12	2 i	16	24	, 3	13	8	22	43
	Hig̣n	374	148	1/5	196	-79	160	206	185	227	3:0	320	282

Summary statistics

Summary statistics	For *989		For record preceding 1989		$\begin{gathered} 1989 \\ \text { As \% } v^{\prime} \\ \text { pre. } 1989 \\ 7.3 \end{gathered}$	- Natural 10 within 10% at 95 percentile flow
Wayn flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$	26550		36440			
Lowes: yearty mean			24190			
Higmes: ycatly mean			49050			
Lowest tronitly mean	6851	Jul	5141			
Hoghes: monthly mean	68740	Midr	138200			
Lowest dialy mann	5015	4 Ausi	3536	21 Aus		
Highast daly mean	227200	6 Mir	648500	24 Jan		
Peak	318800	6 Mat	$: 1.33000$	24 Jar		
10\% exceedance	53580		72530		74	
50\% exceadanca	21030		25690		82	
95\% exceedance	5773		8452		68	
Annual total (millon cu m)	83730		115000		73	
Antusial runotf (irsm)	611		839		73	
Annual 'ainfar (mm) [1941.70 rain'all average (mm)	932		$\begin{aligned} & 1120 \\ & 1194 . \end{aligned}$		83	

Station and catchment description
Cableway rated. fairly stable natural control Prosent station, buit in 1972. replaced earlier station (fiow records from 1929 . chart records from 1934) on same reach (Cairnton: c / m measurements at Woodend) - established by Capt McClean Earier staff gauge record dates from 1911. No regulation, little natural storage, minor absiractions Dalradian and Moinian metamorphic along most of the valley. flanked by igneous intrusive Mountan, mooriand. forestry. pastoral and some arable in the valley bottom
Measuring authority TRPB Grdrefuence 37 iNO) 47367

First year 1952
Level stn in OD: 2630

Daily mean gauged discharges (cubic metres per second)

DAY	JAN:	fri	NAR	APR	NAY	r.N	J.J.	Al.	S! ${ }^{\text {P }}$	c^{-}	Sov	Jec
1	199000	210400	303600	339600	109700	60750	50530	35180	98810	100000	339000	66360
2	- 85300	250600	293100	304800	86470	10280	49010	34280	964.0	83700	496000	63540
3	-68 6 (0)	265800	358600	262100	82930	57910	47810	33860	$834 \cdot 0$	84630	31.100	60580
4	250900	344800	350200	254500	81880	56280	46200	33000	84090	85340	330300	58310
5	$235600)$	395300	$42410)$	2.5100	74 f60	55520	44400	32830	81300	98240	301600	56770
6	230600	737600	659	208000	79850	57200	43000	34060	79350	92070	25.3:00)	55040
7	175 200)	10:1 (\%00	495300	206100	843.0	5:650	43970	34850	80590	89480	223500	53870
8	165000	621400	$4{ }^{11500}$	196400	8) 970	49680	410%	35630	80960	88820	$232{ }^{\circ} 00$	51490
9	$2.10700)$	$4495(0)$	$514{ }^{\circ} \mathrm{OO}$	189500	19010	46:40	39570	$400^{\circ} 0$	82200	80340	201600	b1 100
10	160200	376400	550600	189300	74590	45600	40.320	42830	70210	73700	229600	50180
11	$338600)$	350900	417600	223300	77500	4) 280	39750	46790	59290	71020	220000	49210
12.	346400	326100	478200	$26^{\circ} 300$	83100	47640	38580	48200	57620	82510	274900	47600
13	$508400)$	$4 \% 100$	486200	228100	83420	$904(\mathrm{O})$	37100	53180	58050	19110	242600	45630
14	561400	448500	405300	232300	76890	75680	35810	63450	58.301	88810	207800	42220.
15	844 (10)	6.9300	351300	$13^{*} 600$	81/40	$617(0)$	35710	128300	60390	75700	$1 / 1 /(\mathrm{K})$	43080
16	578100	392900	314600	153300	$91 / 40$	55870	34590	125000	70530	102300	146300	59010
17	4.31700	337200	275300	160000	85640	57630	33680	10/200)	64 850	138800	131200	189900
18	360100	451500	$294{ }^{\circ} \mathrm{O}$	154800	BS 020	b) 380	34380	100200	90170	126800	132100	141 (P ()
19	322300	401900	409600	149500	81290	47480	33100	105100	- 34100	153600	130500	89250
20	3.8600	346100	380 ¢0	13/600	68140	46650	3. 440	172900	285200	234200	125000	94800
21	360100	332200	310800	124800	64340	45100	3. 140	171200	$236{ }^{\circ} 00$	280800	$118 \cdot 00$	98780
22	259200	386890	303500	109500	55090	46030	3. 390	157700	. 249300	273600	115.00	:113(0)
23	317500	330700	335 on	100700	64110	44000	3:210	139300	284000	255500	100400	96160
24	297900	312900	. $44 / 500$	109200	15080	42520	30540	145800	239300	294600	93'20	3120×0
26	283800	336800	$40 \mathrm{~K}) 80$	99100	113400	44490	30690	149000	$201 \cdot 00$	293300	84.90	361000
26	267100	286600	409000	100900	1 (K) 300)	51780	3. 470	15.3600	- 76200	2.67400	98, 30	257300
27	383300	275600	524400	97590	81800	49690	3. 090	142900	- 46200	. 295600	84 780	203800
28	422500	273700	465700	95810	80820	$50 \mathrm{5b})$	3. 230	137800	- 3090	388600	74020	- ו5900
29	316600		389300	$86 \cdot 10$	75900	52090	375.30	121600	. 21900	296300	69080	- 60400
. 30	315200		494400	89020	$6: 670$	49580	3) 340	118800	.08500	23) 900	67350	- 11500
31	296000		398100		601%		36170	127100		288700		- 01400
Averoxy	328000	405100	410100	1/5/00	80650	53380	31400	92360	- $223 \mathrm{3m}$	-69600	187500	- $10 \mathrm{~b}(\mathrm{~m})$
Lowest	160200	250600	215300	$86: 10$.	(6) 170	42530	30560	32.830	57620	73100	67.350	42220
Higrest	844800	1011000	659800	339600	- 13400	90400	40530	$1 / 2900$	$2852(0)$	388600	496000	312000
Peak flow	99210	117200	82680	38390	17830	15500	5083	24600	34920	43140	60.310	65770
Day of peak	15	7	9	1	25	13		20	20	28	2	24
Monthly:018 (m.ilion c.e m)	87860	98000	109800	45'50	21600	13840	10020	24740	31700	45420	48600	29590
Runof! (mm)	$\cdot 32$	214	2.39	99	47	30	22	54	69	99	106	63
Ruintall (min)	227	275	220	30	46	66	40	-65	101	172	56	91

Statistics of monthly data for previous record (Oct 1952 to Dec 1988)

Summary statistics

Catchment ares (sq km) 4587 1 Vaxal: (m OU) 12:4

Station and catchment description
Velocity-area station with cableway. 90 m wide The most d/s station on the Tay. recordshighest mean flow in UK Since end of 1957 . 1980 sq $\mathrm{km}\{43 \%\}$ controlled for HEP. there was some control prior to this 73 sa km controlled for water supply. Catchment is mostly steep. comprising mountains and moorland, exceptions are lower valleys Marnly rough grazing and forestry Geology: mainly metamorphics and granite, but lower 20\% (Isla valley) is Otd Red Sandstone

Measurng authority: FRPB Futst year. 1957
Daily mean gauged discharges (autic metres per second)

Day	JAN	FeB	MAR	APR	may	SUN	UR	AUG	SEP	OCI	NOV	$0 \in C$
1	3507	3.141	11.820	4900	1.971	1.809	2042	1558	3311	1.079	4.159	1.398
2	3.214	3100	7.896	4.113	1.715	1.772	1532	1.298	2431	1066	3661	1352
3	3199	3827	6349	3581	1592	1811	1149	1308	1893	1039	3.396	1323
4	9325	26220	5539	3556	1.539	1.591	1005	1274	1.543	0988	3585	1.335
5	12660	17.750	5015	3479	1.504	1.793	0.906	2010	1299	1057	3240	1.327
6	11.980	9.360	4734	3.734	1.495	3901	0882	1990	1.109	1.024	2534	1316
-. 7.	7.115	6.582	4280	5.366	1474	2.907	0979	1403	1015	1.007	2408	1302
8.	6344	5308	4118	5396	1510	2041	0869	1326	1382	1006	2863	1270
9	18650	4485	24130	4217	1489	1.852	0.745	1.581	1222	0964	3410	1284
10	11760	4.177	14280	4.189	1479	1.709	0862	1829	1064	0966	6332	1280
11	81260	6026	8087	5367	2020	1.654	0753	2048	1020	1023	5240	1280
12	28.100	10810	6546	6063	2354	1.586	0724	2350	1048	1.050	4069	1286
13	30360	17690	8071	4331	1855	2620	0.706	11660	1741	1273	4.193	1.309
14	25550	10.800	11680	3914	1.567	1.908	0724	5040	1818	1.341	3340	1.324
15	13080	19610	8.372	3310	1634	1487	0708	3953	2116	1.576	2.766	1.383
16	9154	8.415	5518	2.970	1819	1248	0709	2661	1613	2.711	2305	18030
17	6161	6618	4334	3064	1593	1.148	0770	1851	1223	6043	2051	56150
18	5586	11090	7619	2.750	1722	1031	0856	1507	1383	9281	1933	16630
19	4746	11090	14560	2579	1781	1159	0884	2148	1503	4889	1783	7314
20	4602	10670	11160	2433	1655	1130	1087	4537	1653	3.964	1720	5595
21	4515	13.920	8946	2397	1631	1095	1153	3834	3270	5.781	1640	7240
22	3908	11010	28290	3571	1690	1058	1083	2177	3743	3424	1531	7525
23	4161	7215	51720	2.918	1705	0364	1072	1.769	4568	2654	1556	7.824
24	4226	6078	38820	2629	3017	0943	1.117	1855	2.794	4.901	1580	23.200
25	3.795	8208	17130	2361	2642	1.201	1134	1937	2070	6410	1.558	16090
26	4304	7676	10780	2247	1386	1731	1065	4134	1790	6962	1502	7.583
27	5726	12390	8122	2085	1697	3029	1032	3671	1559	11370	; 463	5123
28	8200	24330	7472	1945	1584	2275	1384	2274	1346	10400	1478	4097
29	4736		8139	1845	1598	1721	1970	2063	1200	6967	1470	3424
30	3968		10380	1801	1614	2164	1160	7511	1124	6934	1457	3052
31	3562		5956		1.909		1000	7051		5041		2990
Average	11230	10270	11.930	3437	1./69	1.745	1034	2975	1829	3684	2674	6821
Lowest	3199	3100	4118	1801	1474	0943	0706	1274	1015	0964	1457	1270
Highes 1	81260	26220	51720	6063	3017	3901	2042	i1660	4.568	:1370	6332	56150
Peak flow	14260	3914	90 10	873	576	668	265	162°	523	1745	674	7272
Day of poak Monilly to:al	11	4	23	11	24	6	29	30	73	27	10	17
(millon cu m)	3007	2485	3196	891	474	452	277	797	474	981	6.93	1829
Runotil (\%mil)	82	67	87	24	13	12	8	22	13	21	19	50
Ranfall (mm)	100	100	110	38	35	63	17	125	42	80	23	74

Statistics of monthly data for previous record (Jan 1957 to Dec 1988)

Station and catchment description
The recorder is well sited on a straight oven reach with steep banks which have contained all recorded floods Stable rating over the period of record. Weed growth in summer - some edjustment to stage is required Low flows substantialty affected by sewage effluent especially from Mid Calder Abstraction at Almondell to feed a canal A number of storage reservoirs are situated in the catchment Geology predominantly Carboniferous rocks Land use - mainly rurat Livingston new town and several small mining towns in caichment

021009 Tweed at Norham

Daity mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jル	ALG	SEP	OCT	NOV	OCC
1	53640	52350	205300	71540	31050	18970	17070	12620	36980	:9930	4/630	20:40
2	50770	47590	157100	65350	31080	19750	17260	11860	29900	19160	58450	18330
3	47220	65.7:0	143800	58970	28910	18480	16410	11170	25120	18430	58430	17820
4	66630	167300	122300	56.910	30150	17720	15010	10860	22960	17690	52340	16390
5	77.350	186800	128200	58730	28760	1/120	14010	11050	21210	18470	51290	17190
6	110500	116900	151000	63820	26500	18410	14860	10800	19900	18680	42860	17240
7	77.690	101.700	131900	80050	24900	18540	14940	11580	19280	17470	39290	16980
8	69260	93680	107700	78690	23360	18450	13.040	10910	19490	18870	38.540	16510
9	114500	75180	329500	65.550	22870	19360	12730	11110	19130	18.560	39210	16150
10	32190	66110	323700	60540	22. 290	16780	13.080	11540	17930	18100	52010	16250
11	117600	63330	148500	75970	22790	16240	13130	16440	17400	17980	$1949)$	16130
12	2.69900	90450	116300	-62000	$698(0)$	15920	12340	$163 \cdot 0$	17350	16.920	50230	15820
13	169900	116200	$1 / 6200$	33950	65730	16880	11710	15930	$1 / 110$	16260	44160	16030
14	249600	101300	136500	83490	40790	26330	13.750	43.590	17650	16820	39660	16030
15	145800	176500	145700	73:60	32620	22930	11720	$47 \cdot 0$	18480	18320	36000	16100
16	114.900	110100	104100	63800	30250	20430	10940	42540	17.510	24160	33320	41290
17	96200	84.170	86370	59150	28570	17050	10640	29490	182.10	31.790	30920	322800
18	80400	120600	109800	55900	27510	16090	10620	22.750	16440	36740	29320	155800
19	71000	165200	118500	52.670	27920	15460	10610	18670	33620	29.350	27870	82730
20	65140	102100	121200	43820	27950	14890	10650	18370	31640	33030	26600	58.930
21	80860	97880	89510	48330	26040	14260	12900	74350	140900	43280	25380	63380
22	66010	103600	211900	54680	23920	14610	11000	33260	11350	41940	24600	64650
23	61150	82.120	186200	54520	23350	17210	10490	25060	55980	37990	24950	54300
24	57530	73550	313400	45910	23980	14160	10290	22680	41650	33270	24330	173700
25	54420	$: 42100$	' 89800	40920	25430	13830	10380	35130	33630	44340	2.950	233 '00
26	54330	:09400	156300	38610	25030	14250	9832	27280	29870	46770	20940	146500
27	74530	93.230	176900	37.190	22040	17300	9488	34430	27030	46590	20190	100800
28	128.100	187700	112100	33720	20990	19100	12.230	27930	24940	59310	19820	76380
29	79190		94430	32770	20220	20980	11190	22.120	22710	54200	19620	63750
30	63900		92.400	31.460	19.740	21060	15.150	23.530	21040	49.790	20260	55140
31	56.150		19530		19590		13010	61.330		46220		48030
Average	94080	106500	152300	61610	28840	11150	12600	24920	30220	30030	36660	64340
Lowest	472.20	47590	79530	31460	19590	13830	9488	10800	16440	16260	19620	15820
Highest	269900	187700	329500	162000	69800	26330	17200	74350	- 60900	59910	19490	322800
Peak flow	40830	298.90	57230	2.5.50	9945	2944	1800	- 2160	19000	6900	. 0860	42270
Day of peak Monilly tatal	12	4	10	12	12	14.	30	21	21	28	11	17
(mision cu m)	25200	25770	40800	15970	7725	4601	3374	6614	7832	8044	9501	17230
Runoff (mm)	57	59	93	36	18	10	8	15	18	18	22	39
Raintas (mm)	74	107	111	48	41	47	23	113	47	69	31	79

Statistics of monthly data for previous record (Oct 1962 to Dec 1988)

Station and catchment description
Lowest station on River Tweed. Velocity-area station at very wide natural section Complex conirot Moderate seasonal weed growth effects on rating Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows avalable Geology: mixed but principally impervious Palaeozoic formations Moorland and hill pasture predominates: improved grasslands and arable farming below Melrose.

022001 Coquet at Morwick

Measuring authonty: NRA-N Frst year: 1963			Ged eeference: $\mathbf{4 6}$ (NU) 234044 Level sin. Im OOf. 5.20							Catchment area (sq km): $\mathbf{5 6 9 . 8}$ Max alt. (m OO): 776		
Daity mean gauged discharges (cubic metre per zecond)												
day	JAN	FEB	MAR	APPA	MAY	AN	תr	AUG	SEP	OCT	NOV	$0 \times C$
1	4.700	3680	29940	4200	2970	1810	1.490	1.110	1860	1110	2.910	1.760
2	4460	2.790	19130	4050	2910	1820	1480	1080	1520	1.140	3030	1680
3	4260	3.480	17.420	3.940	2.760	1.840	1390	1030	1410	1.130	2800	1.600
4	4570	16130	15050	3.960	2710	1800	1.290	0990	1350	1. 120	2470	1.370
5	5270	17.720	15640	5.560	2670	1820	1.240	0990	1300	1.120	2740	1.730
6	7.210	8430	18.650	11040	2490	2.190	1.170	1030	1.260	1.170	2.300	1680
7	6440	6240	13.160	13.140	2.440	1.950	1.200	1080	1.240	1190	2.070	1600
8	5600	5480	9080	11840	2.350	1790	1150	1010	1300	1.270	2.140	1580
9	5320	5000	9740	8290	2270	1.780	1.150	1.100	1.260	1430	3250	1500
10	4900	4600	10360	11440	2.190	1.920	1240	1.290	1.220	1310	4920	1510
11	4460	4.180	7540	19900	2230	1780	1220	1380	1.230	1230	8820	1550
12	6980	4390	6.720	22300	3.190	1790	1140	1.260	1270	1220	4.990	1.500
13	5800	4960	8350	9.990	5310	2070	1050	1290	1300	1.180	3800	1.550
14	13150	5030	6900	7900	3440	2.920	1080	2700	1290	1210	3160	1.720
15	6830	5450	8420	6760	2650	2110	1020	2000	1210	1.190	2770	2710
16	5530	4880	6470	5810	2330	1.710	1.000	1710	1190	1270	2460	13640
17	5050	3990	5780	5.320	2190	1570	1.060	1430	1190	1250	2290	27320
18	4650	4.140	5310	4850	2180	1450	1070	1280	1170	1290	2.190	10850
19	4390	7190	5810	4.550	2200	1410	1080	1180	1.120	1350	2110	6590
20	4160	5440	5610	4470	2200	1.340	1050	1140	1100	1460	2060	5180
21	4050	5520	5.800	4620	2070	1280	1030	1250	1100	2420	1.930	7100
22	3840	5900	10460	5260	1.960	1290	1030	- 230	1220	2.440	1880	6820
23	3.990	5.290	9430	4980	1.950	1320	1000	1120	1.570	1850	1.980	5170
24	4750	14680	16990	4150	2070	1.270	1000	1190	1.530	1.630	2010	5170
25	3.840	64690	7820	3910	1970	1270	1060	1.350	1360	1.530	1950	11490
26	3620	17730	7110	3.710	1880	1410	1000	2040	1260	1510	1.780	1290
27	3600	12260	6340	3500	1730	1740	0990	3210	1210	1100	1760	5450
28	8230	17410	5760	3320	1690	- 630	1010	2:70	1190	3670	1790	4630
29	5510		5170	3130	1630	17:0	1090	1740	1140	3590	1750	4150
30.	4240		4770	3030	1580	1490	1.240	1610	1110	3320	1730	3190
31	3890		4450		1640		1.180	1870		3050		3490
Average	5269	9.524	9975	6964	2382	1709	1.135	1.447	1.283	1656	2.728	4941
Lowest	3600	2790	4450	3030	1.580	1270	0990	0990	1.100	1110	1.730	1370
Highest	13150	64690	29.940	22300	5310	2970	1490	3210	1860	3670	8820	27320
Peak flow	2328	12180	3682	$37: 2$	697	362	166	411	217	454	:282	3658
Day of peak Montily 10:al	14	25	1	12	13	is	5	27	1	28	11	i7
(milion cu m)	1411	2304	2672	1805	638	443	304	388	3.32	444	707	1323
Runolf (tm)	25	40	47	32	11	8	5	7	6	8	12	23
Rainfall (mm)	29	85	b)	52	28	47	13	82	20	60	34	67

Statistics of monthly data for previous record (Nov 1963 to Dec 1988 -incomplete or missing months total 0.2 years)

Station and catchment description
Velocity-area station with 34 m wide concrete Flat V weir made with pre-cast segments finstalled 1969) Cableway Fairly straght section with high banks Replaced earlier stition at Guyzance. Natural catchment.

023004 South Tyne at Haydon Bridge

Daily mean gauged discharges icubic metres per second)

DAY	JAN	ff	MAR	A	NAY	SUN	r.	ALG	Step	(\%1	NS	OfC
1	9011	4670	33380	7390	3590	7390	2. 800	1710	4990	1790	- 9120	2930
2	8044	4480	22010	6240	3460	2410	2750	1660	3670	1140	:6620	2940
3	$7 \cdot 55$	35400	20040	5720	3370	2500	2320	1530	3080	1720	-9010	2570
4	23060	167600	28450	6 ()30	3.350	2.420	2030	1520	2720	1610	33130	2330
5	26930	$32 / 20$	32800	12920	3220	2300	: 870	1510	2480	1670	-7840	2930
6	2:690	- 1290	39460	31570	3070	2300	1760	1520	2310	1800	-1 180	2810
1	13850	-9900)	18850	37670	2950	7330	150	1510	2180	5990	9160	28.30
8	13 '60	23140	$1 \cdot 510$	54020	2850	2230	750	$1 \mathrm{~b}(\mathrm{M})$	2180	6640	- 3680	2700
9	20950	, 3150	38160	20230	2800	2150	. 50	1540	2150	3340	- 9 в(0)	26.0
- 0	12760	-0080	29080	18870	2710	2150	750	2340	2030	2. 720	66870	2560
11	10700	21440	14990	6530	2100	20.30	740	4730	7060	4040	32560	2560
$\cdot 7$	18880	'8030	13350	44190	7630	1980	-620	3.50	2290	8960	. 6500	2570
:3	18980	49060	29020	32 BLO	1010	2 (\%)	- 550	16420	2220	12920	- 1960	2660
14	40050	-99.0	23400	19760	3680	2130	- 550	11650	2110	920	9.370	2980
15	690	39450	19160	13 AbO	3020	2000	- 540	$124 \% 0$	2140	13270	1680	3940
16	11720	-5 400	$11 / 10$	- 0140	2910	1920	- 520	8720	2420	20420	6320	73160
$\cdot 7$	11860	- 1090	9370	8640	2820	1830	510	3980	2320	9780	5.350	132.000°
:8	9546	207.0	23910	$1 \mathrm{SO})$	2670	1770	- 510	3 ()40)	2040	5840	4800	28570
:9	8264	23360	28640	6680	4390	1160	- 510	7500	1920	4030	4.360	4350
20	7514	25040	25610	6620	4570	1680	- 510	2 290)	1810	26060	3920	36390
21	8486	23080	23700	1680	2.990	1660°	- 510	2 E20	: 870	26070	3670	73280
22	8056	32810	75840	- 1340	2600	1660	- 510	23.30	2830	21830	3620	31410
23	- 0450	15290	107800	- 0490	2610	1660	- 510	21.0	3200	- 6160	3000	-9770
24	9200	19900	42080	7490	2120	1660	1530	4670	2460	- 4410	3450	70470
25	1230	21490	- 9370	$6450{ }^{\circ}$	2180	1660	: 400	10570	2280	25030	3300	1.3300
26	1612	$1 / 250$	-6970	6400	2570	$19(\%)$	1370	9220	2630	- 7270	3130	28340)
27	7140	24760	$: 2370$	4940	2420	6440	1380	10930	3000	22 280	3050	17670
78	- 5090	45940	-1 (m)	4 i30	2300	7840	1520	4750	2.270	- 1300	3030	13840
29	1820		9110	3790	2230	50.0	1940	3320	2010	41160	3020	1.420
30	6042		9360	3660	2160	2900	$\therefore 1990$	146%	-1870	48190	2940	9480
31	5163		8170		2170		1740	11570		20320		8080
Averaga	14910	27590	26090	15900	3251	2. 494	1125	5224	2453	13590	12220	23.360
Lowest	5169	$4480{ }^{\circ}$	8170	3660	2160	1660	1370	1500	1810	1670	2940	2330
Highest	78880	167600	107800	65510	1630	$7840{ }^{\circ}$	2800	i6420	4990	. 48190	60810	132000
Peax flow	21410	40430	29360	16090	1977	- 626	309	4135	659	19280	2.000	20450
Oay of peak Woritily totial	1.3	4	23	? 1	12	27	:	13	1	29	10	16
(T:llion su 7)	3992	$66 / 4$	6989	4120	8ノ	646	462	1399	636	3639	3168	6251
Rumulf (imp	53	89	93	55	17	9	6	19	8	48	42	83
Kaınfall (mm)	66	143	1:7	70	39	53	27	112	29	124	4	107

Statistics of monthly data for previous record (Oct 1982 to Dec 1988 -incomplate or missing months total 0 y years)

Station and catchment description
Velocity-area station with informal Flat V wer: as low flow control installed in 1972. Cableway. Natural catchment

025001 Tees at Broken Scar

Messuring authonty: NRA-N First year: 1956

Grad reforance 45 (NZ) 259137 Loved \sin ($\mathrm{m} \mathbf{O O}$): 37.20

Daity masan gauged discharges \{oubic metres pet eecond\}

DAY	JAN	feb	mas	APPR	may	תw	Me	Aug	SEP	OCT	NOV	OfC
1	19.930	4660	47.790	1590	3.880	4000	4.680	4090	2.850	3.220	10980	3190
2	18.770	4620	32020	6.620	3800	$3 \& 10$	4640	4220	2.730	3. 170	10190	2940
3	17240	10740	34210	6480	3550	3120	3.450	3.980	3680	3160	11.340	3050
4	20.400	90270	47460	7.190	3570	3.180	2.980	3750	3840	3520	17700	3910
5	32.540	33.530	54.330	19.950	3310	3330	2.880	3260	4380	3.160	10660	4210
6	29410	21.000	57.420	49070	2810	3430	2.760	3.270	3320	3.630	5910	4010
7	18.180	17.030	31840	34330	2.910	3490	3460	3700	3880	5420	4.150	3.820
8	13.680	22690	20190	44110	2940	4.150	3570	3790	3930	6.500	4.280	3.390
9	14820	15.250	49740	23.230	3140	3.730	3770	4380	3970	4.460	10560	3.880
10	11.300	10070	42470	27.620	3.030	3470	3660	6980	4140	4200	55.910	4100
11	8590	12440	22450	79240	4.260	3.240	2950	6200	3750	4.490	31930	4350
12	12760	17960	25150	66210	6890	3.390	2940	4600	3.420	4400	14270	3230
13	42470	35950	48000	10.740	8100	4220	2.660	5300	3150	6380	8220	3700
14	48670	22130	51.770	39.730	4180	4280	2.980	12210	2970	6640	5910	5100
15	21210	45.710	36890	20510	3980	3350	2600	6300	2870	2920	5170	5700
16	16850	19850	20270	14500	3160	4340	2850	5380	3630	8800	4270	29780
17	15.530	13950	15.370	11.910	2750	4400	3210	4410	3.460	6860	4.180	142000
18	9670	60290	19.420	9800	2380	4300	3110	4230	3480	5360	4200	29800
19	8430	62.910	30870	8470	2990	4340	3400	3330	3040	4350	3740	12670
20	7.220	36090	32960	8900	3900	3890	3280	3540	3080	31.510	3780	27050
21	6910	22.500	26650	8 170	3590	3870	3110	5420	3050	27.250	3250	53210
22	6440	29060	83980	9930	3780	3380	3180	3830	3200	17.310	3380	29870
23	9260	19.030	97190	13.540	3.740	7.640	3150	2770	3680	i4100	3320	16440
24	11960	22900	76.660	11480	3910	2530	3460	2980	2900	6580	3900	30730
25	7860	30030	30260	9950	3160	2.760	3080	11340	3000	11.210	3410	38390
26	10570	19370	26110	9880	3300	4280	3190	5020	3750	10290	2690	19480
27	10970	26490	20750	6530	2970	6440	3870	7680	3630	12290	3440	12150
28	15840	51060	17430	4900	3000	7500	3.860	4690	3940	13170	3010	9310
29	9700		13610	4230	2850	1030	4120	4270	3480	19790	2950	7410
30	6400		11090	3910	2970	4370	4420	5280	2780	32010	2940	5930
31	5110		10440		3250		4340	8860		9470		4800
Average	15160	27770	36610	21310	3615	3995	3407	5131	3.431	9536	8655	17020
lowest	5110	4620	10440	3910	2380	2530	2600	2770	2730	2920	2690	2940
Highest	48670	90270	97190	79240	8100	7500	4680	12210	4380	32010	55910	142000
Pask flow Day of peak	17220	26500 4	$\begin{gathered} 30010 \\ 23 \end{gathered}$	$\begin{gathered} 14210 \\ 11 \end{gathered}$	$\begin{aligned} & 1593 \\ & 12 \end{aligned}$	$\begin{aligned} & 1075 \\ & 29 \end{aligned}$	$\begin{aligned} & 569 \\ & 1 \end{aligned}$	$\begin{aligned} & 3321 \\ & 13 \end{aligned}$	536	$\begin{aligned} & 8446 \\ & 20 \end{aligned}$	$\begin{gathered} 15660 \\ 10 \end{gathered}$	22250
Day of peak Monthly total (milion cu m)	134222	4 6718	9805	5524	968	1036	912	1374	889	2554	27.43	4559
Rumok (mm)	52	82	120	67	12	13	11	17	11	31	27	56
Rainfal (mm)	58	137	119	32	23	58	20	80	19	113	46	109

Statistics of monthly data for previous record tOct 1956 to Dec 1988 —incomplete or missung months toted 0.1 yours)

Mean	Avg	29840	23470	23370	18530	10420	6601	6889	10250	11330	18370	23 040..	28460
flows	Low	2907	2803	5480	2.538	2009	0502	1794	0458	0636	7709	4061	5780
	(year)	1963	1963	1975	:957	1959	1957	1969	1959	1959	1969	1958	1971
	Hryh	57570	52670	68660	60870	27020	15270	25090	28520.	25800	53940	51580°	50040
	(year)	1988	1988	1979	1977	1967	1972	1988	1985	1985	1967	1963	1979
Runotf	Avg	98	70	76	59	34	71	23	34	36	60	73	93
	Low	10	8	18	8	7	2	6	2	2	9	13	19
	Hegh	188	161	225	193	88	48	82	93	82.	171	163	164
Ranfall	Avg	121	83	97	75	80	74	85	102	98	105	114	123
	Low	51	16	29	10	18	22	28	23	19	27	25	43
	Hgh	186	175	224	150	167	182	206	190	222	226	221	268

[^3]Compound Crump profile weir with total crest length of 639 m Two low-flow crests total 9 im Theoretical rating. A manly impervious catchment developed on Millstone Grit and Carboniferous Limestone. Headwaters drain the Pennines Moorland and rough pasture give way to more intensive agriculture in the lower reaches

027002 Wharfe at Flint Mill Weir

Measuring authority NRA.Y First year: 1936

Grad relerence 44 (SE) 422473 Leval stn (m OD) 13.70

Catctmment area (sq km) 758.9 Max ali (m OD): 704

Daily mean gauged discharges (cubic matres per second)

OAY	JAV	FEB	MAR	APR	M.AY	JN	J!	AUG	SEP	OCT	NOV	DEC
1	9539	5994	49010	11690	6796	2805	36350	3100	5760	1863	14660	2159
2	8867	6004	33480	9657	6196	2641	10720	2687	4459	1.801	19850	2.178
3	$84{ }^{\text {4 }}$	6594	29850	$9 \cdot 86$	5756	2478	6097	2561	4059	1758	16440	2045
4	7711	- 21150	28450	8739	5424	2463	4996	7290	3174	1.639	22650	1957
5	; 2680	31.1:0	21620	20240	5261	2.418	3819	2193	2897	1688	$23 \% 20$	198:
6	33750	19.470	18020	41560	4960	2554	3389	2131	2.632	1807	13690	2064
7	i4690	12020	24.470	42830	$862{ }^{\text {- }}$	2446	3363	2.268	2471	2204	10230	2041
8	11180	21490	14960	39150	5941	2678	4059	2028	2327	2.388	11.700	1999
9	15000	14200	21.320	24.130	4451	2.393	6953	2063	2.180	2421	14980	1993
10	14530	10360	37130	30840	4158	2290	4663	8962	2116	2.200	39150	1.811
11	10450	8879	18110	45490	4446	2.210	3450	10120	2057	2.045	47500	1784
12	10240	24830	12980	81940	5501	2222	3.058	9453	2.027	2008	21.910	1960
13	12.730	25890	25.030	72470	5177	2748	3042	6195	2086	3.147	13.810	3326
14	54910	20700	31380	46850	4542	3174	2756	5708	1938	4200	9981	13310
15	21260	33480	40.240	26190	4331	2.355	2520	8732	1919	4.226	8084	10940
16	14180	20.300	!9.460	18740	4519	2100	2432	6521	2. 988	35290	6746	48720
17	16470	12500	13980	14230	4236	2003	2321	5882	4161	19550	5901	89500
18	12730	37.500	i1.560	11820	3628	1906	2352	5234	2801	7929	4957	52690
19	10510	52690	29920	10460	3479	1.867	2.347	3897	2428	5773	4368	$250: 0$
20	8838	41.850	35.610	9496	3365	1886	2184	3376	2499	46.230	3962	38620
21	10640	2.4 .260	23.940	8829	3228	1770	2173	2793	2350	53.200	4079	68530
22	9473	18000	98720	8971	3142	1.648	2.174	2620	2353	22050	3668	35650
23	8602	14040	60.150	11310	3128	1731	2117	2416	2348	13480	3330	22050
24	9.988	29150	112900	11210	3344	1720	2062	2473	2626	8.373	3126	33080
25	8.552	30710	37850	11060	3146	1.610	2127	2479	2523	19350	2.828	32810
26	11420	18540	24730	9511	2959	1.883	2162	2843	2343	17330	2234	19980
27	13.740	16140	18.910	8867	2856	14470	1977	3.187	2243	15.800	2084	14130
28	8.849	36480	15070	7188	2739	11700	1948	3410	2.121	14450	2206	10910
29	7.318		12450	7224	2680	12.820	2.531	2848	2016	39050	2231	9173
30	6872		14.440	6.963	2552	9109	5094	3430	1914	55690	2276	7545
31	6666		16440		2538		5386	1: :90		20360		6614
Avatage	13250	21940	30720	22230	4294	3537	4536	4358	2.661	13850	11410	18280
Lowost	6666	5994	11560	6963	2538	1.610	1.948	2028	$19: 4$	1639	2084	1784
Highest	54.910	52690	112.900	81940	8624	14.470	36350	1: 190	5760	55690	47500	89500
Peak flow	10140	9777	17330	11060	1122	3786	6582	2131	698	10320	3137	129.70
Day of peak Mon:Ny lotal	14	18	24	12	7	30	1	11	1	30	10	17
(milion cu m)	3649	5308	8227	5762	11.50	917	1215	1161	6.90	3709	2958	4895
Rumofi (mm)	47	70	108	16	15	12	16	15	9	49	39	65
Rainfall (mm)	55	127	138	106	22	97	53	61	27	137	59	121

Statistics of monthly data for previous record (Oct 1955 to Dec 1988)

Mean flows	Avg	27790	22920	21290	15890	11130	7454	7676	11850	13700	18310	23500	27550
	Low	4472	2974	6741	4390	2312	1545	$16 / 4$	0.991	1.419	3026	6876	10230
	(year)	1963	1963	1961	1982	1980	1957	!976	1976	1959	1972	1958	1963
	H $\mathrm{H}_{\text {h }}$	42880	54590	53940	35240	26750	18520	16440°	4.340	33520	54000	51090	62090
	(year)	-984	1966	1981	19%	1967	1972	-963	1956	1968	-96'	1963	1965
Runofi:	Avg	98	74	75	54	39	25	27	42	47	65	80	97
	Low	:6	9	24	15	8	5	6	4	5	: 1	23	36
	H:gh	151	174	190	120	94	63	58	146	115	191	174	219
Rainfall	Avg	115	81	91	75	77	75	86	102	104	109	112	124
	low	41	14	28	8	13	18	20	18	8	32	33	41
	Hxyh	217	194	222	147	181	183	185	226	241	225	211	233

Station and catchment description

The control is a broad-crested masonry weir 47 m wide with a current meter cabloway i 5 km upstream Insensitive at Iow flows. Leval data only from June 1936 to October 1955. Pro-October 1965 rating may be less reliable Headwaters contain numerous reservoirs which exert a substential influence on flows. Mixed geology comprising mainly Carboniferous Limesione. grits and Coal Measures with some Permian sand and Magnesian Limestone and marls in the lower catchment. Predominantly rural catchment with moorland headwaters

Measunng authonty: NRA.Y First year: 1968

Girid reference: 44 (SE) 013457 Level sin. (m OO): 87.30

Cotchment atea (sq kmi: 282.3 Max att. (m OO): 594

Daily mean gauged discharges (cubic matres per seoond)												
day	JAN	-EB	MAR	APA	MAY	JN	88	AUG	SrP	OCT	NOV	DEC
1	4936	2.480	14420	4066	1860	0.938	7739	0552	0844	0.392	8541	0.944
2	4402	2.189	13930	3.921	1.728	0.791	2.635	0503	0.716	0.379	8061	0878
3	3977	2.122	10280	3.870	1.653	0780	1621	0461	0.639	0.368	9389	0855
4	4.289	8004	8221	3.848	1612	0748	1191	0418	0606	0351	19030	0.836
5	8.688	6854	1859	8.233	1.542	0750	0970	0416	0.549	0353	13970	0843
6	8.471	5002	7110	10.530	1452	0762	0.847	0410	0504	0413	7415	0826
7	5991	4859	6.599	14.190	1359	0891	0.841	0404	0496	0426	5754	0803
8	5.544	6050	5481	11.920	1.339	0797	2.471	0397	0.493	0435	6883	0795
9	5.220	4567	9.110	7290	1.303	0759	1.653	0516	0455	0417	8786	0787
10	4494	3649	9.720	12.360	1.253	0811	1.114	0864	0426	0386	20110	$0 / 68$
11	4034	4682	6.566	24030	1.413	0719	0872	1.244	0425	0384	17920	0756
12	4326	5890	5963	25850	1971	0731	0732	0903	0419	0393	9768	0926
13	11020	10.730	7795	19410	1665	1141	0662	0787	0413	0519	6683	1438
14	17670	7028	13.160	11.230	1337	0842	0630	1559	0397	1279	5.196	4886
15	8121	12280	11.550	8075	1216	0668	0610	1637	0499	0865	4095	3181
16	6679	7111	7058	6249	1150	0605	0596	1302	0554	3737	3352	15460
17	6291	6084	5354	5137	1098	0582	0563	1236	0512	2335	2919	23870
18	5161	23640	8721	4429	1067	0535	0538	0806	0497	1.317	2755	16610
19	4526	21550	16620	3945	1044	0500	0514	0656	0432	1880	2461	9311
20	4209	16090	11790	3399	0992	0474	0489	0594	0415	13060	2183	22730
21	4589	9818	13860	3.063	0942	0443	0482	0572	0425	10180	1938	25920
22	4060	1641	39620	3.714	0913	0397	0480	0532	0534	6342	1719	15100
23	4077	6660	38460	4064	0926	0396	0443	0488	0503	4080	1566	11910
24	3.901	17390	40710	35.32	0889	0400	0423	0480	0482	2936	1474	19620
25	3467	15940	19040	3046	0860	0379	0425	0541	0453	5055	1365	$13 / 40$
26	5666	9215	19610	2686	0833	2669	0536	0647	0473	4860	1287	8879
27	4586	9411	8395	2464	0821	1415	0457	0713	0495	6465	1205	6670
28	3752	16200	6598	2166	0804	3612	0476	0573	0458	6868	1121	5306
29	3312		5374	2146	0193	. 1909	0618	055 i	0417	14140	1070	4424
30	3018		5089	1974	0802	8157	1537	0104	0394	14130	1010	3160
31	2799		4731		0965		0733	1:98		8.301		3293
Average	5525	9043	12290	7363	1215	1353	1036	0731	0497	3668	5.968	1294
Lowest	2799	2122	4731	$19 / 4$	0793	0319	0423	0397	0394	0351	1010	0756
Hrghest	11670	23640	40110	25850	1971	8157	1739	1637	0844	14730.	20110	25920
Puisk !low	3634	3041	5941	3501	227	2183	1802	251	095	2512	3058	.3540
Day of paak	13	19	23	11	12	30	1	15	1	30	10	; 7
Montiny total (mallmn ct m)	1480	2188	3291	1909	325	351	293	190	129	982	1547	1954
Runotf (min)	52	77	111	68	12	12	10	7	5	35	55	69
Rainfal (mm)	55	116	131	85	23	100	49	68	26	. 132	67	101

Statistics of monthly data for previous record (Dec 1968 to Dec 1988 -incomplete or missing months total 0.2 years)

Mean flows	Avg	11140	8101	7574	4929	2946	2355	1900	3433	3986	7352	10.750	10910
	Low	4463	3.529	2391	0973	$061{ }^{\circ}$	0604	0298	0289	1147	0789	3583	3175
	(year)	1.973	1986	1985	1974	1974	1970	1984	1976	:971	1972	1975	197i
	Hegh	- 8800	14990	22520	11400	8:74	6416	5927	1.410	10360	17510	16540	20)820
	(year)	1988	1988	1981	1986	1983	1982	1973	1985	9974	1981	1984	1979
Runoti	Avg	106	70	72	45	28	22	18	33	31	70	94	104
	Low	42	30	23	8	6	6	3	3	11	7	33	30
	High	:78	133	2 i4	105	78	59	56	108	95	:67	152	198
Hamiall	Avg	123	73	104	68	74	76	79	96	110	i15	127	124
	Low	45	13	44	3	10	23	11	17	22	37	55	42
	High	222	139	233	135	142	155	:79	1/1	250	213	187	238

Station and catchment description
Velocity-area station rated by current meter cableway 150 m downstream Low flow control is the sills of the bridge Washland storage and headwater reservoirs influence the flow pattern Geology is mainly Carboniferous Limestone with sorne Millstone Gifit series. Rural catchment draming part of the eastern Pennines.

027041 Derwent at Buttercrambe

1989

Measuring authority: NRA-Y First yoar: 1973

Grid reference. 44 (SE) 731587 leval stn. (m OD). 9.50

Cotchment aros (sa km): 1586.0 Max alı. (m OD). 454

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAH	APM	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	9722	7944	13030	10760	10310	5878	8677	3992	3.731	3236	5418	4.320
2	9581	7904	14320	$10390)$	10010	6097	8.246	3939	3.589	3.270	5017	4313
3	9472	8020	18120	10010	9573	6037	6160	3779	3509	3.200	4949	4263
4	9505	8205	14070	10.690	9383	5904	5360	3650	3535	3:76	4723	4.234
5	9948	8874	12670	17120	9372	5705	4934	3573	3507	3207	4430	4233
6	13440	8426	12830	24770	9.169	5742	4670	3520	3439	3357	4.262	4295
7	11910	8066	16.180	22.250	9047	6.092	4814	3519	3.398	3.552	4161	4.357
8	10940	7849	13730	20460	8.907	6358	4819	3497	3384	3514	5.058	4300
9	10.520	7816	12.770	16710	8723	6.113	4820	3697	3.487	3.471	9460	4386
10	9883	7719	12.580	20460	8.538	5847	4869	4186	3515	3451	9000	4647
11	9.599	7646	11510	25780	8.585	5668	4720	4517	3.498	3425	11680	4.705
12	9562	7809	11.180	31.250	8.933	5457	4440	4276	3744	3.459	8820	4615
13	9425	7.952	12510	20080.	9066	5.354	4236	4257	3925	3554	6844	5.146
14	11.670	8134	12.550	17170	8 376	5336	4124	4412	3803	3416	5919	9.153
15	11.130	8018	22250	15770	8029	5223	4055	4347	3.587	3289	5486	17.640
16	10140	7521	15.790	14360	7823	5087	3978	4223	3577	3330	5179	16130
17	9671	7396	14080	13430	7559	4959	3963	4027	3634	3375	4973	25930
18	9286	8091	14050	12720	7440	4804	3935	3862	3.543	3383	4.840	23500
19	9163	9935	13.800	12290	7353	4649	3898	3732	3413	3503	4694	18890
20	9148	9.393	14760	13060	7.145	4439	3854	3656	3.257	4.554	4593	18.390
21	9438	8814	14.200	13030	6.992	4283	3794	3584	3.229	7.874	4466	25.470
22	9148	8.522	13.530	13.260	6615	4305	3773	3.511	3271	6453	4384	18280
23	8982	8233	12.750	13120	6.542	4.215	5959	3332	3.455	5.284	4379	13.350
24	8306	13410	16960	13.990	6824	4131	6629	3294	3360	4829	4443	11520
25	8736	43.950	14.300	13.120	7047	4096	4466	3308	3293	4090	4531	12900
26	8676	31.260	12370	11.930	6.674	4.282	3968	3478	3305	3933	4.661	10.950
27	8612	16.970	11.750	11280	6.349	5.956	3651	3665	3.320	4.095	4.586	9.549
28	8414	14110	12530	10780	6147	7963	3552	3794	3271	5093	4474	8895
29	8.172		12.700	10430	6.011	6.067	3.599	3631	3.256	5.847	4395	8323
30	8. 103		11410	10370	5.831	6000	4151	3112	3244	6759	4344	7876
31	7954		10.910		$5.74{ }^{\text {, }}$		4190	3701		6.538		7516
Average	9.640	11.000	13750	15360	7875	5402	4720	3796 .	3469	4172	5472	10390
Lowest	7954	7.396	10.910	10010	574	4096	3552	3294	3.229	3.176	4161	4233
Highest	13.440	43950	22250	31250	10310	7963	8677	4517	3325	7874	11680	25.930
Poak fow	14.36	4960	2532	3580	1042	8.86	9.70	475	4.00	886	1248	2889
Day of pask Monthly totat	6	25	15	12	1	28	23	13	13	21	11	18
(milion cu m)	25.82	2661	3682	3982	2109	1400	12.64	1017	8.99	11.17	1418	27.83
Runoti (mm)	16	17	23	25	13	9	8	6	6	7	9	18
Rainfall (mm)	20	48	59	56	17	61	33	44	18	67	42	14

Statistics of monthly data for previous record (Oct 1973 to Dec 1988)

Moan fows.	Avg	30060	27.780	27670	20.980	15520	10710	8136	8536	8364	14170	15850	24990
	Low	16780	15260	8799	6.978	7849	5.342	3.882	3214	4.729	5555	7401	13460
	(year)	1983	1982	1976	1916	1982	1974	1976	1976	1975	1975	1978	1984
	High	48190	49280	56.110	37540	29840	21260	12620	15430	14710	36820	25220	42.740
	(year)	1977	1978	1979	1986	1979	1979	1988	1980	1976	1976	1980	1978
Runoff:	Avg	51	43	47	34	26	17	14	14	14	24	26	42
	Low	28	23	15	11	13	9	7	5	8	9	12	23
	$\mathrm{H} \times \mathrm{gh}$	81	75	95	61	50	35	21	26	24	62	41	72
Remfall	Avg	78	49	74	52	62	55	64	69	71	78	67	80
	Low	34	5	6	11	22	11	18	10	21	21	28	24
	High	132	101	143	113	142	149	138	126	192	158	111	180

Summary statistics					
	For 1989		For record preceding 1989		$\begin{gathered} 1989 \\ \text { As } \% \text { of } \\ \text { pro. } 1989 \end{gathered}$
Mean flow (m's ${ }^{-1}$)	7.900		17700		45
Lowest yearly mean			11720	1975	
Highost yoarty mean			25320	1979	
Lownst monthly mean	3469	Sep	3214	Aun 1976	
Highest monthly moan	15360	Apr	56110	M3 1979	
Lowest daty meen	3.176	4 Oc:	2697	23 Aug 1976	
Highest daity moan	43.950	25 Feb	121400	29 Dec 1978	
Peak	49600	25 fot	124800	5 Jan 1982	
10\% oxcoertance	13.990		35310		40
50\% exceedence	6.102		13330		46
95\% exceedence	3347		5090		66
Annual total (milion cu m)	24910		558.60		45
Anmual runotf (mm)	157		352		45
Anmual tainfell (mm)	539		799		67
[1941 -70 rainfall average (mm)			784]		

Factors affecting flow regime

- Abstraction for public water supplies
- Augmentation from surface water and/or

Station and catchment description
Compound Crump profile weir, 20m wide. with current meter rating for high flows Supersedes 27015 . Peak flows from the headwaters upstream of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Mixed geology of clays. shales and limestone Rural catchment draining the North York Moors

027053 Nidd at Birstwith

Statistics of monthty data for previous record (Apr 1975 to Dec 1988 -incomplete or missing montha total 0.1 years)

Station and catchment description
Velocity-area station approximately 17 m wide, rated by current metering from bridge at the section. Heavily reservored catchment with substantal effect on flows. Geology is mostly Millstone Grit. Rural catchment.

028009 Trent at Colwick

Measuring authority. NRA-ST
First year 1958

Gid relerence 43 (SK) 620399
Level stn (m OD) 1600

Daity mean gauged discharges (cubic metres per seconof

Day	JAN	fer	MAR	APA	MAY	Jus	JUI	ALC	SFP	OCT	kov	Drs
1	50790	54620	$1 / 6 / 10$	65670	71690	35070	69040	30840	25500	22210	40210	28640
2	50180	52370	188500	143100	66450	36900	59,30	29650	$246^{\circ} \mathrm{O}$	22070	37170	27600
3	49450	49960	-9080	230800	63660	37280	39060	25650	23260	22400	38280	27030
4	48670	48230	. 41300	160200	60) 850	34650	35570	23770	23030	23120	34280	25 960
5	50320	59550	:14800	$2 \cdot 3100$	57160	35710	31580	24670	23240	22780	33960	26790
6	59420	55710	104:00	315700	54510	54670	30160	24990	24120	24370	36300	27430
7	53180	$50 / 90$	106700	363500	51300	87880	6.3780	24330	23680	25300	33660	26920
8	50050	47160	9*710	342200	51980	64980	75190	24520	23450	26 5:0	75930	26010
9	51530	45580	87450	222500	50620	49260	48870	24810	24140	25340	177200	26580
10	51170	45640	84960	268300	49290	41940	39870	36970	23130	23730	131500	26 200)
11	47540	42980	83330	312800	51410	36640	34390	42920	23920	27990	102200	26820
12.	55730	43670	75600	275400	57740	37610	30) 530	3370	23650	22530	95950	29100
13	62880	45.300	89030	250400	62160	37850	29510	27800	24360	22930	64210	45.930
14	71980	50640	113200	189700	50980	39530	28180	30560	25660	24900	51830	195.700
15	14/40	51120	214000	139800	$46 / 50$	39250	27590	32910	27550	22800	45210	299300
16	64470	58050	150.300	117800	45980	31240	26670	33720	30810	22580	40890	333900
17	59460	53900	115000	106500	46410	29950	26700	28710	56880	22450	$38 / 60$	356100
18	56730	69820	94010	95950.	45740	29590	26000	$26510)$	50430	- 22820	37130	334100
19	$51 / 10$	90090	96280	81140	44180	26580	26320	25560	32480	23240	$37 / 50$	338400
20	51580	73650	- 0470	82150	44380	27380	26050	22850	27450	44880	34350	359000
21	65020	62800	$13 \cdot 400$	77550	42790	26920	25220	23110	25780	86560	33050	384700
22	81740	$60300)$	123400	74130	35290	2.6450	25540	22830	25080	86840	31600	358500
23	69930	59050	109400	84460	37940	26620	27070	22920	24550	78850	31330	251400
24	63530	108100	185700	99490	65230	26.2:0	24890	22860	24220	46230	30420	190100
25	57980	299700	150600	- 26400	68110	26200	23630	24330	23420	34500	28810	24/800
26	55590	250000	106.900	119300	50100	26840	22820	33660	23440	31520	28380	214200
27	52810	158600	91010	106900	42950	35050	22320	31410	23880	31390	27540	152100
28	62.380	:58300	85260	98440	39340	40030	23270	25980	22540	35490	28730	119200
29	19150		85710	84020	37440	43:20	22.800	24230	22790	46630	28:50	99610
30	66820		74610	786.0	36530	43530	31050	23830	22360	73130	28490	86700
31	59220		69340		35550		41530	26180		52070	,	78160
Avaragn	58900	80200	$: 17300$.	164100	50470	37830	34.330	27640	26 650	35260	49440	- 53900
l owest	41540	42.980	69340°	65670	35290	26200	22.320	22830	27360	22010	27540	25960
trighest	81740	299700	214000	363500	11690	. 87880	75190	42920	56880	86840	177200	384700
Peak flow	9197	30780	23410	36960	8747	9805	10380	6464	7416	102 50	19360	39170
Dsy of meak Monthty total	29	25	15	7	24	7	24	10	18	22	9	21
(mallion cu m)	15770	19400	31410	42530	13520	3806.	9196	1404	6907	9445	- 2820	41220
Runotf (timi)	21	26	42	51	:8	13	12	10	9	13	17	55
Rainfal (mer)	35	64	66	102	27	63	40	41	33	82	48	125

Statistics of monthly data for previous record (Oct 1958 to Dec 1988)

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx 62 m . cableway span 99 m Holme slurces 750 m u/s affect water lovels up to medium flows. Bypassed at high flows on rb when gravel workings inundated Very substantial flow modifications owing to imports. WRW s. cooling water and industrial usage. Very large catchment with the gamut of land usage. Predominantly mpervious - glacial clay and Triassic Marl. but sorne sandstone and limestone. Extensive terrace gravels and alluvium maintain baseflow

028085 Derwent at St. Marys Bridge

Measuring authority: NRA-ST Fusst year: 1936

Gind reference: 43 (SK) 355368 level sth. (m OD): 44.00

Catchment ares (sq km): 1054.0 Max alt. (m OD): 636

Daily mean geuged discharges (cubic metres per seconc)

OAY	$\begin{aligned} & \text { SAN } \\ & 10.950 \end{aligned}$	FEB 8460	$\begin{gathered} \text { MAR } \\ 54360 \end{gathered}$	$\underset{16.550}{A P R R}$	MAY 14110	$\begin{aligned} & \operatorname{RN} \\ & 6778 \end{aligned}$	$\operatorname{ll}_{14970}$	$\begin{aligned} & A \cup G \\ & 4819 \end{aligned}$	$\begin{aligned} & \text { SEP } \\ & 4.126 \end{aligned}$	$\begin{aligned} & \text { OCI } \\ & 3.954 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 6.761 \end{aligned}$	$\begin{aligned} & \text { OEC } \\ & 4881 \end{aligned}$
2	11400	8561	60560	40.730	13110	6461	7.488	4230	3853	3.991	6255	4.943
3	11070	8.247	42.910	29.950	12850	5.744	6313	4.067	4.049	4018	6074	4921
4	10.910	7600	34.250	27.860	12560	5.591	5.622	4052	4.260	4.108	6.350	4301
5	10530	9025	29.550	59.210	11890	5.995	5.266	4016	4038	4034	7.846	4924
6	11.850	8. 789	25.420	69090	11430	7.798	5296	3992	3823	4012	7.409	5094
7	10480	8278	22.500	70120	11.190	7.335	7.196	3874	3858	3.867	6.552	4516
8	10.520	7.979	18.460	63480	11020	6.783	5127	3.837	4.259	3.808	13.430	4656
9	10.280	7.900	19.570	46490	10490	6530	6893	3908	4.193	3.640	15.700	4895
10	9.718	7.110	17.690	77.530	10310	5431	5.289	4.180	4075	3.429	12.950	4973
11	9.671	6.960	17430	63510	10.400	5889	4550	4801	4124	3473	14320	4889
12	10980	7054	17.330	54570	10520	6482	4492	4415	4546	3.486	12.670	4887
13	10.370	8866	24270	57.620	9658	6691	3991	4.302	4443	3.567	10.580	8274
14	12.940	8.789	42270	40180	9.188	6.195	4212	4690	4421	3.687	9222	40.950
15	11.100	9461	43220	31760	9055	5531	4170	5.594	4303	3756	8317	27010
16	11.080	9.298	31180	27960	8627	4851	4079	4486	4682	3.602	7.659	49680
17	10510	9.198	25410	25640	8592	4648	4045	4022	6.142	3422	7.855	43460
18	9964	19.010	21.420	22650	8240	4.390	3926	4047	4665	3515	6893	36030
19	9935	17.600	26730	20.660	8132	4200	3.949	3892	4.171	4.376	7.100	34800
20	10400	13.240	28780	19180	7771	4151	3988	3860	3.958	6808	7027	49290
21	13010	12.610	26.360	17770	7656	3995	3.959	3.876	3.898	8029	6081	75650
22	10.700	12.600	36.380	17070	7.527	3902	4005	3912	4214	9156	5.781	49300
23	10820	12.940	33.580	21750	7413	4384	4035	4225	3.933	6879	5601	35000
24	10290	50430	96210	23530	9.979	4516	3.962	4158	3.979	4.775	5352	41.580
25	9.885	41.370	46.110	19.480	9417	4601	3861	4434	4014	$48 / 6$	5.323	37900
26	9761	23280	34130	16840	7637	4567	4362	4966	3991	3796	5135	27820
27	9.509	28990	28230	19.150	7259	5703	4200	4.398	3962	4788	5550	23480
28	9316	33.800	25.750	16370	7072	6700	4185	4165	3838	5095	5496	20350
29	9198		21930	15860	6761	6114.	4246	4365	3975	11610	5084	17.580
30	9374		19430	14.870	6630	8442	4897	4.521	3968	11170	4938	16080
31	8660		18050		6.568		4.793	4404		7675		15.030
Average	10.490	14.550	31.920	34.910	9454	5680	5076	42.74	4192	5045	7844.	22830
Lowest	8660	6960	17330	14870	6.568	3902	3861	3837	3823	3422	4938	4516
Highest	13010	50430	96210	77530	14110	8442	14970	5594	6142	11610	15700	75650
Peak flow	1546	9890	12960	8851	14.89	1663	2081	691	733	2279	1860	9382
Day of peak Monthy total	14	24	24	10	1	30	1	15	17	29	8	
(marbon cu m)	2810	35.20	8549	9050	25.32	1472	1360	1145	1087	1351	2033	6115
Runotf (mm)	27	33	81	86	24	14	13	11	10	13	19	58
Raintall (mm)	40	104	111	128	33	83	35	45	28	114	62	147

Statistics of monthly data for previous record (Jan 1936 to Dec 1988 —incomplete or missing months total 0.9 years)

Mean	Avg	30320	28710	22950	17990	- 2870	10330	8836	9204	10510	- 3910	21690	26200
flows	Low	9749	8084	9110	7678	6284	4805	4211	3647	3955	4155	4304.	8480
	(yown)	1963	1963	1976	1976	1376	1976	1976	1976	1959	1959	1975	1975
	High	67000	76.780	69530	39590	26410	20220	28660	33840	32940	35130	54.320	88690
	(year)	1939	1977	1947	1966	1967	1987	1958	1956	1946	1960	1940	1965
Runotf:	Avg.	77	67	58	44	33	25	22	23	26	35	53	67
	Low	25	19	23	19	16	12	11	9	10	11	11	22
	High	170	176	177	97	67	50	73	86	81	89	134	225
Rainfay.	Avg	105	78	77	65	70	70	77	84	82	89	105	100
	Low	33	8	16	8	15	15	16	10	3	17	16	20
	High	215	236	185	132	163	188	158	185	199	178	232	246

Summary statistics	For 1989		For rucord proceding 1989		$\begin{gathered} 1989 \\ \text { As \% or. } \\ \text { pe. } 1989 \\ 73 \end{gathered}$	Factors affecting flow regime		
			- Reservoir(s) in catchment					
			- Flow influenced by groundwater absiraction					
Mean flow (m's')	13010				17740		and/or recharge.	
Lowost yeorly mean					9625	'976		- Abstraction for public water supplies.
Highest yearly mean			25200	1966			- Flow reduced by industriat and/or	
Lowost monthly mean	4.192	Sop	3647	Aug 1976		agricultural abstractions.		
Heghest monthiy muan	34910	ADP	88690	Dec 1965		- Augmentation from surface water and/or		
Lowest daly mean	3422	17 Oct	1663	28 Aug 1984		groundwater.		
Highest dody mean	96210	24 Mar	334.200	100 ec 1965		- Augmentation from effluent returns.		
Peak	129600	24 Mst						
10\% exceectanco	32300		36490		89			
50\% axceodance	1400		12080		61			
95\% excandance	3866		5081		76			
Anmual total (mitan cu m)	410.30		55930		73			
Annual runoft (mm)	389		531		73			
Annual raintal (mm)	930		$\begin{aligned} & 1002 \\ & 10161 . \end{aligned}$		93			

Station and catchment description
Ten channel. interteaved cross path US gauge in the centre of Derby. 1.75 km ds of Longbridge Weir (28010). Record continuous with 28010 At high flows Derby may flood but bypassing smatl. Substantial flow modification owing to Derwent reservoirs. milling and PWS abstractions Large. predominantly upland catchment draining Milistone Grit end Cart Lst. Lower reaches drain Coal Measures on the lb and Triassic sandsiones and maris on the th Peat moorland headwaters: forestry, pasture and some arable

Grid referonce 43 (SK) 842480
Level stn (m OD) 1690

Citchment ares (59 km - 2979 Max alt (m OD): 158

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	$\boldsymbol{X N}$	NL	AUG	SEP	($C^{\text {c }}$	NKOV	
;	0633	0626	1095	0937	2416	1115	1453	0699	0395	0388	0495	0594
2	0656	0611	1366	1750	2342	1118	: 036	0593	0.410	0382	0565	0596
3	0656	0.830	1887	2468	2049	1119	0880	0512	0374	0396	0.549	0581
4	0682	0819	1515	. 2010	7147	1042	0831	0481	0378	0385	0491	0568
5	0674	0839	1390	7755	2037	1045	0773	0476	0366	0371	0438	0582
6	0684	0861	1122	8611	1985	1186	0756	0480	0323	0507	0538	0.519
7	0697	0828	1182	8144	1878	1989	0822	0465	0292	0612	0481	0448
8	0648	0809	0984	4617	: 845	1264	0915	0433	0439	0586	1861	0.567
9	0679	0787	1191	3343	1823	1074	0850	0)491	0379	0489	2.204	0494
10	0686	0852	1008	3504	1629	0972	0798	0819	0364	0455	1471	0540
11	0666	0810	0950	3873	1794	1.012	0636	0893	0393	0446	0976	0610
12	0857	0748	1010	3642	1978	0868	0609	0576	0461	0434	0759	0700
13	0758	0795	0952	4435	1720	0794	0562	0547	0405	0424.	0647	0904
14	1338	0783	1205	3474	1557	0786	0559	0557	0383	0397	0620	4455
15	1126	0785	1624.	2900	1528	0823	0533	0537	0424	0.399	0582	5081
16	0901	0754	: 399	2641	: 389	0699	0521	0506	0449	0391	0597	4572
17	0862	0784	1538	2414	1398	0660	0545	0529	1185	. 0407	0593	4117
18	0799	0818	1310	2405	1401	0692	0519	0463	0606	0420	0573	4.790
19	0796	0810	. 1168	2297	1277	0690	0473	0456	0537	0426	- 0552	7278
20	0801	0759	1284	2:13	1226	0693	0529	0444	0484	0640	0569	5590
21	1134	0740	1344	2142	1273	0696	0505	0359	0531	1454	0593	4335
22	1233	0791	1194	2135	1181	0704	0546	0335	0515	1096	0543	3138
23	1162	0716	1248	$2548{ }^{\text {- }}$	1.383	0710	0670	0312	0440	0644	0557	2485
24	0982	12.25	1648	3343	- 422	0653	0569	0427	0405	0592	0568	2327
25	0676	2375	1613	6325	. 1318	0662	0534	0452	0397	0.554	0562	2267
26	0675.	1631	3946	4357	1251	0655	0464	0518	0407	0506	0548	1999
27	0779	1254	1559	3960	1221	1022	0432	0489	0422	0506	0635	1839
28	1012	1066	1090.	3313	12.05	1166	0456	0421	0419	0493	0590	1747
29	0820		0965	2841	1.009	1077	0454	0390	0410	0572	0542	1633
30.	0847		0918	2.636	1045	0963	1480	0435	0379	0536	0527	1.585
31	0818		0932		105%		0756	0337		0546	0527	1582
Averago	0830.	0911	1343	3588	1576	0932	0692	0498	0.446	0531	0707	2211
Lowest	0633	0617.	0918	0937	1009	0653	0432	0312	0292	0371	0438	0448
Highest	1338	2375	3946	8744	2.416	1989	1480	. 0893	1185	1454	2204	7278
Peak flow	192	271	525	11.03	255	327	228	126	232			
Day of neak Montily total	14	25	26	7	1	6	30	11	17	21	8	:9
(mullion cu m).	222	220	360	930	422	241	185	133	115	142	183	592
Runotf (mm)	7	7	12	31	14	8	6	4	4	5	6	
RainfaH (mm)	27	33	45	98	23	64	35	30	34	52	41	91

Statistics of monthly data for previous record (May 1959 to Dec 1988)

Station and catchment description
An old weir at three levels with a total width of 24.99 m converted into a standard Lea designed broad-crested weir. It is rated itheoretically and there is no bypassing or drowning. Low flows in summer are moderately influenced by transfer of water from Rutland Water (since 1985) and abstractions for public supply at Saltersford. The catchment is clay (50%) with limestone (40%) and gravel, and is largely rural.

Measuring authortty: NRA.A
First year: 1943

Gind reference: 42 (SP) 898715 Level stn. (m OO): 45.30

Catchment area tsa kmi: 1940 Max att (m OD): 197

Oaily mean gauged discharges icubic metres per eecond)

Day	JAN	FEB	MAR	APP	MAY	10N	μ	aug	SEP	OCT	NOV	OEC
1	0539	0890	1.158	0799	2.041	0.702	0.447	0332	0.267	0317	0.355	0.394
2	0.532	0.830	1.251	3150	1.732	0596	0392	0.298	0.256	0.309	0.700	0391
3	0521	0.800	1.507	2.548	1.684	0577	0369	0314	0.264	0307	0550	0393
4	0532	0.834	1.511	1.777	1.494	0567	0.339	0296	0262	0.307	0.592	0.394
5	0.626	0.803	1.405	4392	1.314	0560	0390	0.297	0.762	0309	0.477	0.396
6	0.605	0.749	1416	7.245	1.161	0.910	0.327	0289	0255	0622	0.443	0.386
7	0.627	0.719	0848	6073	1.038	0796	2.140	0.287	0.305	0.403	0.459	0.381
8	0607	0.690	1.211	3092	1.021	0797	1.002	0284	0244	0342	4.101	0.377
9	0828	0687	0855	2.819	0988	0670	0530	0435	0249	0325	5.882	0373
10	0.579	0.718	0.566	1.703	0983	0599	0491	0894	0266	1027	2.243	0.371
11	0.551	- 0658	0850	3530	1070	0543	0425	0.584	0280	0.328	1504	0362
12	1.817	0.644	0.980	3856	1.057	0510	0.419	0382	0279	0.322	1123	0429
13	1578	0.734	1.191	6.185	0936	0482	0.366	0375	0281	0326	0.891	2460
14	2.521	0686	1529	2.930	0852	0459	0.367	0475	0.306	0.302	0776	9.780
15	1.795	0.734	3.493	2.311	0811	0442	0.342	0441	0291	0293	0.730	9032
16	1.253	0718	2874	2183	0780	0425	0341	0.364	1.264	0.294	0650	9.208
17	0.997	0.940	4.285	2.295	0752	0416	0.333	0333	2414	0300	0616	7751
18	0876	1433	1.696	1940	0755	0400	0.313	0303	1614	0305	0.757	7702
19	0783	1380	1429	1.566	0.714	0.389	0.324	0.294	0.537	0.370	0.786	10.770
20	0.758	1.251	1.475	1.541	0.711	0373	0.302	0284	0.462	0.484	0.607	8.938
21	1044	1029	1513	1400	0691	0.357	0295	0275	0401	0503	0586	6.740
22	1.256	0932	1451	1.353	0662	0.354	0286	0265	0.372	0688	0542	4023
23	1.068	0900	1311	1.867	0697	0351	0318	0265	0355	0.429	0525	3100
24	0954	0864	1.398	2644	2582	0343	0250	0265	0344	0372	0523	2861
25	0870	2093	1301	6440	1.731	0335	0.270	0385	0330	0337	0476	2.678
26	0.796	1.964	1.100	3.922	0.765	0403	0256	0487	0330	0.349	0421	2.296
27	0.729	1576	0950	4.626	0817	0509	0.260	0313	0323	0.335	0416	2.045
28	0925	1428	0926	3469	0.743	0.564	0.261	0294	0308	0.435	0419	1.846
29	1163		0853	2442	0707	0710	0286	0294	0299	0411	0404	1.718
30	1054		0819	2163	0654	0465	0570	0284	0306	0.380	0398	1.598
31	0943		0791		0.634		0.410	0268		0.395		1.510
Average	0.963	0989	1417	3075	1.050	0520	0.433	0353	0457	0.394	0965	3.248
Lowest	0521	0644	0566	0.799	0.634	0.335	0.250	0265	0244	0.293	0355	0362
Hinghast	2521	2093	4.285	7245	2582	0910	2140	0.894	2414	1027	5.882	10.770
Peak flow	3.64	3.18	'674	777	624	1.39	449	190	413	207	749	1141
Day of peak	12	25	17	6	24	6	7	10	17	10	9	19
Monthly total (malion cu m)	2.58	239	380	7.97	281	135	1.16	095	1.19	106	250	8.70
Runoth (mm)	13	12	20	41	14	7	6	5	6	5	13	45
Ratalall (mm)	33	34	47	109	40	52	51	50	58	45	51	100

Sitatistics of monthly data for previous record (Dec 1943 to 0 ec 1988 -incomplete or missing montha total 0.8 yeara)

Station and catchment dascription
Flume with low flow notch and side weir to 1965 , compound Crump profile weir to April 1976. end theoretically-rated Flat V weir with 5.94 m crest since. Crump weir modular to 15.6 cumecs. but bypassed at 14.2 m Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Underlain by clay (59%) and sandstone (24%), mostly rural but includes Kettering.

033002 Bedford Ouse at Bedford

Measuring authorily NRA-A
First year 1933

Grid reference. 52 (TL) 055495
Level \sin (m OD) 2470

Catchment ares (sq km) 14600 Max alt (m OD): 247

Daily mean gauged discharges (cubic motres per second)

DAY	$J A N$	Ft8	MAA	APR	MAV	JUN	A.	AUG	SfP	OCT	NOV	Drc
1	S 100	10.000	55000	8100	14300	4900	4300	2600	2100	2200	3600	3000
2	5000	8700	27200	18000	12100	5200	3700	2500	1900	2200	3600	3000
3	4900	8200	29700	32000	$: 1400$	5100.	3500	2400	1900	2300	5600	3100
4	4300	8100	33500	22000	. 0100	4800	3400	2200	1900	2200	5300	3200
5	4900	8000	24400.	22.900	:0000	4600	3300	2100	1800	2200	4500	3400
6	5800	7200	18600	48900	8000	5300	3500	2. 200	$16(x)$	2200	3900	3400
7	6000	6800	15600	60800	7800	7200	6600	2200	1600	2500	3700	3300
8	5700	6400	13600	56700	1800	6400	13000	2200	1700	2400	4800	3200
9	5700	6000	12100	30500	6700	5300	9300	2200	1800	2900	10300	3100
10	5600	6200	11900	22900	7100	4800	5100	. 2200	1900	2800	11200	3200
11	5300	6200	11400		7600						7300	
12	7600	5900	11000	21300	7600	4800	4400	2200	1800	2500	7300	3300
			1100	30300	$8{ }^{\circ} 0$	- 4400	4100	2500	2300	2400	6 (00)	3400
13	13900	6000	11100	34 500)	7700	4300	3800	2 400)	2700	2300	5200	5900
14	12200	6500	11100	2.9500	6300	4200	3400	2500	390	2200	4600	$24 \cdot 100$
15	11500	64 (\%	23100	18200	6300	3700	3300	2500	3000	2200	3900	46200
16	10100	6300	34:00	15100	6000	3400	3000	3000	3200	2200	4100	49200
17	8400	6400	43900	18800	5800	3500	3000	3 ClO	4500	2200	4000	51500
18	8000	10.100	36400	19700	5600	3400	290	2800.	5400	1700	3700	52300
19	6900	13100	18200	: 5800	5800	3300	2800	2400	4400	2500	3700	50600
20	$6800)$	11700	20510	12500	5600	3.300	2800	2100	3400	3500	3400	65400
21	9500	13100	26700	11600	5100	3200	2500	2200	2900	3400	3300	71400
22	21400	10200	26700	10500	430	3000	2700	2100	2200	3200	3400	75400
23	16600	9500	20800	10100	4300	3000	3300	2200	2200	3000	3300	71800
24	12600	8.700	17400	14500	5000	3000	3700	2200	2200	3000	3100	36600
25	11000	13900	16200	38800	11800	3100	2700	2100	2200	3000	3300	43800
26	9500	45000	13200	51300	7900	3200	2500	2. 100	2300	3100	3300	58700
27	8400	62600	12.000	35100	5800	3100	2500	2100	2300	3100	3300	64500
28	9100	69200	10000	30500	5300	4000	2400	2800	2200 .	3200	3000	3: 600
29	15700		9100	22900	4900	4400	2400	2600	2200	3800	3100	21 日00
30	14100		7800	17500	4900	5800	2400	2300	2200	4600.	3300	17600
31	11200		7700		4900		2500	2100		3900		15000
Averaģe	9142	13800	20340	26040	7294	4257	3832	- 2.374	2523	2. 739	4493	28110
Lowest	4900	5900	7700	8100	4300	3000	7400	2100	1600	1100	3000	3000
Heghest	21400	69200	Ss 000	60800	$: 4300$	7200	13000	3000	5400	4600.	i 1200	75400
Peak "ow	2410	6990	6990	6240	1500	780	1390	340	580	490	1320	8070
Day of peak Monthly tolal	22	28	1	8	1	7	8	:7	18	30	10	23
(iminoา cu m)	2449	3338	5448	6750	1953	1103	1026	636	654	733	: 165	7701
Runotf (min)	17	23	37	46	-3	8	7	4	4	5	8	53
Resinfall (mm)	34	55	61	92	25	41	47	29	39	51	40	134

Statistics of monthly data for previous record (Jan 1933 to Dec 1988)

Mean	Avg	'9820	20080	47250	i1230	7230	4653	3750	2827	7835	5546	11280	15270
Hows	low	2608	2232	2410	1996	$14 \cdot 1$	0483	0100	0040	0268	. 0454	$\cdot 1152$	1531
	(year)	1934	1965	1944	1976	1934	1934	1934	1934	1934	- 1934	1934	1964
	Hign	55190	53300	62020	31410.	28280	14280	19080	14400	'8000	30420	43800	40400
	(year)	1939	1977	1941	1951	1983	:985	1968	1980	1968	1987	1960	1960
Runoff	Avg	36	34	32	20	13	8	6	5	5	10	20	28
	Low	5	4	4	4	3	1	0	0	0	1	2	3
	High	101	88	114	56	52	25	35	26	32	56	78	14
$\begin{aligned} & \text { Rimntial } \\ & \text { (i934- } \\ & 1988 \text {) } \end{aligned}$	Avg	58	41	49	44	56	53	53	62	53	60	64	59
	Low	14	3	5	3	10	8	5	3	3	4	10	13
	High	124	$: 11$	140	96	$1 \cdot 3$	$: 19$	120	$\cdot 38$	110	147	178	128

Summary statistics							Factors affecting flow regime
			For recorst			1989	
	' or 1989					As \% of	- Reservoir(s) in catchment - Flow influenced by groundwater abstraction and/or recharge.
			precoding 1989			pre 1989	
Mean Sow (m's ${ }^{\text {- }}$)	10450		10060			104	
Lowest yearly mean			2401		1934		- Abstraction for public water supplies.
Highest yearly maan			18890		1937		- Flow reduced by industrial and/or
Lowest monthly mman	2374	Ala	0040		1934		agricultural abstractions
Hignest montlily mean	28770	Vec	62020		1947		- Augrnentaton from effluent returns
Lowest daly mean	1600	6 Sepr	0008	31 A	1934		
Highest daily miean	75400	22 Dec	278100	15 N	1941		
Peak	80700	23 Dec					
10\% excradanca	26710		26 4:0			-0:	
50\% excerediance	4963		4648			-07	
95\% exceedance	2185		0909			240	
Annual total (milhon cas m)	32960		31750			104	
Annus runoff (mm)	226		217			104	
Annisal ramial (mm)	644		$65 ?$ 648			99	

Station and catchment description

3 broad-crested weirs. 30 m . 20 m and 12 m wide supplamented by 3 vertical slucg gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. In 1972 . station buit at Roxton (d/s) - to achieve a better record. Significant surface water and groundwater abstractions in catchment for PWS. Geology predominantly clay Land use - agricultural with substantial urban development over last 15 years (inc Milton Keynus)

Measuring outhonty: NRA.A First year: 1963
Daily mean gauged discharges (cubic metres per second)

DAY	Jan	FEB	MAR	APR	MAY	UN	Ue	auc	SEP	OCT	NON	OrC
1	0835	1.550	4315	1.053	1.344	0.451	0.789	0312	0318	0272	0.349	0.338
2	0820	1.392	6.530	1.035	2.189	0464	0677	0307	0.304	0279	0.387	0338
3	0829	1294	7.755	1.025	1.061	0471	0494	0286	0274	0.292	0484	0330
4	0847	1249	4934	1.033	0.990	0.470	0433	0282	0.266	0286	0439	0338
5	1.188	1254	3.718	\$270	0901	0496	0393	0272	0.274	0295	0.375	0342
6	4201	1.115	3.150	1.349	0825	0.622	0371	0263	0216	0.318	0369	0.364
7	2.826	1068	2.342	1.797	0791	0646	0455	0258	0284	0.323	0366	0357
8	2.174	1048	1987	1.593	0799	0.782	0583	0266	0270	0306	0432	0403
9	1.914	1025	1925	1.308	0.796	0711	0887	0268	0282	0308	0.504	0357
10	1.629	1002	1.841	1545	0763	0589	0565	0289	0280	0317	0488	0342
11	1.206	0862	1692	2.054	0738	0522	0475	0325	0306	0322	0438	0349
12	1.564	0828	1.625	2.795	0726	0.491	0434	0331	0310	0.327	0392	0405
13	1.814	0957	1681	2008	0.723	0468	0400	0289	0341	0.340	0.375	0542
14	3077	1.046	1.673	1.587	0615	0449	0361	0270	0330	0.313	0403	1500
15	3.262	1000	3.744	1.276	0594	0422	0345	0298	0341	0.288	0382	1713
16	2.505	0951	7145	1216	0.594	0388	0315	0311	0342	0291	0363	1597
17	2.092	1.264	14.320	1288	0588	0372	0309	0292	0325	0.298	0373	1380
18	1.679	1993	9239	1094	0.589	0347	0316	0275	0309	0.337	0369	1073
19	1503	1943	4904	1042	0.558	0347	0309	0271	0328	0342	0352	1404
20	1402	1632	4048	1313	0540	0354	0.301	0248	0353	0.384	0358	2990
21	2. 196	1349	5.623	1363	0.511	0385	0295	0233	0373	0.372	0.369	5302
22	2.712	1479	4333	1241	0.503	0412	0288	0239	0316	0.338	0.367	2.654
23	2.281	1.591	3040	3.188	0503	0396	0279	0242	0378	0.338	0368	1567
24	1.965	1583	2.740	6896	0489	0362	0262	0242	0363	0345	0371	1077
25	1.755	2180	1.947	6740	0478	0328	0256	0245	0274	0345	0.359	1018
26	1.577	7.136	1.537	4083	0461	0319	0254	0362	0272	0345	0343	0896
27	1.368	7166	1.613	2769	0447	0438	0249	0487	0266	0368	0352	0810
28	1449	4668	1453	1916	0433	0453	0230	0412	0263	0380	0360	0728
29	1729		1223	1353	0436	0547	0232.	0354	0273	0388	0343	0685
30	1759		1.170	1334	0426	0566	0254	0358	0280	0392	0342	$\because 0642$
31	1594		1123		0440		0301	0337		0388		0616
Averago	1.863	1844	3.689	1985	0672	0469	0391	0297	0308	0330	0386	1.047
Lowost	0820	0828	1123	1025	0426	0319	0230	0233	0263	0272	0342	0330
Heghast	4201	7166	14.320	6896	1344	0.782	0887	0487	0378	0392	0504	5302
Peak flow	5.56	837	1525	162	1.39	0.79	112	052	039	042	0.52	6.58
Day of peak	6	26	17	24	1	8	9	27	23	29	9	21
Monthly total (mulion cu m)	4.99	446	988	515	180	121	105	080	080	088	100	280
Runotf (mm)	13	12	27	14	5	3	3	2	2	2.	3	8
Raintall (mm)	35	40	55	63	5	65	35	35	11	31	29	90

Statistics of monthly data for previous record (Dec 1963 to Dec 1988)

Mean	Avg	4309.	3.440	2.714	2076	1170 0369	0799	0548	0.759	0886 0261	1231 0352	1.872 0397	$\begin{array}{r}\square 2872 \\ \hdashline 0492\end{array}$
nows:	Low	0609	0722	0591	0487	. 0369	0285	0285	0281	0261	0352	0397	- 0492
	(year)	1973	1965	1973	1974	1974	1974	1974	1973	1964	1984	1964	1964
	High	14.260	10.670	7.665	5646	3254	4302	1197	6.958	9753	10260	8.852	8379
	(year)	1988	1979	1981	1983	1969	1385	1987	1987	1968	1987	1974	1965
Runoff	Avg	31	23	20	15	8	6	4	5	6	9	13	21
	Low	4	5	4	3	3	2	2	2	7	3	3	4
	Hegh	103	70	55	40	24	30	9	50	68	74	62	61
Hantall:	Avg.	54	37	45	44	48	51	49	51	53	54	62	54
	Low	16	10	10	9	10	10	11	7	2	4	25	18
	Hogh	122	72	96	86	97	132	93	110	161	118	150	100

Summary etatistics

Station and catchment description
A compound Crump wear 8.5 m wide in the man channel with a single crested Crump in the mill bypass. Sluice action at a mill 24 km upstrearn is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Was affected by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Boulder Clay catchment with largely rural land use.

Factors affecting flow regime

- Flow reduced by industrial and/or
agricultural abstractions
- Agricultural abstractions. groundwater.

036006 Stour at Langham

Mossunng suthority NRA.A
First year: 1962
Daily maan gauged discharges (cubic metres per eecond)

DAY	JAN	FEB	MAA	APA	MAY	JN	תul	AUG	SEP	OCT	Nov	DEC
1	1.648 ..	2875	4527	2539	2600	0.960	2107	1194	0802	0747	1262	2379
2	1631	2.695	4501	3693	2.378	1.134	2002	0989	0827	0760	1426	2501
3	1484	2508	3875	9310	2274	1094	1.801	1036	0854	0758	1563	2.295
4	1.480	2.388	- 4665	4699	2182	1180	1839	1058	0913	0781	1386	2392
5	1811	2265	4068	5320	2081	0972	1.798	0953	0757	0729	1451	2598
6	5.728	2207	3.725	9018	1988	1.385	1.699	0905	0688	0.889	1148	2628
7	3.788	1861	3.263	16.410	1839	1686	2555	0854	0736	0934	1398	2.685
8	2.667	1.978	2.614	9832	1725	1.370	2.462	0757	0754	0938	1.798	2581
9	2.648	2471	3.385	5503	1721	1420	2330	0805	0.803	0817	1.751	2465
10	2.412	3.557	4987	4753	1.603	1.220	1995	1093	0801	0974	1.925	2.205
11	1.909	4.307	5.152	6.685	1660	1268	1425	1052	0787	0.781	1.950	1.735
12	2.124	4601	5004	9550	1707	1073	1.435	0854	0806	0766	2025	2.244
13	3503	4283	5.163	5.561	1721	1.161	1419	0972	0856	0.729	1816	2934
14	3.288	4.452	5.414	3823	1525	1.175	1.572	0884	0943	0.667	2262	4944
15	3449	4285	6.694	3227	1355	1163	1892	1003	0882	0714	2.127	4824
16	3401	4217	10980	3689	1355	1167	1840	1080	0.883	0707	2104	4290
17	2124	4856	21400	2850	1.385	1120	1921	1039	0875	0.684	2153	4606
18	2375	6764	23.830	2962	1535	1082	1990	0856	0886	0851	2141	3063
19	2461	6213	9.596	2915	1539	1014	1.989	0892	0814	0956	22.24	3470
20	1954	5054	7077	2796	1512	1410	1801	0759	0753	1.129	2226	6.272
21	3.947	4894	9.275	2989	1517	1330	1728	0817	0716	1328	2306	14.910
22	11.600	4669	7.962	2834	1522	1614	1711	0845	0778	1083	2157	10860
23	6070	4.792	5519	2642	1.348	1.775	1720	0832	0663	1002	2263	4.241
24	3.313	4854	4.719	3013	1351	1752	1779	0.821	0.905	1026	2309	3.895
25	2.595	6.551	3.399	5576	1461	1.691	1821	1038	0627	1020	2.305	3.112
26	2985	14.790	3.147	5147	1414	1655	1636	1295	0693	1.052	2355	2784
27	2509	14.570	3.097	4112	1.291	1924	1660	1232	0718	1092	2. 366	1.680
28	2595	9.348	2.871	3046	1284	2026	1545	0941	0729	1.117	2226	2451
29	5.642		2.559	2418	1268	2246.	1.197	0932	0764	- 1223	2325	2013
30	4148		2.335	2601	. 1.068	2093	1177	0817	0703	1237	2374	1.552
31	2952		2.591		0858		1285	0812		1.216		1.648
Averege	3234	4.939	6044	4984	1615	1405	1778	0949	0.790	0926	1971	3623
Lowest	1480	1861	2.335	2418	0858	0960	1177	0757	0627	0667	1148	1.552
Highast	11600 :	14.790	23830	16410	2600	2.246	2555	1295	0943	1328	2374	14910
Peak flow	13.67	1689	2805	1786	2.96	256	313	155	112	191	2.58	1641
Day of peok	22	26	18	7	1	21	7	26	24	8	14	22
Monthly total (million cu m)	866	1195	16.19	12.92	433	3.64	4.76	2.54	205	248	511	970
Rumoff (mm)	15	21	28	22	7	6	8	4	4	4	9	17
Rainfall (mm)	37	39	54	66	7	49	45	30	11	42	21	103

Statistics of monthty data for previous record (Oct 1962 to Dec 1988)

Station and catchment description

Twin-trapezoidal flume, throat tapping. Spiltway channel with weir constructed in $12 / 85$ takes some flow above 1.45 m . Bypassing also occurs over opposite bank above 1.85 m . More bypassing possible from $0.5 \mathrm{~km} \mathbf{u} / \mathrm{s}$ during extreme events. Naturalised flows to $9 / 76$ Occasional high peaks due to gate action. Flow augmented by intermitent pumping from Ety/Ouse transfer Scheme and occasional SaGS borehole pumping. Mainly rural catchment. Chalk outcrops in N. London Clay in S. all covered by Semi-pervious Boulder Clay

038003 Mimram at Panshanger Park

Measuring arthomit: NRA-T fisst year: 1952

Grid reference. 52 \{TU 282133
Level sin. (m OD): 47.10

Catchment area (sq km): 133.9 Max att. (m OD): 193

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	May	UN	rer	AUG	StP	OCT	NOV	DEC
1	0440	0421	0469	0622	0674	0507	0522	0.359	0.307	0.283	0286	0.272
2	0441	0427	0520	0.760	0660	0503	0417	0370	0.302	0.274	0453	0.271
3	0.440	0421	0461	0.577	0652	0502	0403	0348	0298	0.274	0320	0.271
4	0.434	0423	0455	0.628	0629	0495	0390	0349	0292	0.273	0342	0270
5	0.504	0424	0446	0.776	0603	0489	0596	0343	0290	0.290	0324	0273
6	0446	0.409	0447	0680	0.582	0.568	0608	0340	0287	0.274	0295	0275
7	0434	0415	0.441	0603	0.568	0507	0.723	0341	0287	0291	0306	0276
8	0429	0402	0.437	0588	0.555	0493	0663	0339	0282	0274	0400	0271
9	0438	0.419	0.445	0597	0.537	0.486	0481	0.329	0282	0.275	0356	0270
10	0.428	0401	0477	0692	0.531	0479	0451	0451	0285	0270	0330	0269
11	0430	0400	0446	0826	0.536	0.475	0431	0.377	0287	0268	0.306	0318
12	0548	0397	0451	0644	0.528	0465	0416	0.336	0.378	0268	0.299	0.311
13	0461	0409	0431	0644	0524	0454	0.409	0444	0.304	0269	0280	0703
14	0453	0391	0633	0623	0521	0450	0406	0.452	0320	0260	0278	0689
15	0427	0415	0493	0620	0523	0445	0402	0.391	0.300	0.258	0274	0.520
16	0423	0393	0978	0634	0518	0439	0399	0468	0322	0258	0271	0727
17	0.443	0531	0567	0633	0519	0420	0392	0357	0332	0260	0273	0487
18	0420	0455	0525	0627	0521	0.419	0389	0338	0300	0265	0272	0650
19	0419	0422	0544	0627	0516	0415	0383	0337	0292	0.378	0275	0576
20	0.425	0404	0644	0659	0512	0409	0377	0319	0289	0450	0270	1260
21	0573	0398	0559	0634	0504	0402	0379	0316	0298	0329	0278	0.774
22	0449	0428	0.528	0616	0510	0406	0367	0308	0290	0.308	0277	0539
23	0437	0401	0.530	0615	0502	0409	0356	0304	0285	0.293	0276	0617
24	0426	0429	0526	0841	0498	0397	0349	0303	0.283	0280	0276	0573
25	0.421	0104	0517	0721	0496	0392	0344	0360	0280	0.280	0268	0579
26	0427	0671	0516	0740	0497	0421	0340	0367	0284	0.306	0267	0497
27	0420	0512	0516	0875	0489	0468	0342	0316.	0290	0286	0269	0486
28	0.522	0477	0524	0696	0.482	0438	0346	0310	0283	0372	0268	0474
29	0429		0526	0676	0479	0529	0349	0310	0279	0330	0267	0469
30	0425		0527	0673	0476	0438	0417	0311	0280	0312	0272	0.465
31	0418		0532		0499		0372	0311		0296		0462
Average	0446	0443	0520	0672	0537	0457	0426	0352	0296	0294	0298	0480
lowest	0418	0391	0437	0577	0476	0392	0340	0303	0.279	0258	0267	0269
Heghes	0.573	0704	0.978	0875	0674	0568	0723	0468	0378	0450	0453	1260
Peak flow	090	104	153	139	069	084	146	0.84	063	016	077	2.34
Day of peax	21	26	16	11	1	29	5	16	12	19	2	20
Monthly :o:al (milion cu m)	119	1.07	139	174	144	118	114	094	077	079	077	129
Runoff (mm)	9	8	10	:3	11	9	9	7	6	6	6	10
Ranfall (mm)	35	49	55	95	8	32	54	33	19	50	31	141

Statistics of monthly data for previous recond (Dec 1952 to Dec 1988)

Station and catchment description
Critical-depth flume; 5 m overall width. Theoretical calibration confirmed by gaugings All flows contained Net export of water, considerable groundwater abstraction in headwaters Very high baseflow component A predominantly permeable catchment (Upper Chalk - overlain by glacial deposits near headwaters). mainly rural but some urbanisation in the lower valley

039001 Thames at Kingston

Moasuring authonty NRA.T Firsi year 1883

Gid reference: 51 (TQ) 177698 Luvel s:n (m OD) 470

Catchment area (sqlikm) 99480 Max alt (m OD) 330

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	rf 8	NAH	APR	MAY	$\checkmark \mathrm{N}$. N	AUG	St ${ }^{p}$	(1)1	NOV	DiC
1	23:00	16200	164000	55600	56000	17400	8820	1720	4330	3650	$4 / 30$	7240
2	23400	21100	115 (00)	6380	45100	18500	10100	6460	4230	3800	6740	6400
3	23100	13900	155000	64500	43000	18300	9950	1230	4000	3430	14:00	7.500
4	22:00	14400	151 (00)	66700	42600	11600	9200	5920	4570	5070	5940	6290
5	23600	19200	119000	34000	41900	13500	90.0	1660	5630	5030	4920	7550
6	24000	16300	88300	177000	39800	26400	13700	64.30	6150	4530	5480	5070
7	20400	10100	84900	-69000	38100	23600	39300	6980	4730	4280	6590	7760
8	18600	8830	73400	$\cdot 31000$	31100	22500	44100	7040	3780	4310	6470	6950
9	11400	8510	67500	'05000	33800	18900	34800	5640	3990	3830	11900	5780
10	15900	10100	56400	9930	32500	:6800	24200	23100	4060	5510	35300	7430
11	16700	12800	61100	114000	29200	14600	9160	6320	4820	7140	25700	6390
i2	22400	10600	63800	$\cdot 72000$	31800	i5 (000	9320	7410	5170	7250	8390	10)400
13	. 37900	10300	61800	131000	30800	- 1900	1290	7150	6700	3110	12.300	18500
14	38700	12200	63400	104000	30900	21200	8980	6120	5050	$3 \cdot 90$	9310	88700
:5	41900	10900	134 (00)	94900	30200	-8800	10)900	8160	3600	3730	7610	109000
16	36500	11700	185000	79900	28900	$\cdot 3400$	9600	5840	4110	3050	4120	148000
17	34800	33000	216000	17300	25700	- 0400	10300	5670	4320	5040	5020	187000
18	26300	70500	157000	74300	23300	- 1300	8.850	6520	5800	5610	4770	175000
19	20900	101000	119000	72900	19600	-1200	10600	5230	4010	4890	7220	164000
20	25100	110000	177000	66700	23700	$: 4500$	9530	5570	4530	$102(0)$	8410	226000
21	31500	75700	196000	58700	21100	96.0	9440	4850	5280	13400	3940	304000
22	46 (100	35500	159000	57800	21500	9240	9040	4640	4040	6700	6420	292000
23	42500	29700	106000	52 000)	18400	97:0	10600	5260	4600	8710	7390	245000
24	27100	79500	99100	59600	3190	12300	7410	4230	4230	5530	8330	238000
25	18900	154000	87200	11100	58800	11900	7060	4950	5640	4160	5800	224000
26	20300	235000	72000	68000	26400	9930	6410	14000	4880	5160	5950	235000
27	15200	225000	75300	89 20)	19200	11500	7420	13000	3030	4370	1880	205000
28	20600	184000	7090	70600	20000	9080	7540	7590	3760	4180	6670	181000
29	24400		56000	63900	19700	10800	6570	5160	3560	8420	8330	146000
30	32500		62500	48 BOO	11000	10400	7610	4730	3810	5660.	8650	118000
31	27000		57600		11200		6950	3950		$6400)$		95700
Average	26450	S5 020	106400	88620	30210	14310	- 2560	7114	4549	5484	8813	112400
Lowest	15200	8510	56000	48800	11000	9080	6410	3950	3030	3050	3940	5070
Hıghest	46000	235000	216000	177 (100)	58800	26400	44100	23100	6700	13400	35300	304000
Peak flow	5770	28200	24200	22600	8350	4860	6060	4180	4840	2910	: 5110	32000
Day of peeak Morthly total	:3	27	1)	6	25	6	7	10	16	18	10	21
(millon cu m)	7085	13310	28510	22970	809	3709	3364	1905	1179	1469	2284	30110
Runott (mm)	. 7	13	29	23	8	4	3	2	1	1	2	30
Rainfall (mm)	35	61	67	76	18	33	34	44	30	-.	41	145

Statistics of monthly data for previous record (Jan 1883 to Dec 1988)

	Avg	127700	123800	104900	75500	53970	37470	23100	22090	23560	38990	72820	10:400				
flows	Low	18570	12290	9426	8975	4391	3302	2079	19:2	0688	3144	1472	10210				
	(yeat)	1976	1976	1976	$19 / 6$	1976	1976	1921	1976	1976	1934	192.	1933				
	High	32.5300	342000	359500	188800	171700	171600	12 29)	79330	123900	179800	334000	333900				
	(yeat)	1915	1904	1947	$19^{\prime} 6$	1932	1903	1968	1931	1927	1903	$\cdot 694$	1929				
Ruroff.	Avg	34	30	28	20	15	10	6	6	6	10	-9	27				
	Low	5	3	3	2	1	1	$!$	1	0	1	2	3				
	Hrgh	88	86	97	49	46	45	19	21	32.	48	87	90				
Rainfall	Avg	65	49	53	48	b	52	59	64	58	73	12	72				
	low	14	3	3	3	8	3	8	3	3	5	8	13				
	Hiģh	137	121	142	104	137	131	130	.47	13)	188	188	- 85				
Summary statistics									Factors affecting flow regime								
			For $1989 \begin{array}{r}\text { For record } \\ \text { preceding } 1989\end{array}$					$\begin{gathered} 1989 \\ \text { As } \% \text { o! } \\ \text { pre- } 1989 \\ 59 \end{gathered}$									
								- Resarvoir(s) in catchment - Flow influenced by groundwater abstraction									
Mean flow (m's ${ }^{-1}$)			39310		66890			and/or recharge.									
L owest yedrly mean			20410				1934		Abstraction for public water supples								
Highest yearty mean					120		1951		- Flow reduced by industral and/or .								
Lowast monthly mann					0	88	Sep 1976		agricultural abstractions								
Highest monthly mean			112		c 359		Ma 1947		- Augrnentation from surface water and/or								
Lowast daly moan						* 11	Oc: :976		- Augmentation from effluent returns								
Highest daly mean			304		c 1059		Nov 1894										
Peak			320	21													
10\% exceedance			115		161			11									
50\% exceedance			:3310		42370			32									
95\% oxcerdance			4010		9239			43									
Annual total (milion cu m)			124000		211100			59									
Annual runoff (rnm)			175		212			59									
Annual rainfoll (mm)$\quad 1941.70$ rainfal averagor			66%		720			93									
			†194.70 ramar avorago (mm)		724												

Station and catchment description

Ultrasonic station commissioned in 1974: mult-path operation from 1986 Full range No peak flows pre-1974 when dmfs derived fromi reddington weir complex (70 m wide): significant structural improvements since 1883 Sorne underestimation of pre-195 1 low flows. Baseflow sustained mainly from thu Chalk and the Oolites Runoff decreased by major PWS abstractions - naturalised flows avalable. Diverse topography. geology and land use which - together with the pattern of water utilisation - has undergone important historical changes
Measuring authorty: NRA-T Fust year: 1952

Grid referance: 41 (SU) 731648
Level \sin. (m OO): 42.30

Catchment ares (sq kmi: 3548 Max olt. (m OO): 225

Daily mean gauged discharges (cubic metres per second)

Station and catchment description
Two Crump weirs (main 4.6 m . side 2.7 m wide) superseded original flume. plus side-spilling weir. in 1970 . Minor bypassing of the side weir in flood conditions, overflows moro frequent pre-1970. Some net import of water - sewage effluent augments fiows. Exact delineation of the hydrological catchment is difficult. Chalk in the headwaters, clay, sands and alluvium in the valley Substantial and expanding urben development in the catchment but large rural tracts remain; significant areas of heath and woodland.

039020 Coln at Bibury

Massuring authority: NRA.T First year: 1963

Daily mean gauged discharges (cubic metres per second

DAY	JAV	FtB	MAR	APR	MAY	JUN	\cdots	AUG	SEP	OCT	NKJV	DEC
1	0645	- 0625	1680	: 740	1570	0.898	0672	0520	0451	0401	0397	0696
2	0637	0624	1880	1780	1520	0889	0661	0521	0457	0398	0415	0.686
3	0635	0625	1990	1690	1470	0870	0660	0517	. 0455	0393	0420	0677
4	0627	0626	1900	1650	1440	0849	0670	0513	0443	0391	0423	0670
5	0630	0634	1880	1750	1410	0838	0617	0515	0440	0393	0419	0664
6	0630	0640	1890	- 1870	1400	0839	0624	0510	0440	0396	0421	0661
7	0622	0642	2040	1810	1370	0823	0645	0504	0442	0397	0436	0657
8	0613	0639	1.920	1690	1340	0810	0647	0508	0430	0395	0519	0653
9	0610	0642	1.910	1690	1290	0793	0633	0509	0425	0396	0538	0648
10	0606	0646	1890	1710	1270	0777	0620	0503	0422	0389	0555	0649
11	0562	0644	1.820	1810	1260	0753	0611	$051{ }^{\circ}$	0427	0387	0.602	0644
12	0629	0646	1.820	1810	1240	0737	0604	0495	0.419	0380	0640	0655
13	0630	0637	1.750	1890	1210	0716	0595	0495	0423	0371	0682	0746
14	0625	0642	1850	1850	1180	0701	0590	0506	0423	0372	0717	0876
15	0635	0641	1920	1890	1170	0704.	0587	0522	0428	0368	0.741	0899
16	0638	0642	1960	1950	1140	0698	0587	0514	0423	0360	0759	1050
17	0623	0666	1990	1970	1130	0703	0577	0510	0457	0351	0765	1150
18	0585	0826	1930	1970	1090	0700	0573	0517	0453	0354	0768	1400
19	0581	0918	1.970.	1960	1080	0676	0568	0509	0431	0.371	0774	1580
20	0589	0844	2020	1960	1060	0668	0567	0498	0417	0365	0747	1900
21	0.614	0.832	2090	1920	1030	0665	0558	0501	0.414	0407	0732	2140
22: \because	0630	0868	2050	1900	1010	0669	0553	0510	0408	0437	0726	2450
$23 \cdots$	0608	0.894	2020	1860	1030	0660	0549	0508	0.413 .	0420	0739	2730
24	0602	1060	2010	1840	1080	0661	0552	0514	0412	0395	0724	2900
$25 .{ }^{\circ}$. 0598	1430	1.970	1780	1030	0658	0541	0567	0417	0386	0113	2.870
26	0592	1560	1 930	1.740	0976	0680	0528	0482	0418	0383	0703	2890
27 :	0592	1580	1.920	1710	0957	0699	0538	0472	0.405	0389	0702	2930
28	0588	1660	1870	1660	0937	0683	0537	0463	0404	0422	0701	2930
29	0.630		1.840	1640	0931	0689	0543	0465	0401	0446	0698	2890
30	0643		1.810	1600	0906	0690	0549	0459	0398	0405	0687	2830
31	0630		1.780		0893		0541	0453		0400		2740
Averege	0615	0833	1913	1803	1175	0740	0589	0503	0426	0391	0629	1544
Lownst	0562	0624	1680	1600	0893	0658	0528	0453	0398	0351	0397	0644
-Highest.	0.645	1.660	2090	1970	1.570	0898	0672.	0562	0457	0446	0774	2930
Paok flow	070	179	2.31	203	163	034	011	066	053	0.57	078	3.06
Day of peak	7	25	3	20	1	2	6	25	9	31	19	24
Monthly total (mbion cu m)	165	202	5.12	467	315	192	158	135	111	1.05	163	. 413
Runotf \{mm)	15	19	48	44	29	18	15	13	10	10	15	39
Rainfall (mm)	41	90	73	83	30	41	34	52	50	112	59	148

Statistics of monthly data for previous record (Oct 1983 to Dec 1988)

Station and catchment description
Crump weir $(9.1 \mathrm{~m}$ broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial infuences on niver flows - net import (sewage efluent) Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the dip-slope of the Cotswolds; predominantly rura

040003 Medway at Teston

Moasurng authonty: NRA-S First year: 1956
Daily mean gauged discharges (cubic motres per eecond)

dar	JAN	FEB	MAF	APR	may	Man	0	AUG	SEP	OCT	MOV	DEC
1	2.522	3076	5.566	4.584	7441	2.951	2.231	1472	1.533	1.609	1.906	1618
2	2.519	3046	10.380	6.732	1051	4115	2022	1.549	1.538	1.597	3599	1.622
3	2.658	3.181	22.790	5.307	5959	3.569	2.028	1.502	1.638	1.853	3887	1.987
4	2.755	2.929	12.810	5.673	5414	2.844	2029	1.489	1606	1.784	3401	1.947
5	4.242	2.938	9.823	76.380	4.648	2.958	1.988	1.585	1436	1.648	2843	2.258
6	5410	2.901	5206	89.520	4335	5.938	1.949	1.561	1411	1.550	2387	2.179
7	3.727	2.797	5.278	29.640	4343	5.949	2.577	1.399	1444	1.770	1910	2.153
8	3.127	2.736	5286	16670	4110	4.926	2889	1484	1490	1.873	3069	2159
9	3.259	2.716	4777	11.730	3731	2.210	2874	1461	1554	1755	4.382	2.066
10	3851	2.713	5205	10190	3540	2.700	2.101	1.518	2.103	1.716	5812	2.145
11	3.529	2.587	3.894	77.150	3311	2.459	1.669	1.553	2319	1.667	4280	2105
12	3.438	2.569	4393	74800	3182	2869	1426	1759	3080	1657	2571	2454
13	3178	2.625	4317	26180	3.251	1560	1.359	1678	2083	1599	1910	4800
14	3.258	2.804	6.535	14740	3138	1.754	1.584	1739	1.954	1569	1702	20560
15	2.859	2.570	17650	10.320	2816	2430	1925	1611	2281	1534	1631	11050
16	3762	2.746	43.190	9254	2848	1.980	1.955	1639	2227	1471	1802	24770
17	3.073	3874	74670	8.518	2900	2.342	1861	2087	2.035	1.616	2060	20930
18	2843	12.870	22020	6702	2860	2227	$1 / 17$	1839	1.839	1507	2318	17.320
19	2706	7554	13.600	6579	2671	2.102	1675	1577	1724	2573	1821	18140
20	2.783	5169	19.370	6.385	2591	2092	1662	1.563	1.593	2220	2259	93480
21	3858	3988	24.380	6462	2676	2039	1.611	1.505	1.584	2621	2041	66410
22	5.064	5089	14640	6.090	2288	1979	1.717	1477	1.876	2366	1.999	23010
23	3918	6.269	6.737	5.796	2032	2061	1573	1426	1857	1525	1.949	13.130
24	3378	12.330	5.581	6222	2413	1.912	1532	1.501	2.285	1384	1966	13020
25	3.724	45060	6.233	7.745	2236	1929	1.497	1492	1.599	1758	1910	12.450
26	2982	58.440	6193	6838	1931	1793	1479	1.796	1756	2096	1.881	13340
27	3.071	29020	5883	20510	2013	2107	1362	1.817	1.381	1.575	2456	8147
28	3130	12.860	5.307	20980	1982	1939	1336	1704	1515	3346	1.500	6274
29	3064		4.728	10510	1916	2068	1423	1.540	1.792	2. 444	1781	5296
30	2.858		4670	8233	1393	2328	1.539	1602	1.605	3241	1751	4855
31	2821		4438		2493		1479	1524		4191		4494
Average	3.334	8838	12.440	19880	3358	2671	1.809	1.595	1.805	1.971	2.493	13100
Lowest	2519	2.569	3.894	4584	1.916	1560	1336	1399	1.381	1384	1.500	1618
Highost	5410	58.440	74.670	89520	7441	5949	2889	2087	3080	4191	5812	93480
Peak flow Day of peak Monthly total (miluon cu m)	8.93	2138	3331	5153	893	692	484	427	4.68	5.28	646	3510
Runoff (mm)	7	17	27	41	7	6	4	3	4	4	5	28
Ramitall (mm)	27	56	70	99	3	46	23	30	32	68	42	127

Statistics of monthly data for previous record (Oct 1956 to Dec 1988 -incomplete or missing months total 1.5 years)

Maman	Avg.	23460	19140	14920	10.730	6.963	4817	3035	3400	4888	8732	15630	18940
flows.	Low	4911	5296	3383	2328	1.751	1.141	1118	0578	1068	1401	2.339	3670
	(year)	1973	1981	1976	1976	1976	1976	1976	1976	1959	1972	1978 .-	1988
	Hing	48.240	49160	31600	23470	20820	21690	7553	9875	30090	53220	66.830	37330
	(year)	1988	1957	1975	1983	1978	1964	1980	1985	1968	1987	1960	1965
Runotf.	Avg.	50	37	32	22	15	10	6	7	10	19	32	40
	Low	10	10	7	5	4	2	2	1	2	3	5	8
	High	103	35	67	48	44	45	16	21	62	113	138	80
Renfall:	Avg.	75	49	58	48	54	53	54	59	69	77	81	80
	Low	13	3	3	7	21	8	20	10	5	5	14	15
	Hrgh	187	123	113	108	112	127	103	122	183	198	169	168

Summary atatistics

	For 1989		For record procoding 1989		$\begin{gathered} 1989 \\ \text { As } \% \text { of } \\ \text { pre. } 1989 \end{gathered}$	- Reservair(s) in catchment. - Flow influenced by groundwater abstraction
Meen flow (m^{\prime} ' l^{1})	6079		11.190		54	and/or rechargo.
Lowest yeerty meen			7584	1962		- Abstraction for public water supplies.
Highest yearty mean			19330	1960		- Augmentation from surface water and/or
Lowest monthly mesn	1.595	Aug	0578	Aug 1976		groundwater.
Highest monthty mean	19880	Anr	66830	Nov 1960		
Lowest daly meen	1336	28 Jul	0383	22 Aug 1976		
Highast daly meen	93.480	20 Doc	269300	4 Nov 1960		
Peak			294500	4 Nov 1960		
10\% oxceedence	12.550		25070		50	
50\% exceedance	2.563		5182		49	
95\% exceedance	1481		1481		100	
Annual total \{milion cu m)	19170		35320		54	
Annual runotf (mm)	153		281		54	
Annual rainfall (mm) [194 1. 70 sainfall everago (mxn)	623		$\begin{aligned} & 757 \\ & 7551 \end{aligned}$		82	

Station and catchment description
Crump profile weir plus sharp-crested weir superseded insensitive broad-crested weir. Flows greater than 27 cumecs measured at well calibrated river section 2 km d/s (East Farleight, updating of primary record incomplete. Responsive regime. Significant artificial disturbance. Iow flow augmentation from Bewl Water (via River Teise). some naturalised flows available Mixed geology; impervious formations constitute up to 50% of the catchment. Diverse land use with significant areas of woodland and orchard.

041016 Cuckmere at Cowbeech

Vieasuring authority NRA-S
First year 1939

Grid reference 51 (TO) 611150 Leve= stn (m OD) 2980

Daily mean gauged discharges tcubic metres per second)

Day	JAN	FER	MAR	AP4	MAY	..UN	Nr	Auci	SEP	OCT	Nov	orc.
1	0067	0081	0203	0138	0121	0040	0028	0015	0013	0014	0) 042	0020
2	0066	0078	0) 556	() 148	0121	0040	0026	0014.	0012	0014	0098	0022
3	0065	0078	0502	0143	0105	0041	0073	0014	0012	0014	0094	0) 020
4	0065	0079) 389	0142	0102	0043	0018	0014	0012	0014	0083	0020
5	0.342	0072	0337	1216	0090	0040	0014	0014	0012	0014	$0) 058$	0019
6	0259	0064	0262	0552	0089	0037	0024	0014	0008	0016	0045	0014
7	0140	0065	0224	0295	0087	0041	0046	0014	0008	0016	0038	0013
8	$01: 9$	0071	0:89	0209	0085	0061	0075	0014	0014	0015	0077	0013
9	0133	0010	0182	0193	0080	0047	0031	0013	002.2	0015	00\%	0012
10	0141	0068	0:66	0190	0066	0039	0027	0014	0045	0014	. 0112	0010
11	0118	0064	0) 165	- 273	0065	0036	1) 026	0013	0016	0014	0081	0009
12	0113	0070	0164	0422	0)090)	0025	0023	0015	0017	$0014{ }^{\circ}$	0055	0) 007
13	0101	0016	0149	0262	0068	0021	0016	0016	0021	0014	0046	0141
14	0103.	0070	0380	0193	0 ()67	0079	0012.	0016	0037	0014	0044	06.3
15	0102	0071	0399	0182	0063	0021	0016	0015	0031	0014	0030	0385
16	0098	0068	1147	0163	0052	0025	0018	0015	0025	0014	0025	1258
17	0099	0123	0533	0161	0048	0024	0018	0029	00:9	0014	0026	0390
18	0084	0301	0.318	0144	0054	0024	0017	0015	$00^{\circ} 1$	0014	0025	03:8
19	0091	0185	0478	0) 142	0054	0024	0017	0014	00:5	0023	0025	${ }^{9} 851$
20)	0091	() 15.3	0483	0138	0052	0024	0016	0013	00.4	0039	0026	2273
21	$0 \cdot 90$	0)119	0452	0134	0051	0024	0017	0013	0014	0033	0028	0841
22	$0 \cdot 38$	0214	0338	0) 125	0049	0024	0017	0013	0024	0040	0027	0375
23	0:20	0218	0773	0123	0048	0025	0018	0013	00:7	0056	0027	0241
24	0105	0604	0309	0142	0038	0025	0016	6) 012	0017	0023	0026	0214
25	0106	1269	() 235	0130	0039	0025	0015	0013	0016	00:7	0024	0211
26	0094	0880	0210	0119	0041	0025	0015	0016	0015	00:8	0074	0186
27	0089	0455	0199	0290	0040	0026	0015	0015	0015	0017	0023	0158
28	0087	0.278	0118	() 202	0040	0023	0014	0013	0014	0048	0025	0130
29	0082		0164	0160	0041	0062	00.5	0012	0014	0055	0022	0121
30	0) 081		0160	0133	0041	0036	$00^{\circ} 7$	0013	0014	0058	002 .	0116
31	0082.		0155		0040		$00^{\circ} 7$	0014		0099		0112
Average	6) 115	0212	03.9	0262	0065	0032.	0022	0014	0017	0025	0045	0314
l owest	0065	0064	0149	0119	0038	0023	00:2	0017	0008	0014	0021	0001
Higrest	0342	1269	1147	1273	0121	0062	0075	0029	0045	0099	0112	2273
Prisk fikw	088	2^{18}	173	340	013	016	017	004	011	017	021	341
Day of neak Morthly $101 a 1$	5	25	16	11	1	29	8	11	- 0	31	2	20
(m) lion cu m)	031	051	() 86	068	018	008	006	004	006	007	$012{ }^{\circ}$	084
Runotf (rm)	17	21	46	36	9	5	3	7	2	4	6	45
Rainfll (mm)	36	69	73	87	8	5 ,	30	27	48	92	50	136

Statistics of monthly data for previous record (Jan 1988 to Dec 1988 —incomplete or missing monthe total 02 years)

Station and catchment description
Asymmetrical compound Crump profile weir (crests. 2.13 m and 297 m broad) with crest tapping - not currently used Very limited head during droughts Structure capacity exceeded in large floods. Early data (1939-67) is of poorer quality and relates to low flows only. Responsive to rainfall on impervious fraction of catchment flows diminished by surface and groundwater abstractions. A rural catchment developed on mixed geology (Hastings Beds predominate)

Measuring authority: NRA S
Fust year: 1958

Grid reterence: 41 (SU) 467213 Leval sin. (m OD): 17.10

Catchment area (sq km): 360.0 Max att. (m OD): 208

Dajly mean gauged discharges \{cubic metres per second)

DAY	.JAN	FEB	MAR	APR	MAY	IN	Ar	AUS	SEP	OCT	NOV	DtC
1	3440	3378	4.493	5483	5379	4646	3533	2.586	2.135	2557	2.992	2608
2	3428	3.385	5043	5546	5323	4423	3.423	2627	2691	2.544	3541	2613
3	3438	3392	5180	5422	5.297	4388	3.188	2618	2.642	2522	3642	2.581
4	3473	3384	4752	5427	5275	4314	3009	2530	2.659	2.596	3293	2646
5	3.482	3388	4673	5.725	5.228	4173	3.043	2416	2620	2476	3.180	2636
6	3559	3423	4617	6.057	5108	4649	3297	2476	2601	2.562	3.156	2532
7	3507	3406	4582	5693	5.076	4.763	3328	2.518	2569	2.554	3.147	2510
8	3467	3394	4499	5.565	4719	4.550	3288	$2.58 /$	2642	2526	3232	2482
9	3471	3390	4660	5.521	4745	4395	3253	2544	2685	2.593	3237	2449
10	3380	3396	4.704	5510	4943	4341	3457	2944	2713	2.518	3.553	2.580
11	3351	3327	4622	6373	4939	4231	3.285	2844	2656	2.554	3299	2653
12	3495	3335	4650	6121	4994	4022	3186	2866	2.775	2.530	3213	2.330
13	3538	3440	4525	5704	5085	3948	3143	2912	3.108	2497	3191	3369
14	3.594	3362	5505	5441	5040	3957	3020	3135	3077	2534	3084	4449
15	3515	3353	5859	5363	4931	3860	2934	3090	3146	2534	2988	3319
16	3457	3377	5643	S 385	4899	3718	2841	3005	7983	2578	3021	3983
17	3449	4057	5394	5310	4993	3649	2854	2919	2848	2654	2811	4259
18	3422	4476	5189	5352	4929	3531	2706	2976	2828	2498	2190	3933
19	3412	4069	5.238	5488	4814	3523	2731	2.942	2753	2693	2.928	3797
20	3423	3881	6099	5513	4731	3379	2109	2931	2662	3.221	2954	5176
21	3640	3708	6272	5544	4595	3221	2633	2936	2629	4260	2868	5387
22	3581	3727	5696	5512	4527	3103	2.158	2853	2646	3746	2.757	5481
23	3737	3794	5485	5565	4449	2887	2659	2183	2600	3088	2121	5333
24	3658	5329	5489	¢ 701	4520	2896	2631	2722	2595	3001	2891	5767
25	3626	5556	5399	5583	4429	2796	2516	2797	2634	3028	2761	6153
26	3618	5206	54.32	5600	4308	2892	2484	2861	2667	2819	2873	5901
27	3611	4934	5477	5756	4304	3184	2. 499	2927	2612	2936	2782	4935
28	3734	4593	5431	546.3	4221	3287	2542	2814	2568	3394	2.721	4770
29	3741		5455	5435	4138	3441	$2 \mathrm{Sb3}$	2965	2576	3191	2699	4801
30	3676		5460	5381	4147	3495	2666	2883	2542	3114	2649	4693
31	3413		5469		4307		26.5	2137		3146		4740
Aversige	3527	3838	5 ;95	5587	4787	3789	2929	2800	2115	2824	3033	3938
Lowes:	3351	3327	4493	5352	4138	2796	2484	2476	2542	2476	2649.	2449 6159
Highest	3/41	5556	6272	6373	5319	4763	3533	3135	3146	4260	3642	6159
Peak fkw												
Day of peak Monthly total (million cu m)	945	928	:392	1448	1282	982	784	$\begin{aligned} & \ddots \\ & 750 \end{aligned}$	104	756	786	1055
Runoff (mmi)	26	26	39	40	36	27	22	21	20	$2{ }^{\text {, }}$	22	29
Rad n!all (mm)	34	95	96	70	10	43	31	36	35	93	48	$1 / 4$

Statistics of monthiy data for previous record (Oct 1958 to Dec 1988)

Mean	Avg	6628	1260	7031	6553	5764	4816	4161	3849	3.107	4135	4846	5103 3135
fows	Low	4208	4163	3644	3203	3093	2581	2474	2331	2670	2702	2 840:	3136
	(year)	1976	1964	1976	$19 / 6$	1976	1976	19/6	1976	-973	1959	1973	1973
	High	10570	10850	9923	8521	7311	6549	5219	5 244	5121	7867	9858	10860
	(year)	1969	1969	1977	1969	: 966	1979	1979	1973	1968	1960	1960	1960
Runofl	Avg	49	49	52	47	43	35	31	29	27	31	35	42
	Low	31	29	27	23	23	19	18	17	19	20	20	23
	High	78	13	74	61	54	41	39	39	37	59	11	81
Rainfial (1959. 1988)	Avg	91	55	73	54	61	56	56	65	15	85	90	94
	Low	12	5	3	2	18	10	17	13	5	6	2%	19
	H ¢̧̧̆	159	146	172	113	$\cdot 45$	128	109	.20	201	234	218	229

Station and catchment description
Crump profile weir 7.75 m broad, installed in 1971 (superseded rated section with weedgrowth problems) plus thin-plate weir (Allbrook) All flows contained frare bypassing resulted from wrong slure settings) Flow augmentation from GW during droughts GW catchment larger than opographical catchinent Arificial influences have minor beringing impact on baseflow dominated regime, sinall net export of water. Very permeable catchment (90% Chalk). Land use is mainly arable with scattered urtan settlements

043005 Avon at Amesbury

Grid reference: 41 (SU) :51413 Level stn (M OD) 67.10

Catchment area (sq km) 3237
Max alt. (m OD): 294
Daily mean graged discharges (cubic metres per second)

Day	JAN	FE8	MAR	APA	Mav	JUN	JUL	AUG	StP	OCT	NOV	
1	2396	2580	4016	4750	4201	2794	1643	1082	0965	0862	1308	1192
2	2415	2547	4275	4821	4173	2767	1617°	1111	0962	0824	1569	1202
3	2.419	2534	4448	4698	4099	2135	1533	1110	0962	0867	1661	1209
4	2426	2526	4112	4672	4041	2710	- 496	1106	0953	0860	1579	1252
5	2434	2496	3988	4846	4023	2540	1395	1047	0913	0858	1434	1.252 1.237
6	2473	2457	3818	¢ 399	3892	2523	1424	1075	0909	0865	- 326	! 185
7	2465	2422	3825	5220	3826	2525	1531	1025	0882	0875	1310	1211
8	2436	2393	3679	4982	3785	75:8	1728	1035	0878	0810	1454	1203
9	2419	2383	3901	4866	3154	2362	1703	1064	0889	0845	1553	1.178
10	2419	2413	3876	5304	3743	2.274	1580	1116	0895	0848	1572	1200
11	2416	2380	3948	8032	3697	2229	1488	1111	0887	0857	1553	1217
12	2561	2374	4015	6193	3654	2:90	: 466	1091	0877	0866	1535	1284
13	2787	2385	3927	5684	3588	2142	1412	1118	0891	0861	1458	1601
14	2808	2378	441°	5168	3513	2091	1388	1133	0966	0858	1445	2532
15	2847	2360	b 160	5033	3490	2054	1328	1106	1101	0867	- 386	2165
16	2719	2346	5192	4963	3468	19'9	1267	1129	1085	0845	1366	3024
17	2633	2578	5049	4894	3404	1913	1243	1:53	1060	0871	1335	3520
18	2567	2.968	4179	4803	3344	1872	1207	1085	0998	0885	1336	3142
19	2425	2909	4681	4658	3303	1844	1150	1043	0968	0983	1328	3124
20	2492	2818	4885	4605	3206	1743	1:31	1001	0950	1075	1311	4371
21	2654	2686	5492	4571	3176	: 731	1139	0968	0899	1188	1297	8369
22	2782	2685	4997	4556	3021	1691	1115	0987	0901	1191	1169	5806
23	2677	2667	4844	4488	3055	$16 / 4$	1105	0) 970	0892	1143	1168	4660
24	2600	3515	4963	4493	3620	1644	1067	0977	0885	1075	1192	4762
25	2567	4737	4925	4493	3465	1605	1063	0970	0861	1028	1192	6078
26	2544	5132	4858	4435	3146	1653	1045	0981	0882	1059	1190	5331
27	2520	5582	4852	4.442	3022	1613	1073	0992	0874	1045	1192	4574
28	2595	4.515	4766	4305	2928	- 668	1125	0967	0868	1166	1222	4161
29	2801		4683	4237	2884	1652	1096	0971	0858	1211	1185	3883
30	2698		4676	4220	2837	1657	1044	0986	0865	1222	: 190	3733
31	2618		4686		2785		1070	0975	086	1218	-190	3587
Average	2568	2942	4.529	4861	3489	2018	1312	1048	0926	0972	1.361	3038
L.owest	2396	2346	3679	4220	2785	1605	1044	0967	0858	0824	1168	$11 / 8$
Highest	2847	5732	5760	6193	4201	2. 794	1728	1153	1101	1278	1661	8 369
Peak flow	318 15	6.72	645	649	429	284	178	118	121	132	169	932
Day of pack Monthly totel	15	26	15	11	1	1	8	17	13^{21}	30	$3{ }^{1}$	
(milion cu m)	688	712	1213	1260	934	539	351	281	240	260	353	814
Runuff (mm)	21	22	37	39	29	11	11	9	7	8	11	25
Roinfor (mm)	$\cdot 39$	77	12	66	31	27	32	41	30	78	49	158

Statistics of monthly data for previous record (Feb 1965 to Dec 1988)

Station and catchment description

Crump profile weir (crest 9.14 m broad) flanked by broad-crested weirs. Small bypass channel approx. 2 m u/s of weir - included in rating Full range station bank隹 Upper Greensand and Gault. Land use - rural. Topographical and groundwater catchments do not coincide

Mcscuring authonty: NRA-SW Fursi year: 1956

Gird reference: 21 (SS) 936016 Level sin. (m OD): 2590

Catctment arca (sq km): $\mathbf{6 0 0 . 9}$ Max att. (m OD): 519

Daily mean gauged discharges (cubic metres per second)

Day	Jan	FrB	MAR	APR	may		M	AUG	SEP	${ }^{(2)}$	NOV	OEC
1	5.711	7.541	47.380	12810	8.106	2.977	2480	1.540	1400	2713	31.680	4228
2	5.596	7.105	65530	12.260	6999	3.042	2468	1.593	1338	2.641	31820	4032
3	5.520	6742	47.090	10180	$65 / 3$	3047	2160	1.512	1341	2.578	28.760	3896
4	5.993	6602	38840	9402	6.263	2.965	1.945	1.516	1322	2.536	34.280	3800
5	17.740	6911	32.180	9367	5891	2.900	1852	1.346	1.328	2.658	39.930	3674
6	15.270	6115	27.090	9845	5.673	2.917	2502	1.344	1.296	2.793	32.580	3568
7	11.810	5733	21930	9925	5.397	2961	7.791	1336	1.275	2.983	28.050	3479
8	11.500	5578	21.690	8.286	5225	2823	6095	1.346	1214	2.619	59120	3404
9	11.500	5569	29.570	8313	5130	2.739	3874	1.708	1219	2614	49220	3287
10	10890	6239	24150	9495	4.820	2699	3045	2304	1328	2456	45420	3199
11	10180	5428	21410	13600	4865	2.596	2601	1871	1.506	2440	37980	3300
12	19830	6558	22690	10980	5164	2592	2438	1697	1951	2746	31590	5.502
13	14540	9.569	20280	10220	4559	2512	2274	1661	1747	2.608	25320	16300
14	24270	7371	58930	9496	4335	2.450	2134	2077	5261	2.752	20480	39.740
15	18790	9255	45000	10.550	4084	2247	2031	2406	8960	2660	17070	35.130
16	17300	8497	46940	17480	3937	21/5	1965	2062	11330	2557	14490	58200
17	17450	17.170	36010	21290	3914	1985	1.918	1961	10900	2496	12740	53260
18	14880	67.640	36670	17860	3862	1933	1892	1819	7487	2488	11480	75.840
19	13480	51270	38040	16860	3617	1832	1791	1685	6192	2922	10000	64.860
20	12740	39710	40370	15.350	3465	1850	1753	1605	4946	9725	8.970	81390
21	19480	31.770	34980	13650	3318	1816	1712	1.551	4713	18.730	8254	61360
22	14080	32040	30060	12290	3242	$1 / 99$	1669	1.516	3917	22740	7.374	43700
23	13350	29830	29540	11.240	3.097	1822	1631	1512	4165	17590	6733	37790
24	12910	52980	48570	i0730	3196	1.758	1628	1385	3607	13.810	6.284	47330
25	12080	73630	34550	9567	3146	: 765	1549	1503	3314	11480	5.808	45410
26	11270	70920	30000	9164	3131	1851	1583	1574	3718	10900	5378	37940
27	10390	72010	24760	10080	3178	2382	1523	1556	3125	9875	5. 100	31370
28	9.992	63300	20800	8162	3041	2303	1478	1479	2903	24410	4921	25220
29	9046		17360	8266	3001	2585	1727	1577	$28: 7$	55750	4663	20610
30	8.523		15020	7799	2998	2565	1658	1465	2767	58440	4410	$1 / 300$
31	8016		13210		2907		1660	1414		41950		14930
Average	12730	25470	32.920	11480	4391	2396	2. 349	1643	3600	11.150	21000	27520
Lowest	5520	5428	13210	$1 / 99$	2907	1758	1418	1336	1214	2440	4 4:0	3199
Highes:	24270	73630	65530	21290	8106	3047	7791	2406	11330	58440	59120	81390
Peax ftow	5081	10940	12670	3275	881	333	1516	271	1398	9806	7341	10570
Diay of peak	6	18	15	17	1	6	7	13	15	30	8	30
Monthy total (milion cum)	3410	6161	8818	2977	1176	621	629	440	933	2986	5442	7370
Runoff (mm)	57	103	147	50	20	10	10	7	16	50	91	123
Rainfall (mm)	71	161	137	89	:2	45	63	62	103	166	96	183

Statistics of monthly data for previous record (May 1956 to Dec 1988)

Station and catchment description

Velocity-area station with cableway. Flat V Crump profile weir constructed in 1973 duc to unstable bed condition. Minor cutvert flow through mill u / s of station included in rating. Wimbleball Reservoir has significant effect upon low flows Control pornt for Wimbleball Reservoir operational releases Headwaters drain Exmoor Geology predominantly Devonian sandstones and Carboniferous Culm Measures. with subordinate Permian sandstones in the east Moortand. forestry and a range of agriculture

Measuring suthority. NRA-SW First year 1956

Grid reference 20 (SX) $426 / 25$ Level s:n (m OD) 8.20

Catchment area (sq kin) 9169
Maxalt. (m OD) 586

Daily mean gauged discharges (cubic metres per second)

Dar	JAN	rfb	MAR	AMPA	MAY	..un	μ	AUS	Sip	$0 \cdot T$	NOV	Dr:
1	8169	10100	48170	14540	- 3010	3594	2108	13.35	1083	2917	34940	7252
2	8523	9.585	98210	14100	: 0600	35.39	2.122	1183	1044	2850	42430	6930
3	8319	3327	54580	12520	9803	3477	1971	1161	0997	2763	66990	6787
4	8640	9154	41660	11560	9161	3618	-1690	1063	0916	2649	69610	6611
5	- 4850	3095	36360	11590	8558	3336	1699	0) 992	0983	26.3	76250	6417
6	35100	8526	30560	11770	8051	. 3766	1732	1) 930	0963	28^{15}	53980	6216
1	- 6680	8106	25580	15060	7661	3456	2580	0894	0929	3106	41850	6125
8	-5 310	$7 \mathrm{U32}$	24710	11790	7411	3162	$3 / 35$	0881	0912	2802	153400	5956
9	-5 220	12620	35580	10740	7211	3374	2816	1302	0937	2591	89290	5765
10	- 5630	14650	29480	12060	C 982	3330	2250	6800	1014	2566	82110	5603
11	- 3980	9757	25610	29540	6852	3159	2078	2620	1.67	2605	61250	5770
12	33000	10250	27800	26600	6913	3172	1895	1882	7035	2709	45220	8115
13	21030	11450	27450	18660	6462	3163	1767	1659	2361	2191	35300	28850
14	36620	11750	104400	14560	6003	2958	$1 / 41$	2176	6546	2857	28910	75340
15	22420	10360	59650	14260	5718	2730	1769	3049	$1 / 510$	2654	24430	48460
16	2.0260	11140	79100	13100	56.36	2577	1694	2264	26250	2480	21190	97920
17	19180	38760	44970	17300	5632	2429	1313	19.35	26520	2324	19900	97900
18	- 6890	91830	43400	14400	54.32	7294	1314	2208	12530	2206	20860	129000
19	- 5670	62130	52900	13380	5149	2093	1135	17.37	8589	3026	16960	91100
20	-4930	46170	164%	12550	4877	7000	1064	1487	6023	20160	15730	111200
21	23950	34730°	50110	i1140	5282	2045	1111	1387	4875	46310	14810	77810
27	: 6830	41390	36200	i1150	4748	2077	1106	1326	4736	69150	13090	53240
23	'5 (190)	49730	31640	- 0650	5205	2044 .	1086	1247	6035	35840	$11 / 10$	47400
24	:4330	161100	30300	- 0520	51.57	1778	1097	1193	5117	23570	11120	126500
25	: 3500	156600	25420	9774	4271	1131	1247	1221	4589	18.690	10250	94560
26	12890	99400	22460	9725°	4005	1779	: 075	1280	4092	19550	9492	58650
27	: 2240	75850	20350	- 8500	3190	2856	1052	1264	3753	19530	8983	44430
28	13080	78560	20190	: 1800	3645	2651	1040	1190	3435	39760	8580	35800
29	11660		17250	:2220	3550	2274	1024	1112	3163	57880	8226	28980
30	10910		15780	-1050	3461	2413 .	1082	1071	3020	68340	7727	24490
31	10520		14660		3384		- 314	1103		49080		21700
Avorago	16650	39480	40370	i4150	6246	2763	- 6.36	1646	5426	16150	36820	44220
Lowest	8379	7832	14660	9725	- 3384^{\prime}	1731	: 024	0881	0912	2206	7727	5603
Highest	36620	161700	104400	29540	1300	3766	3/35	6800	26520	69150	153400	129000
Peak flow	5732	24080	1910)	6073	1458	407	411	1039	3871	12210	18650	20150
Day of pesk Morthly total	14	24	15	11	.	1	8	10	17	30	8	25
(trillion Cu T)	4433	9552	$108: 0$	3667	1673	716	438	440	1406	4486	9544	11840
Runcti (mm)	49	104	:18	40	18	8	5	5	15	49	104	129
Rainfall (mmt	68	157	127	85	18	48	34	78	126	164	. 117	177

Statistics of monthiy data for previous record (Jul 1956 to Dec 1988)

Station and catchment description

Volocity-area station, wide. shallow channel. Cableway span 469 m . L.ow flows measured at another, narrower, site High flow gauging dificult owing to standing waves. Roadford Reservoir from 1989 may have significant affect at low flows. Rural catchment of moderate relief. draining very disturbed lower Carbonferous slates, shales. grits and volcanics. Significant alluvial flats in middle reaches, Devonian slates low down. Fairly responsive A range of agriculture, grazing and forestry as land use

Measuring authority: NRA SW fust year. 1958

Grid selerence. 21 (SS) 608237 Level sin (m OD): 14.10

Catchment ares (sp kmis 826

Daily mean gauged discharges (cubic metres per second)

Day	JAN	FEB	MAR	APM	MAY	MN	rr	AUC	SEP	OCT	MOV	OfC
1	7081	1.954	42.940	11.800	13350	$2296{ }^{\circ}$	1.149	0.796	0723	2.099	38.570	3967
2	6816	7.403	66140	11640	8667	2195	1.548	0729	0694	2026	37570	3.769
3	6577	7.022	51.850	9.567	7.902	2.179	1.330	0713	0680	1962	31780	3664
4	6904	6898	38.170	8645	7.245	2.350	1182	0696	0681	1833	46.690	3541
5	18.050	6916	31620	8727	6698	2.124	1095	0650	0.706	1.801	73530	3435
6	23050	6235	26020	10290	6200	2426	1103	0683	0674	2224	52630	3.344
7	15.180	5.790	21.230	10810	5882	2195	5.486	0670	0644	2.259	39450	3223
8	14810	5.511	19.160	8657	5657	2.071	4805	0682	0625	2.081	117.700	3113
9	14580	8435	22680	1.954	5.469	2016	2364	0758	0606	1802	78130	2995
10	13750	10030	19410	10310	5243	1919	1.797	1686	0592	1776	65640	2887
11	12.810	6834	16.920	14690	5420	1801	15.39	1193	0716	1841	48570	3001
12	31670	7.316	18490	13810	5841	1748	1387	0952	1462	2004	36160	6364
13	22360	9.538	17760	11520	4904	1655	1213	0899	1268	1.931	28280	25200
14	38040	8.222	60490	10050	4539	1.561	1204	1245	4401	1891	22580	78090
15	25810	9662	45.340	10800	4145	1430	1134	1210	11250	1808	18590	54650
16	22660	9546	58440	27760	3993	1364	1086	1373	16210	1754	15660	101900
17	20510	30270	36440	18430	4023	1320	1042	1.186	14620	1688	13.560	83320
18	16970	99050.	36020	14370	3907	1274	0979	1088	8704	1663	12.150	108700
19	15050	70330	39.090	13210	3614	1193	0920	0945	6501	2308	10530	78920
20	14490	50640	55970	12140	3372	1154	0315	0883	48.34	11300	9.445	11:600
21	31790	37020	43620	11010	3210	1114	0842	0871	4014	28370	8614	81.840
22	20340	37.300	34250	10140	3013	1083	0842	0) 826	3683	40720	7534	51640
23	$1 / 940$	38310	31890	9383	3514	1070	0835	0779	4138	29940	6727	41120
24	16310	69120	44960	9140	3097	1064	0814	0755	3339	21540	6329	85920
25	14610	118500	31390	8284	2696	1051	0199	0811	2971	16450	5815	70630
26	13.140	102500	26940	8107	2500	1155	0742	0912	2763	14600	5307	47660
21.	11750	73730	22800	- 2530	2467	1778	0136	0871	2550	13110	5033	36240
28.	11160	61790	19540	8468	2374	- 419	0730	0794	2288	37220	482.4	21770
29.	9805		16270	8775	2313	2080	0715	0772	2282	73750	4513	22160
30	9103		14250	8632	2 1:0	1652	0803	() 118	2162	17650	4230	18170
31	8520		12640		2142		0) 829	0786		56420		15520
Average	16510	32570	33010	11320	4696	1660	1375	0899	3559	14790	28160	38420
Lowest	6577	5511	12640	7954	2110	1051	0715	0650	0592	1663	4230	2887
Highest	38040	118500	66140	27760	i3350	2426	5486	1686	i6210	77650	117700	111600
Peak flow	5840	16700	12040	4040	1848	264	1293	201	2; 23	12590	15490	14660
Day of peijk	14	25	15	16	1	29	8	10)	16	30	8	18
Monthly :otal (milion cu me)	4421	7879	8842	2935	1258	430	368	241	923	3961	1454	10290
Runots (mm)	54	96	107	36	15	6	4	3	11	48	90	125
Asintall (mm)	69	46	11	83	17	47	$4)$	61	113	157	91	110

Statistics of monthly data for previous record (Oct 1958 to Dec 1988)

Mean	Avg	36240	28200	20870	14440	94.30	5268	4830	6025	7973	19650	28610	36330
fows	Low	6657	3245	7449	3888	2073	: 329	0793	0473	0859	1043	. 3654.	13200
	(year)	1963	1959	1984	1974	1976	1984	1984	$19 / 6$	1959	1978	1978:"	1963
	High	62.100	54760	52140	32800	37000	16630	23390	19130	$4) 670$	77360	58.500	73670
	(yea)	1984	:970	1981	1966	1983	:972	1968	1985	-914	1960	1963	-965
Runot:	Avg	117	83	68	45	31	11	16	20	25	64	90	118
	Low	22	10	24	12	1	4	3	1	3	3	11	43
	Hgh	201	. 160	169	103	120	52	76	62	150	251	184	239
Ruanfall	Avg	132	85	93	70	73	68	13	89	97	- 17	128	137
	Low	28	3	18	8	28	10	23	24	14	14	$\begin{array}{r}53 \\ \hline 39\end{array}$	$4{ }^{\text {, }}$
	High	242	173	; 83	145	:46	164	156	160	247	278	239	271

Summary statistics

Station and catchment description

Velocity-area station, main channel 34 m wide, cableway span 549 m Rock step downstream forms control. Bypassing Ueg:ns at about 3.7 m on right bank, but a good rating accommodates this Significant modification to flows owing to PWS abstraction Some naturalised flow data available. Large rural catchment - drains Dartmoor (granite) in south and Devonam shales and sandstones of Exmoor in north Central area underiain mainly by Culm shales and sandstones (Carboniferous). Agriculture conditioned by grade 3 and 4 soils

052005 Tone at Bishops Hull

Measuring suthoriv. NRA W First year: 1961

Grid refterence 31 (ST) 206250
Levarsta (m OD) 1620

Catchment area (sq km). 202.0

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAA	\triangle APA	May	MN	JUL	AUG	Sf.	OCT	NOV	DeC
1	1255	1565	5979	3672	2330	1087	0754	0438	$050{ }^{\circ}$	0546	1362	0944
2	1252	- 547	10030	3369	2107	1019	0692	0514	0.436	0558	2127	0930
3	12.20	1494	6670	2631	2030	1017	0644	0486	0473	0531	1834	0926
4	1357	1500	5649	2454	1975	1017	0592	0481	0468	0526	2313	0.909
5	1966	1.484	5005	2492	: 818	0995	0646	0458	$05 \% 4$	0557	2542	0902
6	2010	1412	4638	2527	1794	$11 / 3$	1163	0471	0477	0512	1800	0894
7	1553	1383	3981	2420	1730	1044	2988	0500	0440	0496	1665	0881
8	1499	1359	3167	2212	1614	- 025	1337	0457	0444	0462	8232	0884
9	1546	1418	4510	2605	1556	0979	0956	0563	0431	0454	$52 ; 1$	0893
10	1513	1412	4089	3323	1497	0391	0875	0646	0436	0459	5730	0886
11	1526	1339	3789	5195	1499	0970	0820	0493	0646	0479	4300	0933
12	3564	1349	3981	3901	1534	0920	0782	0466	0677	0538	3322	1306
13	2271	i613	3786	3196	1401	0895	0739	0472	0707	0520	2824	4130
14	2901	1435	18720	2744	1355	0848	0725	0425	1651	0529	2509	12040
15	2289	1478	7987	3559	1355	0836	0704	0771	1085	0521	2259	5104
16	2075	1419	9860	6.286	- 309	0818	0671	0541	1254	0514	2021	11900
17	2010	3108	7159	5690	1328	0772	0657	0501	1027	0494	1.863	11720
18	1919	5874	6395	3852	1319	0757	0636	0484	0711	0495	1784	28180
19	1882	4435	6043	3506	1263	0716	06:5	0486	0676	0612	$16: 2$	11180
20	1.903	3749	9045	3257	1222	0710	0)595	0477	0576	+ 523	1509	34660
21	2833	3275	6541	3077	1185	0685	0604	0466	0.570	1713	1432	11780
22	2265	3750	5442	2900	12.59	0692	0599	0480	0549	2061	1.344	7530
23	2130	3480	5312	2756	1 i95	0680	0572	0456	0588	0943	1309	7210
24	1991	15800	5937	2734	- 246	0683	0565	0454	0562	0713.	1224	18790
25	1923	32840	4.815	2522	- 126	0650	0546	0496	0569	0621	1187	9045
26	1954	-1040	4598	2469	1112	0734	0549	0530	0559	0803	1141	6.531
27	1805	1966	4499	2431	1069	0765	05:1	0498	0551	0.828	1123	5434
28	1770	7.780	4144	2228	1041	0766	0531	0482	0538	2.445	1040	4598
29	1665		3666	2285	1017	0713	0568	0506	0534	3376	1005	4008
30	1646		3730	2261	0974	0729	0587	0489	0535	2623	0973	3563
31	1585		2993		0994		0548	0466		1810		3.264
Average	19×6	4511	5895	3149	: 430	0858	0787	05:1	0639	0944	2287	685%
Lowest	- 220	1339	2993	22.12	0974	0650	0511	0438	0431	0454	0973	0881
Highost	3564	32840	- 8720	6286	. 2330	1:73	2988	0825	1651	3376	8232	34.660
Peak flow	538	6613	4345	911	816	136.	$4 \cdot 5$	182	276	650		
Day of pask Morithly total	12	25	14	il	22	6	,	$: 4$				
(million cu me)	510	1091	1519	816	383	222	205	137	166	253	593	1837
Rimolf (mm)	25	54	78	40	:9	1i	10	7	8	13	29	
Painfall (mm)	48	126	- 02	84	14	27	5.4	48	73	. 131	76	172

Statistics of monthly data for previous record (Feb 1961 to Dec 1988)

Masn	Avg	6154	6037	4355	3059	2136	1410	1196
flows	Low	1246	1746	1552	1176	0734	0456	0326
	(ynar)	$19 / 6$	1965	1962	19/6	1976	1976	1976
	Hị̧h	14560	14000	9259	6655	6562	2770	5678
	(year)	1984	1978	1981	1966	1983	1972	1968
Runotf	Avg	82	73	58	39	28	18	16
	Low	17	21	21	15	10	6	4
	Highn	193	i68	123	85	87	36	75
Rainfall	Avg	114	80	85	61	68	59	59
	Low	25	6	5	6	25	8	16
	High	250	170	170	150	137	147	144

Summary statistics

	For 1989		For recurd preceding 1989		$\begin{gathered} 1989 \\ \text { As \% of } \\ \text { pre. } \cdot 989 \end{gathered}$
Mean flow (m's ')	2471		3072		80
Lownst yearty mean			1600	1964	
Highest yearly mam			4084	1974	
Lowest monthly mean	0511	Aug	0266	Aug 1916	
Highest montily mean	6857	Dee	: 4560	Jan 1984	
Lowest daty moan	0431	9 Sep	0179	22 Aug !976	
PGonast daty trean	34660	20 Onc	84200	23 Feb 1918	
Peak	67420	2000 c	112700	1: Jul 1968	
10\% exceedanco	5499		6636		83
$50 \times$ excendances	1.333		1813		74
95\% uxcesdanco	0473		0651		73
Annual total (milion cuin)	7793		9694		80
Annual runntf (mat)	386		480		80
Anmual rantall (mm)	365		977		98
[1941.70 ramfall average (mm)			3951		

0964	1.232	2086	3334	5053
0266	0501.	0580	.0651	1821
1976	1964	1978	1978	1975
1685	4892	9873	7611	11280
1965	1974	1976	1982	1965
13	16	28	43	67
4	6	8	8	24
22	63	131	98	150
10	81	92	97	111
19	8	8	31	34
126	202	249	192	205

Factors affecting flow regime

- Reservoir(s) in catchment
- Abstraction for public water supplies

Station and catchment description
Cruinp profile weir (broadth 122 m) with crest tapping (not operational). Full range station. Pre-March 1968 : velocity-area station; flows naccurate below 1.42 cumecs. Clatworthy and smallor Luxhay Reservoir in headwaters. Compensation flow maintains low flows. Reservoirs not large enough to influonce fairty rapid response to rainfall. Minor surface water abstractions for PWS. Catchment geolouy - predominantly sandstones and marts Land use - rural.

053018 Avon at Bathiord

Measurng authority: NRA.W First year: 1969

Gid reference: 31 (ST) 786671 Level stn. (m OD): 18.00

Catchment ares (sq km): 1552.0 Max ah. (m OD): 305

Daity mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAA	APR	may	JN	18	AUG	srp	OCT	Nov	Orc
1	6.941	12.910	34.760	15.920	11.550	6100	4400	2.900	2700	2418	10180	7038
2	6994	11870	38.130	16.630	11.280	5.600	4.200	2.800	2.600	2339	14370	6895
3	6.709	11580	35.650	15.180	10830	5500	4000	2800	2700	2438	16.710	6791
4	6.713	11310	28390	14.570	10650	5300	3.900	2.800	2.700	2254	14240	6801
5	7.804	10.910	25260	21420	10230	5.400	3.900	2800	2.600	2914	13.420	6552
6	9.786	10350	24100	44230	9923	5.900	4.500	2800	2.600	3057	11.080	6616
7	8.160	9821	24220	26130	9.551	6.100	9000	2900	2.600	2782	10.140	6452
8	7.632	9212	21910	20050	9344	5600	6400	2800	2.600	2754	24910	6176
9	7.486	8990	47370	18780	9.175	5.300	4.700	2800	2.600	2694	27.640	6138
10	7.273	9.363	31450	36930	8966	5.300	4300	3200	2.600	2647	26.960	6024
11	7223	8507	27240	45510	8853	5. 100	4100	3300	2600	2773	23.580	6232
12	19510	8.148	24070	38940	9045	5000	3900	3300	2.900	2963	18.190	8825
13	15.850	10330	22370	36940	8371	4900	3800	3.300	3300	2971	15.780	12290
14	23.670	9278	61920	25400	7.762	4700	3700	4300	3.900	3013	14260	47540
15	17490	9188	68890	22190	7433	4.700	3700	4800	4000	3290	13.130	40160
16	14.170	8538	54800	22760	7008	4500	3400	3400	5412	3056	12240	72.060
17	12620	14330	38870	23620	6805	4300	3300	3200	5454	3001	11710	65060
18	11320	45330	29720	19800	6440	4200	3300	2.900	5034	3171	11100	85350
19	10.720	45540	28480	17610	6064	4200	3300	2800	3889	3552	10580	108500
20	10540	37.100	39540	16520	5963	4100	3200	2800	3503	6224	9875	131800
21	20710	25.310	41580	15260	5779	4000	2900	2.800	3159	8604	9304	206400
2.2	17630	26.040	29300	14610	6633	4000	2900	2700	2985	8575	9025	91320
23	14340	23090	26610	14090	11420	4000	2900	2700	2927	7190	8690	57490
24	13220	49.870	50.780	14030	8501	4000	2900	2.800	2825	5.539	8564	74980
25	11810	71.840	31470	13560	7242	3900	2800	2800	2751	4835	8191	109400
26	11270	110.000	25800	13240	6221	4000	2800	2900	3028	4944	7979	62150
27	10510	82590	23210	13860	5652	4400	2800	2800	2926	5085	7974	41290
28	22230	45790	21000	12660	5322	4200	2800	2700	2646	8465	7676	33820
29	21850		19280	12410	5 111	4800	2800	2700	2655	13940	7308	29030
30	15940		17830	12010	5090	4400	2900	2700	2535	14320	7064	25600
31	14030		16860		4781		2900	2700		12630		23010
Average	12650	26540	32610	21160	7968	4193	3155	3000	3158	4982	13060	45090
Lowest	6709	8148	16.860	12010	4781	3900	2800	2700	2535	2254	7064	6024
Heghest	23670	110000	68890	45510	11550	6100	9000	4800	5454	$\cdot 4320$	27640	206400
Peak now	3419	13060	12440	5567	1401	670	1242	5.93	570	1560	3270	23390
Day of meak	28	26	14	11	23	1	7	15	i6	29	8	21
Monthly total (milion cu m)	3388	6421	8734	5485	2134	1240	1006	803	818	1334	3386	12080
Runoff (mm)	22	41	56	35	14	8	6	5	5	9	22	78
Ranfall (mm)	49	90	88	75	28	37	37	40	49	98	56	155

Statistics of monthly data for previous record (Dec 1969 to Dec 1988)

Maan	Avg	33090	31390	25680	16950	12450	9675	5879	5799	6719	11440	19370	28360
flows	Low	9227	11310	10080	7719	5048	3897	2410	1715	3320	3115	4406	12110
	(year)	1976	1976	1973	1916	1976	1976	1976	1976	1987	1978	1978.	1975
	High	51270	64730	54230	26520	- 31020	30110	9956	13830	25450	28180	$398: 0$	48270
	(year)	1984	1971	1981	1987	1983	1971	1973	1985	1974	1976	1986	1976
Runotf	Avg	57	49	44	28	21	16	10	10	11	20	32	49
	Low	16	18	11	13	9	7	4	3	6	5	7	21
	High	88	101	94	44	54	50	17	24	43	49	66	83
Ranfall.	Avg	88	58	78	48	62	66	55	67	76	74	81	88
(1970.	Low	18	7	17	2	29	5	25	18	15	6	35	20
1988)	Hrgh	148	143	163	110	142	151	: 15	140	178	149	178	144

Summary statistics	For 1989		For record precedmg 1989			Factors affecting flow regime		
			$\begin{gathered} 1989 \\ \text { As \% of } \\ \text { pre-1989 } \end{gathered}$	- Flow influenced by groundwater abstraction and/or.recharge				
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14850				17170		86	- Austraction for public water supplies.
Luwest yearly mean			10360	1973		- Augmentation from surface water and/or		
thghest yearly mean			22160	1917		groundwator.		
Lowest monthy mesn	3.000	Aug	1715	Aug 1976		- Augmentation from effluent returns.		
Highest monthly mean	45090	Der	64730	Fob 1917				
Lowest dally mean	2254	4 Oct	1093	29 Aus 1976				
Highest duly mman	206400	210 DE	253600	28 Dec 1979				
Peak	233900	21 Dec	300500	28 Dec 1979				
10\% exceedance	36030		36500		99			
50\% exceedance	7704		11270		68			
95\% exceedunce	2669		3354		80			
Arxual total (mallion cum	46830		54180		86			
Annual rumoff (mm)	302		349		86			
Annual raintall (mm) [1941.70 raníall average $\{(\mathrm{mm})$	802		841 8401		95			

Station and catchment description
Velocity-area station with cableway. (Replacement station for Bath St Jemes) Upstream of the city of Bath Situated immediately downstream of confluence with Bybrook. Sactron by railway bridge: area widely inundated in flood conditions. but all flows contained through bridge Flows below 5 cumecs are inaccurate Flows augmented by groundwater scheme in catchinent. Mixed geotogy - predominantly clays and limestone with eastern tributaries rising from Chalk. Land use - mainly rural, some urbanisation.

054001 Severn at Bewdley

Measuring authority NRA.ST First year 1921

Grid referenca 32 (SO) 782762 Level $\sin (\mathrm{mOD}) 170$)

Catchment area (sq km). 43250 Max alt (m OD). 827

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	1t8	mar	$A P R$	NAY	JUN	Jul	AUS	SfP	$\bigcirc \times .1$	Nov	orc
1	39010	32010	$\cdot 59500$	48440	27240	12140	19530	12380	13350	8751	59570	16460
2	35630	30480	- 95500	77210	24740	11630	, 18290	12010	13040	8394	41550	14780
3	33670	28760	19180	:07200	24710	14180	17620	1. 220	10330	8692	37280	14090
4	30610	26680	$1 / 4200$	74570	24990	13230	12350	10480	990 :	8358	42910	14410
5	31830	49800	141100	30180	24040	13120	10180	10100	9492	8558	53280	13790
6	50600	84420	1:6000	163800	21300	12500	8534	9622	3262	8396	$71: 30$	- 3520
7	73690	49860	101400	193100	2:020	13850	-8050	9776	10240	8547	62830	13600
8	48310	43180	85680	169500	- 22700	13630	29520	9573	10200	8394	58370	13570
9	41770	39100	78150	138800	21270	13800	24650	10760	${ }^{1} 0220$	9007	102900	13010
10	38760	34320	145400	118700	19610	-2980	-8480	11020	9766	8861	-21200	12830
11	37440	32290	133100	102700	19100	12330	14200	11960	8960	8984	135800	12980
12	35190	33250	:0. 300	$: 15400$:9380	12510	12140	11820	10210	8886	$163500)$	13250
13	50.630	41980	90-10	$\cdot 2.3400$	- 3620	10670	9789	1.640)	10180	9088	120900	21170
14	52160	48440	130'00	! 34900	25980	10) 200	8642	10980	$10^{\prime} 40$	8490	80090	93680
15	93 630)	49900	187700	98020	23690	9584	10320	12500	980 ;	9074	59.910	203300
16	$6) 620$	60390	209900	75020	20910	9499	9221	$13 \cdot 10$	9793	842.8	49:10	253700
17	56730	51610	155200	64740	19630	8966	9877	:3730	13880	8658	42360	269800
18	56210	52680	109600	¢5960	18520	10210	10590	:0950	15810	8669	37000	292200
19	48450	183500	85730	49850	18230	10420	10600	10820	15390	9392	33620.	335200
20	43360	$223900)$	96220	45450	15140	9938	10110	10400	11210	13240	$30560{ }^{\circ}$	307100
21	40750	180100	108400	42390	13590	9823	9896	9509	10090	161%	27640	287700
22	56860	120200	120 (00)	3/490	15090	10030	9145	8173	8751	48210.	25650	298900
23	58490	94390	126800	38000	15660	8853	8932	10170	: 0220	36990	234.90	326800
24	47160	117900	131600	31970	20230	8686	:0490	10) 860	10190	33400	22290	305100
25	50090	197900	204700	35880	16600	9398	10650	11390	10110	23780	20240	288200
26	42910	:68100	189700	33930	- 4 (00)	10.430	10710	10840	10100	23000	19690	284200
27	41890	143600	135200	33460	13330	11880	9584	12200	9562	34720	17690	250000
28	42090	163600	106000	33710	12200	13110	9747	1.700	9539	32190	17150	179100
29	39550		82420	30510.	14690	14440	11290	12090	9769	39230	16240	134500
30	37430		63120	28540	12150	16240	13140	11160	8866	117900	16330	100300
31	34260		54520		12 (x)		13150	11440		101500		77940
Avarage	46990	85320	129400	79950	19080	11610	12880	$: 1 \cdot 10$	10610	22130	53680	144400
Lowest	30610	26680	54520	28540	12000	8686	8534	8 173	8751.	8358	16240	12830
Hghest	93630	223900.	209 900)	193100	27240	-6240	29520	13730	15810	111900	.163500	335200
Peak flow	. 0350	22910	22000	19910	2947	2140	3231	1535	1721	13080	16950	34230
Day of peok	15	20	16	7	1	30	8	17	19	30	12	19
Niontiny : otal \{milion cu m)	12590	20640	34650	20720	5109	3009	3451	2915	2751	5926	13910	38670
Runotf (mm)	29	48	80	48	12	1	8	7	6	14	32	89
Rainfal (m)	46	102	94	86	26.	47	46	48	31	99	72	165

Statistics of monthly data for previous record (Apr 1921 to Dec 1988)

Mean	Avg	115300	101600	73870	52870	38810	29720	23040	28330	36860	54830	90:30	100500
fows	I ow	$22: 00$	21200	23200	15880	10230	9804	9587	746°	1668	10490	21/30	$\cdot 7850$
	(yea)	$\cdot 963$	1934	1943	1938	1938	-976	1976	-976	1949	1947	1942	1933
	High	250600	232300	261900	117400	. 31600	117400	31240	92360	126700	: 40700	238300	297400
	(year)	19.39	1946	1941	1947	:969	- 931	1968	; 927	1946	1961	1940	1965
Runotif	Avg	71	51	46	32	24	18	14	18	22	34	54	62
	Low	14	12	14	10	6	6	6	5	5	7	1.3	11
	Higr	155	130	162.	67	81	10	b)	61	76	87	$\cdot 43$	184
Ramiail	Avg	93	67	64	60	10	61	72	78	78	85	97	94
	low	23	8	3	5	18	5	- 0	13	5	13	13	10
	$\mathrm{H} \mathrm{gh}^{\text {h }}$	22.8	170	175	128	186	136	193	160	2.09	174	244	294

Summary statistics						Factors affecting flow regime		
	1 or 1989		Fut recodd		1989			
			As * 0^{1}	- Reservoir(s) in catchment. - Flow influenced by groundwater abstraction				
			precedm :989		pre. 1989			
Mean fikw (m's ')	52130				6:970		84	and/or recharge.
Lowest yearly intan			36460	1964		- Austraction for public water supplies.		
H ghest yearty mean			34/40	1960		- Fiow reduced by indusirial and/or		
Lowest monthy mean	10610	Seo	7461	Aug 1976		agricultural abstractions		
Highes: monthy mean	144400	Dec	297400	Dec 1965		- Augmentation from surface water and/or		
Lowes: daly mean	8173	22 A.gg	5990	4 Sep 1976		groundwater		
Highesi daily mean	335200	19 Dec	637100	21 Mar 1947		- Auginentation from effluent returns		
Peak	342300	19 Uec						
10\% exceedance	138700		14/400		94			
50\% excendanco	21980		37740		58			
95\% exceodance	8486		11370		78			
Annual total (millon cura)	164400		195600		84			
Annual runoff (mm)	380		452		84			
Annual ramidl (intr)	868		919		94			
[1941-70 rainfal average (mm)			9361					

Station and catchment description
Velocity-area station with rock control Stage monitoring site relocated in 1950 and 1970: lowest flows not reliable in earlier record US gauge since 1988. Sig exports for PWS and CEGB. minimum thow maintained by Clywedog releases. Naturalised flow serios accommodates major usagos Diverse catchment: wet western 50% from impormeable Palieozoic rocks and river gravels: drier northern 50% from Drift covered Carboniferous to Liassic sandstones and marls. Moorland, forestry, mixed farm:ng

Measunng authority：NRA．SI First year： 1936

Grid reference． 42 （SP）0ce0 438
level $\sin (\mathrm{m} \mathrm{OO}): 19.50$

Catchment area（sq km）： 22100 Max alt．（m OD）： 320

day	Jan	feb	MAR	APR	mar	JuN	Mr	Alk	StP	OCT	NOV	OfC
1	7.160	10630	18120	9706	14210	6217	7.129	5801	5032	5.059	6072	5836
2	6903	9548	20980	37.350	12.770	6.691	6022	5457	4.833	5154	6.998	5.823
3	6811	8718	25940	46.660	11490	6341	5761	5135	4.762	5.121	7985	5.615
4	7.176	8673	20370	25800	10.170	6065	5674	4937	4748	5.111	7.328	5604
5	7067	10.180	16530	51.950	10210	6.129	5471	4760	4.799	5500	6.522	5.145
6	7780	9413	17010	104000	9490	10440	5465	4180	4798	5.923	6320	5733
7	7482	8697	22270	102500	9260	19.230	17260	4714	4845	5301	6229	b． 190
8	7106	8308	15.730	69.070	9201	13630	22670	4721	4.927	5.616	32.030	5.920
9	7261	7829	14.910	34770	9116	10870	13230	5499	5102	5.595	43670	5.902
10	7164	7831	13650	43850	8.763	8060	8430	18700	4896	5372	36040	5.764
11	7.102	7807	11.700	4.3 .830	9471	7024	7012	12740	5742	5 328	19570	5936
12	10.910	7514	11340	49750	10820	6581	6372	8025	5345	5342	12670	7714
13	15920	1538	12320	41190	10300	6296	5983	6300	5404	5408	10280	35430
14	21700	7.507	17590	31.360	8690	6201	5.732	8167	5089	5293	8604	105700
15	24100	7695	31100	22430	8216	5916	5655	9517	5165	5027	7822	111500
16	16370	1860	41010	18850	7980	5849	5481	7029	1629	5035	7425	113200
17	13920	9259	52180	20140	1752	5757	5366	5978	23850	4991	7147	116300
18	11320	14440	34030	18480	7499	5657	5221	5431	16460	5130	7317	103000
19	9805	15720	22860	15990	7485	5601	5112	5093	9789	5481	6780	126700
20	9282	13780	23260	14430	6924	5673	5338	4997	6437	8233	6491	107900
21	11070	12200	26160	13310	6589	5411	4916	4954	5575	14450	6574	80230
22	12890	11600	20910	12320	6467	5258	4955	4927	5159	15700	6303	53220
23	12510	10920	16840	12440	6887	5321	4581	4841	5124	12240	6082	35570
24	11100	32290	20530	13820	10610	5205	4495	4114	4997	7493	6080	41980
25	10100	67950	17120	11080	11180	5054	4567	5367	5016	6106	5962	57110
26	8822	51660	13880	23980	7351	5587	4637	6402	5095	6237	5866	38130
27	8193	37380	17580	24200	6652	9437	4636	5870	5107	5902	5824	28010
28	14120	24730	i1730	21640	6270	9315	4621	5501	5024	6799	5875	22.280
29	20310		10550	18750	6179	9199	4931	5330	4922	7756	5.626	18890
30	15010		10240	16310°	6097	8199	6021	5419	4837	7127	5850	16500
31	i2 100		3741		5387		$6500)$	5400		6714	，	14770
Average	11240	15630	． 19970	32530	8732	7427	6150	6341	6350	6650	10440	42080
Lowest	6811	7507	9141	9706	5981	5054	4495	4114	4748	4991	5626	$\begin{array}{r}5604 \\ \hline 126100\end{array}$
Highest	24100	6） 950	52180	104000	14210	19230	22.670	i8700	23850	15700	43670	$126 / 00$
Peak flow	2645	$7457{ }^{\circ}$	5146	11560	1551	2230	2783	2410	2940	1791°	5601	13460
Day of peak Muntrly total	15	25	17	7	1	7	7	10	i 7	22	8	19
（mulion cu m）	3012	3782	5350	8432	2339	1975	1808	1698	1646	1781	2707	11270
Risnoff（mm）	14	： 1	24	38	i1	9	8	8	1	8	12	51
Raintall（mms	36	46	53	88	19	58	43	57	50）	58	46	112

Statistics of monthly data for previous record（Dec 1936 to Dac 1988）

Nosn	Avg	28580	27700	22750	15060	11310	8772	6591	$6790{ }^{\circ}$	6744	9449	17570	22.460
flows	Low	5143	4868	2261	3237	2220	1935	2． 256	2042	1968	2485	2681 ：	3549
	（year）	1950	1944	：944	1938	1944	1944	1976	1.943	1959	1959	1943.	1943
	High	73520	77930	15600	36100	31690	27380	42220	16100	24200	45420	55910	65160
	（y⿴囗十t）	1939	1977	：94）	1987	1983	1977	1968	1963	1960	1960）	1960	1965
Runoty	Avg	35	31	28	18	14	10	8	8	8	11	$2 ;$	27
	Low	6	6	3	4	3	2	3	2	2	3	3	4
	High	89	85	92	42	46	37	51	20	28	55	66	79
Rsanfall	Avg	60	43	49	43	56	54	57	71	54	58	64	60
11937	Low	13	3	5	5	15	10	8	5	3	6	8	15
1988）	High	127	122	140	94	130	121	127	130	127	150	163	121

Station and catchment description
Velocity－area station．Recording site．control and gauging site are widely separated．recording at a site where all flows contained Gauge site can measure out－of－bank flows．Extensive modification to flow regime from abstractions and returns Large catcnment of low relief．draining argillaceous rocks almost exclusively Contains many large towns．but chief land use is agriculture

055026 Wye at Ddol Farm

Measuring authority: NRA-WEL
First year 1937

Grid reference 22 (SN) 976676
Level stn (m OD) 19280

Catchment arta (sq km) 1740 Max alt (m OD) 752

Daity mean gauged discharges (cubic metres per second)

vay	JAN	FEB	MAR	APP	MAY	Jus	Ju	AUG	SfP	OCT	NOV	DEC
1	3501	2780	39480	3111	1853	0532	3419	0433	2280	$11 / 3$	1) 100	1124
2	3111	2588	35380	5032	. 1594	0523	1882	0351	1714	1046	9757	- 054
3	2900	2418	19020	321.3	1450	0507	1314	0) 325	1374	0944	12990	0982
4	3416	15160	13910	2852	1339	0469	0958	0298	1142	0872	24230	0928
5	16720	8461	10190	4783	1237	0471	0741	0266	0985	0919	25400	0884
6	8032	5370	10270	7922	1:14	0501	0)985	0248	0818	7839	13500	0750
7	5.912	4273	6906	14430	1022	0508	1743	0225	0715	4468	9127	0700
8	5120	3731	7609	10170	0956	0133	1413	0214	0648	3.164	39030	0657
9	5.266	3888	16820	7574	0923	0818	1074	0231	0625	2412	26040	0625
10	4797	3833	12570	7069	0861	0599	0837	0643	0663	2083	36020	0591
11	4933.	5702	8097	13610	0943	0523	0676	0661	0659	2472	38210	0594
12	8815	5213	11980	10470	3017	0495	0593	0628	0609	2603	17360	0998
13	13960	11230	11810	9547	2:59	0458	0538	0692	0687	6040	$10 / 30$	7038
14	:4010	6250	35860	7112	1544	0409	0416	1366	1793	4055	7622	26900
15	9276	13130	18570	5739	1336	0367	0428	1856	404.3	3185	5864	14780
16	8661	7013	10670	4717	1343	0347	0383	1333	6601	2759	4677	59000
17	8312	15390	7489	4047	1:95	0314	0354	1193	6198	2288	3994	56770
18	5981	45860	:1960	3550	1235	0298	0332	0895	4074	2033	3484	20370
19	5055	19950	13530	3068	1089	0271	0310	0701	3346	3261	3082	14160
20	4750	10860	11830	2759	0968	0273	0286	0607	2510	17190	2807	48850
21	1084	7915	15560	2483	088 :	0248	0275	0930	2222	13390	2534	86250
22	4955	6871	12640	2187	0837	0242	0260	0178	3063	12860	2296	23650
23	6052	6347	28870	2014	0802	0235	0238	0630	4556	8190	2106	20720
24	5285	12540 .	39.510	1841	0849	0223	0230	0549	3322	6339	1956	65670
25	4462	8.741	14560	1684	0845	0217	022 i	0838	2577	15750	1756	31670
26	4753	8.743	9180	1868	0745	0266	0228	1550	2196	11710	1589	15420
27	4025	$1 / 050$	6 8(16	1.938	0657	0541	0232	1534	1921	9238	1527	3846
28	4577	22670	5457	1606	0620	2509	0231	1035	1582	199400	1444	6985
2.9	3667		4472	2521	0582	3495	0266	4719	1402	153600	1310	5397
30	3284		3898	1806	0552	21.37	0588	-6250	+ 227	30.830	1192	4372
31	3016		3351		0532		0541	3558		14430		3780
Avarage	6248	10160	14780	5048	1132	0653	0711	1145	2185	17630	10740	17150
Lowest	2900	2418	3357	1606	0532	0217	0221	0214	0609	0872	1192	0591
Highest	16720	45860	39510	14430	3017	3495	3419	6250	6601	199400	39030	86250
Peak flow	4620	8184	82.97	1806	427	743	582	865	928	76720	7334	15740
Day of peak Monthly total	5	18	24	1:	12	28	.	- 7	17	28	10	24
(milion cu m)	1673	2459	3959	1308	303	169	190	367	566	4722	2785	4592
Runotf (mm)	96	141	228	75	11	10	11	$\cdot 8$	33	271	160	264
Raintall (mm)	115	224	211	108	36	76	46	92	80	261	134	244

Statistics of monthly data for previous record (Oct 1937 to Dac 1988 --incomplete or missing months total 0.2 years)

Mean	Avp	10650	8611	6626	4894	3227	2717	2739	3798	5308	7215	10190	10890
flows	Low	1972	1476	1373	1014	() 485	0497	0316	0177	0291	0683	$20!1$	1947
	(yeyr)	1940	1947	1943	1974	1980	1975	1984	1976	1959	1972	1945	1963
	thgh	20990	180×0	$196: 0$	12460	$81 / 3$	8867	8455	10370	16830	18840	22030	23930
	(year)	1948	1946	198:	19/2	1979	1985	1939	1957	1946	1981	1939	1965
Runotf	Avg	164	121	102	73	50	40	42	58	19	111	152	168
	Low	30	21	21	' 5	7	7	5	3	4	11	30	30
	thegh	323	250	302	186	135	132	13)	160	25:	290	328	368
Ramiall	Avg	182	131	122	96	10)	92	105	124	142	153	184	192
	Low	41	10	25	: 1	25	21	14	13	13	28	28	28
	High	386	310	310	206	204	202	2.67	251	325	329	356	452

Summary statistics

Mean flow (m's ${ }^{-1}$) Lowest yearly maan Highest yearly mean Lowest monithly mean Highest monithly mean Lowest dally mean Highast daily mean Peak 10\% excrodance 50\% exceedance 95\% exceorlance Annual intal (milion cu mf Annuad runotf (mm) Annual ranfall (mm)

For 1989		For recura preceding 1989		$\begin{gathered} 1989 \\ \text { As of } \\ \text { pre-1989 } \end{gathered}$
7304		6396		1.4
		4304	1976	
		8529	1954	
0653	Sun	0177	Aug 1976	
17630	Oc:	23930	Datc 1965	
0214	8 Alig	0083	15 Aug 1983	
199400	28 Ocz	14/200	3 Dec 1960	
767200	280 c :	252200	5 Aự 1973	
15430		15480		100
2582		3.534		13
0269		0540		50
230) 30		20: 80		$1 \cdot 4$
1324		1160		114
1627		1673		100

[^4]Station and catchment description
Initully. gauged nearty at Rhayader (55005, 1937-69); resited as velocity-area station with a rock bar as contral Informalflat V installed 1972 Bankfull width - 30 m . Cableway span 54 m All but exceptional floods contained. Lowest g / s on Wye unatfected by large water supply res (flows from the Elan valley complex enter just d/s) Wet, upland catchment draining impermeable, metamorphosed Silurian sediments. High relief, heidwaters reach over 600 m , and feature steep sided and high gradient streams. Moorland and forestry

056001 Usk at Chain Bridge

1989
Measuring authority: NRA.WEL First year: 1957
Daily mean gauged discharges (cubic metres per second)

day	Jan	FEB	MAR	APP	may	UN	\cdots	AUG	SEP	OCT	Nov	OEC
1	13420	17.320	118.700	24450	13630	5749	6412	3.015	3.126	4074	37.930	9.781
2	12.740	16.120	139.100	34.740	12.890	5.836	6.539	2.892	2985	4060	51.070	9.383
3	12.320	15400	93640	24.820	12.350	5.683	5.908	2.837	2941	4.142	40990	9.058
4	- 13.980	20300	70200	22480	11.800	5.547	5.572	2.803	2.946	4022	44000	8.754
5	22.520	29.090	58.380	27.640	11.220	5.391	5.391	2.795	2.931	3952	39.950	8.536
6	27.130	19010	56.400	38220	10.820	5432	5.733	2.795	2.920	3929	32.640	8252
7	18120	16.830	46.240	47.550	10.580	5.386	9313	2.775	2.920	4550	28.330	7.983
8	16670	15630	44020	39250	10.270	5.546	10820	2762	2900	4.603	86.230	7810
9	16610	14910	118000	34010	10.100	5.865	8.392	2.812	2.899	4258	88.440	7585
10	16960	18.370	82330	35330	10140	5.516	6873	6076	3000	4026	102.500	7.360
11	15200	14580	53820	62.970	9926	5.224	6.237	4.659	3.154	4022	117.500	7394
12	37030	19900	55.220	52.600	9.929	5057	5812	3.702	3.208	4059	68.210	8714
13	27840	20450	55990	51.770	9470	4992	5564	3.382	3550	4002	48650	46970
14	59670	18.160	147.600	38960	8891	4.694	5.383	3468	3939	4022	39490	122.900
15	31920	24350	84610	35.190	8588	4892	5241	4.924	4543	4004	32.670	66730
16	27040	20780	61.540	35.000	8314	5307	5.113	7272	6487	3957	28400	144.200
17	29470	25.960	48.550	29.140	8106	5200	5035	5.103	17.070	3886	25340	239.700
18	23.060	200.500	46490	26.150	7.992	5129	4606	4159	10440	3.818	23.040	116.500
19	20950	106.100	54.010	23820	8019	5009	4000	3.719	8.970	4.946	20.710	95690
20	19950	60.580	55.390	22.030	7601	4939	3807	3415	1.253	49180	18.980	206400
21	28350	45980	50180	20440	7.319	4887	3.673	3.255	6.260	89.930	17.520	227100
22	22390	58.880	49.150	19.200	7163	5.164	3.565	3403	5.745	57450	16240	108300
23	37320	51.580	45.350	18220	7323	5.535	3430	3124	5686	36170	14820	93.630
24	39100	167200	116000	17340	7491	5511	3031	2.973	5469	24.750	14.040	251100
25	27660	86010	56630	16240	7801	5491	2.888	2.964	5055	21.270	13.190	147900
26	23920	74430	45210	16.000	6901	5685	2823	3025	4793	25.890	12340	93.450
27	21550	95.600	38990	13110	6471	6354	2799	3025	4650	22.930	11.800	70850
28	30350	79.760	38350	15290	6270	6340	2.795	2.995	4482	105400	11.350	57.190
29	22.450		32.420	15020	6052	7174	3006	2922	4316	116.600	10.710	47.670
30	20430		28430	14220	5861	6868	3390	2.915	4246	68.940	10.190	41.540
31	18740		25020		5715		3017	2.968		47680		37410
Average	24350	48350	65030	29240	8871	5513	5038	3514	4963	24.020	36.840	74.700
Lowas:	12320	14580	25020	14220	5.715	4694	2.795	2.762	2899	3818	10.190	7360
Highes:	59.670	200.500	147.600	62.970	13630	7174	10820	7272	17070	116600	117.500	251.100
Peok fow	10290	234.30	308.90	92.92	1391	806	1140	986	2526	19390	18140	46140
Day of peak Montily total	14	18	14	11	1	29	7	10	17	28	11	24
(miluon cum)	6522	11700	174.20	75.79	23.76	1429	1349	941	1286	6433	9543	20010
Runoff (mmm)	72	128	191	83	26	16	15	10	14	71	105	219
Reunfall (mm)	91	198	165	98	16	55	57	74	64	206	103	264

Statistics of monthly data for peevious record (Mar 1957 to Dec 1988)

Mean nows	Avg	51.700	41030	34330	23.920	17590	11340	8341	10780	16.520	29220	39640	49880
	Low	10.850	12680	10010	8.120	6125	4273	3390	2698	2.939	4.303	13.760	17.770
	(year)	1964	1963	1962	1974	1984	1957	1976	1976	1959	1978	1988	1988
	High	88650	95720	100700	49330	46590	26740	27490	38540	45680	86350	99840	112700
	(year)	1974	1958	1981	1985	1983	1972	1968	1985	1974	1967	1960	1959
Runoff	Avg.	152	110	101	68	52	32	25	32	47	86	113	147
	Low	32	34	29	23	18	12	10	8	8	13	39	52
	High	260	254	296	140	137	76	81	113	130	254	284	331
Rantall	Avg	158	108	116	84	33	76	78	99	124	137	149	167
	Low	28	10	15	8	31	17	21	25	8	19	55	46
	righ	331	223	303	175	$22^{\text {. }}$	144	17%	210	259	325	323	351

Summary statistics						Factors affecting flow regime - Reservoir(s) in catchment.
	For 1989		For record proceding 1989		$\begin{gathered} 1989 \\ \text { As of } \\ \text { pro. } 1989 \end{gathered}$	
Moen flow ($\mathrm{m}^{3} \mathrm{~s}^{-}$)	27460		27810		99	
Lowest yearty mean			14880	1973		
Highest yearty mean			44050	1960		
Lowess monthly mean	3514	$A x^{\prime \prime}$	2.698	Aug 1976		
Highest monthly mean	74700	Ooc	112.700	Oec 1959		
Lowest daty mean	2762	8 Aug	1607	27 Aug 1976		
Heghest daly mean	251100	24 Oec	585400	27 Doc 1979		
Peak	461400	24 Doc	945000	27 Dec 1979		
10\% exceedance	68170		63.650		107	
50\% exceedance	11850		16760		71	
95\% exceodance	2.932		4.367		67	
Annual total (mituon cu m)	86600		87760		99	
Annual runoti (mm)	950		963		99	
Annual ranfall (mm) [194 1.70 rainfal average (mm)	1391		$\begin{aligned} & 1389 \\ & 13781 \end{aligned}$		100	

Station and catchment dascription
Velocity-area station: permanent cabloway. Low flows measured at complementary station downstream (56010. Trostrey wair). There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge. Some naturalised flows available Geology - mainly Old Red Sandstone. Hill farming in upper areas. with dairy or livestock farming below; forest 3%. Peaty solls in uplands. seasonally wot.

062001 Teifi at Glan Teifi

Measuring authority NRA.WEL
First year: 1959

Grid reference. 22 (SN) 244416 Level $\sin (\mathrm{m} \mathrm{OO}): 5.20$

Catchment area (sq km): 893.6 Maxall (m OO) 595

Daity mean gauged discharges (cubic motros per aecond)

day	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUS	StP	OC:	MKJ	DEC
1	19210	21750	71.390	21670	13680	4268	4.159	1.501	3581	3242	55870	8462
2	17910	20.360	91010	31210	12230	4268	3580	1501	3193	2953	63.540	8.382
3	16.570	19130	72850	24840	11560	4401	3.477	1501	2813	2707	53090	8.145
4	17870	19500	58320	19780	11060	4325	3177	1501	2617	2529	56240	7732
5	25310	23.100	48050	18890	10520	4100	2648	1.501	2330	2529	5) 420	7182
6	41230	20130	82.180	34210	9994	3911	2344	1501	2112	2529	57180	7034
7	30830	16.870	55710	40080	9393	4249	2.655	1.501	2.086	4.901	46.820	6.865
8	26440	15610	59880	35920	9059	4268	3.699	1501	2086	8205	89010	6841
9	26160	15770	129600	30820	8596	4268	3744	1582	2.086	7338	103000	6603
10	29660	21410	110600	26490	8382	4268	322.5	2060	2086	7281	129600	6186
11	29510	19690	75690	58690	8066	4268	2891	2086	2086	6509	180700	5.983
12	42260	23280	65.740	47730	8040	4110	2.559	2086	2086	1515	143100	8332
13	42330	25.110	52720	44360	8040	3881	2.330	2086	2008	6748	85710	21270
14	60480	23600	115.300	36290	8 (640	3685	2.206	2113	2034	1463 .	56810	57620
15	49120	28160	104500	30830	7757	3563	$2 \cdot 66$	3066	2248	5964	42800	40.330
16	42590	27790	79.820	27170	7.279	3443	2086	3444	2835	5162	34800	56.510
17	41.980	25.620	56360	23590	6889	3.325	2086	3161	5470	4596	29870	93320
18	36410	51610	51740	20820	6463	3176	1982	3016	6010	4194	25810	82.860
19	30900	55750	53.130	18850	6118	3032	1770	2906	5984	4139	$220: 0$	75810
20	29380	50430	65800	16650	5523	2752	1880	2662	5342	20450	19460	106600
21	33230	40860	62560	15680	5099	2588	1918	2486	4518	40.880	17560	157400
22	29930	49230	56650	14570	5058	2.529	1982	2344	4421	32.320	15190	143.000
23	29560	40820	51620	13780	5058	2529	1868	2139	5175	30820	13580	101100
24	29650	126500	69440	13010	5290	2451	1563	1956	5994	21760	13.040	152.200
25	26440	108000	57020	12100	5.41	2316	1597	1880	4675	18810	. 12060	172900
26	26490	107800	46410	12.720	4996	2372	1.592	1905	4083	21170	11470	120300
27	24950	111.800	36990	15140	4814	2769	1512	2099	3738	22.010	10490	75230
28	36410	87710	32.530	13850	4.134	3226	1501	2288	3512	71.410	9.792	53580
29	29500		27.890	16020	4576	3380	1.501	2.415	3291	144700	9088	41070
30	25690		24090	15870	4401	4754	1501	2529	3275	142600	8570	33400
31	23190		21790		4268		1.501	3.091		87640		28380
Average	31330	42.770	64110	25.050	7423	3551	2.345	2.174	3.459	24250	49.120	54860
Lowest	16570	15.610	21.790	12100	4268	2316	1501	1501	2008	2529	8570	5.983
Highes 1	60480	126500	129600	58690	13680	4754	4.159	3.444	6010	144700	180700	172.900
Pask fow	6786	- 5240	16260	7013	1493	489	458	355	684	15310	18510	19870
Duy of peak Monthly total	14	24	14	11	1	30	1	16	17	29	11	24
(fmulion cu m)	8391	10350	17170	6494	1988	920	628	582	897	6494	12130	14690
Runotf (mm)	34	116	192	73	22	10	7	7	10	73	142	164
Rair:fall (mm)	102	150	168	103	22	61	35	93	70	185	111	185

Statistics of monthly data for previous record (Jut 1959 to Dec 1988 -incomplete or missing months total 0.3 years)

Mean	Avg.	47820	37610	30.900	22470	18020	11390	8579	12640	17290	36090	45710	53300
flows	Low	7086	11140	8 280	7481	4228	2975	1819	1127	1073	3886	16060	17820
	(year)	1963	1965	1962	1974	1984	1984	1984	1976	1959	1972	1983	1963
	Hị̧̆	:06000	81:00	96730	41810	36780	4:100	24930	39210	48680	102000	85130	93.960
	(year)	1974	1974	1981	1985	1979	1972	1968	1985	1974	1981	1986	1965
Pumots:	Avg.	143	103	93	65	54	33	26	38	50	108	133	160
	Low	21	30	25	22	13	9	5	3	3	12	47	53
	High	318	220	290	i2'	110	121	75	118	141	306	247	282
Rentall	Avg	146	91	:05	84	81	80	81	101	118	151	154	160
	Low	28	2	25	10	29	11	25	16	10	40	75	28
	High	326	213	312	163	168	148	166	180	242	293	279	315

Summary statistics	For 1989		For record nrecoding 1989		$\begin{gathered} 1989 \\ \text { As o o! } \\ \text { pro. } 1989 \\ 91 \end{gathered}$	Factors affecting flow regime . - Reservoir(s) in catchment. - Absiraction for public water supplies.
Moen flow (m's ${ }^{-1}$)	25790		28460			
Lowest yearly mean			18860	1964		
Haghes: yearly mean			38230	1974		
Lowest monthly mean	$21 / 4$	Aug	1073	Sab 1959		
Highesi monttly imean	64110	Mus	106000	Jon $19 / 4$		
Lowest daty mean	1501	28 Jul	0731	29 Aug 1976		
Highasi duily mean	180700	11 Nov	373600	18 Oct 1987		
Posk	198700	24 Oec	448800	18 Oct 1987		
10\% excoedance	70220		63600		110	
50\% excendanco	10.390		19020		55	
95\% excendarice	1837		3.217		57	
Annual total (mition cu m)	81330		89820		91	
Annual runoff (mm)	910		1005		91	
Annual rainfall (mm)	1291		1352		95	
[1941-70 rentall overage (mm)			1364)			

Station and catchment description

Velocity-aree station. Straight reach (width: 35 m), naturgl control. Flood flows spill over right bank Pubic water supply impounding reservoirs in upland area where there is mosily hill farming Tregaron bog ($10 \mathrm{sq} . \mathrm{km}$) has partial effect on flows; sensibly nalural regime. Geology - mainly Ordovician and Silutian deposits. Dairy farming predominates in southern area. Forest: 5%. Peaty soils on hilis, seasonally wet Apart from Tregaron bog. most of the lower areas have soils with permeable substrate.

065001 Glaslyn at Beddgelert

Measuring authonty: NRA.WEL First year: 1961

Grid reference: 23 (SH) 592478 Level \sin (m OO). 32.90

Catctument area (sq km). 68.6 Max alt. (m OO): 1085

Daity mean gauged discharges (cubic metres per seoond)

OAY	JAN	FEB	MAR	APR	MAY	JN	14	AUG;	S6P	OCT	NuT	$0 \times C$
1	2.245	2.032	8641	3.684	4605	0462	7.603	0.312	3573	0.986	23020	0551
2	1888	1.754	10880	4.842	2.987	0427	3893	0307	2484	0.818	17400	0514
3	1.794	2.531	7888	3.394	2230	0409	7541	0.353	1824	0832	17.620	0492
4	1.927	8867	8931	2.630	1718	0388	1737	0326	1.765	1.080	21.840	0483
5	19110	6137	8.747	2.684	1387	0400	1.270	0286	1576	1.563	16.510	0469
6	9459	3936	14370	3.972	1154	0543	1570	0259	1232	13.640	8434	0.534
7	5087	11210	6857	7425	0987	0549	1.829	0253	1103	6.008	1.947	0.570
8	5211	12690	29.130	7.349	0862	0594	. 1925	0.402	1.192	4903	21.760	0.595
9	13630	5572	86290	4427	0759	0639	1549	15160	1031	4.014	18790	0600
10	5645	3847	24.920	3943	0696	0658	1391	10610	0789	5.164	45.870	0.578
11	4.932	14510	9.181	17.250	0880	0582	1383	9869	0.760	4.555	20.760	0522
12	5905	7879	12.580	8.620	3249	0620	1304	3.653	1048	4864	8.828	0628
13	15320	22880	12300	1114	2496	1129	1228	2.889	1311	5299	5828	1.933
14	11960	7430	35860	4475	1.797	0984	1141	5310	1455	3.513	4446	5.182
15	5337	16390	16.110	3.300	1.784	0778	0880	5012	2.318	2804	4066	3.621
16	7648	6386	7486	2535	1.966	0617	0648	3755	2251	3.719	3.043	11090
17	6740	7264	5130	2013	1852	0517	0594	2961	1909	3594	2.528	15.370
18	4234	22900	25030	1649	2750	0431	0734	2271	3.563	3115	2023	4.646
19	3196	10060	25040	1405	2070	0.378	0.143	1740	3155	4390	1431	3451
20	3278	5.127	12450	1194	i.b21	0335	0590	10290	2257	11580	1171	24130
21	4268	4485	14070	1061	1189	0310	0609	5296	1.678	11000	1039	26020
22	3622	4.512	12380	0972	0964	0300	0601	3357	2307	10430	1053	9389
23	5365	5397	11690	0899	0826	0300	0486	2646	2448	10 650	1063	9295
24	3.947	10.670	12230	0810	0827	0298	0395	2776	$1 / 28$	7580	0993	21.920
25	3152	5684	6651	0121	0757	0284	0363	5067	1668	21950	0849	23850
26	3981.	5297	4881	1759	0653	2249	0324	7318	1734	8613	0734	11400
27	4085	7785	3858	1943	0581	3648	0290	4761	2112	5323	0666	5243
28	6457	7251	3419	2381	0525	13210	0275	2916	1926	24830	0611	3473
29	4092		3049	3559	0485	6072	0274	4136	1680	30520	0610	2545
30	3090		8613	4112	0443	13320	0302	18740	1211	13540	0600	2124
31	2459		6617		0451		0310	6585		8158		1614
Aversge	5783	8230	14690	3.138	1466	17:5	1251	4504	1840	7713	8718	6411
Lowest	1794	1754	3049	0727	0443	0284	0274	0253	0760	0818	0600	0469
Highes 1	- 13110	- 22.900	86290	17250	4605	13320	7603	18740	3573	30520	45870	27920
Poak fiow	4224	4411	9950	2752	318	. 2470	1158	3634	442	5717	1230	4573
Day of pwak	5	13	9	11	1	30	1	30		28	10	24
Moninty total \{malion cu m)	1549	1991	3934	969	393	444	335	i206	477	2066	2260	1717
Runoff (mm)	22.6	290	573	141	57	65	49	176	70	301	329	250
Raintall (mm)	243	346	513	184	72	176	60	303	83	407	259	308

Statistics of monthly data for previous record (Dec 1961 to Dec 1988 -incomplete or missing months total 1.8 years)

Station and catchment description

A 20 m wide river section rated by current meter and. in the past, by dilution gauging. Rating tends to be insensitive at low flows due to subile movements in the natural bed control downstream High flow gauging restricted to peaks and roughs beeause of rapid water level changes Station bypassed at high flows Lakes (Dinas and Gwynant) and HEP discharge from the higher Llyn Llydaw marginally affect records. Catchment drains the southern flanks of Snowdonia with much bare rock exposure (impermeable Ordovician volcanics)

067015 Dee at Manley Hall

Messuring authorily. NRA.WEL
First year' 1937

Girid reterenco 33 (SJ) 348415
Level stn (m OD) 2540

Catchment area tso kmj. 10193
Max alt (m OD) 884

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAA	APR	NAY	Juv	Jul	Aus,	STP	OCT	NOV	DEC
1	27130	17650	80370	23330	10910	10770	12480	10400	9560	9886	46550	8512
2	23720	15610	97330	39670	10120	10920	12610	10230	9879	9394	39930	8333
3	22050	14460	91620	29350	9549	10770	11380	10230	9995	8240	39820	8146
4	24110	21840	75630	26440	8983	10530	10380	10120	10140	8100	44180	8422
5	26760	39130	60800	35380	9468	10600	10600	10320	10770	8277	57270	8511
6	31980	31080	62110	47060	9174	10990	13020	11960	10740	82.5	54100	8898
7	31090	25920	55450	S5 170	9175	10540	15220	14130	11410	8793	43610	9001
8	26420	22510	49790	57050	10010	11050	13200	11110	10140	$90: 7$	58.540	8596
9	24690	19880	71820	. 50480	9790	11010	10280	10640	10890	8746	64350	8721
10	24500	18800	78600	47270	10520	$107(\mathrm{X})$	10550	10710	11420	8918	100600	8727
11	23580	11870	74600	88020	11520	10410	10630	:0760	11500	9811	115800	8717
12	34170	22060	64590	95660	18140	10210	10340	'0650	11500	10650	100100	9233
13	32.860	25930	15030	$1072(\mathrm{x})$	13130	10430	10050	11000	11300	10920	70850	12.220
14	51760	26090	105900	83980	11630	10530	10) 110	:1540	10680	10490	50700	24130
15	39530	33360	102800	61680	10930	10390	10540	12320	10330	10130	38670	25810
16	34090	33420	85160	48140	11260	10210	10530	11360	10660	10990	31160	131600
17	36500	29940	63290	38720	11070	10430	10420	11430	11040	10130	26030	216600
18	32460	77900	52990	29530	11270	10350	10050	10540	9860	9305	22980	141.400
19	30390	83290	53830	24840	10650	10310	10340	:0690	10400	9708	19780	97260
20	28000	71340	54550	22420	9916	10400	11420	10560	9784	19230	17610	100300
21	28190	52160	63680	20340	10550	10460	11490	:0460	$103 \cdot 0$	51080	15790	131700
22	24860	48150	67870	17970	10550	10560	11510	10560	9337	49990	13980	119100
23	23760	40740	73390	17080	11310	10710	11450	10510	8932	42940	12720	106.900
24	24060	58930	:03700	15110	11070	10660	11340	10800	8758	30370	12010	163200
25	22810	46890	94700	13.810	11280	10650	11460	11180	8670	29880	11070	138900
26	23280	40630	67860	13100	10710	10950	11510	11230	8589	39590	10050	103.600
27	23190	49640	52770	13720	10550	11980	11510	10790	10080	40650	9750	71180
28	22930	55320	46540	12380	10750	11580	11520	:0650	9995	44290	9425	52940
29	20340		37420	11850	10760	12240	11570	:0630	9794	58.000	9167	42090
30	19160		31480	11350	10670	10100	11500	- 0720	9906	61660	9068	34540
31	18800		26170		10560		11190	- 0250		62910		29620
Averaga	27850	37380	68640	38600	10840	10710	11300	-0920	10230	22910	38520	59580
Lowns:	18.800	14460	261%	11350	8983	10100	10050	-. 0120	8589	8100	9068	8146
Highest	51760	83290	109700	107200	18140	12240	15220	$\cdot 4130$	11500	62910	115800	216.600
Poak flow	6289	11430	14190	12890	2034	1357	1640	1463	1395	69.20	12430	242.90
Day of peak Monitly total	14	18	14	11	:2	29	6	7	7	30	10	17
(milion cu m)	1458	9042	18380	10010	2903	2717	3026	2924	2652	6137	9985	15960
Runotf (mm)	73	89	180	98	28	27	30	29	26	60	98	157
Ranfall (:mm)	83	175	178	117	32	72	44	76	50	174	113	207

Statistics of monthly data for previous record (Oct 1937 to Dec 1988)

Moan	Avg	52310	4470×1	32920	24410	17580	13870	13090	17450	23830	33910	47020	52010
flows	Low	13460	7858	8128	7841	4273	3742	3113	3288	3052	4716	11580	18610
	(yedt)	1964	1963	1943	1938	-938	:96'	1943	1955.	1949	1947	1937	1963
	High	109300	106700	103700	61030	41940	31240	40270	59400	69470	92470	103000	105200
	(ymar)	1948	1946	1947	1910	$\cdot 969$:972	1957	1951	1950	1967	1960	1965
Runoff	Avg	137	107	87	62	46	35	34	46	$6{ }^{4}$	89	120	137
	Low	35	19	21	20	-1	10	8	9	8	11	29	49
	High	281	253	273	155	1:0	79	106	156	177	243	262	2.77
Rantall	Avg	, 152	107	104	83	93	82	95	110	122	139	159	156
	Low	41	14	33	- 10	30	'3	20	9	13	25	15	36
	High	338	241	251	182	197	168	244	211	306	317	300	314

Summary statistics							Factors affecting flow regime			
	「0. 1989		For tecord procersing 1989			¡989				
			$\text { pro. } 1989$	- Abstraction for public water supplies.						
Mean fluw (m³')	28930					$\begin{aligned} & \text { noce } \\ & 31030 \end{aligned}$			93	- Flow reduced by industrial and/or
Lowest yearly mear.			20460		-964		agricultural abstractions.			
Hrghest yearly mean			44600		i964		- Augmentation from surface water and/or			
Lowest monthly mean	10230	Sep	3052		1949		groundwater.			
Hrghest monthly mman	68640	Mar	109300		1948					
Lowast daty meam	8100	40 Oc	1926	30	- 949					
Highest daily mean	216600	$1 / \mathrm{Dec}$	521000	14	1964					
Prak	242900	17 DaC	665400	14	1964					
10\% exceedance	70210		10650			99 *				
50\% exceectance	12030		-9620			61				
95\% excomatace	8855		5040			176				
Anneal total (mullion cu m)	91230		97920			93				
Annual runotf (mm)	895		961			93				
Annual ramtall \{mm\}	1321		1402			94				
[1941-70 rainfak average \{mm)			1395*							

Station and catchment description

Asymmetrical compound Crump profile weir, checked by current meter. Drowns at flows above 200 cumecs. Low flows maintained by releases from major river regulating res. (Celyn and Brengl' Data prior to February 1970 is poorer quality - based on d/s Erbisiock (67002, area: 1040.0 si. km / flow record D/s flood attenuation is notable. Geology is 75% shales. slates, mudstones and palaeozoic grits; 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry. remander arable. urban negligible.

Measurng authonty: NRA-NW First year. 1937

Grid reference: 33 (SA) 670633 Loved stn. (m OD): 16.30

Catchment area $\{\mathbf{s q ~ k m}$: $\mathbf{6 2 2 . 0}$
Max att. (m OO): 222

day	SAN	FEB	MAR	APR	may	AV	μ	aug	SEP	OC:	NOV	$0 \times C$
1	4241	3.531	20360	3.132	3012	1.731	5235	1.584	1.325	1015	2066	1.909
2	3.877	3.293	18690	11.480	2825	1.766	2611	1336	1.257	3.032	2.274	1.755
3	3.628	3.302	15.730	8.779	2.797	1655	2.073	1.329	1.225	1035	2.231	1.721
4	3689	3.388	10080	5.113	2.740	1.582	1.801	1.259	1.183	1.036	2205	1.727
5	4900	3.339	8238	18070	2699	1.980	1630	1.137	1.159	1.253	2997	1.875
6	5409	3.024	6.909	29440	2619	2.786	1.547	1.069	1.102	1215	2777	1.775
7	4547	2.809	5.779	33.030	2495	1998	3.791	1075	1.006	1.622	2.545	1.616
8	4.356	2.706	4860	19440	2488	2.279	3453	1001	1.084	1537	11.370	1620
9	4.416	2667	4642	11310	2411	2084	2.556	1. 166	1079	1414	12.140	1.595
10	4243	2.650	5.292	20850	2403	1826	2.132	1.359	1042	1.307	9083	1.586
11	3.828	2.824	4465	17620	2.615	1677	1.947	1869	1.052	1.255	15.960	1.635
12	3938	2.950	4208	12570	3620	1.650	1806	1289	1.253	1265	9628	1.988
13	4322	2.316	5900	10910	3078	1.676	1775	1.236	1.661	1628	5.279	8289
14	6.638	2866	6.181	B 053	2608	1.571	1.706	1656	1377	1486	4.056	37.760
15	4883	3368	9752	6.193	2438	1457	1644	1.711	1465	1310	3.613	34220
16	4.300	3350	6087	5147	2471	1403	1602	1497	1519	1.225	3067	24060
17	4061	3023	4.510	4485	2.324	1.338	1610	1238	2345	1199	2.741	21120
18	3684	5291	4059	4256	2459	1330	1508	1106	1718	1150	2.635	19430
19	3.469	4218	5071	3916	2.356	1.315	1450	1047	1351	1789	2.519	25730
20	3395	3449	7495	3625	2.199	1.245	1380	1.017	1238	3666	2.328	22120
21	4.277	3028	8420	3350	2.133	1.287	1325	0984	1.145	2797	2238	42170
22	5168	3089	6245	32.13	2.098	1.265	1797	1.113	- 509	3788	2.309	33110
23	4.459	2300	4545	6184	5172	1.277	1265	1.028	1.188	2699	2.189	18030
24	4.241	23310	4642	4596	3.179	1.297	1229	1088	1054	1938	1.983	22840
25	3.862	37.780	3941	3709	2529	1.313	1318	1688	1075	1775	1.927	27060
26	3.628	20820	3588	3622	2.179	1.512	1395	2034	1100	1909	1898	16770
27	3478	21820	3.362	4115	2015	2.512	1271	1563	1125	2171	1924	11440
28	6012	14980	4.302	3.578	: 938	2190	1253	1262	1074	2154	2.061	9069
29	5.071		3980	3503	1872	2291	1190	1:61	1025	5051	1.892	7363
30	4.230		3563	3.184	1794	3.948	1.797	1.863	1.009	5078	1867	6105
31	3.784		3.258		1677		1716	1.755		2814		5655
Average	4.323	6882	6715	9214	2556	1775	1.881	1339	1260	1955	4060	13330
Lowest	3395	2650	3.258	3.132	1677	1245	1190	0984	1006	1015	1867	1.586
Highest	6638	37.780	20360	33030	5172	3.948	5235	2034	2345	5078	15.960	4) 170
Poak flow	843	41.79	24.09	3439	798	764	781	361	216	633	1804	45.70
Day of neak	18	25	1	7	23	30	1	30	17	30	10	14
Monthly total (mallion cu m)	1158	1665	1798	2388	685	460	504	359	321	524	1052	3570
Runotf (mm)	19	27	29	38	11	7	8	6	5	8	17	57
Roinfol (mm)	28	62	45	81	33	56	32	46	30	80	63	105

Statistics of monthly data for previous record (Oct 1937 to Dec 1988 -incomplete or missing months total 1.8 years)

Mean	Avg	10470	9149	6.775	4932	3807	2.815	2785	3.057	3285	4.534	7732	9349
flows.	Low	1.966	2376	2183	1491	0904	1.125	0137	0641	0918	1184	1302	2430
	(yeat)	1984	1965	1938	1938	1946	1962	1976	1976	1964	1947	1942.	1947
	High	21950	19860	18580	11760	22720	6996	12750	8.405	16990	15.970	22.540	22250
	(yoar)	1939	1980	1947	1986	1969	1954	1968	1971	1951	1954	1954	1965
Runoff:	Avg	45	36	29	21	16	12	12	13	14	20	32	40
	Low	8	9	9	6	4	5	3	3	4	5	5	10
	Hagh	95	80	80	49	98	29	55	36	71	69	94	96
Ramial.	Avg.	68	49	52	48	60	59	69	72	66	68	77	69
	Low	18	2	18	2	18	13	16	6	5	15	13	10
	High	145	145	127	98	134	142	168	175	169	137	170	140

Station and catchment description
Natural river section. Accuracy of early ratings not known and gaugings lost. However. calibration came under suspicion in 1972 and previous records, particularly low flows, deemed to be of little value. Low flow rating then changed severat times batore station moved 400 m downstream and shallow V bed control constructed in August 1978. High flow rating (above 40 cumecs) has yot to be defined. Flat catchment includes westarn half of Crewe. Post glacial deposits over (mostiy) Keuper Marl

072004 Lune at Caton

Messurimg authority NRA.NW First year' 1959

Grid reference 34 (SD) 529653
Leval $\sin (\mathrm{m}$ OD). 10.70

Catchmant area isq kmi: 9830 Max alt (m OD): 736

Daily mean gauged discharges (cubic metres per second)

day	Jan	r8	MAR	APA	Nay	JUN	Ju	AUS	518	OCT	Sov	CtC
1	21.900	12110	77810	21530	8480	4249	24650	2574	:3280	2723	78440	6144
2	19020	11390	62980	18990	8289	4023	9.536	2336	10540	2618	66130	5975
3.	16.750	76830	51040	16940	7.554	3867	6375	2262	8.174	2.544	76010	5549
4	22970	127.000	46660	14970	7.201	3590	4.199	2088	7009	2465	108800	5.130
5	75.710	60050	35810	14900	6762	3476	3604	1966	6281	2476	66.120	5590
6	47.250	35520	57660	19800	6240	3378	32.62	1997	5552	4547	35730	5591
7	27480	111.200	39300	37.640	5917	3307	2905	2164	4972	6275	32990	5400
8	25.130	66540	35470	33350	5692	3250	3597	1839	4579	7.138	46160	5. 150
9	61500	36230	262100	19620	5503	3215	3321	16.150	4.102	5000	49130	4900
10	29220	26180	129200	25330	5.279	3163	3117	16690	3606	3759	238100	4751
11	22530	84450	51460	- 56900	5633	3098	2933	20850	3431	34.1	$126{ }^{\circ}$ (0)	4697
12	34960	60510	49900	-83300	7216	3137	2633	12040	3.346	3462	61860	4863
13	88460	112200	10490	91070	7441	3.188	2264	28620	3413	8913	38570	4997
14	131400	49470	126300	48480	6.066	3219	2078	34960	3.277	15830	28950	5289
15	41980	111300	67610	32200	5477	3108	1985	30420	3438	43220	23310	5488
16	35090	46380	37570	24240	5449	2887	2039	20100	10250	121400	19120	25930
17	35440	33.470	21500	19770	5250	2751	$2 \cdot 44$.	13290	604 :	40110	16410	9:490
18	24510	171900)	82620	17050	5.257	2586	$2 \cdot 06$	10320	4727	20300	14.940	43170
19	20420	139.800	91840	15120	5589	2270	1944	7569	6572	28600	13570	19.650
20	18.150	83970	80080	13520	5.689	2.191	2012	6912	5.926	155000	12110	88430
21	30510	48030	74400	12500	4634	2117	1986	12750	4536	96200	10960	127.000
22	21.260	42460	156800	12680	4076	2064	1948	7943	3742	68180	9953	53040
23	46720	33480	147400	14280	10460	2063	$19 \cdot 8$	6698	4341	50090	9223	52020
24	26740	61150	142800	12560	32.930	2046	1903	5637	3.988	76640	8741	105500
25	19730	61.360	50680	10890	14460	2012	1810	6450	3595	98.620	8.203	79020
: 26	38890	40800	38290	10360	7.603	5300	1568	7669	3503	- 58330	7639	49180
27	23080	44570	28680	10.980	5883	13930	1508	7946	3541	58190	7481	30580
28	18.990	104800	24140	8395	5081	26270	1689	5884	3313	60440	7012	23360
29	16330		19960	8.666	4517	:3 120	1962	7904	3027	120600	6720	19420
30	14580		36700	82:8	4110	26850	4292	40840	2828	102100	6.370	16480
31	13.240		31420		3971		3453	28550		53.940		14.380
Averego	34.510	67850	72090	31160	7.216	5.324	3594	12050	5164	42680	41180	29620
Lowast	13240	11.390	i9 960	8218	3971	2012	1508	: 839	2828	2465	6370	4.697
Heyhost	131400	$: 77900$	262100	183300	32930	26850	24650	40840	13280	155000	238100	127000
Poak fluw	38530	28990	43540	38720	7846	8323	4613	9592	1642	27880	44490	24160
Day of peak Mon:thy total	13	18	9	11	24	30	1	30	1	29	10	21
(milion cu m)	9244	16410	19310	8078	1933	1380	962	3226	1339	11430	10670	7933
Runofl (mm)	94	167	196	82	20	14	10)	33	14	116	109	81
Rairfal (mm)	96	210	2.04	95	48	75	31	136	32	205	91	108

Statistics of monthly data for previous record (Jan 1959 to Dec 1988 -incomplete or missing months total 4.0 years)

Station and catchment description

Bazin type compound broad-crested weir oporated after $10 / 6 / 77$ as full-range station Previously used for low/medium flows: high flows from Halton 3 km downstream High flows inundate wide fioodplain. Transfers to river Wyre under Lancs Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines Mixed geology. Carboniferous Limestone. Silurian shales, Millstone Grit and Coal Measures. substantial Drift cover. Agriculture in valleys: grassland rising to peat moss in highest areas

073010 Leven at Newby Bridge

Measunng authority: NRA NW
First year: 1939

Grid reference: 34 (SO) 367863 Levet stn. (m OD): 37.30

Catchment area (sq kmi: 2470 Max ali. (m OO): 873

Daity mean gauged discharges (cubic metres per second)

vay	JAN	FEB	MAR	AP\%	May	UN	Or	Aug	SCP 15.910	0 Cl	$\xrightarrow{\text { NOV }}$	OrC
1	20790	9.150	23590	15.170	4068	0990	4091	0.611	15.910	2.110	29.050	1861
2	17.250	8.095	23630	14260	4100	0813	3.716	0.591	13670	1618	29.630	1.553
3	14140	17180	22250	13160	4264	1431	3201	0598	11220	1317	32.640	1461
4	13330	31.720	20570	11.910	4034	1.218	2813	0595	9098	1225	37360	1483
5	17540	40020	20.330	10300	3839	1091	2689	0.596	7764	1309	36220	1500
6	24030	35300	25330	9264	3303	1.291	2463	0591	5719	2270	32130	1.529
7	22520	34320	27300	9.340	2890	0925	2.183	0588	4823	3.546	26530	1603
8	20050	34390	26710	10160	2633	0795	1559	0.580	4017	3772	23400	1528
9	21670	28760	61800	10390	2506	0841	1255	1995	3.733	3363	21.600	1510
10	20990	24880	85840	10300	2174	0751	1035	3580	3205	2606	28180	1456
11	18840	23070	69480	11990	2185	0113	0853	9446	2.193	2087	40390	1.543
12	19090	25480	55860	25140	2858	0828	1341	9405	2453	1.740	31320	1554
13	19990	31410	50910	27780	3025	1448	1225	10560	2.183	2039	31900	1.191
14	25680	33150	47840	26540	2663	1853	0.897	:5090	2.145	2.909	25000	1708
15	24700	3)600	45220	23750	2.760	1857	0844	18960	2634	4816	20630	1324
16	21.980	36400	38870	20370	2984	1712	0120	17190	3607	16090	17120	2677
17	20020	30730	30560	17070	2865	1612	0699	14240	3602	20290	14200	9325
18	17390	29620	32200	14450	3051	1535	0672	11690	3213	19200	12160	13270
19	15000	32640	37990	12380	3252	1316	0642	9113	3128	16.720	10360	12.250
20	13110	31930	3/820	10370	3156	1161	0643	8848	3078	19170	9037	13040
21	13.470	28360	34560	8799	2995	1098	0628	10550	3914	25620	7582	20280
22	13340	26890	38160	7780	2.536	0707	0618	9603	3939	28570	6041	21.430
23	$1 / 410$	25060	38210	6958	2569	0656	0616	7927	3697	-35310	4933	20660
24	18370	25070	44070	6091	2541	0574	0613	6789	3310	33.730	4269	26200
25	17110	24550	39680	5289	2318	0550	0606	6281	2966	35:90	3492	35880
26	16380	22820	34050	4733	1830	0705	0586	$58: 7$	3012	32280	2918	35050
27	14880	20570	28980	4691	1492	0987	0578	4606	3061	27060	2638	29610
28	14270	21160	22:30	4017	1419	1499	0573	3466	2186	24300	2436	22930
29	12610		18 i 00	3888	1368	2716	0584	3529	2519	25090	2263	18650
30	11730		18010	3137	1161	3764	0611	10120	2394	30450	2052	: 5160
31	10390		17280		0973		0611	$1 / 230$		30340		12260
Average	17680	27510	36040	12000	2704	$123 i$	1298	7123	4638	- $4 / 110$	18470	10710
Lowest	10390	8035	i 7280	3737	0973	0550	0573	0580	2145	1225	2052	1324
Highest	25680	40020	85840	27780	4264	3264	4091	18360	15910	35310	40390	35880
Peak flow	2642	4262	9070	2818	450	398	4 58	1975	1678	3719	4128	3703
Disy o! peak	14	5	10	:3	2	30	1	15	1	27	11	23
Monthly total (milion cu m)	4735	6656	9654	3111	124	319	347	1908	1202	3941	4/87	2869
Punoff (miti)	192	269	391	126	29	13	14	77	49	160	194	\$16
Rainfol (mm)	180	339	398	138	43	89	32	246	50	288	147	167

Statistics of monthly data for previous record Wan 1939 to Dec 19881

Mean	Avg	19930	16.390	13290	11200	7656	6455	1496	10670	14600	17520	20290	21300
fows	Low	1935	$09 / 4$	3699	1796	064 :	0545	0)774	0652	0560	1438	6813	8207
	(year)	1963	1963	1962	:974	1980	1918	1941	1984	1959	1977	:983:	1963
	High	38020	3:030	29970	21640	: 8680	18730	16990	31070	33930	50110	36450	40110
	(year)	1975	1945	1981	:949	1986	1972	1953	1985	1946	1967	:986	1954
Runoff	Avg	216	162	144	1i8	83	68	81	116	153	i90	$2 \cdot 3$	231
	Low	21	10	40	19	7	6	8	7	6	16	72	89
	High	412	304	375	221	203	197	184	337	356	544	383	435
Rarelal	Avg	230	148	i6.	118	118	125	151	184	219	224	235	239
	Low	26	7	32	12	22	- : 7	40	7	- 29	30	17	90
	H49\%	439	295	34 :	243	241	269	309	428	427	557	428	450

Factors affecting flow regime

- Reiservoir(s) in catcnment
- Abstractron for public water supplies
- Augmentation from effluent returns

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump profile weir - increased sensitivity at low flows full-range. Just d/s of Lake Windermare - highly regulated. compensidion flow. Major abstractions lor PWS. sewage effluent from Ambleside Predominantly impervious. Borrowdale Volcanics in north and Silurian slate in south Boulder Clay along river valleys Manly grassland, very wooded in lower reaches

076005 Eden at Temple Sowerby

Measuring authonity NRA.NW First year 1964

Grid reference 35 (NY) 605283 Levell stn (m OD). 92.40

Catchment ared $(5 \mathrm{sqm}) 6164$ Max a!t (m OO) 950

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	Mav	Ju\	J..t.	AJS	SLP	OCT	NO	OEC
1	9316	6068	29330	8 380	4067	2453	262.2	1244	3023	1188	20350	2490
2	8238	5748	21290	7338	3916	2389	2363	1181	2433	1174	20080	2403
3	7544	2158	19760	6614	3747	2. 344	1966	: 120	2088	1152	20050	2178
4	14630	37200	21720	6395	3649	2250	1782	-067	1900	1110	27210	2394
5	2.1430	32.020)	1/920	9166	3459	2238	1632	- 063	1763	1126	13970	2255
6	17710	18430	$22 / 10$	$\cdot 5690$	3308	2250	1542	- 039	1663	1171	9020	2248
7	12130	25960	16460	- 6020	3240	2263	1529	0988	1587	2800	7261	2218
8	10420	2190	16430	$\cdot 7900$	3174	2. $2: 2$	1557	0956	1522	2807	8895	2122
9	1/340	13870	121000	: 1040	3069	2230	1560	1271	1.438	2013	11490	2038
$: 0$	1:300	10500	53220	i3750	2993	2181	1574	2181	1390	1696	90920	2003
11	11700	24010	22720	63760	3128	2098	1527	2309	1372	2968	52780	1991
12	20060	19020	22600	56440	3969	$21 \cdot 3$	14.33	22.47	1374	2.644	22920	1995
13	65.160	39420	31970	51550	3929	2201	1360	3097	1387	2641	14010	2091
14	50970	19.190	47590	27840	3206	$2260)$	1322	7269	1358	2909	10300	$23: 3$
15	20600	45160	28470	18420	2. 970	2065	1313	$564{ }^{\prime}$	14%	2611	8265	3069
16	16000	$1 / 620$	16850	13060	2953	1957	1251	3399	1787	13640	6920	20750
17	14980	13110	12110	104.0	2813	1881	1235	2578	1802	7525	6030	60360
18	11440	10360	16180	8884	279 :	1846	1209	2340	$15 * 7$	4417	5383	27430
19	9693	67440	32000	1856	$281{ }^{\circ}$	1775	1183	1926	1457	3372	4814	10930
20	8696	33540	30810	7094	2728	1713	1170	211°	1394	27910	4404	27140
21	10290	21200	23950	6638	2672	1693	1133	2850	1341	26630	4094	52830
22	8948	24450	57310	66.8	2 ¢59	1672	1122	2139	1558	21760	3813	24980
23	21430	:9250	77370	6793	3462	1653	1128	1191	1632	13330	3557	21020
24	14070	34820	56730	6030	3425	1637	$11: 6$	1786	1503	15110	3358	66330
25	10100	30710	21270	5424	3:94	1623	1078	2944	1419	$20460)$	3:34	54660
26	12300	21120	16440	5053	2878	18.33	1049	2813	1456	13240	2918	25860
27	10190	21720	13080	4753	2688	2. 802	$10 \cdot 7$	3032	1398	13760	2839	16030
28	10130	35970	11060	4448	2563	2988	1068	2260	1318	'2180	2130	11920
29	8242		9453	4302	2502	3074	1150	1904	1263	i59:0	2672	9.726
30	7302		11820.	4174	2398	2383	$13 / 8$	3014	1223	20340	2567	8252°
31	6591		9743		2390		: 3.38	5465		\$1080		7233
Avarago	15490	29000	29350	14380	3120	2136	- 4:0	2420	1593	8734	13230	15300
Lowest	6591	¢ 148	3453	$41 / 4$	2390	1623	- 017	0956	1223	$11: 0$	2567	1991
Highest	65760	97200	121000	63760	4067	3074	2622	7269	3023	2790	90920	66330
Peak flow	16470	18050	18400	13020	487	369	289	1436	360	4616	19270	9939
Day of peak Munthly iotal	13	4	23	11	: 7	29	-	13	1	20	10	24
(milion cu m)	4148	1016	1862	3727	836	554	378	648	413	2339	3429	4098
Punoff (mm)	67	114	128	60	: 4	9	6	11	7	38	56	-66
Hainfall (mm)	80	163	148	72	3.3	39	14	92	20	129	76	101

Statistics of monthly data for previous record (Nov 1964 to Dec 1988)

Mean	Avg	23560	17600	$: 6450$	10650	7530	5531	5723	8410	11970	17230	21930	25640
flows	Low	10810	5517	6337	2923	2195	1878	1177	1612	2071	1974	7765	9404
	(ymar)	1985	1986	1975	1974	1984	19/5	1984	1976	1972	1972	1983	1971
	Hiçh	41800	32960	43510	19500	17010	13780	16690	22070	30440	35 960)	38740	49530
	(year)	1974	1966	1979	1979	1967	1972	-988	1985	1968	1967	1984	1979
Runotf:	Avg	102	70	7i	45	33	$\cdot 23$	25	37	50	75	92	111
	Low	47	22	28	12	10	8	5	7	9	9	33	41
	High	182	129	189	82	74	58	73	96	128	243	163	215
Rainfall	Avg	123	76	98	61	73	71	82	97	112	- 16	127	131
	Low	49	9	45	5	24	21	27	20	18	35	50	49
	H:gh	236	164	200	1:3	152	149	2.0	:90	222	288	211	236

Factors affecting flow regime

Station and catchment description
Velocity-area station with cableway Very badty affected by weed growth in summer months, hence numerous rating changes Unstable gravel bed Minor floods contained Above 3.3 m inundates wide floodplain on left bank Floods cause considerable scour and erosion. Sewage discharge downstream of Appleby. Rural catchment excent for Appleby Boulder Clay covered Permo-Triassic sandstone in inain valiey supports arable farming: headwaters drain Carboniferous Lirnestone with rough grazing, moorland on highest ground

Measuring authonity: SRPB First year: 1967

Grid reference: 25 (NX) 858994 Level stn (m OD): 52.20

Catctument area (sq km): 471.0 Max alt. (m OD): 725

Daity mean gauged discharges (eubic metres per second												
DAY	JAN	$5 ¢ 8$	MAR	APA	may	㫙	Ω	AUS	SEP	OCT	Nov	OEC
1	8076	9.734	17.310	12000	3786	1676	2.480	1.436	12.040	4.651	20310	22
2	7664	9.101	13.780	9852	3509	1.595	2002	1.256	9.491	4181	62980	3.154
3	16340	30710	11970	8246	3.401	1592	1622	1228	7.119	3.871	33.510	3143
4	36170	67730	11.760	7.435	3231	1516	1388	1.151	5898	3.760	58.510	3.198
5	44000	43.150	26840	7927	3.140	1.487	1205	1106	5129	4345	37.260	3.159
6	27.570	20020	28420	16390	3065	1462	1.095	1.291	4527	6575	21550	3082
7	17.650	17170	18220	17450	3050	1458	1045	1159	4.195	6087	17.470	2979
8	18560	13590	42190	22300	2.998	1331	0960	1015	3922	5235	13400	2877
9	37160	12.320	92640	11.110	2915	1273	0937	1.336	3476	4267	33910	2.787
10	19.290	13710	36.140	11.570	2.847	1.335	1110	2.109	3192	3902	25.480	2698
11	108.600	37090	20510	58.920	3679	1484	1127	9926	2923	5.291	17590	2491
12	43880	28760	37590	30750	3472	1488	1036	3859	2737	9.509	13490	2431
13	105900	49450	40130	53240	2992	5268	0987	25780	2736	33500	11800	2.353
14	38680	32140	33030	31.650	2181	3310	0.960	38620	2803	23430	10.100	2177
15	22.570	54040	21780	$16 / 90$	2704	2008	0928	22010	3520	19420	8773	2214
16	$1 / 730$	20760	15270	11860	2.646	1631	0898	10600	3695	18030	7.804	81370
17	15260	58290	12060	10670	2.572	1482	0884	6238	2972	16110	6939	13120
18	12020	48930	31490	8859	2595	1381	0856	4795	13.230	13000	6295	23020
19	10290	26420	59110	7588	2877	1.292	0883	6730	8458	28250	5865	11920
20	22070	20000	26100	6.121	2461	1177	0861	33960	86490	30.190	5403	10230
21	28330	42280	46390	6089	2281	1134	0838	14340	32490	30400	5.130	12500
22	17920	32110	13600	$61 / 3$	2142	1106	0831	8140	36820	19470	4641	17150
23	15930	16510	88810	5569	2005	1034	0830	6077	23630	12960	4.262	41530
24	13980	13440	77560	4874	1884	1017	0783	33030	1.3880	20:20	4111	155300
25	13530	13270	44700	4490	1825	1131	0796	16800	10440	28880	3874	50820
26	20120	11610	38480	4126	1810	3147	0938	12860	8733	19090	3745	24700
27	56760	21120	22750	3908	1705	9893	0980	9076	1855	32130	3705	16410
28	42060	31870	24410	3717	1593	5.870	1.156	6659	6517	33660	3598	12270
79	19.280		26530	3709	1574	7925	4787	5821	5561	22.130	3434	10470
30	14090		23740	3721	1462	2290	2515	34160	4929	28.920	3337	9661
31	11450		15020		1 L 29		1728	20820		27990		8506
Average	28480	28410	34800	13610	2598	2160	1213	11080	11310	16770	15280	19.390
Lowest	7664	9101	1:760	3709	1462	1011	0783	1075	2736	3760	3337	2177
Hughest	108600	67730	92640	58920	3.786	9893	4787	38620	86490	33660	62980	155300
Peak flow	22210	16750	:7810	11200	470	i185	784	10670	13650	6097	9833	34260
Day of peak	13	18	24	11	12	28	29	15	20)	20	2	24
Munthy total (mition cu ri)	7628	6872	3322	3528	696	560	341	2967	2932	4492	3960	5192
Runotf (mm)	162	146	198	15	15	12	7	63	62	95	84	110
Ruantall (mm)	197	195	239	86	39	69	44	196	98	150	69	141

Statistics of monthly data for previous record (Jun 1967 to Dec 1988)

	Avg	28510	19720	18310	9294	8017	5331	5752	8336	14490	23380	26350	25 570
flows	Low	9037	4288	4427	2457	1390	1489	0868	0841	- 260	2744	S 268	12770
	(year)	1985	1986	1969	$19 / 4$	1980	1984	1984	1984	1977	1972	1983	1971
	High	61220	38900	33190	24190	27570	14660	15780	38280	39000	39200	49350	55190
	(yeas)	1974	; 984	1978	1972.	1986	1972	1988	1985	-985	1967	1982	1986
Runotf	Avg	162	103	104	51	46	29	33	47	80	133	145	145
	Low	51	22	25	14	8	8	5	5	7	16	29	73
	High	348	207	189	133	157	81	90	218	215	223	272	3:4
Rainfall	Avg	181	105	132	71	98	84	99	108	153	181	175	166
	Low	67	10	34	$1:$	19	30	41	23	20	66	35	69
	Hingh	398	170	217	175	230	163	211	302	247	301	285	345

Summary statistics

	fot 1989		For record proceding 1989		$\begin{gathered} \text { As \% of } \\ \text { nre. } 1989 \end{gathered}$
Mean flow ($\mathrm{m}^{3} \mathrm{~s}$ -)	15380		16090		96
Lowest yearly inman			10720	1971	
Highimst yeariy mean			21700	1982	
Lowest morinty mean	1273	Jul	0841	Aug :984	
Heghast monthly trean	34800	Mar	61220	Jan 1974	
Lowest daly mean	0783	24 Jut	0606	26 Aug 1984	
Highest daly mean	155300	24 Dac	231700	19 Dect 1982	
Pook	342600	24 Doc	538400	18 Oct 1982	
10\% excundance	37410		41490		90
50\% exceedarice	7971		8100		98
95\% exceedance	1026		1337		17
Annual tutal (malion cum)	48500		50780		96
Annusl runoff (mm)	1030		1078		96
Arnuis ranfal (mm) [1941.70 cantas averape (min)	1523		$\begin{aligned} & 1553 \\ & 15791 \end{aligned}$		98

Factors affecting flow regime

Reservoir (s) in catchment

- Austraction for public water supplies.

Station and catchment description
Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed Natural channel control Senstbly natural flow regime. Afton Reservoir has small influence

084005 Clyde at Blairston

Measuring authority CRPB
Furst year. 1958

Grid relerence. 26 (NS) 704579
Lovel s:n (m OD) 1/60

Catchment arca (sq km) 17042 Max alt (m OD). 732

Daily mean gauged discharges (cubic metres per socond)

DAY	JAN	Ft8	NAT	APA	MAY	JUN	JUI	Aur;	SEP	OC	NOV	3 C
1	31690	29380	66000	45950	14970	9762	10100	5.547	28630	17530	43180	- 1620
2	78720	32270	44500	36840	14350	8916	8317	$51 / 0$	21510	11840	56540	: 1200
3	21380	76740	40120	29550	13960	8948	7161	4995	17180	10980	52720	- 0690
4	69500	177300	36880	292.0	13600	8722	6625	489.	14800	10620	78150	- 0010
5	109200	122200	36400	28490	12430	8798	$6 \cdot 73$	6245	13070	11230	61660	-0 320
6	91420	68950	44000	318:0	11830	9309	6065	7344	11690	12870	40 BbO	10550
7	54430	56210	48170	38430	11510	8994	5939	5733	1) 980	12760	39410	10530
8	567 70	48550	40290	36530	11220	8367	5848	5428	10640	11770°	39 Os0	10270
9	124300	41720	131200	29940	109880	8323	5707	5531	10020	11010	40010	9936
10	80900	43680	133400	27090	$\cdot 0100$	8031	622 .	6555	9182	10160	63630	9915
11	241200	86760	63340	50690	12650	8299	5944	106.0	8785	10060	46870	9827
12	201400	: 33 400	51130	83520	18030	8144	5524	12390	8748	13150	37200	9889
13	142100	:30 100	81570	76740	16430	11230	¢ 299	79990	9531	26760	34570	9729
14	119800	1010×0	83460	13370	13210	10110	5289	48890	9431	34460	29720	9048
15	92750	140400	67210	46600	12470	8032	52.24	47340	10490	32390	26180	9386
. 16	64190	70500	47290	$35090)$	12820	7254	¢ 134	25920	10820	39170	24400	95350
17	52720	55120	38430	30730	12220	7070	4950	15620	9190	46230	21850	170600
18	43330	108100	82990	27680	12290	6511	4878	11810	9950	54510	20450	68390
19	37810	87510	140500	24600	134%	6285	4901	159.900	14910	34820	13140	35840
20	37150	12480	. 01200	23190	12920	6056	4834	38610	27930	$3 / 930$	17950	$32 / 20$
21	56 3:0	13650	98860	21810	$: 1660$	5950	466.3	41730	66340	43100	16800	49900
22	42400	99380	202 00	24520	11150	6043	4565	20450	50520	35850	$15 / 80$	54710
23	43970	57570	187700	22140	11160	6030	4567	14890	80730	28730	14970	144000
24	38740	46450	245400	19560	12.070	6135	4726	28040	36930	64310	14260	149700
25	35510	50260	145500	18030	11080	8289	5130	29840	25940	75970	13520	69550
26	31160	45210	90910	17210	10400	8803	4925	30900	21300	68180	13010	65740
27	64660	60:20	67780	16220	10200	10530	$54: 9$	27090	19630	85490	12570	45600
28	100600	81050	65140	15180	10000	11540	6791	i/410	16760	18480	12290	34680
29	52970		86280	14750	9453	10180	3358	14770	14660	56840	12320	30030
30	40010		109300	14520	9118	11400	8335	53720	13340	55960	-1970	21150
3^{1}	33180		57500		9927		6520	58220		49010		26900
Averagn	74610	18450	88210	33000	12200	8423	5991	22650	20480	$35 \cdot 10$	31050	40450
lowest	21980	29380	36400	$\cdot 4570$	9118	5950	4565	4891	8748	10060	11910	9048
H.f.ghest	241200	177300	245400	83520	- 9030	11540	:0700	79990	80730	85490	78150	170600
Prask flow	32380	27390	21010	11700	1903	1.3 .35	1289	12180	10980	10360	8527	24110
Day of neak	12	5	25	:2	14	30		14	23	28	5	24
Monithy iotal (milion cu m)	19980	18980	23630	8554	3268	2183	1605	6067	5308	9405	8049	10830
RLinoff (mm)	117	$1 \cdot 1$	139	50	-9	13	9	36	31	55	41	64
Puinfall (mem)	136	141	16:	55	40	59	32	158	64	107	38	86

Statistics of monthly data for previous record (Oct 1958 to Dec 1988)

Station and catchment description

Recorder moved to present position in Nov 1974 from opposite bank Section is natural with steep grass and tree covered banks Velocity profile slighty unetven due to upstream bend Control-piers of redundant rail bridge, $300 \mathrm{~m} d / \mathrm{s}$ Section rated by current meter to 3 4 m , just delow max recorded stage Some naturalised flows available very mixed geology with the older formations (Ordovician/Siluriant to the south Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley

Measuring authorty: MPPB
First year: 1979

Gid relerence: 18 (NG) 942429 Level sun. (m OD): 5.60

Catctument area (sq kms: 137.8 Max alt. (m OO): 1053

Daily mean gauged discharges (cubic metres per eecond)												
DAY	JAN	SEB	MAA	APP	may	10 N	R	AUS	SEP	OCI	NOV	DEC
1	10090	7.230	13070	7.427	21.890	2.507	9.197	2686	11840	2.630	20900	1428
2	5.873	33.750	7.345	5.246	15.790	2.189	4515	2.388	6464	2437	13.770	1.370
3	7.778	37360	6.535	3.765	8.161	1.972	3054	2536	4.123	2.115	23.370	1.421
4	17.880	38.540	12460	3094	4566	1.716	2438	2341	3412	1.834	20.760	1.405
5	10530	187400	13.780	2.733	3.352	2031	2056	4.572	11.650	3182	14820	1358
6	6881	168.300	14870	2434	2.822	2252	1.181	12590	13.620	5.934	8270	1354
J	13570	40640	14.900	2.284	2522	2300	1.630	13.130	5574	9.726	7.951	1397
8	22680	13370	11.830	2.345	2472	1.948	1521	22680	3954	5344	7.199	1334
9	22660	12970	34.440	3066	3029	1736	1391	20360	3.117	5675	5.523	1305
10	13.540	13300	17640	5605	3.117	1.609	1806	10530	2613	18.320	12.790	1.273
11	45340	11910	46.150	5.191	7221	1491	1864	12810	2.280	16010	11.450	1.223
12	26170	9388	41250	7223	6455	1824	1.855	15880	2056	13260	5.832	1.126
13	27050	39330	16460	4.607	3747	5361	1668	10990	2.297	21.860	4048	1015
14	87080	120500	16070	3.775	2824	4975	1472	9580	6.249	15270	3.558	0950
15	159000	37.870	10440	3281	5060	2821	1361	11640	8811	23.340	3035	0881
16	31790	10270	6314	2816	20400	2188	1254	21430	11600	53910	2667	1873
17	13090	9990	4.927	2465	19310	1850	1251	25260	13200	16240	2.378	12350
18	18050	19.130	24330	2295	12.800	1537	1197	19880	8064	6.641	2177	10960
19	15500	14140	19500	2.198	5.101	1447	; 114	24680	35.250	4906	2086	4134
20	54780	8287	11.100	2138	3786	1329	1051	51830	51.320	10150	1.948	2751
21	18670	8247	8804	2038	2997	1273	1086	23430	12.890	28190	1.794	11920
22	14390	12.300	8.798	2055	2543	1182	1038	19620	9.021	20690	1660	17250
23	14050	7.757	21860	2084	2.262	1130	0989	59690	5498	23410	1908	11430
24	7397	7810	31.870	2881	2131	4310	0944	19.120	4.451	34230	1.796	26350
75	7395	6822	16190	3841	1935	4:670	0898	7.420	12900	19040	1.547	17420
26	13930	5879	24.880	3.929	1753	13470	0920	5241	8.084	17970	1.605	20.200
27	77.760	6236	19.380	3612	1675	11340	3226	4273	6421	28850	1.677	7367
28	31780	23.910	11920	3457	2009	8126	14740	3374	4.297	23.140	1597	4.120
29	111.700		29630	3.874	2212	7284	17730	3391	3.294	9283	1.497	3009
30	61440		29.500	6016	2101	8955	5.749	12.790	2.738	13050	1446	2535
31	12810		12560		3.194		3510	10390		34680		2186
Average	31650	32590	18030	3.594	5801	4796	3.042	15050	92.36	15850	6.369	5635
Lowest	5873	5879	4927	2038	1.675	1130	0898	2341	2056	1834	1446	0.881
Haphest	159000	187400	46150	7427	21890	41670	17730	59690	51320	53910	23370	26350
Peak fow	24330	337.40	7681	1220	3468	6377	27.29	8854	11990	7123	3404	3893
Day of peak	16	6	12	30	17	26	30	21	20	16	1	25
Monthly tion (mullon cu m)	8418	7885	4828	932	1554	1243	B:5	4031	2394	4245	16.51	1509
Runoff (mum)	615	572	350	68	113	90	59	293	174	308	120	110
Ruantall (mm)	623	583	375	72	112	134	89	360	192	403	114	165

Statistics of monthly data for previous record (Jan 1979 to Dec 1988)

Meatr	Avọ	13340	8667	11970	6818	4868	4087	6364	7978	14450	13640	16460	19140
flows	low	6148	$136:$	4103	2863	0698	0921	2476	2703	7086	6332.	7750	5646
	(yeiar)	i985	1986	1980	1980	1980	1982	1984	:984	1986	1979	-988	1981
	High	28410	14.050	18250	13440	14.120	8623	10530	- 5070	$!9100$	24070	31120	30710
	syears	1983	1988	1983	1984	1986	:980	1985	1985	1980	1983	1981	1983
Runot ${ }^{4}$	Avg	259	154	233	128	95	71	174	: 54	212	265	310	372
	Low	120	24	80	54	14	17	47	53	133	123	146	110
	High	553	256	355	253	274	162	205	293	359	468	585	597
Rounfall	Avg	284	155	264	123	113	i20	162	192	321	315	347	392
	low	94	6	95	70	36	28	96	85	150	182	133	124
	High	553	325	397	217	295	275	248	332	42.5	532	629	546

Station and catchment description
40 m wide river section with tloodbank on right. Any bypassing in extreme floods will be over 30m wide floodplain on left bank. Unstable gravel control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural. 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wotter Highland catchments currently gauged.

201005 Camowen at Camowen Terrace

Measuring authority DOEN
Firsi yesar 1972

Grid reference: $23(\mathrm{JH}) 460730$ Level stn (m OD) 6600

Catchment area (sq km): 2746 Max alt (m OD) 539

Daity mean gauged discharges (cubic metres per second)

Station and catchmant description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement). dimensions not known. The net effect of abstractions for public water supply and augmentations from effluent returns is minor Catchoment geology: mixed impermeable ocks (granite. schist and gneiss. and sandstone) overlain by substantial deposits of till. sand and gravel. Largely upland given over mainly to grassland or heath

203010 Blackwater at Maydown Bridge

Measuruxg authorty: DOEN First year: 1970

Gid reference: 23 (1H) 820519
Level stn. (m OO): 15.00
Caichment area (sq kn): 951.4 Max an. im OD): 380

Daily mean gauged discharges (cubic matres per second)

day	JAN	FEB	MAR	APP	may	JN	18	AUG	SEP	OCr	NOV	$0 \times C$
1	17.770	13.720	25.770	30.750	8323	2416	1.900	0972	2.896	2.574	30660	6031
2	15910	12.760	37.030	90850	7.737	2.198	1.833	0905	2489	2.258	22.730	5.846
3	14.770	14720	30.950	51.030	7.604	2.568	1474	0845	2.257	2.149	18320	5693
4	20210	23.280	21250	34340	7255	2440	1.613	0.779	2.236	2.118	25250	5532
5	31080	28270	18880	38760	6.436	2233	1419	0.737	2.431	3030	37.350	5.361
6	34090	18.890	18.760	93440	5637	2215	1.328	0.737	1.984	5.440	23240	5228
7	22870	18580	19.420	94460	5325	1985	1414	0.719	2.132	6902	18.090	5.210
8	17470	18400	21.630	59.550	5052	2274	1225	0904	2.156	5.169	15620	4914
9	19.550	34.150	59.320	45350	4544	2293	1.163	0914	2.011	4161	14.930	4810
10	22250	33330	49.710	41950	4498	2429	1.115	1.647	1.838	3426	19130	4.732
11	28.540	23.350	31.120	61470	4.566	2260	0865	2021	1.625	3.184	23.200	4.732
12	47.380	22500	36.390	78550	5496	2474	0.856	3161	1.586	3438	17520	8.486
13	40.010	44.740	48.580	43.310	5.241	3053	0853	18850	1568	4761	15710	11930
14	39.810	36400	52.160	30620	5.192	2.764	0859	12360	1713	6.802	13.730	15.580
15	27.700	37640	39.810	24520	4.606	2331	0845	13.980	1.815	5499	12.900	12880
16	22960	27.130	26980	20600	4646	2051	0816	10080	2216	9.526	11.710	55.980
17	20930	27.160	22060	16890	4.385	2144	0804	6090	2054	16290	11.550	79.660
18	18720	30500	28.000	14.510	4228	1976	0734	4184	1659	20230	22.590	30430
19	16970	30.200	43520	13.450	4444	1590	0779	3.287	1885	28.060	17520	19670
20	15450	27.380	38640	12380	4161	1564	0688	4208	4292	40840	13.960	19030
21	21.020	23850	39.330	11.210	3815	1563	0653	5096	15.480	33970	11930	22100
22	20220	25500	66880	10200	3342	1508	0612	4149	16.760	22260	10410	18660
23	17590	19920	70320	9477	5.415	1454	0604	3110	10530	14900	9.192	18400
24	16.980	17970	68.830	8753	4464	1.564	0581	2.574	6962	11880	8808	47380
25	17.710	16580	47500	8380	3387	1474	0529	4060	4853	14800	8760	33780
26	15.670	18060	51.960	8731	2.920	1.678	0564	8231	4335	17420	8.554	21.530
27	17.760	22550	53580	10.690	2797	1760	0745	5885	4391	65450	7.932	16940
28	39080	21.760	48670	9610	2743	1527	0774	3879	3.957	91.770	7.494	15.100
29	22370		32250	9870	2.327	1.603	1355	2999	3220	50600	7031	13710
30	17.770		25800	9.282	2362	2031	1385	2992	2.775	35.500	6.521	12380
31	15370		22020		2.436		1125	3080	,	47.840		12.090
Averaye	23.100	24620	38620	33.100	4690	2047	1018	4304	3870	18.780	15.740	17540
Lowest	14.770	12760	18.760	8 380	2327	1454	0529	0719	1.568	2.118	6.521	4.732
Hightast	47380	44740	70320	94460	8323	3053	1900	18850	18.760	91.770	37.350	79660
Peak flow	5699	5403	85.67	108.90	947	328	208	2492	1904	10800	42.43	11280
Oay of neak Monthly total	12	13	23	2	23	13	4	13	22	28	5	17
(mulion cu m)	6186	5955	103.40	85.79	12.56	531	213	1153	1003	5031	4081	4698
Runotf (mmm)	65	63	109	90	13	6	3	12	11	53	43	49
Ramial (mm)	74	79	121	99	26	37	40	113	57	135	38	69

Statistics of monthly data for previous record (Jul 1970 to Dec 1988)

Station and catchment description
Velocity-area station with cableway and natural controf. Flows influenced by major arterial drainage scheme - started in 1988 . A substantial portion of the catchment is in the Insh Republic where some groundwater may be abstracted but its hydrological significance is uncertain Geology: Carboniferous Limestone and Millstone Grit with sandstones overlan by substantial amounts of till. A pradominantly rural catchment with limited afforestation Monaghan Town (pop. 5.000) - in the lrish Republic - is the only significant urban conire.

Measuring authority DOEN
First year: 1972
Daily mean gauged discharges (cubic metres per second)

DAY	Jav	H ${ }^{\text {3 }}$	MAA	AP仡	NAY	JJ\	.Ju.	AUG	St;	(C.T	yov	Ofe
1	1402	1314	7887	1:390	0875	0584	0349	() 504	0500	0473	3215	0819
2	1154	1209	6564	22100	0777	0615	$\bigcirc 334$	0560	0486	0457	3641	0748
3	1544	1226	3314	3393	() 753	0587	0321	() 568	0414	0429	$8(007$	0671
4	5836	4956	2247	2023	0712	0) 5.38	0319	04.5	0) 392	0416	6175	0694
5	5064	2767	2415	7717	0657	0531	03:1	0432	0383	1011	6846	0684
6	3985	1779	4014	14910	03^{\prime}	0629	0288	07.6	0354	3371	3229	0664
7	$2360)$	1615	2736	8845	${ }^{0} 636$	0577	0283	0465	0451	4196	2200	0681
8	1881	1464	6158	$38: 5$	0639	0434	0276	04.6	0527	4006	1773	0651
9	1765	$4: 76$	10100	8997	0602	0476	0272	0480	0) 409	2977	2343	0604
10	1674	2339	3578	4904	0585	0485	0265	0850	- 358	2503	4180	0571
11	2230	18.97	2340	22130	0930	0561	0266	1407	0328	1470	2777	0596
12	2076	3458	8635	6153	2486	0638	0248	$15 / 9$	0333	1997	3378	1363
13	6261	5555	6175	2950	1342	$4{ }^{4} 401$	O238	3398	0334	1981	2388	1225
14	4273	3535	4111	2989	$1 \cdot 94$	1073	- 0232	5569	0329	1775	1801	0974
15	2126	4742	4594	2398	1060	0612	0229	2307	0426	1334	1526	0773
16	1922	2534	2639	1880	1.94	0461	0226	1183	0458	1309	1337	16180
17	162.7	6973	1921	1105	0823	0366	0229	0805	0365	1853	1863	6983
18	1482	3697	3 (\%0	1479	0835	0299	0205	0612	0395	3448	3639	2611
19	1394	3455	${ }_{5} 136$	$12 / 4$	0789	031°	0197	0910	0559	12490	1818	1673
20	1463	3041	4728	1114	0643	0321	0394	1431	5051	5373	1404	1829
21	2506	4938	16200	0)996	. 0629	0323	0258	1018	4895	4972	1239	1852
22	2226	35.33	10860	0918	0541	O) 319	0225	0780	3898	2531	1065	1862
23	1997	2535	10760	0938	4200	0316	0211	0572	1696	1650	096	1825
24	2123	246 i	4423	0965	1919	0315	0187	0512	1005	1302	1066	- 0580
25	2213	2416	3510	0941	1293	0319	3751	-502	0799	- 384	1269	2638
26	2045	8013	5441	1498	0) 829	0320	0861	- 113	0773	- 280	1012	1693
27	8022	8389	5556	$1: 65$	0688	029%	0)499	1224	0700	25400	0974	1402
28	3349	15270	4451	1020	0633	0263	0437	0710	0592	21880	0885	1218
29	1979		2512	1050	0582	0236	0581	0668	0527	10520	0826	1044
30	: 568		2055	1077	0 -535	0563	0685	0650	0487	7079	0111	1008
31	: 327		1904		() 5.35		0528	06.33		8162		4821
Average	2609	3903	5203	$4 / 58$	0985	0589	0442	1120	0.941	4504	2454	2289
Lowest	: 154	1209	:304	0918	0535	0236	0)187	0415	0328	0416	0777	0571
Hkghest	8022	- 5270	-16200	22130	4200	4407	3751	5563	5051	2.5400	8007	16180
Peak 'row	201 -	3153	4143	4359	1740	1029	1541	1532	850	5640	1416	3059
Day of peak Monthiy total	21	28	21	: 1	23	$\cdot 3$	25	14	20	27	3	16
(million cu m)	699	944	1393	$\cdot 233$	264	153	118	300	244	12.06	636	6:3.
Runolf (mm)	71	95	141	125	27	15	12	30	25	122	64	62
Ran'a! (mor)	90	139	i67	125	48	11	53	127	65	186	53	67

Statistics of monthly data for provious record (Dec 1972 to Dec 1988)

Mean fiows	Avg	5466	3839	3207	1 66日	1549	1010	$095{ }^{\circ}$	1600	2428	3817	3778	4595
	Low	2957	0847	1384	0870	0282	0340	0190	0212	0421	1841	O815	2218
	(yeat)	1985	-986	1973	1984	1984	1984	1984	-983	1986	:973	1983	198\%
	Higr	7902	7416	4770	2991	3909	2389	:175	5077	6371	6337	8405	1077
	(rual)	1974	i97)	1982	1986	1981	1982	1973	1985	1985	:981	- 1982	1978
Runoff	Avg	148	95	81	44	42	26	26	43	64	103	99	124
	Low	80	21	37	23	8	9	5	6	11	50	21	60
	High	214	185	129	18	:06	63	48	137	167	172	220	192
Rainfall	Avg	151	89	107	53	77	67	79	-9.3	107	131	121	129
	low	6.3	5	36	22	20	3)	26	23	15	53	33	58
	High	221	196	154	117	161	137	. 44	218	213	208	196	206

Summary statistics						Factors aftecting flow regime	
			For cecord precediry 1989		$\begin{gathered} 1989 \\ \text { As \% o } \\ \text { bre } 1989 \\ 88 \end{gathered}$		
	Fot 1989				- Natural to within 10\% at 95 percentile flow		
Mean (k)w (m) ${ }^{\text {s }}$)	2475		$2 \mathrm{E25}$				
Lowest yearly mean			2. 165				
Highest yoarly moan			3 399				
Lowest monthly rrean	0442	اut	0190				
Highest monthly mean	5203	Ma	8405				
Lowest ciady teram	0187	24 -ul	0080	75			
Highest dady mean	25400	2100 Ot	76500	210			
Peak	$56400)$	27 Out	159300	210			
10\% excesedance	5755		6570		88		
50\% exceedance	1302		1588		82		
95\% exceedonce	0279		0301		93		
Anmual totas (millman cus m)	7805		8916		88		
Armual runatf (mm)	789		902		88		
Annual rainfar (mm)	1191		:210		98		

Station and catchment description
Velocity-area station with cableway Geology. mainly basalt overlain by till with some peat Significant proportion of upland. predominantly grassland or heath No urban areas or major industry.

Measuring authonty: NRA. 7 Fusi year: 1883

Grid reference: 51 (TO) 177698 Level sin. (m OD): 4.70

Catchment ares (sq kmil: 9948.0 Max alt. (m OO): 330

Daily mean naturalised discharges (arbic metres per second)

day	JAN	FEB	MAR	APP	MAY	UN	μ	AUG	SEP	OCT	NOV	$0 \times C$
1	38.800	46400	203000	75.300	73.500	38.700	31.600	23600	19900	20.100	37.000	23500
2	38.500	51.400	150000	83.600	62.900	45000	30400	22.300	19.400	19.900	32.200	25400
3	38400	44.800	189000	85.100	63200	44600	31.900	22800	19.700	20800	45200	24300
4	37.300	38200	183000	86.300	59900	37800	26.500	19900	20000	22200	37.100	26300
5	40400	44400	151.000	113.000	59300	39.800	27.400	21.700	17.500	22100	35200	27.800
6	43400	49100	121.000	197000	57200	52600	27400	20600	20800	22600	37200	26000
7	41.500	44100	117000	188000	55400	49.600	48400	19400	20000	22.600	26200	27.500
8	40.900	40900	106000	156000	50500	47.600	50700	21.800	18.800	24500	32700	26.400
9	39.800	41.100	99.900	124000	53000	45000	40600	21000	19000	21.100	32.100	25600
10	39.100	38500	90.100	117000	51.800	42000	40700	42200	18800	24100	72.100	24800
11	36800	41.900	93.300	132000	50000	40000	35200	33.300	19.500	25.700	66.800	26000
12	43.700	39800	95.200	188000	51.200	35800	26.200	26900	21.500	27.400	50900	30.500
13	58.200	39700	91.900	146000	49700	31.600	30400	24.900	31.500	22.600	36300	50.100
14	58400	41.400	93.300	117000	49700	36.000	25500	23.800	24.600	21.700	35.100	130000
15	61.500	41100	164000	105000	49100	33700	24.600	34200	25000	21000	37.800	153000
16	56.500	41800	217000	91000	46500	33.300	25800	27.200	25.800	20100	36300	190000
17	54900	59900	242000	89.100	44900	26800	25600	24500	25900	21.100	32500	229000
18	46400	96400	177000	87000	42100	28400	20800	24300	33.500	21.700	29500	217000
19	41300	107000	141000	87.300	40300	26800	22600	25.500	23500	22.700	28100	205000
20	44000	113000	146000	81.100	44600	29700	23800	23400	23.900	32.900	32.200	262000
21	47.800	84600	215000	72.900	41.900	26800	23300	20.300	22900	42.500	30.900	337000
22	64500	69000	176000	72500	42.300	25000	22400	19200	23000	36.700	29600	321000
23	68100	67.400	126000	69800	40700	25500	23300	21.200	22000	30200	26000	274000
24	59.700	89300	118000	78800	54.100	23900	22200	19500	19600	27600	22.100	270000
25	46800	157000	106000	89.800	81.400	25300	23200	18900	17000	29.100	22600	256000
26	53.200	243000	90900	86900	48.100	24800	21500	23100	24000	29200	26. 100	263000
27	43900	262000	93800	108.000	40800	29400	21000	22100	21700	27800	26800	229000
28	46.800	220000	89600	89400	41600	25900	21400	21.400	21000	25600	25.500	205000
29	55.600		76800	82700	4 1.500	32.200	21200	20800	20800	32200	27.500	177000
30	64300		80400	67.800	35600	32600	22000	20500	20300	30500	26800	14)000
31	58700		77000		37100		22900	20.100		37300		117000
Average	48680	80470	132.900	105.600	50320	34530	27760	23.560	22030	26010	34.550	140200
Lowest	36600	38200	76800	67800	35600	23.900	20800	18.900	17000	19900	22100	23500
Highost	68.100	262000	242000	197000	81400	52.600	50700	42200	33500	42500	72100	337000
Monthly tutal \{mation cu m)	13040	194.70	35600	27370	13480	8951	7435	63.11	$57: 0$	6966	8954	37550
Natised		20										
runots (mm) Rainfall (mm)	13 35	20 67	36 67	28 76	14 18	9 39	7	6 44	6 30	7	9	38 145

Statistics of monthly data for previous record (Jen 1883 to Dec 1988)

Mean natised flows	Avg	138500	134800	116000	86450	65270	48.960	35.330	32720	34450	50120	83740	112100
	Low	32.210	25100	27320	26.510	18200	13470	10760	11.040	11.230	15120	17750	22480
	(rear)	; 905	1905	1944	1976	1944	1944	1921	1976	1898	1934	1921	1921
	High	332900	348100	370900	199800	181300	:78.700	88840	88780	139400	185300	339600	343900
	(yeat)	1915	1904	1947	1951	1932	1903	1968	1931	1968	1903	1894	1929
natised numply	Avg	37	33	31	23	18	13	10	9	9	13	22	30
	Low	9	6	7	7	5	4	3	3	3	4	5	6
	Hing	90	88	100	52	49	47	24	24	36	50	88	93
Rantall	Avg	65	49	53	48	55	52	59	64	58	73	72	72
	Low	14	3	3	3	8	3	8	3	3	5	8	13
	High	137	127	142	104	137	137	130	147	157	188	188	185
Summary statistics (naturglised fiowa)										s affec	g flow	ime	
								$\begin{gathered} 1989 \\ \text { As } \% \text { of } \\ \text { pre. } 1989 \\ 78 \end{gathered}$	- Reservoir(s) in catchment. - Flow influenced by groundwater abstraction				
			For 1989		for record precnding 1989								
Mean flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)			60510		77940				and/or rocharge.				
Lowest yearty mean					30340		1934		- A	straction	or public	ater sup	
Heghast yearty mean					131800		1951			w reduce	by indus	al and/o	
Lowest monthly mean					10760		Jul 1921			cultural	siraction		
Highast monthly mean			140		370900		Mar 1947			gmentatı	from su	ace wate	and/or
Lowest daty mean					7370		Jul 1934			undwate			
Hughest daily inean			337		106500018		Nov 1894		- Augmentation from effluent returns.				
10\% exceedunce			145		172400			85					
50\% exceedance					53620			72					
95\% excrondance					18420			109					
			1908		246000			78					
Annual runotf (mm)			19		247			18					
Anmual rastan (mm)			66		720			93					
\|1941-70 ranfall average (mm)					7241								

Station and catchment description
Ultrasonic station commissioned in 1974. multi-path operation from 1986. Full range Pre. 1974 dmfs derived from Teddington weir complex (70 m wide). segnificant structural improvements since 1883 Some underostimation of pre-195 l low flows Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows avalable Diverse topography, geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals.

A 'comment' - appearing at the end of the station entry-may be used to draw attention to any particular factors influencing the accuracy of the data for the featured year or, more generally, to indicate that the published hydrometric data are subject to review.

Monthly and yearly statistics for previous record

Monthly mean flows (Average, Low and High) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). An asterisk indicates an incomplete rainfall series; the first and last years of data are given in parentheses. Due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is
exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is underway and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors affecting flow regime

Code letters are used as described in Part (i).

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows.
\(\left.$$
\begin{array}{ll}\text { B } & \begin{array}{l}\text { Broad-crested weir } \\
\text { C }\end{array} \\
\text { CB } & \begin{array}{l}\text { Crump (triangular profile) single crest weir } \\
\text { Compound broad-crested weir. The com- } \\
\text { pounding may include a mixture of types }\end{array} \\
& \begin{array}{l}\text { such as rectangular profiles, flumes and } \\
\text { shallow-Vs and with or without divide walls }\end{array}
$$

CC \& Compound Crump weir\end{array}\right]\)| EM | Electromagnetic gauging station |
| :--- | :--- |
| EW | Essex weir (simple Crump weir modified
 with angled, sloping, triangular profile flank- |
| | ing crests) in trapezoidal channel |
| FL | Flume |
| FV | Flat-V triangular profile weir |
| MIS | Miscellaneous method |
| TP | Rectangular thin-plate weir |
| US | Ultrasonic gauging station |
| VA | Velocity-area gauging station |
| VN | Triangular (V notch) thin-plate weir |

C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MiS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

003003 Oykel at Easter Turnaig

1989

Measurung authority. HRPB Firsi year: 1977
Hydrometric statistics for 1989

		Jan	FfB	MAR	APR	May	UN	Ne	AUG	SEP	OCT	Nov	OfC	Year
Flows	Avg.	30350	39930	25850	5.761	4255	4596	4881	16.400	7292	27.760	10.050	11.760	15.638
($\mathrm{m}^{3} \mathrm{~s}-\mathrm{l}$	Peak	23960	309.60	12650	2683	19.13	3105	5879	21030	10420	279.40	8046	149.30	309.60
Rumoft (mm)		246	292	203	45	34	36	40	133	57	225	79	95	1491
Rainfall (mmi)		311	423	257	65	76	98	85	204	86	297	85	119	2101

Montily and vearty statistics for previous record (Now 1977 to Dec 1988)

Mesn Avg.	25250	15560	20.770	9.533	6388	6006	7912	10530	21630	23760	26.980	24900	16.616
Hows Low	13550	2.376	6.649	5.445	1067	0751	2853	2332	14540	7328	13530	8245	12.973
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	43980	25310	40740	17710.	14380	14140	15690	22.590	31870	41.100	49380	38210	20.249
Peat flow (m's ${ }^{-1}$)	510.70	466.50	41080	20830	129.60	16930	19110	28890	42340	847.50	40710	39420	847.50
Runoti (rrm)	205	115	168	15	52	47	64	85	170	192	211	202	1588
Rainfal (mm)	228	106	191	86	81	94	113	136	223	232	256	232	1978

Factors affecting flow regime: N
Station type: VA

Grid reference: 29 (NC) 403001
Level sin. (m OD): 15.60

Catchment stea (sq km): 330.7 Max att. (m OD): 998

004001 Conon at Moy Bridge

1989

Measuring authority. HRPB
Grid reterence 28 (NH) 482547 Level stin (m OO) 1000

Catchment area (sq km) 9618 first year 1947
Hydrometric statistics for 1989

	JAN	Fte	MAR	APA	may	JUN	JuL	AUG	5 F	OCI	NOV	DEC	Yuar
Flows Avg	114400	164600	101400	51550	35010	21850	20510	39610	38650	75.410	66030	36730	63.195
(m's ') Peak	48620	70390	20350	:08 30	11070	9515	10240	12200	6586	20400	14690	13470	703.90
Runotf (:mm)	319	414	282.	139	91	59	57	110	104	210	178	102	2072
Rasinfay (mm)	343	420	259	49	71	100	53	176	96	258	66	117	2008
Monthly and yearly statistics for previous record (Oct 1947 to Dec 1988 -incomplete or missing months total 5.7 yeara)													
Mean Avg.	66820	57230	55360	40650	31630	21890	20450	27380	40660	53600	63400	72410	45919
fluws Low	31.690	25810	18610	13940	10940	8861	2959	8162	12510	23090	24090	21910	29.991
(m)'s ') High	-38300	121000	127900	15130	53050	47560	36690	45140	94870	94030	121700	165100	59.238
Peak flow (m)'s	40960	46720	36790	20390	23220	16520	24740	25490	22310	32480	41180	107600	$\underline{1076.00}$
Rimnti (mm)	186	146	154	110	88	59	57	76	110	149	1/1	202	1507
Ranfal (mm) -(1953-1988)	189	125	159	103	105	94	108	125	-69	212	205	229	1823
Factors affecting flow regime H Station type. VA										1989 rumff is 138% of mevous mean rainfall 110\%			

Station type. VA

007002 Findhorn at Forres

1989

Measuring authority HRPB
First year 1958

Grid relerence 38 (NJJ 018583 Level stn (m OO) 960

Catchment area (sq km) 7819 Max alt (m OD): 941

Hydrometric statistics for 1989

		JAN	Ite	MAR	APA	MAY	JUN	JUL	AUS;	SE:
Fluws	Avg	26210	33630	38200	1/770	-6980	8674	4455	7364	9890
($\mathrm{m}^{3} \mathrm{~s}^{-}$')	Puak	27420	25360	16570	5070	- 5000	6991	1379	2863	:0340
R., not: (mm)		90	104	131	59	58	29	15	25	33
Rainlall (mm)		114	194	107	51	67	58	31.	85	67

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1988)
(m) ${ }^{s}$;) Hwh 51190 Peak flow ($\mathrm{m}^{3} \mathrm{~s}$), $36110 \quad 53770$ $\begin{array}{ccc}\text { Rur.oft (mm) } & 82 & 63\end{array}$ Rur.oft (mm)
Rantall (mm)

Factors affecting flow reğme. N
Station type VA

| Nean | Avg | 24080 | 20030 | 23090 | 26650 | 5920 | 10220 | 9948 | 14120 | 15350 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| flows | Low | 9429 | 5259 | 8615 | 5560 | 3836 | 3321 | 2744 | 2478 | 2863 |

N

Measuring authority. NERPB
First yoar 1959
Hydrometric statistics for 1989

	JAN	r¢	MAR	APR	MAY	JUV	M	AUG	SEP	$0 ¢ 1$	Nov	OEC	Year
Flows Avg	4529	4630	8210	5211	5994	3454	2144	$21: 0$	2711	32:8	2623	3674	4.043
(m's ') Peak	66°	4175	3977	-395	7009	881	294	640	5281	$14 / 4$	$478{ }^{\circ}$	2257	70.09
R:Jnotf (mm)	2.7	25	50	31	36	20	13	13	16	20	15	22	289
Ratiol (mm)	14	78	52	61	87	54	24	69	56	15	29	43	642
Monthly and yearly statistics for previous record (Oet 1959 to Dec 1988)													
Mean Avg	12780	$10900)$	11830	10480	7806	5235	4750	6145	5943	9081	10850	11160	8959
flows low	3688	3052	3 39*	4314	$363:$	2610	1766	1621	2032	19.34	3389	3504	5.233
(m's ${ }^{-9}$) High	24440	19720	22730	2.500	21930	11130	9841	19110	16040	28210	29790	23590	12437
Peak frow (m^{3} 3 ${ }^{1}$).	: 2050	8490	- 1800	7613	. 8310	:53 \%	14640	23650	155%	22:90	17770	15710	236.50
Runoty (rm)	78	60	72	62.	47	31	29	37	35	55	64	7:	640
Rianfall (mir)	97	64	78	$7 \cdot$	13	66	79	94	85	100	105	92	1004

Factors affecting flow regime N
Station type VA

Grid reference 38 (NJ) 532464 Level $\sin (\mathrm{mOO}) 81.80$

Catchment area (5 g km) 4416 Max alt (m OD) 775
\qquad
\qquad

010002 Ugie at Inverugie

1989

Measuring authority NERPE
Firsi yeus 1971
Hydrometric statistics for 1989

	JAN	FEB	MAR	APr	MAY	Juv	un	AUG	StP
Flows Avg	2808	25:6	3500	$2899{ }^{\circ}$	2171	1620	1070	1127	1133
(m's ') Pain	354	887	1004	653	660	233	156	407	188
Runotf (inm)	23	19	29	23	18	13	9	9	9
Ran'a'l (rm)	7	41	38	60	51	49	$\cdot 7$	65	36
Monthly and yearty statistics for previous record (Fob 1971 to Dec 1988)									
Mean Avg	8428	6775	5 8:3	4447	3555	2354	2082	2196	2557
flows Low	2085	2088	1791	162.4	1738	1200	0927	0858	0912
(m's ${ }^{-1}$) Hgh	11300	14670	9576	7785	- 103	4296	490°	6225	7082
Peak flow (tin's ')	6640	9674	6640	4026	3557	1329	2360	2124	3625
Ruroff (mm)	69	51	48	35	29	19	$\cdot 7$	18	20
Rantall (mm)	85	46	68	52	51	52	6 .	63	83

Factors affecting flow regime N
Staton type. VA
G.id re'erence 48 (NK) 101485 Levelstn (m OD) 850

Catchment area (sq km) 325.0 Max all (m) ()D 234

K.T	VOV	UCC	Year
1602	1531	2.858	2.069
417	243	1917	1917
13	12	24	201
72	25	49	510
4883	6391	7533	4.745
0894	2055	1360	2.950
9079	18230	13320	6.505
9452	9928	8775	99.28
40	51	62	481
84	91	80	816

1989 runoth is 44% of previous mean rainfall 63\%

1989
Measuring wuthority NERPE
First year 1969
Grid reference 38 (NJ) 88714
Level stn (m OD) 3240
Catchment area (sq km) 12730 Max alt (m OD) 872
Hydrometric statistics for 1989

		JAN	Fet	NAT	$A P R$	Mav	^N	JUL	Al/G	SED	OCT	NJV	DEC	Yeat
Flows	Avç	11180	9:68	17700	- 2340	10980	7886	6270	5576	5293	5615	5694	8191	8.832
($1 r^{\prime}$'s :	Pujk	1558	- 492	b) 11	2.334	4317	1228	1014	913	1889	1649	837	3133	57.11
Runoty (mm)		24	17	37	25	23	16	13	12	11	12	12.	17	219
Rainfall (mm)		13	62	53	55	57	55	18	71	39	70	23	45	561

$\begin{array}{lcccccc}\text { Rainfall }(\mathrm{mm}) & 13 & 62 & 53 & 56 & 57 & 55 \\ \text { Monthly and yearly statiatics for previous record toec } & \mathbf{1 9 6 9} & \text { to } & \text { Dec } & 1988)\end{array}$

Factors affecting flow regime N
Station type VA

19560	22920	27700	20.728
4567	6856	7738	10.694
5.940	86230	50960	29.185
27310	21320	15450	277.40
41	47	58	514
86	89	81	900

1989 runoff is 43% of previous mean rainfall 62\%

013007 North Esk at Logie Mill

Measuring authority TRPB
First year 1976
Hydrometric statistics for 1989

		JAN	\%\%	MAR	APP^{4}	VAY	JN	Jut	AUG	SEP	0 Cl	NOV	วミC	Yeat
Hows	Avg	12460	12420	3:930	14260	9491	5171	2685	3853	5184	7698	10980	16240	11.043
$\left.(\mathrm{m})^{\prime} \mathrm{s}^{\prime}\right)$	Peak	8884	4431	137.20	195 :	8120	- 46	367	1765	4554	4690	4465	12440	137.20
Runoff (mmm)		46	41	117	5 :	35	18	10	14	18	28	39	60	477
Rasulat (mm)		58	93	116	52	54	53	16	106	58	93	42	81	822

Monthly and yearly statistics for previous record (Jon 1976 to Dec 1988 -incomplete or missing months total 0.1 years)

Mean Avg	25200	25610	30 (000	23080	16120	9598	7223	10120	12050	29610	25600	30530	20.438
flows low	13770	9795	16450	9071	6179	3684	2993	2548	3622	4099	5281	15950	15.314
(m's ${ }^{-1}$) Hign	48590	45670	42750	34750	36420	24300	18060	35810	30540	80410	91170	59880	24.926
	24080	10450	-69 10	23040	:8080	27190	13300	19920	34280	45280	46210	398.10	462.10
Runoff (mm)	92	86	110	82	59	34	21	39	43	109	91	112	884
Ranfal (\%um)	121	78	111	61	81	66	78	85	106	140	112	125	1164
Factors affecting flow regimo S P I Station type. VA										1989 runot is 54% of provious mean raınfall 71\%			

013008 South Esk at Brechin

Measuring authority: TRPB
First year: 1983
Girid relerence: 37 (NO) 600596 Leval stn. (m OD): 18.00

Catchment area (sq km: 490.0 Max att (m OO): 958
Hydrometric statistics for 1989

	JAN	FEB	MAP	APR	MAY	$\mathrm{HON}^{(1)}$	OH	AUS	Ster	OCi	NOV	DEC	Yeas
Fiows Avg.	10.900	11510	22.360	9737	6.265	3.315	1803	3434	5.149	6.339	9.110	9996	8.317
$\left(\mathrm{m}^{3} \mathrm{~s}^{1} \mathrm{~J}\right.$. Peak	4232	30.77	60.02	32.22	21.39	904	263	1580	2799	2412	31.02	59.30	60.02
Rumott (ivr)	60	57	122	52	34	18	10	19	21	35	48	55	535
Ranfall (mm)	73	108	131	50	45	43	19	123	68	98	41	83	888
Monthly and yeasty statistics for previous record (Jan 1983 to Dec 1988)													
Mesn Avg.	16420	13110	16300	15060	13240	7.640	5505	8.903	9.337	13.810	16210	17.290	12.739
Sows Low	10600	7069	9773	10.820	6099	3609	1685	1.405	2401	3.494	3.949	10970	10.340
($\mathrm{m}^{3} \mathrm{~s}^{\prime}$ ') Hagh	21180	19330	26610	21.340	28180	11120	10010	25.920	21860	28.630	49350	23650	14.856
Peak flow (m)'s ;	1624	7240	98.91	9085	10370	8679	3320	12790	12250	17060	172.00	18110	181.10
Ruxoti (mm)	90	66	89	80	12	40	30	49	49	75	86	95	821
Rainfall (mm)	139	62	106	70	90	73	82	98	97	123	123	123	1186

Factors affecting flow regrne 1
Station type: VA
rainfall 75\%

1989

Catchment area (sq km): 307.4 Mox alt (m OO) 522
Mossuring authority. TRPG
Grid reference 37 (NO) 415158
Lovel stn (m OD) 620
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	UN	JUL	AUG	S¢P
Flows Avg	3861	5095	6018	3019	1724	1336	0861	0909	0985
(m's ${ }^{\text {- }}$: $) ~ P$ Peak	1038	2469	1463	552	262	342	144	173	187
Runots (mm)	34	40	52	25	15	11	8	8	8
Resenfall (mm)	50	78	88	33	27	49	15	85	39
Monthty and yearly statistics for previous record foct 1987 to Dec 1988)									
Mean Avg	7000	6334	4944	3761	3139	2253	1536	1762	2090
flows low	2546	2110	1408	: 199	1406	10%	0914	0799	0749
($\mathrm{m}^{3} \mathrm{~s}$; High	10890	19460	8096	7243	8335	6651	3390	6038	11200
Peyk flow (m 's \cdot : $)$	5305	7131	5489	5269	4748	4193	2620	1719	5364
Runotf (mun)	61	50	43	32	21	19	13	15	18
Rasiall (mm)	85	53	65	47	68	53	62	60	75

Factors affecting flow reg:me S GEI
Station type. VA
\square
\qquad
\qquad

014001 Eden at Kemback

First year 1967
\qquad
015011 Lyon at Comrie Bridge

1989

Measuring authority TRPB
First year 1958
Hydrometric statistics for 1989

\therefore -	JAN	ft 8	MAG	APR	NAY	UN	'u1	A:M	SP	$0 C i$	NOV	DEC	Yedt
Fkws Avg	25000	33450	29680	9108	61.1	$5 \cdot 06$	3371	10230	9853	13630	10980	12840	14.013
(m's ') Peak	19410	31540	14930	3486	:983	6502	855	8459	14000	7455	9103	19520	31540
Runot (min)	i71	201	203	60	42	34	23	70	65	93	13	88	1130
Rasstall (mm)	383	443	372	61	61	97	56	231	143	257	74	117	2296
Monthly and yearly statistics for previous record (Jan 1958 to Dec 1988)													
Mean Avg	16990	13060	13690	10010	9115	6541	6295	7518	10490	15040	14710	15920	11.668
llows. Low	3596	3198	4219	4002	3537	3514	3062	2271	2843	3662	5320	6182	8.330
(m) ${ }^{\text {s }}$: ${ }^{\text {a }} \mathrm{High}$	43920	28580	37440	11100	24520	18870	20800	28940	28120	29930	30550	32780	19870
Peak frow (m) ${ }^{\text {3 }}$,)	27120	14910	25470	8980	12490	5693	15470	17870	145:0	:9190	27130	19800	27130
Runoff (mm)	116	82	94	66	67	43	43	51	70	103	97	109	942
Ra:nfall (mimi* - $\{19 / 1-1988\}$	252	123	i91	80	110	88	108	120	188	214	243	245	1962
Factors alfecung fow regime H Station type: VA										1989 runoff is 120% of prevюus mean rantall 117\%			

016003 Ruchill Water at Cultybraggan

1989

Measuring authonty: TRPB
First year. 1970
Hydrometric statistics for 1989

	JAN	-ta	MAR	APA	MAY	jus	Jut.	AUG;	SEP	OCT	NOV	OfC	Year
Flows Avg	12050	12020	13660	2660	0977	0768	0370	4157	4690	5466	3666	3886	5.336
($\mathrm{m}^{\text {] }} \mathrm{s}^{-1}$) Peak	10560	12730	13390	3486	903	1792	214	12170	12090	3885	5595	7785	133.90
Runoff (mm)	32.4	292	368	69	76	20	10	112	122	[4)	95	105	1691
Rasir:lat (mm)	348	380	339	67	47	90	47	204	134	200	76	118	2050
Monthly and yearly statistics for previous record (Oet 1970 to Dec 1988 -incomptete or missing months total 0.2 years)													
Nean Avg	7539	5631	6243	2993	2867	1881	1837	2578	4944	6294	1667	7752	4.853
flows Low	2263	1050	1802	$0 / 58$.	0304	0402	0239	0164	0345	0789	2. 306	1630	3281
[n 's-1) Hingh	15240	9995	11100	5156	10120	4562	5139	9246	${ }^{\circ} 0260$	12.30	16550	12350	6.586
Peak fkow (m's ${ }^{-1}$)	25040	13020	. 6530	8732	16500	22130	-6000	1430	22730	13660	18330	17450	250.40
Rusnotf (mer)	203	139	168	78	77	49	49	69	129	169	200	209	1640
Rainfall (mm)	229	145	176	81	$: 22$	94	118	$\cdot 34$	203	211	240	237	1996
Factors affecting flow regime. \mathbf{N} Sta:ion type VA :										1989 runoff is 110% of previous mean rantall 103\%			

016004 Earn at Forteviot Bridge

Measuring authority: TRPB
First year- 1972
Hydrometric statistics for 1989

	JAN	FEB	MAR	APH	MAY	5 N	Jh	Aug	SrP	OCT	NOV	UtC	Yeas:
Hows Avg	61720	66280	74340	23200	8899	4488	3272	:0430	18620	23150	23810	22. 790	28.278
(m's-') Peax	227.50	18640	26460	6345	1580	2154	583	8564	16060	8435	9795	14620	26460
	21:	205	255	77	30	15	11	36	62	81	79	78	1140
Rainfall (mm)	219	247	224	47	36	68	36	156	104	148	57	102	1444
Monthly and yearly statistics for previous record (Oct 1972 to Dec 1988_incomplete or missing months total 0.3 years)													
Mean Avg	46330	35660	35620	20210	15450	9897	8692	- 2000	20630	32500	42200	44950	26.994
flows Low	19630	16070	:2310	8389	4906	4095	2658	2456	5302	5984	15.120	15060	15508
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	85510	58640	58620	33790	47200	20070	24620	46660	55680	61980	89750	79160	33.908
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{\prime}$ ')	27750	21460	$194{ }^{\circ}$	16220	15520	-1490	14230	16970	27180	24120	32860	23870	32860
Runotf (mm)	159	112	122	67	5.3	33	30	41	68	111	140	154	1089
Rainlall (min)	162	96	137	57	87	69	89	103	156	151	169	168	1444
Factors affecting flow reyime PH Station type VA										1989 runotf is 105% of provkous mean rainfall 100\%			

017001 Carron at Headswood

Measuring authority FRPB
First year. 1969
Hydrometric statistics for 1989

Flows$\left(\pi^{3} s^{\cdot}\right]$	JAn	rfi	MAR	APR	May	Ju	ת.	AUS;	StP	0×1	MKIV	DEC	Yoa.
	6809	8958	9295	1521	0759	0764	0767	2199	1700	2879	1687	2091	3.260
	4628	7840	8479	534	181	380	152	24.37	!668	2114	632	2184	8479
Runots (mm) Rasintall $\{\mathrm{mm}$)	149	177	204	32	17	16	17	48	36	63	36	46	841
	223	268	272	61	38	85	41	215	98	182	55	105	1643
Monthly and yearty statistics for previous record (Aug 1969 to Dec 1988)													
Mean Ava	5501	3695	3551	2000	1561	1219	1141	1625	3.130	4068	5519	5390	3.199
flows Low	1943	1018	1232	0807	0590	0580	0549	0557	0467	0424	1412	1084	2.108
[$\mathrm{m}^{3} \mathrm{~s}^{-1}$] High	10890	7576	7463	3444	5724	2834	4650	8092	16720	10270	9759	10470	4.575
Patak flow (m's ')	13030	6320	9283	4362	5135	3374	6538	8448	12430	12480	10580	14790	147.90
Runotf (mm)	120	14	78	42	34	26	25	36	66	89	117	118	828
Rainfall (mm)	167	99	134	73	91	83	91	-11	157	162	187	171	1528

Factors affecting flow regime SE
Station type VA

Gid reference. 26 (NS) 832820
Level sin (m OD) $17^{\circ} 0$

Catchment area (sa km) 1223 Max alt (m OD). 570

1989 runoff is 102% of previous mean rainfall 108\%

017002 Leven at Leven

Measuring authority FRPB
First year 1969
Hydrometric statistics for 1989

	JAN	FE8	NAH	APK	MAY	UN	Ju	AUG	SEP	OCT	NOV	$\geqslant \mathrm{C}$	Year
Flows Avg	8341	11590	14680	5390	2240	2:63	1316	1970	2674	3073	4306	4346	5.190
(m's'') Poak	1756	3681	2798	1143	460	386	21 .	466	369	867	715	2454	36.81
Rungif (mim)	57	66	93	33	14	13	8	12	16	19	26	27	388
Rainfall (mm)	85	117	122	37	27	51	20	12*	50	88	36	63	823
Montily and yearty statistics for previous record (Aug 1969 to Dec 1988)													
Mean Avg.	11420	10030	7164	5135	3759	3135	1911	3236	3898	6081	8563	10720	6.238
flows luw	4.786	2882	- 543	1413	2012	1166	0902	0820	0970	0795	0912	3462	2.269
\{m's-') Hig̣h	20700	22660	1:240	9712	12050	1044	5300	11840	21040	13170	26510	19200	9.294
Poak ikw ($\mathrm{m}^{3} \mathrm{~s}$ ')	5354	12800	3919	4468	4454	2693	2883	2569	8425	4067	5676	6269	128.00
Runoff (mm)	72	58	45	31	24	19	; 2	20	24	38	52	68	464
Ramiall (mm)	95	58	76	51	64	63	68	73	91	88	98	95	920
Factors affecting flow regime SREI Station type. VA										1989 runoff is 83% of previous mean rainfall 89\%			

018003 Teith at Bridge of Teith

Measuring authority FRPB
Fissi year 1957
Hydrometric statistics for 1989

		JAN	168	MAR	APh	MAY	JuN	Jl	AUC:	S:P	OCT	NOV	Det.	Year
Flows	Avg	$603: 0$	70420	62510	- 4660	7048	6497	4127	20000	19130	21910	20200	14740	27.131
(m's ')	Peak	22250	27120	17930	3780	1280	2839	808	9691	12500	9238	5251	6138	271.20
Rursolf (min)		312	329	323	73	36	33	24	103	96	145	101	76	1852
Ranta! (mm)		360	393	340	68	51	98	60	254	- 60	250	85	133	2252

Monthly and yearly statistics for previous record (Jan 1957 to Dec 1988 --incomplete or missing months total 0.1 years)

Mean Avg	34390	26310	26210	15710	15000	9484	9.688	13280	20310	27970	31480	35070°	22.120
flows luw	9608	5743	6589	5612	4017	3953	3781	3135	3635	5897	9842	11790	15.094
($\mathrm{m}^{\text {' }} \mathrm{s}^{-1}$) High	72430	54340	60190	30040	55000	21520	26390	54210	45020	66410	70650	72310	31.131
Peak flow (m) ${ }^{\text {c }}$ ')	30390	20740	21740	3310	15800	16.70	11830	17440	18410	24260	245.10	24110	303.90
Runotf (mm)	$1 / 8$	127	136	79	78	47	50	69	102	145	158	181	1348
Rantall (.nm)* -(1963-1988)	224	135	111	90	125	103	112	131	203	219	276	222	1961
Factors affectung Station type VA	w rogim									$1989 \text { run }$	$\begin{aligned} & \text { off is } 123 \\ & \text { fall } 115 \end{aligned}$	of pre	us mean

018005 Allan Water at Bridge of Allan

Measuring authonty: FRPE
Frst year. 1971
Hydrometric statistics for 1989

	JAN	Fib	MAA	APA	may	ON	M	AUG	StP	$0 \subset$	NOV	$0 \times$	Year
Fiows Avg.	11.970	14850	15.100	4.294	1.947	1.473	0.945	3.613	3.856	5.756	4.702	5413	6.117
(m) ${ }^{-1}$): Peak	5592	64.78	7470	17.25	6.02	424	2.12	3368	29.37	2249	1802	36.90	74.70
Rumott (mm)	153	171	193	53	25	18	12	46	48	73	58	69	919
Ranfal trms	184	208	201	49	36	65	37	172	85	140	47	89	1313
Monthly and yearty statistics for previous record (tut 1971 to Dec 1988)													
Mesn Avg.	10.750	8.113	8.553	4.631	3.924	2.634	2. 106	3. 155	5157	7.220	9.315	10210	6.311
Nows low	4.751	3.631	3152	1654	1.189	0945	0.726	0648	0.907	0.971	3.642	3.709	4.269
$\left(m^{3} s^{-1}\right)$ Hight	18.550	16610	18.170	7.717	15430	5423	6309	12390	14600	12420	17.760	17.140	9.090
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	98.20	67.84	8343	69.62	72.11	5810	6637	67.48	10560	111.00	9789	11260	112.60
Runoft (mm)	137	95	109	57	50	33	27	40	64	92	115	130	949
Raintall (mm)	142	84	117	62	82	69	83	92	131	133	143	146	1284

Factors aftectung flow rogime:
Station type: VA

Grid reference: 26 (NS) 786980
Lovel sin. (m OO): 11.20

Catchment area (sq kmi: 2100 Max alt. (m OD): 633
rainfall 102\%

020001 Tyne at East Linton

Measunng authority: FRPB
Frst year 1961
Hydrometric statiatics for 1989

	JAN	FEB	MAR	APA	MAY	JUN	x	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg	1662	1.551	. 1924	1.515	1045	0891	0.757	0627.	0614	0614	0556	0341	1.056
(m's - i) Peak	5.19	8.38	641	324	614	114	095	108	171	106	074	815	8.38
Runotf (mm)	15	12	17	13	3	8	7	5	5	5	5	8	108
Rainfal (mm)	28	59	47	38	41	42	11	77	37	45	17	55	497
Monthly and yearty statistics for previous record Wan 1961 to Dec 1988)													
Mesn Avg	4.757	3845	4021	2.924	2470	1502	1307	1713	1834	2222	3601	3693	2.820
fows Low	1032	0.783	0531	0644	0926	0586	0500	0468	0461	0450	0523	0582	0.709
\{ $\mathrm{m}^{\prime} \mathrm{s}^{\text {' }}$ \} lingh	11.540	8 624	8789	7.824	11600	6142	4.393	9855	8490	7000	11.210	8405	4.146
Peak flow ($\mathrm{m}^{3}{ }^{-1}$)	93.02	39.39	66.17	5088	119.70	5912	7018	112.70	9084	82.71	12750	5202	127.50
Runott (mm)	42	31	35	25	22	13	11	15	15	19	30	32	290
Rainfal (mm)	65	40	59	48	60	53	63	78	68	67	72	60	733

Factors affecting flow regime. El
Station type: VA

Grid reterence: $\mathbf{3 6}(\mathrm{NT}) 591768$
Leval stn (m OD) 16.50

Caichment area (sq km): 307.0 Max alt. (m OD): 528
i989 runoff is 37% of prevrous meen ra nlall 68\%

021006 Tweed at Boleside

Measuring suthority: TWRP
First year 1961
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	NJN	Jut	AUG	SfP	$\bigcirc 1$	NOV	DEC	Year
Flows Avg	58250	58530	78290	31550	13860	9004	6409	. 5170	16980	17770	20050	33350	29.818
(m^{3} : 1) Peak	311.80	15140	29020	10740	4295	1918	14.78	-00 50	14130	4395	52.96	23780	311.80
Runoff (mm)	104	94	140	55	25	16	11	27	29	32	35	60	627
Rasfall (mm)	133	144	168	54	50	49	29	147	70	97	32	103	1076
Monthly and yearly statistics for previous record (Oct 1981 to Dec 1988)													
Mean Avg	55400	43.580	43000	29720	24660	16430	15320	22.280	30470	41120	50390	52630	35.394
flows Low	14.300	10480	14930	9.896	7605	7413	6362	5012	4.572	4435	11.570	22450	18.577
(m's s^{-1}) High	110.700	81860	101000	57330	64.330	32820	40970	81400	95510	96720	119800	100400	44.323
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-9}$)	67860	48390	47010	248.90	182.80	12600	34260	44430	49630	1019.00	48630	571.90	1019.00
Runotf (mm)	99	71	71	51	44	28	27	40	53	73	87	94	745
Rasiala (mm)	122	19	101	63	87	77	89	106	119	123	125	119	1216
Factors affecting flow regime S P Staton type VA										1989 runoff is 84% of prevrous mean ra-nfall 88\%			

Factors affecting flow regime S
Stathon type VA

Grid reference 36 (NT) 498334
Level sin (m OO): 94.50

Catchment area (sq km): 1500.0 Max alt (m O0): 839
 \title{
021018 Lyne Water at Lyne Station
}
 \title{
021018 Lyne Water at Lyne Station
}

1989
Measuring authonity TWRP
First year 1968
Hydrometric statistics for 1989

Gend referonce 36 (NT) 20940
Leval sin. (m OD) 168.00

Catchment area (sq kmi 1750

Hydrometric statistics for 1989

	JAN	feg	MAR	APR	MAY	Jun	μ	aug	StP	$\mathrm{OCT}^{\text {ct }}$	NOV	DEC	Year
Flows Avg	4589	4382	4792	2355	1231	0888	0675	0926	0810	1253	1261	2416	2.122
(m's-') Peak	2255	1372	1983	483	294	128	099	387	125	346	200	1366	2255
Runolf (mm)	70	$6{ }^{\prime}$	73	35	19	13	'0	14	12	- 9	19	37	382
Hairfall (mm)	90	11:	103	37	42	53	2.5	127	41	87	20	71	807
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1988)													
Mean Avg	4952	4.086	3.561	2640	1804	1436	1251	1471	2014	2916	4.225	4382	2.894
flows Low	1682	2158	1.357	1127	0882	0.787	0713	0605	0591	0597	0377	1618	1.428
(m's-') High	$81 / 4$	8698	7325	5028	4104	2653	3884	5364	-0440	5684	8.611	$83 / 4$	3.704
Paok flow (m's ${ }^{1}$)	4750	4155	27.65	2146	1736	1646	3172	2077	5874	4049	5360	3798	58.74
Runoff (mm)	76	57	54	39	28	21	19	23	31	45	63	67	522
Rainfal (mm)	91	56	81	53	64	63	73	77	96	95	100	90	939

Factors affecting flow regume' S P
Sialion type: VA
989 runoff is 73% of prevrous mean rain!all 86\%

021022 Whiteadder Water at Hutton Castle

Measuring authority TWRP
Grid reference: 36 (NT) 881550
Level sin (m OD) 2900

Catchment area (sq km) 503.0
Max alt. (m OD). 533

Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	NV	Ju	Aug	SEP	OCT	NOV	Of C	Year
Flows Avg	3451	4313	6427	4489	2561	1711	1245	1289	1.307	1210	1375	2801	2.674
(m's-1) Peak	632	42.98	1987	1236	1878	4.14	212	409	330	2.51	230	1686	42.98
Runotf (mm)	18	21	34	23	14	9	7	7	7	6	7	15	168
Rainfall (mm)	26	64	54	45	38	58	14	85	39	46	24	49	542
Monthly and yearly statistics for previous record (Sep 1969 to Dec 1988-incomplete or missing months total 0.1 years)													
Meon Avg.	11700	10310	9723	7606	5441	3568	2470	3136	3.224	5133	7826	8659	6.549
flows low	2143	1.557	1108	1325	2113	1403	1315	1162	0990	1001	1100	1347	4540
(m's' ${ }^{\text {- }}$) High	25990	27300	19.220	15850	24050	8835	6626	8184	16360	16670	27680	20660	8.847
Peak !ow (n 's ')	26590	16090	133.90	10310	22620	7582	8485	18110	10580	19000	279.80	10810	27980
Runoff (T:n)	62	50	52	39	29	18	13	17	17	27	40	46	411
Ro.n'all (mr)	83	50	75	5.3	66	58	63	70	69	7.	75	70	803

Factors affecting flow regime S P
Station tyoe CC
1989 runoff is 41% of previous mean rainfall 67%

022006 Blyth at Hartford Bridge

Measurimg authority. NRA.N
First year. 1966
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	Nay	JUN	- ${ }^{\text {ut }}$	Als;	SEP	OCT	NOV	nec	Year
flows Avg	1026	2.25 ,	1236	13.37	0393	0335	0160	0173	0141	0215	0208	0799	0.679
$\left(m^{3} \mathrm{~s}^{1}\right)^{1}$) Peak	148	2946	289	398	064	206	033	082	021	072	040	598	29.48
Runoff (mml	${ }^{\circ}$	20	12	i3	4	3	2	2	1	2	2	8	79
Rainfall \{mm	13	61	33	43	19	58	12	65	18	57	20	63	462
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1988 -incomplete or missing months total 04 years)													
Maen Avg	4.736	3677	3721	2333	1428	0631	0471	0697	0755	1736	2.560	3670	2.197
flows Low	0587	0398	0.245	0359	0212	0.177	0096	0067	0107	0.111	0162	0274	0.537
($\mathrm{m}^{\text {s }} \mathrm{s}^{-1}$) High	10150	7997	11090	6281	4948	1895	1800	2963	2695	9.680	5735	12500	3410
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14660	5952	15020	8031	3886	3154	2152	6109	3002	5684	6920	122.30	150.20
Rumoff (mm)	47	33	37	22	14	6	5	7	7	17	25	36	257
Rainfoll (mm)	68	44	63	45	57	52	60	70	64	61	66	63	713
Factors affecting flow regıme E													

Station type: FV

Grid reference 45 (NZ) 243800
Levet \sin (m OD) 24.60

Catchment area (sq km): 2694 Max alt (m OD) 259

023001 Tyne at Bywell

Messuring authority NRA-N
First year: 1956
Hydrometric statistics for 1989

	JAN	Ffi	MAA	APA	MAY	JN	,	AUG	SfP	OCT	V	Df C	Year
Flows Avg	41710	72200	70430	41850	10830	16210	7201	15000	12520	22310	23.390	40690	30.942
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Paak	52530	84360	541.70	29080	2497	2467	1876	7522	2543	182.50	295.10	29580	84360
Reunoti (mm)	51	80	87	50	13	19	9	18	15	27	28	50	449
Rantall (mm)	59	127	107	60	29	47	27	101	29	97	46	91	820
Monthly and yearly statistics for previous record \{Oct 1956 to Dec 1988 -incomplote or missing months total 0.2 years)													
Mean Avg	74310	57060	55770	38620	25510	18310	20:40	29950	35590	47410	62340	68890	44.460
'rows Low	19220	14.360	20150	8461	7246	4910	$5: 99$	3403	4155	4.727	18090	23080	25.849
($\mathrm{m}^{3} \mathrm{~s}^{-}$) High	150800	98140	150.900	75620	60650	50.010	58000	17360	106600	147200	147000	112000	63.834
Ptakk (kow (m's ${ }^{-1}$)	152500	92210	147200	90560	41630	44030	110500	156'00	124300	158600	138200	131700	1586.00
Alnotf (mm)	91	64	69	46	31	22	25	37	42	58	74	85	645
Raınfal (mm)	104	63	86	63	70	69	85	97	92	95	105	104	1039

Factors affecting flow regime S
Station type: VA

Gid reference. 45 (NZ) 038617 Level sin. (m OD). 1400

Ceichment area (sq km) 21756 Max alt. (m OO) 893 raintall 79\%

Measurng authority: NRA-N
Firsi year: 1959
Hydrometric staristics for 1989

	JAN	fe8	MAR	APA	MAY	UN	M	AUG	SfP	OCT	NOV	DEC	Year
Flows Avg	0773	1.712	1.963	1954	0435	0.266	0159	0148	0.128	0.201	0275	1.047	0.749
$\left(m^{3} s^{-1}\right):$ Peak	3.18	1226	1618	10.78	078	0.80	028	032	0.16	1.04	162	13.68	16.18
Runoff (min)	28	55	70	68	16	9	6	5	4	7	10	37	315
Raunfal (rums	25	95	59	87	15	46	8	49	15	76	35	98	608
Monthly and yearty statistics for previous record iOct 1959 to Dec 1988-incomplete or missing months total 0.2 years)													
Mean Avg	2133	1.755	1820	1371	0.915	0.559	0465	0596	0616	1.245	1.604	1.831	1.241
nows low	0515	0471	0.436	0440	0270	0196	0157	0120	0.157	0.146	0244	0444	0.687
[m's 'l Hingh	4.341	4011	5.128	2.986	2231	1.524	1.522	1465	1.790	4346	3.722	4488	1.842
Pesk flow (mis ${ }^{\text {c }}$ '1)	3467	39.16	38.51	3509	2406	21.66	27.72	46.19	3230	38.06	3426	42.93	48.19
Rumotf (mms)	78	57	65	47	33	19	17	21	21	45	56	65	523
Remfoll (mms	91	62	75	59	65	58	66	79	72	81	91	85	884

Foctors affectung flow regine: N Station type CC

Grod reference: $45(\mathbb{N Z}) 118322$
Level stn. (m OO): 109.00

Catctment area (50 km). 74.9 Max att. (m OO): 531 -

1989 runoff is 60% of previous mean rantall 69\%

024009 Wear at Chester le Street

Measuring authority: NRA.N Furst ycar: 1977
Hydrometric statistics for 1989

Mean Avg	25810	20770	25150	17620	11090	7.769	6370	7611	6584	12040	18.220	24010	15.241
fkws Low	15780	10210	14090	5489	4386	3945	2948	3335	3777	4834	5022	13230	12.556
$(\mathrm{m})^{\prime}{ }^{\text {' }}$) Hagh	40980	37.620	64200	36800	30170	14650	14010	19300	12080	27060	35820	50640	19.785
Peak flow (m)'s)	30980	24820	34960	27760	15760	20060	2.2650	35440	10550	27340	25410	35.310	354.40
Rusoff (mm)	69	51	67	45	29	20	17	20	17	32	47	64	477
Rainfal (:nm)	91	53	91	56	65	66	61	83	68	83	93	98	908
Factors affecting	w tegim	G								1989 r	off is 57	\% of prev	cus mean

Factors atfecting flow regime: G Station type FV

Grid reference 45 (NZ) 283512
Level sin (m OD): 550

Caichment aroa (sq km): 10083 Max alt (m OD): 747

025006 Greta at Rutherford Bridge

1989

Measuring authority NRA.N
First year 1960
Hydrometric statistics for 1989

	JAN	FEB	VA9	APR	MAY	Juv	Jut	AUC	$5{ }^{\circ}$	\bigcirc	NOV	OCC	Yoar
Flows Avg	2141	3651	4037	3995	0285	0.232	02.0	O) 215	01.0	1153	1690	3497	1.755
(m's - ${ }^{\text {a }}$ (Peak	4:33	4175	6041	3924	063	168	102	121	$\bigcirc 24$	1311	3016	5991	60.41
Runotf (mm)	67	103	126	120	9	7	7	7	3	36	51	109	643
Rantall (mm)	61	135	114	106	16	64	20	74	18	99	56	118	881
Monthty and yearty statistics for previous record (Oct 1980 to Dec 1988)													
Mean Avg	3769	2663	3259	2.134	1.336	0.873	0.729	1369	1522	2580	3366	3615	2.268
flows Low	0291	0280	0842	0375	0148	0130	0092	0098	0146	0195	0951	0944	1.447
im's '1 High	7155	6.881	8926	4682	3.951	2502	2.784	4107	4067	6665	6878	6406	2.926
Panak flow (m's ${ }^{\text {d }}$ ')	11800	8863	7900	7036	5635	51.74	5383	21040	10900	93.85	6881	73.77	210.40
Runots (mm)	117	76	101	64	42	26	23	43	46	80	101	112	832
Rantall (rxm)	120	81	100	75	78	71	74	98	95	105	115	120	1132
Factors affecting flow regime Statmon type: CC										1989 runoff is 77% of prevrous mean rantall 78\%			

025019 Leven at Easby

Measurimg authority: NRA.N First year 1971
Hydrometric statistics for 1989

025020 Skerne at Preston le Skerne

1989

Measuring authority: NRA-N
First year 1972
Hydrometric statistics for 1989

		JAN	FEB	MAH	APA	NAY	JJ4	Ju	AUG	StP	OCT	NOV	DEC	Year
Fluws	Avis	0337	0605	0326	0444	0240	0254	0146	0148	0118	0143	0129	0325	0.266
(m 's-')	Peak	060	938	010	185	041	313	054	070	045	075	046	291	938
Runulf (mm)		6	:0	6	8	4	4	3	3	2	3	2	6	57
Rainial (mm		10	39	20	50	10	. 59	: 6	48	13	58	30	58	411
Monthly and yearly statistics for previous record (Dec 1972 to Dec 1988-incomplete or miasing months total 0.3 vears)														
Mean	Avg	1655	1257	1406	1020	0704	0485	0417	0418	0355	0836	$09: 5$: 398	0.903
flows	l.uw	0486	0481	0293	0247	$\bigcirc 199$	0112	0.21	0086	0082	0099	0204	0553	0.558
(m's-1)	High	3376	2731.	4824	2734	2106	1004	$1 \cdot 25$	0943	0745	4290	1962	4658	1.510
Peak flow (m)	's s^{-1}	2008	1293	2658	1920	1193	1654	1592	- 369	933	2171	1740	2482	26.58
Runoff (mm)		30	2 •	26	18	13	8	8	8	6	15	16	25	194
Rontall (mm		61	37	58	45	54	54	51	64	60	58	59	58	659
Factors affecting flow regime: E Station type VA											1989 runoff is 29\% of previous mean rainfall 62\%			

026003 Foston Beck at Foston Mill

Measuring authority NHA.Y First ycar. 1959

Grid cefe:ence 54 (TA) 093548 Leverl stn (m OD) 640

Citchment aroa (sq km) 57.2 Max als (m OD) 164

Hydrometric statistics for 1989

	JAN	FEB	VAR	APR	MAY	JUN	\checkmark UL	AJ;	SEP	OCT	Nov	OLC	Year
Flows Avg	0245	0225	0223	0224	0234	0223	0203	0169	0142	0124	0117	0.122	0188
(m's'1) Prak	031	034	029	0.32	034	030	030	020	016	015	016	023	034
R,motf (tmm)	11	10	10	10	1:	:0	10	8	6	6	5	6	103
Rastall (mm)	i8	40	60	bo	16	48	45	30	21	46	44	78	494
Monthly and yearty statistics for previous record (Oct 1959 to Dec 1988 -incomplete or missing months (otal 0.6 years)													
Mean Avg.	0.879	1165	1103	1005	0863	0669	0523	0411	0341	0327	0420	0586	0.688
llows Low	0199	0183	$01 / 4$) 150	0174	0110	01 2	0105	0101	0:25	0148	$0 \cdot 95$	0.155
(m 's-') Hingh	222.4	2332	2242	2.070	1708	1231	0882	0675	0561	0612	1845	2379	1.282
Peak ! low ($\mathrm{m}^{3} \mathrm{~s}$ ')	289	330	269	270	: 95	201	, 47	099	080	122	249	286	3.30
Rlicoff (mim)	41.	50	52	46	40	30	25	19	15	15	19	27	380
Rainfal (mir)	72°	So	58	52	55	52	55	65	58	67	14	74	732

Factors affecting flow regime N Station type. TP

Gid referance 45 (NZ) 292238
Level stn. (m (0)) 6750

Catchment ared (sq km) 1470 Max alt. (m) (Y) 222

Staton type VA
\qquad
\qquad

027025 Rother at Woodhouse Mill

Messunng authority: NRA.Y
Fist year: 1961
Hydrometric statistics for 1989

027030 Dearne at Adwick

Measuring duthority: NRA.Y
First year. 1963
Hydrometric statistics for 1989

	JAN	1t8	MAR	APR	MAY	JuN	JUL	AUS,	SEP	OC.T	nov	OEC	Yeat
Hows Avg ${ }^{-}$	1678	2593	3528	-5469	1787	'1582	1.956	1148	1.115	1384	1552	5.882	2.472
(m's-1). Peok	$5 \mathrm{H2}$	20.13	2511	2131	983	885	1143	2.14	2.34	5.34	844	3636	36.36
Rumot! (mm)	14	20	30	46	15	i3	17	10	9	12	13	51	251
Rainfall (mm)	15	56	65	10)	24	63	60	22	20	59	37	122	643
Monthly and yearty statistics for previous record (Nov 1963 to Dec 1988 -incomplete or missing months total 0.7 years)													
Mean Avg	5037	5398	4844	4251	3095	2646	1921	: 929	1893	2488	3549	4305	3.436
fows Low	1946	1648	: 433	1273	1303	1106	0806	0165	0873	0922	1029	1245	2.104
(m)'s) High	9214	14340	10.750	8866	7380	1299	3699	3054	5658	5171	1632	- 0980	5.264
Peak flow ($\mathrm{m}^{3} \mathrm{~s}$ ')	5176	5632	4185	5842	4397	5558	3194	2740	2897	2656	5152	5665	58.42
Runotf (mm)	43	42	42	35	27	22	17	11	16	21	30	37	349
Ramiall (mm)	65	53	61	56	59	68	50	65	58	58	11	66	720

Factors affecting flow regirne PGEI
Statюn typt: CVA

Gind reference 44 (SE) 477020
Level stn. (m OD): 1270

Catchment area (sq km): 3108 Max alt (m ODI. 381 rainfall 89\%

027042 Dove at Kirkby Mills

Hydrometric statistics for 1989

	JAN	feg	MAR	APR	MAY	AN	M	Aur;	StP	OCT	NUV		
Flows Avg	0589	0717	063	1150	0419	0339	0341	0224	$\bigcirc 186$	0334	0499	1061	0.576
(m)'s Peak	139	871	331	499	104	204	755	080	076	216	240	614	8.71
Runoff (:9m)	27	29	48	50	19	15	15	10	8	15	22	48	307
Rain!all (mm)	22	59	71	68	18	75	48	54	21	86	46	90	658
Monthly and vearly statistics for previous record (Feb 1972 to Dac 1988)													
Mean Avg	1747	1639	1733	1249	0852	0643	0537	0594	0683	1052	1187	1624	1127
Sows Low	0698	0541	0347	0376	0368	0279	0211	0:61	0.245	0251	0543	0853	0.640
(in's if Higgh	2861	3180	4701	2915	1702	1099	; 021	1391	2743	2683	2032	3237	1.554
Peak fikw (m 's ${ }^{\prime \prime}$ ')	37.45	3668	4093	2163	3001	743	1933	3236	5638	2471	2385	5338	5638
Rumotf (mm)	79	68	18	55	39	28	24	27	30	48	52	13	601
Rarsfan (mm)	98	61	91	62	69	63	72	78	85	92	86	94	951

Factors affecting flow regime: N
Stalion type FV

1989 runoff is 51\% of previous mean ranfall 69\%

027043 Wharfe at Addingham

Measuring authority. NRA-Y First year 1974
Hydrometric statistics for 1989

Staton type C VA

Grid reference 44 (SE) 092494 level $\operatorname{stn}(\mathrm{MOD}) 7970$

027059 Laver at Ripon

Measurimg authority NRA.Y First yesar 1977			Grid reteeterce 44 (SE) $30 \cdot 710$ Level stn (in OD) 2960							Catchment area (sq km): 875 Max all (m OD) 406			
Hydrometric statistics for 1989													
	JAN	FEB	MAR ${ }^{*}$	APK	MAY	-UN	M	AUG	StP	OCT.	vov	DfC	Year
flows Avg	04/1	1217	1616	-824	0438	0241	023.3	0105	0072	0187	0324	1331	0668
($\cdot \mathrm{n}^{3} \mathrm{~s}$ ' ') Prak	; 93	930	1848	. 421	082	171	-78	014	(1) 10	115	257	1282	18.48
Runotf (mm)	14	34	49	54	13	7	7	3	2	6	10	41	241
Resinfall (mm)	23	89	93	97	6	82	53	32	14	84	48	104	720
Monthly and yearly statistics for previous record (Nov 1977 to Dec 1988 -incomplete or missing months total 0.2 years)													
Mean Avg	2115	1640	1806	1281	0785	0532	0292	0448	0349	0830	1308	1956	1.110
flows. Low	1136	0659	0721	0453	0272	0) 233	0098	0096	032.4	0167	0419	0848	0.837
(m's']) High	3265	3090	3850	3063	1881	1264	0696	0952	0618	1736	2400	3786	1.211
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	2406	$18 / 5$	2765	3695	: 332	1675	- 126	1148	102.1	1708	1501	3914	39.14
Runofy (mm)	65	46	5s	38	24	16	9	14	:0	25	39	60	401
Pdinldill (r7!7)* $\bullet[19 / 8-1988\}$	101	60	- 01	62	64	64	54	89	77	94	97	117	981
Factors affecting flow regime S P Station type C										1989	noff is 60 nidil 73	of prev	us mean

027071 Swale at Crakehill

Measuring autbority NRA.Y
First year 1980
Hydrometric statistics for 1989

	JAN	rte	Mar	APR	may	.UN	\cdots	AUG	spr	\bigcirc	Nov	nec	Year
Fluws Avg	14.390	24580	30110	23100	6205	4323	3810	3506	2816	8045	10620	20300	12579
(m's ') Preak	6964	10820	14220	11220.	919	$\cdot 100$	827	780	579	3079	9102	13600	142.20
Runulf (inm)	28	44	59	44	12	8	1	7	5	16	20	40	291
Rainfall (mm)	29	82	80	74	10	68	34	48.	15	82	41	89	652
Monthly and yearly statistics for previous record (Jun 1980 to Dec 1988)													
Mean Avg	37260	25330	30260	23660	14630	10990	8686	1. 170	10750	21950	26 990)	31570	21.106
Hows Low	25210	16050	$15 \leq 20$	7819	5557	4727	$27: 2$	3684	6442	9089	7541	$1 / 470$	18.599
[$\mathrm{m}^{3} \mathrm{~s}$; High	56800	46530	60040	46690	32370	17180	19160	24220	. 6090	39340	44280	41050	23.498
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	23070	18790	:8830	18330	9462	10760	12300	19980	11450	18450	$\cdot 6140$	18310	23070
Runnt' (mm)	73	46	59	45	29	21	17	22	20	43	51	62	489
Ramiall (mm)* $\cdot\{1983-1988\}$	98	45	75	71	10	51	65	85	65	91	85	89	890
Factors affecting flow regimo. N Station type C										1989 runoff is 60% of previnus moan rainfall 73\%			

Monthly and yearly statistics for previous record (Jun 1980 to Dec 1988)

	JAN	rte	Mar	APR	may	.UN	\cdots	AUG	spr	\bigcirc	Nov	nec	Year
Fluws Avg	14.390	24580	30110	23100	6205	4323	3810	3506	2816	8045	10620	20300	12579
(m's ') Preak	6964	10820	14220	11220.	919	$\cdot 100$	827	780	579	3079	9102	13600	142.20
Runulf (inm)	28	44	59	44	12	8	1	7	5	16	20	40	291
Rainfall (mm)	29	82	80	74	10	68	34	48.	15	82	41	89	652
Monthly and yearly statistics for previous record (Jun 1980 to Dec 1988)													
Mean Avg	37260	25330	30260	23660	14630	10990	8686	1. 170	10750	21950	26 990)	31570	21.106
Hows Low	25210	16050	$15 \leq 20$	7819	5557	4727	$27: 2$	3684	6442	9089	7541	$1 / 470$	18.599
[$\mathrm{m}^{3} \mathrm{~s}$; High	56800	46530	60040	46690	32370	17180	19160	24220	. 6090	39340	44280	41050	23.498
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	23070	18790	:8830	18330	9462	10760	12300	19980	11450	18450	$\cdot 6140$	18310	23070
Runnt' (mm)	73	46	59	45	29	21	17	22	20	43	51	62	489
Ramiall (mm)* $\cdot\{1983-1988\}$	98	45	75	71	10	51	65	85	65	91	85	89	890
Factors affecting flow regimo. N Station type C										1989 runoff is 60% of previnus moan rainfall 73\%			

‘\{1983-1948
Factors affecting flow regime. N
Station type C

Gris eference 44 (SE) 425734 Level stin (m OD) 1200

Catchment area (sq km) 13630 Max att. (m OO) 7:3

028018 Dove at Marston on Dove

1989

Measuring authonty NRA.ST
First year' 1961
Hydrometric statistics for 1989

	JAN	HEB	NAR	APR	May	Juv	-UL	AUK	SrP	OC 1	Nov	DEC	Year
Flows Avg	11330	15800	23440	22780	8060	5670	5552	3800	3406	5364	9961	19020	11.152
. (m's ${ }^{\text {' }}$) Peak	2189	9805	8426	8306	1585	981	3565	491	537	2654	5111	10690	10690
Runotf (mm)	34	43	71	61	24	17	17	12.	$\cdot 0$	16	2.9	58	398
Hairiall (mm)	43	95	33	104	34	19	31	42	30	1.12	62	23	848
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1988 -incomplete or missing months total 0.1 vears)													
Mean Avg	22.840	19840	17770	14520	11910	3161	762.9	788.	85'1	$11 \cdot 60$	16560	2•370	14.078
flows Low	1822	4615	8943	6196	48.31	3452	2430	1913	28°	3495	5684	1907	7723
(m's ') High	32.880	55910	36570	24550	22. 480	-6280	155.30	14630	29350	22830	31070	56460	19.411
Ptak flow (m's ${ }^{-1}$)	19140	19460	17970	12100	12140	7302	7710	11360	11390	132 io	1.3080	20280	202.80
Runott (mm)	69	55	54	43	36	27	23	24	25	34	49	65	503
Rainfall (mm)	93	66	79	65	75	76	68	83	80	8 .	95	94	955
Factors affecting flow regime SRPG, Station type FV										1989 rumoff is 79% o! previous mean ranfall 89\%			

028024 Wreake at Syston Mill

Measuring authority NRA-ST
irst year 1967
Hydrometric statistics for 1989

	JAN	frb	MAR	A^{108}	VAY	JUN:	Jul	ANG	SEP	OTT	$\mathrm{NK}) \mathrm{V}$	DEC	Yes*
Flows Avg	1627	2. 255	2904	7659	- 334	() 895	0807	0574	(1)580	0616	1379	1527	2.344
	592	1389	883	3229.	327	537	306	110	265	$2(55$	1215	3460	3460
Runoff (mm)	11	13	19	48	9	6	5	4	4	4	9	49	179
Rarriall $\{\mathrm{mm}$)	28	35	45	105	27	70	49	35	39	50	47	101	631
Monthly and yearly statistics for previous record (Aug 1967 to Dec $\mathbf{1 9 8 8}$-incomplete or missing months total 16 years)													
Mean Avg	5889	6113	5019	3484	2256	$1 \cdot 81$	0934	0860	0182	1416	2463	4238	2872
flows Low	0959	0619	() 494	0358	0286	0222	0131	0)122	0254	0264	0418	0745	0.923
	10150	21740	: 2630	8772.	8117	2776	4547	3230	5361	6897	7087	11850	4.396
Peak flow ($\mathrm{m}^{3} \mathrm{~s}$ ')	$431:$	7337	9982	9701	5. 83	3317	. 2688	3044	2161	3168	5025	5295	99.82
Rurkst (mm)	38	36	32	22	15	7	6	6	5	9	15	27	219
Ris ntal' (mm)* (1971.1988)	55	44	55	45	56	60	46	61	52	53	50	55	631
Factors atiecting flow regime GE Station type C VA										1989 runcoff is 82% of previous mean rainfall 100\%			

028026 Anker at Polesworth

1989

Measurung authority. NRA ST Firsi year 1966
Hydrometric statistics for 1989

	JAN	fとも	MAR	APA	may	ת.	N	Alv	StP	OCT	NoN	OLC	Year
Flows Avg	2.170	3066	3264	6177	1.649	1403	1.171	1.103	0.999	1.300	2.097	9416	2.817
(m's is Peak	717	2607	10.60	26.10	1079	690	854	4.79	576	639	16.93	56.80	56.80
Runots (mm)	16	20	24	44	17	10	9	8	7	9	15	69	241
Raintal (mm)	35	45	49	96	30	65	52	54	36	65	42	122	691
Monthly and yearty statistics for previous record (Oct 1966 to Dec 1988 - incomplete or missing montis total 2.6 years)													
Mean Avg.	5292	5416	4382	2785	2411	1.864	1367	1.412	- 277	1937	2.589	3855	2.871
flows Low	1.298	0953	0650	0657	0686	0484	0343	0405	0.111	0728	0855	11/5	1.213
(m's ${ }^{\text {1) }} \mathrm{High}$	9572	16200	9233	6629	8389	4650	5.580	4173	3.274	4611	5537	9473	3.724
Peak flow (m)'s ${ }^{\text {' }}$)	75.63	7318	5609	4584	59.77	5268	5934	4503	3134	36.25	45.11	7401	7563
Runotf [mm)	39	36	32	20	18	13	10	10	9	14	18	28	246
Ranfall (mm)* -(1971-1988)	58	51	58	41	55	63	45	58	60	53	51	58	651
Factors affecting flow regime: GF Station type C VA										1989 runoff is 98% of previous mean rainfall 106\%			

Station type C VA

Gid reference: 43 (SK) 263034
Level sin. (m OO): 60.40

Catchment area (sq kmi): 3680 Mar alt. (m 00): 177

028031 Manifold at Ilam

Measuring authority NRA-ST
First year 1968
Hydrometric statistics for 1989

	JAN	FtB	NAR	APR	NAY	ON	JUL	AUG	St	OCt	NOV	cric	
Flows Avg	$\cdot 2562$	3898	6602	$55: 7$	1508	1103	-1 142	0 St2	0458	1383	3199	5136	2748
($\mathrm{n}^{3} \mathrm{~s}$-:) Peak	826	4846	4636	4009	660	1804	1771	071	066	1548	2502	3910	48.46
Funatt (mm)	46	64	119	96	27	19	2 i	10	8	23	56	93	583
Rainfall ($n \times n$)	53	112	118	114	43	98	31	48	29	135	15	132	988
Monthly and yearly statistics for previous record (May 1988 to Dec 1988 -incomplete or missing months total 01 vears)													
wean Avg	6407	5152	5014	3736	2518	1967	1578	1928	1878	3103	$49 / 9$	5327	3.626
flows Low	3657	2489	2528	1217	0817	0745	0493	0386	0535	0716	1555	2135	2.241
(m's-) Hgh	8522	12710	9455	6200	$5 / 13$	5150	3505	4560	4147	6691	8198	9995	4.806
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{3}$)	8013	745.3	6612	4736	5240	3958	3729	13700	4569	7578	9161	6625	137.00
Rurkolf (mme)	116	85	90	65	45	34	28	35	33	56	87	96	771
$\begin{aligned} & \text { Hainfall (mmi)* } \\ & *(1969.1988) \end{aligned}$	124	81	100	72	16	80	14	82	86	35	119	111	1100
Factors affecting flow regime PE Sta:ion type C										1989 runoff is 16% of previous mean raintall 90\%			

028039 Rea at Calthorpe Park

Measuring authority NRA-ST
First year 1967
Hydrometric statistics for 1989

	JAN	ffb	MAN	APR	may	JUN:	.10	AUG	SEP	CT	NOV	Of:	Year
Flows Avg	0483	0857	0728	1285	0414	04:8	0453	0.381	0346	0712	0597	:83i	0.708
(m's ${ }^{-1}$) Prak	476	2255	1281	12 Bl	¢ 91	3'3	2142	1084	841	2468	1499	2349	27.42
Runolf (mx)	$1 /$	28	26	65	15	15	16	14	17	26	21	66	302
Rainfal (mm)	33.	57	59	96	26	44	53	$4 *$	37.	98	48	143	735.
Monthly and yearly statistics for previous record (May 1967 to Dec 1988 -incomplete or missing months total 1 i years)													
Medi Avg	1212	1048	: 063	0)196	0764	068.	0532	0665	0634	0675	$08 \% 2$	1075	0.834
fows Low	0601	0549	0483	0316	0355	0287	0257	0367	0295	0320	0493	0490	0.602
	1985	2610	2101	1489	1780	: 324	1018	- 366	1423	1408	1153	1934	1.058
Peak flow ($\mathrm{m}^{\text {' }}{ }^{-}$.)	3671	2744	2864	2515	3037	3744	4686	46.38	4085	2328	24.97	5402	54.02
Runotf (mm)	44	35	38	28	28	24	: 9	24	27	24	31	39	356
Karnall (mm) ${ }^{\circ}$ - 1968 -1988)	78	59	69	56	69	65	56	75	69	61	72	76	805
Factors affecting flow regime E Statom type C										1989 runoff is 85% of prevkeis mean ra-nlall 91\%			

Grid reterence 42 (SP) 07: 847 Lovel stn (m (O) 10420

028067 Derwent at Church Wilne

Measu'ing authorily NRA-ST First year 1973
Hydrometric statistics for 1989

Station typue FVVA

Grid reference 43 (SK) 438316
Level stn (m OD) 3100

Catchment area \{s km \} 1177.5 Max alt (m OD) 636

028080 Tame at Lea Marston Lakes
1989
Measuring authority NRA-SI
Gid reference 42 (SP) 207937
Level \sin (m OO) 66.20
Catchment area (sq km) 7990
First year 1957
Hydrometric statistics for 1989

		JAN	fte	MAR	APR	NAY	N*	NL	AJG	StP	OCT	Sov	ofe.	Year
Flows	Avg	10880	13750	14100	19580	9499	10030	9841	8612	8413	$11 / 10$	11530	26970	12908
(m) S^{-1}	Peak	3500	8261	5249	6127	2640	3493	62.61	4579	b199	6935	7204	13930	139.30
Runof \{mm)		36	42	47	64	32	33	33	29	27	39	37	90	509
Rainfall (mm)		33	53	56	92	2^{\prime}	54	49	48	34	88	44	140	712

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1988 —incomplete or missing monthe total 0.3 years)

Mean Avg	$1 / 830$	16980	-5680	13820	12630	11520	10400	11120	-1180	12110	14340	$16450)$	13658
fkws Low	8994	8855	8797	1259	7321	6655	6369	6978	6655	1852	7876	9057	9.699
(m's ') High	26700	35140	26590	22000	24690	18990	17210	16910	19440	25600	21880	32880	17355
Puak flow (m 's ${ }^{-1}$)	12220	9405	8627	11080	12160	15970	9478	15320	9233	7624	12760	21920	219.20
	60	52	53	45	42	37	35	37	36	41	47	55	539
Rainfall \{mm	66	49	56	53	60	60	56	72	62	59	65	11	729

Factors affectim flow regrme. EI
Station type. C
1989 runotf is 94% of previous mean rainfall 98\%

028082 Soar at Littlethorpe

Measuring authority. NRA-ST
Grid relerence 42 (SP) 542973
Leverl stn (m OD). 6140
Hydrometric statistics for 1989

		JAN	${ }^{1} \mathrm{CB}$	MAA	APA	MAY	Juv	Ju	AUG	StP	$0 \subset T$	NOV	OfC	Year
Flows	Avg	1028	12.62	1448	2815	0717	0607	0542	0463	0455	0541	0887	3924	1.224
(m's ')	Peak	337	154	496	1086	- 70	322	373	2. 14	214	192	632	2060	20.60
Rurkiff (\%mo		15	17	2 '	40	10	9	8	7	6	8	13	57	210
Pdinfal (mr)		35	41	48	97	26	71	E5	56	38	58	43	119	697

Monthly and yearty statistics for previous record (Aug 1971 to Dec 1988 —incomplete or missing months total 0.2 years)

Moan Avg	2.776	2712	2437	1550	1098	0988	0545	0696	0557	0926	1312	2280	1.485
flows Low	0713	0568	0.424	0346	0.350	0245	0:64	0224	0307	0338	0398	0643	0.644
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Hegh	4661	6868	5031	$3 \cdot 05$	2.654	2346	1447	2242	1608	$29{ }^{\circ}$	2714	¢ 101	2.133
Peak flow (in's ${ }^{-1}$)	2349	2447	2078	2118	1493	1578	137°	2041	1594	1981	:659	2246	24.47
Runotf (mm)	40	36	35	22	16	14	8	10	8	13	18	33	255
Rasinall (mmin	56	45	55	41	35	64	44	61	53	52	52	60	638

-(1972.1988)
Factors affecling flow regrme. E
Station typo EM

1989 runotf is 82% of previous mean rainfall 109\%

029003 Lud at Louth

Measuring authority. NRA-A
First year 1968
Hydrometric statistics for 1989

Station type C
(irid reference 53 \{TF) 331879
Level stn (m OD) 1540

Catchment area (sq km) 552 Max alt (m OD). 159

030004 Partney Lymn at Partney Mill

Measuring authority: NRA-A
First ycar 1962
Hydrometric statistics for 1989

	JAN	FEB	MAR	APr	Mav	Juv	Ju	Alk	SEP	OCT	NOV	ore	Year
Frows Avg	0503	0369	0489	0502	0241	O 178	0176	$\bigcirc 159$	0160	0210	0)296	0583	0.322
(m's-') Peak	119	068	121	140	0.37	083	084	031	018	037	205	047	2.05
Runoff (tivn)	22	14	21	21	10	1	8	7	7	9	12	25	165
Ramis'l (mat)	32	26	57	59	10	56	37	33	29	50	55	8 .	525
Monthly and yearty statistics for previous record (Jun 1962 to Dec 1988-incomplete or miseing months total 0.3 years)													
Mran Avg	0.867	0787	0735	0 63:	0469	0332	0279	0293	0288	0401	0555	0127	0.529
flows Low	0351	0) 300	0216	0278	0200	0116	0088	0107	0151	0190	0193	0210	0.292
(m's ${ }^{-1}$) trigh	1574	18.38	1538	- 518	0886	0691	0862	0593	0917	1144	1112	1804	0754
Peak flow $\left.\{\mathrm{m})^{\prime} \mathrm{s}^{-1}\right\}$	1001	12.59	771	1334	11.30	813	1338	706	664	807	10 17	848	13.38
Runotf (mm)	38	31	32	27	20	14	12	13	12	17	23	32	271
Rainfall (mm)	62	47	62	54	59	58	53	66	52	53	69	63	698

Factors affecting flow regime. P I
Station type C

Grid reference 53 (TF) 402676 Level sin (m OD) 1490

Catchment area (sq km) 616
Max alt (m OD) 142

031002 Glen at Kates Brdg and King St Brdg

1989

Measurng authonty: NRA-A
Fusi year: 1960
Hydrometric suatistics for 1989

$\begin{array}{ll} \text { Flows } & \text { Avg. } \\ \left(m^{2} s^{-1}\right): ~ P e a k ~ \end{array}$	$\begin{aligned} & \text { JAN } \\ & 0.138 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 0.153 \end{aligned}$	MAR 0407	$\begin{aligned} & \text { APR } \\ & 2245 \end{aligned}$	$\begin{aligned} & \text { MAY } \\ & 0364 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~N} \\ & 0.211 \end{aligned}$	$\begin{aligned} & \mu \\ & 0144 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 0075 \end{aligned}$	$\begin{aligned} & \text { SFP } \\ & 0083 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 0051 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 0.064 \end{aligned}$	$\begin{aligned} & \text { O¢C } \\ & 1.293 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 0.436 \end{aligned}$
Rumotf (mm)	1	1	3	17	3	2	1	1	1	0	0	10	40
Ramsal inms	25	29	46	99	31	64	45	39	39	42	45	86	590
Montily and yearty statistics for previous record (Oct 1960 to Doc 1988)													
Mean Avg.	2.145	2535	2410	1922	1.489	0801	0.439	0374	0.319	0.533	0.846	1.408	1.262
Sows Low	0093	0.048	0033	0018	0008	0004	0000	0001	0008	0024	0020	0078	0154
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	6.351	10.110	6317	4.903	5060	2. 182	1465	1615	1873	2810	5552	7.868	2.333
Peok now ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)													
Runotf (mm)	17	18	19	15	12	6	3	3	2	4	6	11	117
Remial (mm)	53	40	50	52	53	53	48	63	50	51	56	55	624
Factors affecting flow regime: GI										1989 runoff is 35\% of previous mean			

Factors affecting flow regirne: GI
Station type: FV

Grid reference: 53 (TF) 106149 Level \sin. (m OD): 6.10

Catchment ares (sq km): 341.9 Max alt. (m OO): 129

031007 Welland at Barrowden

Measuring authorily: NRA-A
First year 1968
Hydrometric statistics for 1989

		JAN	FEB	MAR	APR	may	JUN	M	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	1.468	1800	2.641	6192	1402	0706	0498	0310	0382	0332	0983	6.190	1.908
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$).	Peak	636	987	1165	2413	688	208	361	144	293	0.72	1283	3208	32.08
Rumotf (mm)		10	11	17	33	9	4	3	2	2	2	6	40	148
Rainfal (mm)		36	35	49	105	37	62	68	48	50	50	49	98	687

Mesn Avg	5.089	5079	4442	3027	1.730	1169	0.793	0.811	0670	1302	2090	3.536	2.467
flows low	0516	0.425	0352	0257	0232	0.159	0092	0154	0771	0226	0318	0410	1.034
($\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{H}$ High	10300	17030	9701	7700	7310	3.093	4.477	4500	4322	5150	6436	7509	3.667
Peak flow ($\mathrm{m}^{3} \mathrm{~s}$:)	5891	7442	10780	7943	4695	2744	3823	39.91	1255	2287	50.37	4013	107.80
Runotf (mm)	33	30	29	19	11	7	5	5	4	8	13	23	189
Planfall (mm)	58	43	55	46	56	58	51	66	49	51	57	58	648

Factors affecling flow rogime. S EI
Station typu. C

Grid reference: 42 (SP) 948999 Levelstn (m OD). 34.90

Catchment ares (sq km): 411.6 Max alt. (m OD): 228

1989 runoff is 77% of previous mean
ra:ntall 106\%

032003 Harpers Brook at Old Mill Bridge

Measuring authority: NRA.A
First year: 1938
Hydrometric statistics for 1989

		JAN	Fe8	MAR	APR	MAY	Jun	JUL	AUG	StP	OCT	NOV	DEC	Year
Flows	A	0241	0266	0.432	1049	0.251	0.143	0.135	0102	0132	0095	0251	1070	0.348
$\left(\mathrm{m}^{3} \mathrm{~S}_{6}-1\right)^{\text {d }}$.	Peak	080	080	275	427	162	048	107	060	152	029	406	705	7.05
Runoff (mm)		9	9	16	37	9	5	5	4	5	3	9	39	148
Rainfall (mm)		32	32	47	103	41	48	50	46	59	41	50	95	644

Mean Avg.	0794	0810	0723	0488	0312	0.201	0.147	0154	0143	0218	0429	0581	0.415
flows Low	0.097	0080	0076	0066	0056	0049	0052	0048	0049	0057	0.069	0077	0.159
$\left(\mathrm{m}^{\prime} \mathbf{s}^{-1}\right) \quad \mathrm{H} \mathrm{k}_{\mathrm{g}} \mathrm{h}$	2766	2.485	2.363	1334	1.746	0606	0685	0.791	1147	1176	1.688	1.762	0.676
Pesk flow (m's ${ }^{\text {- }}$)	1606	1858	1701	2200	1865	1054	1249	2050	727	1658	1174	1790	22.00
Runoff (mm)	29	27	26	17	: 1	7	5	6	5	8	15	21	178
Rainfat (mm)	58	42	49	43	52	52	52	63	49	54	60	56	630

Factors affectung flow regime: N
Station type: CC
Grid reference 42 (SP1 983799
Level stn (m OO) 3030
Catchment area (sq km): 743
Max alt. (m OD). 146

1989 runoff is 84% of prevrous mean rainfall 102\%

033012 Kym at Meagre Farm

Measuring authorily: NRA A
First year: 1960
Hydrometric statistics for 1989

	JAN	${ }^{\text {feb }}$	MAR	APH 2076	MAY 0181	JUN 0054	JUL	AUG 0024	SEP 0043	OCT 0034	NOV 0.083	$\begin{aligned} & D \in C \\ & 2168 \end{aligned}$	Yos 0.559
	$\begin{array}{r} 0454 \\ 284 \end{array}$	$\begin{array}{r} 0572 \\ 7.00 \end{array}$	$\begin{aligned} & 0.977 \\ & 1280 \end{aligned}$	$\begin{aligned} & 2076 \\ & 1140 \end{aligned}$	$\begin{array}{r} 0181 \\ 069 \end{array}$	017	0.32	010	022	009	067	16.20	1620
Runotf (mm)	9	10	19	39	4	1	1	0	1	1	2	42	128
Rain!all (mm)	29	35	50	94	27	44	37	43	46	36	43	110	594
Monthly and yearly statistics for previous record (May 1980 to Dec 1988 -incomplete or missing monthe total 0.1 years)													
Mesn Avg.	1414	1.380	1189	0779	0377	0241	0.141	0106	0055	0419	0652	0972	0.641
Sows low	0074	0.047	0044	0041	0024	0009	0001	0004	0017	0015	0022	0050	0.103
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Hight	3.296	5577	3474	2107	1469	1489	2438	1096	0.158	3.515	3718	3328	1.048
Peak flow ($\mathrm{m}^{3} \mathrm{~s}{ }^{1}$)	2526	2270	3024	3075	2061	24 i0	1668	2342	210	25.91	34.71	3398	34.71
Ruanfl (mm)	28	24	23	: 5	7	5	3	2	1	8	12	19	147
Raintall (mm)	50	38	47	47	53	58	50	57	4)	53	54	55	609

Factors affecting fow regime El
Gind reference: 52 (TL) 15563 ;
atchment area (sq km). 137.5 level sin. (m ODJ: 17.20

Station type. CB

1989 runotf is 87% of previous mean rainfall 98\%

033013 Sapiston at Rectory Bridge

Veasuring authority NRA-A
First year 1949
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	JUN	M	AUS	SEP	OCT	NOV	$v \in C$	Year
Flows Avg	0871	0813	$123 *$	0986	0)446	0331	0228	0155	0131	0.133	0172	0460	0.495
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) Peak	188	303	530	259	074	055	040	0.35	015	023	032	256	5.30
Runots (mm)	11	10	16	12	6	4	3	2	2	2	2	6	76
Hainfall (mm)	41	41	53	64	5	67	33	38	13	40	33	98	526
Monthly and yearly statistics for previous record (Jan 1949 to Dec 1988 -incomplete or missing montis total 2.8 years)													
Mean Avg	1247	1238	1057	0816	0615	0.470	0326	0304	0300	0415	0.630	0862	0687
flows Low	0226	0221	0150	0079	0193	0133	0015	0045	0051	0066	0087	0.139	0219
($\mathrm{m}^{3} \mathrm{~s}^{-\prime}$) Hagh	3511	3295	2491	1947	1802	1.744	0651	1.441	1682	2922	2404	2396	1.141
Puak flow ($\mathrm{m}^{1} \mathrm{~s}^{-1}$)	1:00	1030	1085	876	73 i	520	2. 39	1059	8.95	1260	697	1045	1260
Hunotf (mm)	16	15	14	10	8	6	4	4	4	5	8	11	105
Rainfall (mm)* $\text { (} 1960 \cdot 1988\}$	53	35	45	44	48	51	52	52	54	57	61	54	606
Factors affecting flow regime GEI Station type TP										1989 runoff is 72% of previous mean raınfall 87\%			

033024 Cam at Dernford

1989

Measuring authority: NRA.A
First year. 1949
Hydrometric statistics for 1989

		JAN	FFB	MAR	APR	MAY	JN	π	AUG	SEP	$0 \subset 1$	NOV	DEC	Year
Fkows	Avg	0328	1055	1319	1351	0843	0609	0585	0432	0370	0381	0381	0996	0.789
(m's-')	Pejk	2.30	b 21	894	391	109	083	248	054	047	071	049	7.87	8.94
Runatf (mm)		13	13	18	18	11	8	8	6	5	5	5	13	123
Ruanfall (mm)		35	42	50	72	6	37	73	32	17	44	24	120	552

Monthly and yearly statistics for previous record (Mar 1949 to Dec 1988 -incomplete or missing months total 1.3 yeara)

Mean	Avg	1471	1496	1367	1205	0994	079 :	0639	0.609	0581	0766	0366	1186	1004
fows	low	0449	0400	0562	0465	0.408	0318	0184	0248	0.155	0313	0.361	0356	0.416
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	High	3592.	2103	2608	2431	2144	1.338	1608	1.542	1965	2970	2790	3.492	1506
Peak flow	$\mathrm{m}^{3} \cdot{ }^{-1}$	1330	1409	1022	994	13.63	694	528	1070	10.99	1270	1250	1206	14.09
Runotf (mm		20	18	18	16	13	10	9	8	8	10	13	16	160
Rainfoll (m		50	38	43	41	48	50	54	59	53	54	58	53	601

factors affecting flow regime: GEI
Station type TP

Grid reference: 52 (TL) 466506
Level sin (m OD) 14.70

Catchment area (sq km) 2059
Catchment area (sq km) 205.9
Max alt (m OD): 97
id reference 52 (TL) 89679
Level stn. (m OD) 15.60
raınfall 87%
\qquad
\qquad
033032 Heacham at Heacham

Measuring authority: NRA-A
First year: 1965
Hydrometric statistics for 1989

	JAN	FEb	MAR	APA	may	JuN	He	AUG	SEP	OCT	Nov	DEC	Year
Hows Avg.	0111	0116	0121	0131	0.134	0114	0095	0072	0080	0051	0047	0051	0.092
$(\mathrm{m})^{-1}$). Peak	0.14	020	013	016	016	0.22	0.3	009	010	008	007	0.08	0.22
Punotf (mm)	5	5	5	6	6	5	4	3	3	2	2	2	49
Rainfel (mm)	36	35	49	64	13	66	49	40	53	44	38	82	589
Monthly and yearly statistics for previous record (Nov 1965 to Dec 1988)													
Mean Avg.	0242	0333	0338	0320	0.279	0233	0182	0151	0132	0126	0128	0173	0.219
flows Low	0064	0067	0011	0072	0068	0060	0043	0.034	0033	0047	0050	0058	0063
(m) s^{-1}) Hrgh	0435	0671	0671	0716	0636	0441	0300	0.256	0371	0399	0319	0327	0331
Peak flow fin's ${ }^{\text {a }}$)	070	095	104	111	082	090	068	1.21	0.52	053	047	045	121
Runoti (mm)	11	14	15	14	13	10	8	7	6	6	6	8	117
Rainfall (mm)	60	42	54	48	61	56	59	63	55	58	73	63	692

Factors affecting flow regime G I
Station type C

Grid reference: 53 (Tf) 685375
Level stn (in OD) 940

Catchment area (sq kmi): 59.0 Max alt (m OD) 88

034001 Yare at Colney

Metusuring authority NRA.A
First year 1959
Hydrometric statistics for 1989

	JAN	Fer	MAR	APA	Mav	Juv	Jul	AUG	S¢P
Flows Avg	1458	1284	2.361	1.815	0812	0515	0552	0.377	0366
($\mathrm{m}^{\text {' }}{ }^{-1}$): Puak	291	284	503	535	151	101	1.92	053	0.78
Runoff (mm)	17	13	27	20	9	6	6	4	4
Rainfall (mm)	32	41	58	65	9	79	36	31	22
Monthly and yearty statistics for previous record (Oct 1959 to Dec 1988)									
Mean Avg.	2698	2569	2086	1782	1128	0.765	0625	0632	0.704
flows Low	0779	0947	0842	0623	0462	0285	0.189	0200	0272
(m's ${ }^{-1}$) Hegh	5181	4.931	4783	3442	2.487	2069	1580	2.481	3420
Peak !low ($\mathrm{m}^{1} \mathrm{~s}^{-}$)	1897	-863	1690	2051	10:0	401	7.39	1692	2161
Runoff (mm)	31	27	24	20	13	9	7	7	8
Rainfal (mm)	60	41	48	48	48	52	57	59	54

Factors affectung flow regime: G I
Station type MIS

Grid reference. 63 (TG) 182082 Level \sin (m OD) 8.20
tathon type. MIS

Catchmen: ares (sq km) 231.8 Max alt (m OD) 69

OCT	NOV	DEC	Yeat
0396	0492	1394	0.985
074	0.84	5.77	5.77
5	6	16	134
43	43	98	557
1000	1485	2176	1466
0381	0440	0714	0.770
3.798	3971	5904	2.230
1300	1120	2115	2161
12	17	25	200
61	68	63	659

1989 runoff is 67% of provicus mean raintall 85%

034003 Bure at Ingworth

1989

Measuring authonty: NRA.A
First year: 1959
Hydrometric statistics for 1989

	JAN	FEB	mar	APH	MAY	SN	0	AUG	SEP	OCT	MOV	DEC	Year
Flows Avg	1.079	0978	1.071	1.215	0.799	0700	0.711	0675	0700	0.714	0.876	1.396	0909
$\left.\left(m^{3}\right)^{-1}\right)$: Peak	148	131	1.30	324	1.06	154	2.00	1.21	1.19	089	1.51	400	4.00
Runoff (trm)	18	14	17	19	13	11	12	11	11	12	14	23	174
Raunfal (mm)	31	37	42	63	12	80	41	47	41	42	45	93	574
Monthly and yearty statistics for previous record whi 1959 to Dec 1988)													
Mean Avg.	1.578	1.473	1.308	1238	1001	0809	0.790	0814	0859	1.018	1240	1398	1.125
nows Low	0844	0844	0.779	0688	0600	0495	0.493	0497	0.548	0671	0688	0941	0.798
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Hagh	2.450	2.954	2.115	2322	1.639	1.168	1.158	1955	1.823	2428	2024	2.560	1.488
Pask fow (m)'s ${ }^{\text {d }}$	8.27	1065	645	1830	607	379	3.47	12.82	926	10.17	10.05	963	18.30
Rumoti (mm)	26	22	21	19	16	13	13	13	14	11	20	23	218
Raunfall (mon)	63	41	51	49	49	49	60	60	56	63	73	66	680

Factors affecting flow regime: GI
Statan type: MIS

Gnd reference: 63 (TG) 192296 lovel stn (m OO): 12.20

Catchment arca (sq km): 164.7 Max ah. (m OO): 101

1989 nunoff is 81\% of provious mean ramfall 84\%

035003 Alde at Farnham

037001 Roding at Redbridge

Measuring suthority. NRA-T
First year 1950
Hydrometric statistics for 1989

	JAN	fer	MAR	APR	MAY	JN	Jut	Aur;	SEP	OCT	NOV	OrC	Year
Flows Avg	1199	2156	3.825	3710	0599	0408	0398	0300	0.272	0337	0364	2.954	1373
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$. Poak	392	1590	2360	1320	1.85	597	2.61	457	11.60	220	214	$1 / 20$	23.60
Runoff (mm)	11	17	34	32	5	3	4	3	2	3	3	26	143
Rannall (mm)	30	42	59	79	7	40	55	38	20	44	24	116	554
Monthly and yearty statistics for provious record (Fob 9950 to Dec 1988)													
Meen Avg	3.891	3439	2.766	1922	1229	0) 856	0643	0683	0846	1441	2199	2.926	1.897
flows Low	0675	0.608	0.537	0482	0323	0226	0280	0224	0.197	0283	0412	0412	0.801
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{Hagh}$	10920	10610	6858	6.168	4045	2353	1975	3925	4012	7883	10340	9454	2.809
Paek flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	4200	3080	3808	27.72	3270	2170	24.50	3130	2562	3560	6241	3640	62.41
Runotf (mm)	34	28	24	16	11	7	6	6	7	13	19	26	197
Rainial (mm)	53	41	46	42	50	52	53	57	57	57	62	56	628
Factors affecting flow rogime. SEI Siation type EW										1989 runoff is 72% of previous mean rainfall 88\%			

037005 Colne at Lexden

Measuring authority. NRA-A
First year 1959.
Hydrometric'siatistics for 1989

	JAN	FE日	MAR	APR	may	Jun	ars	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	1.179	1410	2033	1839	0578	0398	0445	0287	0.283	0337	0425	1279	0.872
$\left(m^{\prime} s^{-1}\right)$. Peak	387	780	12.44	725	104	097	179	050	066	037	094	727	12.44
Rumoty (mm)	13	14	23	20	7	4	5	3	3	4	5	14	115
Rainfall \{mms	36	40	51	75	6	53	56	36	12	38	24	102	529
Monthly and yearly statistics for previous record (Oct 1959 to Doc 1988)													
Mean Avg	2.117	1773	1.670	1228	0801	0505	0.373	0367	0399	0779	1172	1522	1.058
fows Low	0460	0346	0380	0358	0229	0146	0100	0088	0.179	0188	0288	0352	0.362
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	6.543	4684	3.556	3344	2353	1528	0907	1558	1099	4838	5521	4200	1.732
Peak flow (m) ${ }^{-1}$)	21.13	2265	2068	1334	12.56	807	641	886	1050	2480	21.29	2.058	24.80
Runofl (mm)	24	18	19	13	9	5	4	4	4	9	13	17	140
Rantall (mm)	49	33	45	41	46	48	48	50	51	55	58	53	577
Factors affocting flow regime: RP I 1989													

Station type FL

Grid reference 52 (TL) 962261 Level stn (m OD) 820

Catchment area (scl kmf. 2382
Max alt. (m OD): 114
9 runoff is 72% of previous mean
rainfall 88\%

Grid reference 51 (TO) 415884 Lovel s:n (m OD). 570

037010 Blackwater at Appleford Bridge

Measuring authority NRA.A
first year: 1962
Hydrometric statistics for 1989

	JAN	FEB	MAR	ADR	MAY	JUN	-	AJG	SEP	OCT	vov	Dic.	Year
Flows Avg	1.345	1.468	2067	1839	0652	0751	1359	0475	0401	0487	1072	1.785	1.140
$\left(m^{\prime}{ }^{\prime}{ }^{1 /}\right.$) Pork	4.83	744	1110	688	164	168	367	099	0.65	106	200	770	11.10
Runotf (mm)	15	14	22	19	7	8	15	5	4	5	11	19	145
Ramial (rmm)	34	39	49	71	7	44	65	39	13	; 40	24	105	530
Monthly and yearty statistics for previous record (Oct 1962 to Dec 1988)													
Mean Avg	2203	1929	1926	1477	1009	0738	0535	05.8	0537	0840	1186	1641	1.209
flows Low	0532	0460	0479	0479	0341	0356	0.187	0.161	0215	0288	0325	0379	0.822
(m's: ${ }^{\text {d }}$) High	7181	4889	3583	3843	2860	1583	1007	1741	1651	4.955	4.678	4.307	1.659
Pask fow (m) ${ }^{\text {c }}{ }^{1}$)	2680	21.60	2000	1231	1780	7.75	410	1375	15.25	2608	2020	2160	26.80
Runoth (mm)	24	19	21	15	11	8	6	6	6	9	12	18	154
Rainfall (mm)	49	33	48	43	48	53	47	51	51	51	59	50	583

Factors affectim flow regime RP
Sialion type: FL

Grad reference 52 (TL) 845158
Level \sin (m OD): 14.60

Catchmont area (sq km): 2473
Max alt (m OD): 127

1989 runoff is 94% of previous mean raınfall 91\%

038001 Lee at Feildes Weir

Measuring authority: NRA-T
First year: 1879
Hydrometric statistics for 1989

\because		- JAN	FEB	MAR	APR	NAY	.JN	M	AUG	SEP	OCT	NTV	Dic	Yeat
Flows	Avg	3078	4640	6460	7973	2895	1754	2286	1087	0136	0758	0.893	7137	3.302
[$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Peak	1170	45.90	57.10	2970	656	356	1200	433	340	334	239	$5) 20$	57.20
Runoff (mm)		8	11	17	20	7	4	6	3	2	2	2	18	101
Rainfol (mm)		35	46	56	92	8	37	10	36	20	49	28	129	606

Monthly and yearty statistics for previous record (Jun 1879 to Dec 1988 —incomplete or missing monthe total 24 years)

Moan	Avg	7554	7718	6611	4952	3927	284°	$2 \cdot 89$	2005	1882	3010	4609	6230	4.446
flows:	low	0866	0659	0460	0484	0302	0224	0.081	0085	0132	0162	0416	0553	0.802
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	21610	27570	29430	18110	12640	12620	10320	10580	7063	16190	15.570	19760	10.353
Peak fow	$\mathrm{n}^{\prime}{ }^{\text {') }}$	8500	74.30	8840	5220	9690	65.30	2600	2750	49.56	73.60	5230	77.00	96.90
Runoft imm		20	18	17	12	10	7	6	5	5.	8	12	16	135
Rasinfal im $^{\text {a }}$		58	41	47	43	51	51	55	58	55	62	65	5)	643

(1936.1988)

Foctors affecting flow regime PGEI
Station type: MIS

Grid reference: 52 (TL) 390092 Leval stn. (m OD): 27.70

Catchment area (sq km): 10360 Max alt. (m OD) 229

1989 runoff is 74% of provious mean rainfall 94\%
\qquad
038018 Upper Lee at Water Hall

Measuring suthonty: NRA T
First year 1971
Hydrometric statistics for 1989

Grid refarence 52 (TL) 299099 Leval sin (m OD): 4360

Catchment area (sq km): 1500 Max att. (m OD): 229

038021 Turkey Brook at Albany Park

	JAN	Fect	MAR	APK	Nay	.JUN	\checkmark	AUG	SEP	CCT	NOV	DEC	Yoar
Flows Arg	0.111	0272	0437	0518	0048	0031	0021	0018	0027	0033	0036	0542	0.174
(m's ${ }^{-1}$) Peak	0.60	362	7.68	412	037	031	087	0.34	179	067	0.25	752	$\cdot 7.68$
Runoff (mm)	7	16	28	37.	3	2	2	1	2	2	2	34	130
Rainfall (mm)	34	51	74	94	10	35	38	51	34	56	28	133	638
Monthly and yearty statistics for previous record (Sep 1971 to Dec 1988)													
Meon Avg.	0454	0344	0363) 222	0182	0099	0044	0056	0060	0193	0253	0324	0.216
Hows Low	0037	0.042	0024	0020	0014	0021	0013	0008	0012	0016	0019	0086	0.057
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.180	0988	0811	0626	0626	0240	0087	0171	0.228	0.941	1.158	0.704	0.339
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1050	1100	5.14	7.77	2069	1530	238	2.76	755	1070	12.75	1050	20.69
Runotf (mm)	29	20	23	14	12	6	3	4	4	12	16	21	161
Painfal (mm)	63	41	61	45	62	55	46	53	61	66	62	61	676
Factors affecting flow regume PG Station type: FV										1989 runoff is 81% of provious mean raınfall 94\%			

Measuring authority: NRA.T
First year: 1971
Hydrometric statistics for 1989

Factors affecting flow regume PG
Factors rffecting
Station type: $F V$

Grad reference 51 (TO) 359985 Level stn. (m OD): 16.60

Catchment arta (sq km): 422
Max alt. (m OO): 127
Measuring authority: NRA T
First year: 1938

Grid roference: 41 (SU) 568935 Level \sin. (m OO): 46.00

Catctument aros (sq km): 3444.7 Max alt. (m OO): 330
Hydrometric statistics for 1989

$\begin{aligned} & \text { Flows Avg } \\ & \mathrm{im}_{3}-1 \text { : } \text { Peak } \end{aligned}$	$\begin{aligned} & \text { JAN } \\ & 13.850 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 28.050 \end{aligned}$	$\begin{aligned} & \text { MAR } \\ & 47.100 \end{aligned}$	$\begin{gathered} \text { APR } \\ 39.570 \end{gathered}$	$\begin{aligned} & \text { MAAY } \\ & 14480 \end{aligned}$	$\begin{aligned} & \text { UN } \\ & 6928 \end{aligned}$	$\begin{aligned} & \Omega 8 \\ & 4235 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 2.936 \end{aligned}$	$\begin{aligned} & \text { SEP } \\ & \mathbf{3 . 0 2 2} \end{aligned}$	$\begin{aligned} & 0 \subset 1 \\ & 4427 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 11.690 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 66.530 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 20.225 \end{aligned}$
Pumott (mm)	11	20	37	30	11	5	3	2	2	3	9	52	185
Ranfal (mm)	35	69	60	76	17	41	34	41	39	80	47	134	673
Monthly and yearty statistics for previous record (Oct 1938 to Dec 1988)													
Mean Avg.	56090	56.720	45.980	31.110	20930	14800	8679	7360	8.728	15140	31.700	44.740	28.361
flows Low	6250	5.554	5620	4.253	2.855	1 502	0.399	0296	1.741	2.778	4040	5.312	10.095
$\mathrm{lns}^{-1} \mathrm{l}$ Hegh	133600	120800	163200	85070	61.140	41.560	48820	18690	38630	74570	128.100	128.700	51.292
Pesk flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)													
Rumotf (mms	44	40	36	23	16	11	7	6	7	12	24	35	260
Rasial immi	67	47	54	46	60	55	54	68	60	64	71	71	717

Factors affoctung flow regime: P EI
Station type: MIS

1989 numolf is 71% of provious mean rainfall 94\%

039005 Beverley Brook at Wimbledon Common

Measunng authority NRA-T First yoar: 1935
Hydrometric statistics for 1989

	JAN	FEB	MAR	APA	MAY	JUN	Ω	AUS	SEP	OCT	HXJV	DEC	Yois
Flows Avg.	0467	0570	0716	0766	0424	0466	0402	0468	0.346	0422	0405	0937	0.533
(m^{3} 's '). Poak	261	467	6.58	- 684	070	430	3.27	810	119	487	587	1230	12.30
Runoty (mm)	29	32	44	46	26	28	25	29	21	26	24	58	385
Hanfall (mm)	31	41	63	83	3	38	25	59	14	53	30	121	581

Monthty and yearty statistics for previous record (Mar 1935 to Dec 1988 -incomplete or missing monthe total 23.4 years)

Mean Avg	0.724	0597	0569	0.544	0482	0478	0434	0445	0498	0521	0.590	0632	0.543
flows Low	0280	0244	0290	0257	0214	0157	0211	0189	0224	0160	0.274	0.247	0.291
(in's ') High	1237	1.198	1023	1538	1092	0956	0920	0970	1340	1321	1415	1057	0.695
Peak flow (m's - ')	1090	904	751	2240	1480	129	1651	11.30	- 650	1590	1090	1400	22.40
Runoff (mm)	44	33	35	32	30	78	27	27	30	32	35	39	393
Ramioll (mm)	59	38	47	41	52	54	50	56	58	62	64	62	643

Factors affocting flow rexyime: GE $\quad 1989$ runoff is 98% of previous mean
Station type: FL

Grid reference 51 (TO1 216717
Catchment area (sa km): 436 Level sin (m OO): 11.00
ramfall 87%

039014 Ver at Hansteads

Measuring euthorily NRA.T
First year: 1956
Hydrometric statistics for 1989

	JAN	FE8	MAR	APR	MAY	J0N	JUL	AUG	SEP	OCT	NOV	DEC ${ }^{\circ}$	Year
Flows Avg	0235	0239	0318	0378	0270	0199	0146	0120	0084	0077	0078	0229	0.198
[$\mathrm{m}^{\prime} \mathrm{s}^{-1}$]. Peak	057	0.78	100	086	047	035	051	036	0.12	044	026	104	1.04
Runot (mm)	5	4	6	7	5	4	3	2	2	2	2.	5	47
Rainfay (mm)	39	57	64	97	- 0	33	47	41	15	61	36	i55	655
Monthly and yearty statistics for previous record (Oct 1956 to Dec 1988)													
Mean Avg	0484	0546	0578	0553	0.491	0426	0.358	0314	0281	0305	0.358	0410	0.425
flows Low	0126	0190	0138	0114	0069	0045	0028	0016	0025	0057	0039	0048	0.095
($\mathrm{m}^{3} \mathrm{~s}^{-2}$) Hagh	0981	1336	1.312	1254	1028	0857	0651	0564	0660	0668	0791	0.977	0.752
Pesk flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	177	191	188	190	207	1.65	1.44	113	234	150	231	2.64	2.64
Runots (mm)	10	10	12	11	10	8	7	6	6	6	1	8	102
Rasiall (mm)	65	46	58	50	57	60	54	58	62	68	67	71	716

Factors affecting flow regime G
Station type. CC

Grid reterence $52(\mathrm{TL}) 151016$
Level $\sin (\mathrm{mOD}) 6130$
Catchment ares (sq km): 1320 Max alt. (mOD): 243
Hydrometric statistics for 1989

989 runoff is 46% of previous mean ranfall 91%

039016 Kennet at Theale

Measuring authonity: NRA.T
Firsi year: 1961
Firsi year: 1961
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	may	JUN	Jul	AUG	SEP	$\bigcirc \subset$	NOV	DEC	Year
Flows Avg	6096	8286	11970	11.620	8500	6268	5.104	3942	3853	3.594	4393	10530	7.008
(m's ${ }^{-1}$) Peak	7.92	2260	2510	2270	1080	8.97	1350	539	5.79	652	741	4060	40.60
Runoft (mm)	16	19	31	29	22	16	13	10	10	9	11	27	214
Rasiall (mm)	41	79	76	69	19	33	37	49	25	72.	47	158	705
Monthly and yearty statistics for previous record (Oet 1961 to Dec 1988)													
Mean Avy	13.380	14760	14760	12760	10450	8682	6543	5789	5421	6220	8001	10.210	9.722
fows Low	4144	4401	4.190	3429	2.739	2.041	1.620	:. 377	2.787	3897	3943	5159	4056
(:n's 't High	22680	23910	220:0	19790	15430	18600	11120	9542	10000	13970	17710	18240	12.882
Peak flow (m's - ${ }^{\text {- }}$	4830	4480	4430	3690	3010	5980	1900	2050	3340	2960	4350	4730	59.80
Rumoff (mm)	35	35	38	32	27	22	17	15	14	16	20	26	297
Rainfell (mm)	75	48	70	50	64	62	49	67	67	63	75	79	775

Faciors affectung flow regime: RGI
Siation iype: C

Grad reforence 41 (SU) 649708
Level stn (m CO) 43.40

Caichment ares (sq km): 1033.4 Max all (m OD) 297

1989 runoff is 72% of previous mean ra:nfall 91%

Measuring authority. NRA.T
First yoar: 1962
Hydrometric statistics for 1989

actors affecting flow regime R
Station typo. C

Grid reference: 41 (SU) 470682
Level stn. (m OD) 7560

Catchment area (sq km) 2341 Max alt (m OD): 261

039021 Cherwell at Enslow Mill

Measuring authority: NRA-T Firsi year 1965

Hydrometric statistics for 1989

	JAN	+68	MAA	APR	MAY	UN	JUL	AUG;	SEP	OCT	Nov	$0 \in C$	Year
Flows Avg.	2224	3451	5620	6800	2423	1245	0.918	0701	0781	0.889	2083	7772	2.907
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}\right.$: Peak	400	1320	1170	1440	431	198	218	105	237	187	810	1900	19.00
Runolf (mm)	11	15	27	32	12	6	4	3	4	4	10	38	166
Rainfall (mm)	35	54	51	86	13	46	37	42	47	67	53	114	651
Monthly and yearly statistics for previous record (Feb 1985 to Dec 1988)													
Mean Avg	7474	7183	6435	4451	3407	2448	1549	1455	1400	2.165	3289	5728	3.902
flows Low	0.919	0905	0754	0566	0445	0309	0156	0132	0479	0630	0730	0915	1.370
$\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right\} \quad \mathrm{High}$	12040	15900	12090	8710	8.674	6632	4997	2.618	4610	5780	8567	13330	5.373
Peak flow (m 's ${ }^{\prime}{ }^{\text {' }}$)	22.50	2380	2670	2070	1930	1760	2450	1030	980	1740	2200	3020	3020
Rurnots (mm)	36	32	31	2:	17	12	8	. 7	7	$1 i$	15	28	223
Rainfall (mm)	62	44	51	43	61	60	55	65	56	57	58	67	685

Faciors affecting flow regime PE
Station iype: C

Gind relerence 42 (SP) 482 183 Leval sin (m OD) 6500

Catchment area (sq km) 5517
Max ats (m OD): 239

1989 runoff is 74% of previous mean tainfall 95\%

039023 Wye at Hedsor

Measuring authority NRA.T
First year: 1964
Hydrometric statistics for 1989

	Jav	rfa	MAR	$A^{\text {P }}$ A	VAY	JUง	Jux	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg	0740	0751	0835	0.891	0783	0746	0678	0652	0.629	0682	0585	0173	0.729
(m's 'r Peak	188	193	171	171	206	1.12	160	283	1.99	1.80	184	319	3.19
Runotf (mm)	14	13	16	17	15	14	13	13	12	13	11	15	167
Raintall (mm)	42	71	70	80	16	32	30	52	39	66	39	155	892
Monthly and yearly statistics for previous record (Oec 1984 to Dec 1988)													
Mann Avg	0982	1081	1180	1210	1179	1138	1034	0981	0887	0852	0842	0880	1.020
flows Low	0419	0483	0488	0470	0432	0380	0370	0314	0381	0395	0375	0340	0.442
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) H igh	1518	1933	1.976	1891	1.842	1.582	1434	1311	1.187	1.180	1329	1373	1.365
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	349	276	321	326	398	351	294	417	4.43	3.15	279	285	4.43
Runoff (mm)	19	19	23	23	23	2.	20	19	17	17	16	17	234
Raintall (mml	72	48	62	52	66	63	57	66	67	69	70	76	768

Factors affecting flow regime: G I
Station type: C

Grad reference. 41 (SU) 896867
Level \sin. (m OD). 2680

Catchment arta $(\mathrm{sq} \mathrm{km}): 1373$ Max alt (m OD): 244
runoft is 71% of prevrous mean
rainfall 90%

039029 Tillingbourne at Shalford

Measuring authority. NRA.T
first year 1968
Hydrometric statistics for 1989

	JAN	FEE	MAR	APA	MAY	JUN	NL	AUS	SEP
Flows Avg	0518	0565	0616	0579	0444	0413	0373	0371	0367
(m's ' ') Poak	0.61	127	1.20	1.29	085	082	058	054	052
Rumotf (mm)	24	23	28	25	20	18	17	17	16
Rainfall (mm)	35	12	83	88	10	58	25	36	24
Monthly and yearty statistics for previous record (Jun 1988 to Dec 1988)									
Mean Avg	0.682	0644	0639	0609	0571	0519	0473	0467	0488
flows Low	0457	0423	0398	0398	0.376	0353	0340	0.326	0357
(m's ') High	0998	0909	0900	0897	0819	0830	0599	0619	0885
Poak fow (m's ${ }^{-1}$)	4.54	304	323	300	191	2.79	165	236	6.09
Runolf (mm)	31	27	29	27	26	23	21	21	21
Rantall (mm)	88	47	7 i	53	64	57	53	62	75

Factors affocting flow rogime: NGI
Station type: C

Grid reffrence 51 (TQ) 000478 Level sin (m OD): 3170

Catchment area (sq km). 59.0 Max alt. (m OO): 294

Measuring authority: NRA.T
Furst year: 1973
Hydrometric statistics for 1989

	JAN	FEB	MAR	APP	MAY	${ }^{4} \mathrm{~N}$	S	aug	SEP	OCI	NOV	OfC	Yeat
flows Avg	0.159	0272	0396	0374	0.067	0082	0.130	0.113	0067	0143	0118	0.565	0.207
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	2.50	416	626	339	041	296	1520	8.14	098	684	2.80	1320	15.20
Pumoft (mm)	15	23	37	33	6	7	12	10	6	13	11	52	225
Ranfal (mm)	36	49	72	81	8	31	45	43	13	64	32	133	607
Monthly and yearty statistics for previous record (Dec 1973 to Dec 1988 -incomplete or missing months total 4.4 vears)													
Mean Avg	0395	0265	0353	0.264	0.265	0.214	0144	0.128	0.135	0341	0351	0311	0.284
flows Low	0204	0.102	0.151	0030	0035	0061	0047	0053	0057	0062	0096	0106	0.178
(m's ${ }^{-1}$) Hight	0.790	0472	0676	0.574	0602	0643	0.231	0.204	0363	0904	1.086	0659	0.314
Peak how (m's ${ }^{-1}$)	900	620	8.89	1026	3980	32.80	1650	30.50	27.90	40.50	2430	3631	40.50
Punnotl (inm)	36	22	33	24	24	19	13	12	12	31	31	29	287
Ramial (mmil	63	36	64	46	72	60	50	52	66	76	62	58	705

Factors affecting flow regime
Station type: FV

Grid reference: 51 (TG) 217895 Level sin. (m OD): 39.90

Catchment area (sq km): 29.0 Max att (m 00) : 146
ranfall 86%

039069 Mole at Kinnersley Manor

Measuring authority: NRA.T
First year 1972
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	may	JW	Mr	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	1261	3219	3198	3347	0843	1065	0644	0577	0573	0.783	0.832	4285	1.781
(m^{3} 's '): Peak	308	2520	21.70	3040	1.70	9.90	415	179	229	352	420	3570	3570
Runoff (min)	24	55	72	61	16	19	12	11	10	15	15	81	391
Rasntall (mm)	32	71	80	87	3	61	20	30	32	71	41	146	874
Monthty and yearty statistics for previous record (Dec 1972 to Dec 1988 -incomplete or missing months total 1.5 vears)													
Mean Avg	3.987	2.802	2679	1806	1480	0985	0680	0818	0996	2.119	2.444	3505	2.024
fows Low	1364	0829	0833	0388	0305	0221	0296	0169	0281	0207	0260	1071	0.950
(m3s \% High	9375	5883	4668	3666	3552	1874	1709	2864	5419	8486	5668	5474	2.424
Peak flow (m) ${ }^{\text {3 }}{ }^{1}$ 1)	41.90	4650	2230	4700	32.90	2330	1490	2980	4070	5640	5610	6850	88.50
Runott (mim)	75	48	51	33	28	18	13	15	18	40	45	66	450
Rainfall (mm)	82	50	69	46	62	58	49	60	68	92	80	91	807

Factors affercting flow regima: E
Station type MIS

Grid reference. 51 (TO) 262462
Level stn. (m OO): 4800
Catchment area (sq km): 1420 Max alt. (m OD): 178

1989 runotf is $8 / \%$ of previous mean
rainfall 84%

040004 Rother at Udiam

Measuring authority NRA.S
Grid reference. 51 (TQ) 773245
reference.
Level stn. (m OD): 1.90

Catchment area (sq km): 2060
Max alt (m OD): 197

Hydrometric statistics for $\mathbf{1 9 8 9}$

	JAN	FEB	MAR	APM	MAY	JUY	.J川	AUG	StP	OCT	NOV	OEC	Yoar
Flows Avg	0719	2348	3301	3855	0.582	0.350	0274	0213	0198	0150	0336	3784	1336
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Peak	558	1698	1713	2251	172	305	311	031	042	055	165	2491	24.91
Runotf (mm)	9	28	43	49	8	4	4	3	2	2	4	49	205
Rainfall (mm)	35	68	74	93	6	47	32	27	54	97	56	137	726
Monthly and yearty statistics for previous record (Oct 1962 to Dec 1988 -incomplete or missing months total 1.6 years)													
Man Avg	4.182	3.419	3214	2287	1378	0976	0649	0689	0843	1887	3146	3.529	2.178
flows Low	0945	0792	0657	0343	0338	0268	0231	0182	0245	0.179	0184	0427	0.758
(m's ' ${ }^{1}$) High	11.990	10.370	6927	4533	2817	4157	2790	2682	3952	10750	12.360	9.547	3.322
Peak flow (m's ${ }^{-1}$)	41.57	44.74	4984	2543	2409	2308	2220	14.36	3398	42.76	5043	5182	5182
Reunofy (mm)	54	40	42	29	18	12	8	9	11	25	40	46	334
Rainfal (\%mi)	88	59	74	55	59	61	53	64	77	90	100	89	869

Factors affecting flow regime: S GE
Stution type VA
1989 runoff is 61% of previous mean
rainfall 84\%

040009 Teise at Stone Bridge

Measuring authority. NRA.S
First year $1: 61$
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	JN	An	aug	SEP	OCT	NOV	OEC	Yose
Flows Avg	0463	0815	0806	1327.	0436	0846	0.861	0907	0905	0781	0589	1437	0.847
($\left.m^{\prime} s^{-1}\right)$. Peak	207	730	1441	1950	107	332	180	100	105	1.10	099	1301	19.50
Rurnotf (mm)	9	14	16	25	9	16	17	18	17	15	11	28	196
Rasifall (mm)	31	62	10	104	3	44	31	31	41	85	52	135	689
Monthly and yearly statistics for previous record (Oct 1981 to Dec 1988)													
Mean Avg	2546	2045	1864	1444	1103	0804	0586	0577	0697	1085	1736	1952	1.367
flows Low	0553	0522	0413	0323	0238	0130	6) 23 .	0100	0170	0128	0276	0471	0559
$\left(\mathrm{m}^{3} \mathrm{~s}\right.$; ${ }^{\text {\% }} \mathrm{High}$	5757	6241	3928	2781	2306	2628	1359	1132	2359	4786	6344	5334	2.101
Peak flow (m)')	4163	48.27	3443	2478	3895	2922	1381	1061	2388	2917	4712	4829	48.29
Runoff (mm)	50	37	31	27	22	15	12	11	13	21	33	38	317
Rainfall (:mm)	81	52	69	51	58	56	51	60	72	82	89.	83	804

Factors affecting flow regime: RPGE Station type. B VA

Grad roferonce: 51 (TQ) 718399 Leval sin (m OO): 24.50

Catchment area \{sq km): 1362 Max alt (m OD). 201

1989 runoff is 62% of provious mean rainfall 86%

Metasuring authority. NRA.S
First year 1964
Hydrometric statistics for 1989

	Jav	fe8	MAR	APR	NAY	.JN	JU.	ALG	SEP	OCt	MJV.	OEC	Year
Flows Avg	1111	2026	3139	4042	1558	: 304	1364	0918	1010	1057	1410	3021	1889
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{1}$ ') Puyk	263	826	121°	:795	263	233	308	230	406	292	479	1172	17.95
Runotf (mm)	14	14	24	30	12	10	11	8	8	¢	:1	23	173
Rainfall (mm)	27	47	65	97	2	53	39	21	41	73	48	108	621
Monthly and yearly statistics for previous record (Oet 1964 to Dec 1988 - incomplete or missing months total 0.3 years)													
Mean Avg	5449	4846	4503	3625	2872	2•14	- 858	1803	1910	2755	3669	4519	3.321
Hows Low	2293	2366	- 812	1654	: 324	1079	0965	0877	1119	1085	1328	1687	1808
(m)'s 't) High	10940	8189	9 OH6	7:44	581 :	3221	3229	3091	3626	8687	8195	9089	4.717
Peak llow (m's ${ }^{-1}$)	3108	2789	2810	3829	2505	-08)	-142	1199	2938	2718	2885	3044	38.29
Runolf (mon)	42	34	35	27	22	16	14	14	14	21	28	35	304
Rantall (mm)	16	49	61	48	54	51	59	57	70	18	83	74	760

Factors affecting flow regime GE
Station type. B VA

Geid reference 6: (TR) 116554
Level \sin (m OD) 12.50

Catchment area ($\mathrm{s} \cap \mathrm{km}$) 3450 Max alt (m OD). 205

1989 runoff is 57% of previous mean

 raı́all 82\%
040012 Darent at Hawley

Measuring authority NRA.S First year 1963

Hydrometric statistics for 1989

	JAN	PEB	MAh	Af\%	vay	. O	JUL	AUG	SEP	(x)	Nov	OCC	Year
flows Avg	0255	$\bigcirc 350$	0775	0917	0368	0 i57	0094	0019	0013	00:6	0014	0317	0274
(m's ') Peak	077	179	288	241) 86	()48	074	013	009	024	010	144	2.88
Runotf (tr.ep)	4	4	11	12	5	2	1	0	0	0	0	4	45
Ran n al (mm)	31	58	79	- 00	3	39	27	33	33	31	30	140	630
Monthly and yearly statistics for previous record (Dec 1963 to Dec 1988)													
Mear Avg	1026	1.026	0948	0838	0647	0489	0335	0301	0317	04:5	0575	0797	0.641
flows Low	0194	0219	0124	0174	0076	0041	0000	0000	0000	0000	0000	0011	0101
(m's ') High	2060	2076	1804	1515	- 509	0982	0617	0690	1817	1516	1448	1674	1.067
Puak fow (m) m^{-1})	579	392	403	309	1310	306	235	227	- 005	317	491	436	13.10
Plunotf (mm)	14	13	13	1:	9	7	5	4	4	6	8	11	106
Randal (mm)	71	45	60	5.	59	56	56	58	69	67	14	71	737

Factors affecing flow regime G
Station typo C

Grid reference 51 (TQ) 551718 Leveisin (m OD) 1120

Catchment area (sq km). 1914 Maxalt (m OD) 25

1989 runoff is 43% of previous mean raintall 85\%

041001 Nunningham Stream at Tilley Bridge
1989

Measuring duthority NRA.S First ycar. 1950
Hydrometric statistics for 1989

	JAN	FEB	NAF	${ }^{\text {APM }}$	NAY	. NJ	JUL	AUG	StP	OCT	sov	DEC	Year
Flows Ava	0062	O 129	0188	$0 \cdot 57$	0038	0023	0019	0021	0021	0023	0032	0490	0.100
(m's ') Park	037	154	188	188	008	0 (1)	005	004	006	008	011	582	582
Rumoff (mm)	10	18	30	24	6	4	3	3	3	4	5	78	187
Han'al (mm)	29	62	67	80	7	48	26	24	39	80	52	129	643
Monthty and yearly statistics for previous record (Apr 1950 to Dec 1988-incomplete or missing months total 0.1 years)													
Mean Avg	0438	0335	0245	$0 \cdot 46$	0079	0053	0033	0039	0053	0130	0296	0364	0.184
fows Low	0076	0094	0054	00.34	002.3	0012	00:0	0008	0009	0013	0019	0033	0.053
(m's ') High.	1108	0958	0577	0390	0195	0319	0) $2: 0$	0125	0359	0576	1017	1082	0.306
Puak fow (m)'s ${ }^{1}$)	884	860	849	594	620	792	189	932	892	882	:190	884	1190
Runotf (mm)	69	48	. 39	22	13	8	5	6	8	21	45	58	343
Rus ntal (mis)	85	58	61	49	53	55	57	72	75	91	98	94	848

Factors affecting flow regime R
Station Ivpe MIS

Grid referance 51 (TQ) 662129 Level stn (m OD) 3.80

Cutchment area (sq km) 169 Max alt (m OD) 137

989 runoth is 55\% of previous mean
rainfall 76%

041005 Ouse at Gold Bridge

Mossuring authority NRA-S
First year 1960 First year 1960
Hydrometric statistics for 1989

	JAN	758	NAP	A ${ }^{\text {P }}$	MAY	. UN $^{\text {d }}$	JU.	ALG	Str	OCT	NOV	OLC.	Yeat
Flows Avg	0887	1943	3260	3005	1054	0591	0676	0583	0591	0531	0561	2580	1.353
(m's ') Peak	203	1041	1311	1698	198	097	115	099	149	188	235	1804	18.04
Rursilf (mim)	13	26	48	43	16	9	10	9	8	8	8	38	236
Ra nta'l (mm)	34	68	82	B 1	4	38	16	32	36	77	51	141	. 672
Monthly and yearly statistics for previous record (Mar 1960 to Dec 1988 -incomplete or missing months total 0.3 years)													
Mean Avg	4449	3574	3107.	2392	1724	: 102	0681	0756	1040	- 998	3313	3511	2.298
fows Low	1142	1240	0793	0611	0450	0283	0219	0157	0230	0275	0384	0123	0.934
(m's ') High	10330	8214	6888	4318	3657	3829	1903	2458	4296	12660	12030	7657	3.334
Peak flow ($\mathrm{T}^{3} \mathrm{~S}^{-1}$)	4914	1185	2986	3157	2635	2791	1652	3315	4901	7371	8692	8106	8692
Ruinoff (mm)	66	48	46	34	26	16	10	$\cdot 1$	15	30	47	52	401
Rarn!al (mm)	88	54	69	58	62	62.	54	66	80	92	100	89	874
Factors affecting flow regime SRPGE Statmon type. CBVA										1989 runoff is 59% of provious mean rainfall 77\%			

Monthly and yearly statistics for previous record (Mar 1960 to Dec 1988 -incomplete or missing months total 0.3 years)

Grid reference. 51 (TQ) 429214 Level stn (m OD) 11.40

Catchment area (sq km) 1809 Max ylt (m OD): 203

041006 Uck at Isfield

Measuring authority: NRA-S
First year: 1964
Hydrometric statistics for 1989

	JAN	feb	MAR	APR	MAY	JN	M	aug	SEP	OCT	NOV	OEC	Year
Flows Avg.	0473	1.051	1.391	1.692	0438	0.275	0206	0.143	0.178	0.201	0336	1.854	0.684
(m3) ${ }^{-1}$): Peak	1.87	14.10	1025	45.22	083	1.07	205	049	093	090	1.17	3256	45.22
Punotf (0mm)	14	29	42	50	13	8	6	4	5	6	10	57	246
Rantal (tmm)	30	65	72	93	6	44	27	26	43	91	51	128	676
Morthly and vearty statistics for previous record (Dec 1984 to Dec 1988)													
Mean Avg	2.397	1789	1.437	1081	0755	0.520	0352	0360	0.524	1.078	1.706	1.984	1.163
flows Low	0579	0.627	0413	0.324	0252	0170	0142	0.106	0.170	0.160	0211	0342	0.480
$\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right) \mathrm{Hogh}$	6355	4195	3.317	2.183	1854	1.657	1489	1506	2868	6692	6.536	4033	1.945
Poak flow ($\mathrm{m}^{\prime} \mathbf{s}^{-1}$)	55.60	75.63	39.12	23.74	2897	29.59	4663	33.74	3640	6304	64.43	5558	75.63
Pamatf (mm)	73	50	44	32	23	15	11	11	15	33	50	61	418
Ranfoll (mm)	87	57	67	48	57	62	53	64	74	87	91	87	834
Factors affecting flow regime: E Station type: C										1989 runoff is 59\% of provious mean ranfal 81\%			

Gind reference: 51 (TO) 459190
level su. (m OD): 11.30

Catchument ares (sq kmi: 87.8 Max ati (m OD): 221 rainfal 81\%

041019 Arun at Alfoldean

Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	$4 \times$	\checkmark	AUG	SEP	0 CT	NOV	OEC	Yoar
flows Avg	0621	2105	3.184	2.169	0430	0306	0216	0184	0204	0259	0343	3.649	1.181
(m's-: P. Pesk	128	3475	3163	3019	098	164	124	035	057	098	137	5302	53.02
Runotf (mm)	12	47	61	40	8	6	4	4	4	5	6	70	288
Ranfall (mm)	29	69	81	79	3	43	21	25	27	71	42	138	628
Monthly and yearty statistics for previous record (May 1970 to Dec 1988 -incomplese or missing months total 01 years)													
Moan Avg	3.969	2444	2382	1.707	1117	0.726	0330	0394	0654	1.809	2.597	2.975	1.757
flows Low	0664	0689	0.469	0277	0223	0.131	0138	0078	0161	0.150	0.167	0492	0.589
(m's-1) High	10770	6708	4413	3829	3313	3055	1116	1618	5443	11.580	10030	6152	2845
Pook flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	68.63	6753	5445	7697	4748	4654	127	2386	3614	7112	6914	1165	77.65
Runoff (mm)	76	43	46	32	22	14	6	8	12	35	48	57	399
Rasfal (mm)	88	48	71	50	60	57	48	59	70	86	86	84	807
Factors affecting flow regime: E Station type: CC										1989 runotf is 67% of provious mean rainfall 78\%			

041027 Rother at Princes Marsh

Measuring authority NRA.S
Grid reterence 41 (SU) 772270
Level sin. (m OD). 5640
Catchment area (sq km): 372
First yoar 1972
Mox alt (m OD). 252
Hydrometric statistics for 1989

	JAN	FE8	MAR	APR	MAY	NN	M	AUK,	SrP	OCT	NOV	Of:	Year
Flows Avg	0493	0608	0801	0550	0260	0195	0163	0.144	0147	0.166	0.251	0865	0.387
(m's-1) Peak	107	531	702	8.75	048	082	047	042	030	059	109	198	8.75
RuxOH (mm)	36	39	58	38	19	14	12	10	10	12	17	67	328
Hainfall (mm)	40	103	109	82	9	43	34	42	39	101	54	179	835
Monthly and yearly statistics for previous record (Now 1972 to Dec 1988-incomplate or missing monthe total 0.3 yearal													
Mean Avg	0884	0700	0669	0498	0389	0282	0218	0.22 .7	0.275	0511	0605	0.789	0.503
flows Low	0.273	0320	0.237	0.194	0158	0121	0120	0106	0164	0165	0167	0348	0.288
$\left.\mathrm{ma}^{2} \mathrm{~s}^{-1}\right\} \mathrm{Hugh}$	1485	1.409	1220	0694	0641	0471	0300	0.493	0949	1088	1.855	1299	0.696
Poak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	15.63	1372	1071	683	7.20	468	$21 /$	455	1297	6803	1660	22.19	68.03
Runoff (mm)	64	46	48	35	28	20	16	16	19	31	42	51	427
Ramiall (mm)	99	55	83	46	65	54	57	63	79	97	86	104	888
Factors offec:ing flow regime: GE Station type C										1989 runoff is 77% of previous masen rainfall 94\%			

042003 Lymington at Brockenhurst Park

Masasuring authority. NRA.S
First year: 1960
Hydrometric statistics for 1989

Fhows$\left(\mathrm{m}^{\prime} \mathrm{s}^{-}\right)$	JAN	reb	MAR	APA	MAY	JUN	Ω	AUG	SFP	OCT	nov	OfC	Year
	0519	1448	2.058	1017	0225	0088	0087	0035	0052	0240	0515	2123	0.698
	1.69	1011	1011	:005	125	068	2.69	013	031	205	431	1003	1011
Runotf (mm) Rainial (mm)	14	35	56	27	6	2	2	1	1	7	14	58	222
	34	98	98	17	15	37	28	35	34	97	55	190	798
Monthly and yearty statistics for provious record (Oct 1960 to Dec 1988 -incomplete or missing months total 0.2 years)													
Mean Avg	1.872	1646	1466	1033	0802	0445	0242	0264	0437	1025	1370	1.569	1.012
f.ows Low	0330	0439	0327	0168	0128	0042	0013	0014	0084	0128	0198	0522	0.407
$\left\{m^{3} s^{-1}\right\}^{\text {r }}$ Hegh	3.723	3459	3089	2169	563	1247	1603	0847	2308	4841	5.283	3294	1.340
Peak flow (m's)	1013	1362	1013	1013	1398	7.95	1138	8.16	847	1128	1354	1491	14.91
Runotf (mm)	51	41	40	27	22	12	1	7	11	28	36	43	323
Ramtall (mm)	90	57	71	51	62	56	45	63	74	88	91	91	839

[^5]Station type VN

Grid reference. 41 (SU) 318019
Level stn. (m OD). 6.10

Catchment aree (sq km) 98.9 Max att (m OD): 114

042004 Test at Broadlands

Messuring authority NRA.S
First year 1957
Hydrometric statistics for 1989

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1988 -incomplete or missing months total 0.6 yeare)

Maan	Avg.	15010	15820	15400	13760	11110	9834	8031	7445	7609	8994	9799	11670	11.239
flows	Low	7.172	6932	6686	6107	4861	4558	3708	4263	5377	5.786	5633	6069	6.597
($\mathrm{m}^{3} \mathrm{~s}^{-\prime}$)	High	34670	32680	24430	19050	16320	13.540	10850	10440	12.810	27060	16460	17450	16.057
Peak ! 1 W ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)														
Rumot (mm)		39	37	40	34	30	25	2 ,	19	19	23	24	30	341
Kaniall (mm		86	52	69	50	60	38	49	65	70	80	83	90	812

Factors affecting flow regime: N
Station type VA

Gric reference 41 (SU) 354188
Leversin. (m OD) 1010
Catchment area (sq km) 1040.0 Max alt. (m OD) 297

1989 runoff is 70% of previous mean rainlall 89\%

042006 Meon at Mislingford

Measuring authority. NRA.S
First year 1958
Hydrometric statistics for 1989

	JAN	fir	MAR	APR	MAY	JN	UR	AUG	SEP	OCT	NOV	vet	Your
Flows Avg	0355	0467	1142	1.298	0811	0568	0.295	0197	0145	0123	0150	0335	0495
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) Paak	04 :	135	179	232	118	103	043	031	025	020	027	129	2.32
Runol! (mm)	1.3	16	42	46	32	20	':	7	5	5	5	12	215
Hainfall (mm)	38	104	99	70	5	45	23	42.	34	97	57	171	791
Monthly and yearly statistics for previous record (Oet 1958 to Dec 1988)													
Mean Avg.	1573	: 820	1652	1334	1040	0752	0535	0402	0354	0529	0.838	1128	0997
flows Low	0463	0480	0421	0335	0164	0120	0079	0068	0102	0.110	0124	0186	0.334
(m's-') High	3470	3310	2820	2021	17.38	1.220	0821	0657	0.882	2309	4126	3917	1815
Peak flow (m)s ${ }^{-1}$)	384	410	326	283	206	150	123	107	0.96	168	283	377	4.10
Runolf (mm)	58	61	61	50	38	27	20	15	13	19	30	42	432
Ro.ntall (mmi)	99	58	77	58	67	57	56	71	81	95	100	102	921

Faciors affecting flow regime G
Staton type FL

Grid reference: 41 (SU) 589141
Level stn (m OD) 2930

Catchment area (sq km). 728 Max alt (m OD) 233

1989 rumofi is 50% of previous mean rainfall 86\%

042008 Cheriton Stream at Sewards Bridge

Mesasuring authority: NRA.S
Grid reference: 41 (SU) 574323
Level sin (m OD) 55.80
Catchment area (sq km). 75.1
First year 1970
Level sin (mo
Hydrometric statistics for 1989

	JAN	FEB	MAR	ADR	May	JUN	\cdots	Aus,	SfP	OCT	NOV	Dec	Year
fows Avg	0393	0435	0694	0199	0634	0.437	0318	0235	0208	0215	0254	0411	0419
($m^{3} s^{-1}$). Peak	052	083	096	117	084	059	053	0.36	041	045	041	118	1.18
Hunotf (mm)	14	14	25	28	23	- 5	11	8	7	8	9	15	176
Ramial (mm)	38	104	103	78	9	49	26	38	34	100	53	176	808
Monthly and yearty statistics for previous record (Jul 1970 to 0ec 1988)													
Mejon Avg	0837	0960	0901	0842	0690	0570	0472	0408	0379	0431	0529	0695	0.642
flows Low	052.1	0495	0409	0320	0271	02:8	0183	0165	0207	0279	02.78	0320	0408
(\because) $\mathbf{S}^{-\prime}$) High	1293	1481	1410	1065	0857	0959	0797	0.708	0560	0672	0980	1278	0.768
Peak thow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	169	183	168	1.39	126	202	1.25	128	077	0.91	123	1.85	202
Runoff (tmm)	30	31	32	29	25	20	i)	15	13	15	18	25	270
Rasinfull (mm)	93	59	81	49	63	58	57	65	75	90	97	i00	893
Factors atiecting flow regime. N													

Station type C
1989 runoff is 65% of provious mean rainfall 90%

043006 Nadder at Wilton Park

Measuring authorily NHA-W
First yoar. 1966
Hydrometric statistics for 1989

043007 Stour at Throop Mill

Measuring authorrty: NRA.W
First year: 1973
Hydrometric statistics for 1989

	JAN	FEB	mar	APR	may	90N	M	AUG	SEP	(cit	NOV	08 C	Your
Flows Avg.	7689	16.140	22.290	17080	8.162	4576	3272	2.596	2.551	3255	6.397	29830	10.301
$\left.\left(m^{3}\right)^{-1}\right)$: Peak	18.78	85.92	58.57	60.07	2412	829	644	4.81	430	8.72	17.42	112.70	112.70
Rumots (mm)	19	36	56	41	20	11	8	6	6	8	15	74	303
Reorias inmis	38	96	95	82	25	30	31	41	44	99	55	182	818
Monthly and yearty statistics for previous record (Nan 1973 to Dec 1988$)$													
Man Avg.	24830	24.950	20790	14400	9.705	6657	4.574	4.345	5117	9.119	13.530	22050	13.290
flows Low	4319	6.826	7.548	4483	3157	2231	1.614	1358	2.413	2.716	2.823	6.386	6.138
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{Hagh}$	38.730	42.200	32.620	27070	18900	16340	7.932	8998	20340	29.170	36.730	40.270	17.377
Peak flow (m) ${ }^{-1}$	116.60	131.50	110.20	8874	15000	18000	4760	3241	9033	101.90	13340	28000	280.00
Runoff (mm)	62	57	52	35	24	16	11	11	12	23	33	55	391
Ramial (mm)	90	64	80	42	61	56	52	65	75	86	80	105	856
Factors affecting flow regume: PGE Station type. CC										1989 runolf is 77% of previous mean rainlall 96\%			

Catchment area (sq kmi: 1073.0 Max atr. (m OO): 277 rainlall 96\%

044002 Piddle at Baggs Mill

Moasuring outhonty NRA.W
First yoar 1963
Hydrometric statistics for 1989

	JAN	FEB	MAR	APS	NAY	JN	NL	Aus,	SEP	OCT	NOV	ロEC	Year
Flows Avg	1235	1595	3.135	3005	1959	1310	0892	0684	0623	0708	1.106	2486	1.568
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Peak	140	446	681	4.77	265	1.67	127	124	089	161	175	856	8.56
Runoff (mm)	18	21	46	43	29	19	13	10	9	10	16	36	270
Rasital (mm)	38	110	115	86	15	28	20	38	44	109	65	196	864
Monthly and yearly statistics for previous record (Oct 1983 to Doc 1988 -incomplete or missing months total 0.1 years)													
Mean Avg	3689	4424	3907	3011	2204	1680	1245	1091	1100	1438	2103	2890	2.388
flows Low	1.045	1020	1093	0945	0757	0571	0483	0433	0604	0805	0721	0853.	1328
	5959	7062	6202	4782	3.376	2907	1755	1526	2300	3106	5.047	5654	3.233
Puak flow (m^{3} ' ${ }^{\text {] }}$	1187	318	337	648	811	923	479	450	8.18	929	920	862	11.87
Runatl (mm)	54	59	57	43	32	24	18	16	16	21	30	42	412
Ranibl (mm)	110	78	86	51	69	59	49	65	83	95	105	112	962

Factors affecting flow regima: G Statron type: FL

Grid roference 30 (SY) 913876
Level stn. (m OD): 2.10

1989 runoff is 66% of provious mean rainfall 90%

Catchmont area (sq km). 1831 Max alt. (m OD): 275

045003 Culm at Wood Mill

1989

Measuring authority NRA.SW
First year: 1962
Hydrometric statistics for 1989

	JAN	Pte	MAR	APA	MAY	JUN	Mr	AUG	SEP	OCT	NOV	DEC	Yoar
Flows Avg	2.733	5937	5810	3683	1840	1.180	1047	0898	1288	1988	3.732	8449	3.201
(in's-1). Peak	1267	6422	2888	1687	1676	2.04	641	701	11.29	1569	2585	7098	70.98
Humoff (men)	32	64	69	42	22	14	12	11	15	24	43	100	448
Rainfall (mm)	46	118	90	83	24	24	47	52	79	115	81	171	930
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1988)													
Muan Avg	6765	6338	5087	3478	2838	2025	1793	1630	1921	3052	4399	5963	3.764
flows Low	1930	2251	2.392	1318	1085	0803	0650	0569	0971	0971	1.287	2479	2.277
$\left(\mathrm{n}^{3} \mathrm{~s}^{-1}\right) \mathrm{Hrgh}$	12870	11.820	9.184	7445	6337	4449	5200	2787	7.328	11430	8 191	11880	4.840
Peak flow (m 's ')	110.70	10010	5011	6198	33.82	3058	202.20	5862	9416	49.07	134.50	14280	202.20
Runott (mm)	80	68	60	40	34	23	21	19	22	36	50	71	525
Rastall (mm)	111	80	88	58	71	63	60	68	77	90	96	109	971
Factors affecting flow regime PGEI Station type. VA										1989:unoff is 85\% of pervious mean ranfall 96\%			

045004 Axe at Whitford

Measuring authority NRA.SW
first year: 1964
Hydrometric statistics for 1989

	JAN	FE8	MAR	APA	may	JUN	0	AlJ	SEP	OCI	NOV	OtC	Yasr
Flows Avy	3460	8387	9.131	4916	2051	1529	1.195	1221	1.783	2862	4520	14410	4.607
$\left(\mathrm{m}^{1} \mathrm{~s}^{-1}\right)$ Peak	2105	11460	56.18	3872	477	373	5.09	649	1212	1747	43.92	16600	166.00
Runotf (mm)	32	70	85	44	19	14	11	11	16	27	41	134	504
Raintall (mm)	49	121	114	85	14	32	36	62	90	115	69	211	998
Monthly and yearty statistics for previous record tOct 1964 to Dec 1988)													
Mean Avg.	9417	8251	6484	4268	3.698	2549	2021	2162	2567	4315	5769	8264	4.989
Dows Low	1891	2448	2.551	1567	1.176	0817	0626	0554	1242	1243	1714	3125	2.669
[$\mathrm{m}^{\text {S }} \mathrm{s}^{-1}$) Hagh	15740	15860	11690	8346	7.274	4678	5312	4941	9909	16440	11.980	14440	6409
Poak llow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	110.60	11320	9302	7541	17340	7504	228.80	12800	8895	9372	11690	24400	244.00
Runofi \{mmb	87	70	60	38	34	23	i9	20	23	40	52	77	544
Raintall (mm)	123	84	83	55	74	65	61	72	80	96	95	-1/	1005
Factors effecting llow regime. PGEI Station type CC										1989 runoff is 93\% of provюus mean raınfall 99\%			

Measunng authority NRA.SW First yoar. 1958

Hydrometric statistics for 1989

	JAN	feb	MAH	APR	MAY	JN	M	aug	SfP	OCT	Nov	OtC	Your
Flows Avg	6612	15.910	21590	9441	3314	1.786	1216	1166	4728	8653	13940	21.620	9.128
(m's-') Peak	3433	10880	17980	6801	678	2.39	181	3.94	50.21	7326	5172	15400	179.80
Runolf (mm)	72	155	234	99	36	19	13	13	50	94	146	234	1163
Ramiar (mm)	99	239	273	134	7	48	20	77	195	235	132	307	1716
Monthly and yearty statistics for previous record (Oct 1958 to Dec 1988$)$													
Mean Avg.	20000	16890	13840	10090	7319	5007	3870	4821	5889	11090	14870	19230	11.057
flows Low	5.435	4270	5731	3566	2220	1456	0996	0.713	0905	1229	5048	8232	7.304
(m's.') High	36680	37760	3.3520	22720	14530	14260	10930	12590	26290	28000	33400	35540	15.592
Peat flow ($\mathrm{m}^{1} \mathrm{~s}^{-1}$)	28400	30940	23610	:8740	9888	25300	20650	22220	327.60	: 6820	31780	54970	549.70
Rumiff (mm)	216	167	150	106	79	52	42	52	62	120	156	208	1409
Rasifall (mm)	231	156	166	113	109	93	94	122	134	180	199	231	1828
Factors affecting flow regime: SR Station type: VA										1989 runoff is 82% of provious mean rainfall 94%			

047007 Yealm at Puslinch

1989

Mossuring suthority: NRA.SW
First year: 1963
Hydrometric statistics for 1989

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1988 -incomplete or missing monthe (otal 0.2 years)

Muan Avg	3061	2796	2094	1398	0983	0791	0512	0676	0.816	1455	2210	2867	1.638
thews Low	0.563	1015	0659	0572	0327	0171	0095	0057	0183	0121	0373	1.171	1.052
(m)'s ${ }^{1 /} \mathrm{H}$ High	4947	5806	5290	3646	1997	2377	1863	1.957	3630	3.808	4881	6108	2.210
Peak flow ($\mathrm{m}^{3} \mathrm{~s}$!)	2749	2324	2454	2411	1753	2347	2522	2832	2133	2666	2662	2518	28.32
Runolf (mm)	149	124	102	66	48	37	28	33	39	71	104	:40	942
Rainfall (mot)	170	125	131	78	95	91	84	103	111	135	158	170	1451
Factors affecting	reg:m									1989	ff is 8	prov	us me

047008 Thrushel at Tinhay
1989

Measuring authority: NRA-SW
First year: 1969
Hydrometric statistics for 1989

	JAN	HE8	MAR	APR	May	JuN	Mr	AUG	Sr.p	OCT	NOV	DCC	Year
Flows Avg	2023	4842	4184	1.792	0609	0159	0091	0.153	0669	1.780	3035	3880	1.917
($\mathrm{m}^{3} \mathrm{~s}$ ' '). Posk	10.49	3945	3003	2068	356	038	044	369	641	:945	2811	2938	39.45
Alnotf \{mm\}	48	104	99	41	14	4	2	4	15	42	70	92	538
Aainfall (mm)	60	151	109	92	15	43	37	83	120	156	100	161	1127
Monthly and yearty statistics for previous record (Nov 1969 to Dec 1988)													
Mean Avg	5219	3930	3150	1652	1128	0715	0442	0784	1043	2.539	3733	4790	2.423
flows Low	1317	0351	1428	0481	0237	0110	0028	0019	0116	0069	0442	2.405	1.640
$\mathrm{fm}^{3} \mathrm{~s}$ 't High	9701	8826	7477	4038	4203	2491	1417	2916	6671	6.878	7:95	8122	3.750
Peak flow (m) m^{-1})	53.32	6178	6146	2772	38.72	5713	1091	3364	7512	66.18	3107	12440	124.40
Punofi (mm)	124	85	75	38	27	16	1 i	19	24	60	86	114	679
Rainfall (mmi* $\cdot(1970-1988)$	146	94	104	58	70	73	70	89	93	116	130	139	1182
Factors affecting flow regime S H Station type: CC										1989 runolf is 79\% of previous mean rainfall 95\%			

Grid reference 20 (SX) 398856 Level stil (m OO) 5550

Catchment area (sq km) 112.7 Max alt. (m OD): 375

048004 Warleggan at Trengoffe

Measuring authority. NRA.SW
First year' 1969
Hydrometric statistics for 1989

		JAN	res	MAR	APR	MAY	JuN	NL	AUG	Step	OCT	NOV	DEC	Year
Flows	Arg	0648	0918	1375	0727	0412	0274	0.194	. 0174	0213	0.334	0954	1123	0.610
[$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$:	Peak	1.59	517	381	144	0.64	037	025	053	094	212	233	335	5.17
Runott (mm)		69	88	146	75	44	28	21	18	22	35	98	119	761
Ramiall (mm)		84	186	138	90	16	50	24	75	110	182	142	182	1279

Monthly and yearly statistics for previous record (Oct 1969 to Dec 1988 -incomplete or missing months total 0.3 yeart)

Maan Avg	1478	1386	1019	0.735	0.526	0422	0346	0392	0470	0.717	1011	1342	0.818
flows Low	0.744	0751	0585	0403	0288	0208	0151	0118	0.177	0208	0233	0843	0624
(m's-') High	2584	2906	1588	1234	0.978	0904	0688	0950	1677	1557	1775	1949	1.228
Peak (k)w ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1431	1485	527	4.59	319	596	435	860	1485	788	1538	11.25	15.38
Runoff (mm)	156	134	$1(8)$	75	56	43	37	42	48	76	104	142	1020
Rasiat (mmp	186	117	131	70	83	87	92	107	122	146	165	175	1481

Gid reference 20 (SX) 159674 Level sin (m OD) 70.30

Catchment aroa (sq km): 25.3 Max alt. (m OD): 308

048005 Kenwyn at Truro

1989

Measuring authority: NRA-SW
Firsi year: 1968
Hydrometric statistics for 1989

	JAN	FE8	MAR	AP9	mat	\%	0	AUE	SEP	OCT	NOV	Of	Year 0.292
Flows Avg.	0293	0.515	0.724	0.310	0.147	0088	0058	0043	0048	0088	03	0.892	. 292
(ms ${ }^{-11}$) Pesk	1.79	6.25	3.85	1.15	0.26	025	023	0.37	0.53	1.28	343	403	6.25
Rennotf (mm)	41	65	102	42	21	12	8	6	7	12	42	125	483
Rasfall (mmit	65	123	108	76	11	41	14	49 *	63	136	109	195	990
Monshly and yearty statistics for previous record (Oct 1968 to Dec 1988)													
Mean Avg.	0837	0.772	0.545	0.331	0197	0.140	0091	0050	0.114	0.272	0.475	0734	0.382
flows Low	0283	0333	0.228	0.162	0124	0070	0043	0026	0037	0034	0.046	0436	0.264
$\left(\mathrm{m}^{\prime} \mathrm{s}^{-1}\right.$) litgh	1.505	1.536	0917	0613	0418	0358	0.162	0179	0564	0714	1.093	1.091	0.544
Peak fow (m 's ${ }^{-1}$)	22.50	7.19	5.74	407	182	3.71	2.79	2.29	4.10	3037	9.74	13.35	30.37
Rumotf (trent	117	99	76	45	28	19	13	13	15	38	65	103	631
Raunall (mm)	148	100	100	55	65	64	57	75	85	111	128	139	1127

Factors affecting flow regume: N
Station type: CC

Gid reference: 10 (SW) 820450 Level stn. (m OO): 7.20

Catctument area (sq kns: 19.1 Max att. (m OO): 152

1989 runoff is 76\% of previous mean raınfall 88\%

048011 Fowey at Restormel

Measurtng authorty: NRA.SW
First year: 1961
Hydrometric statistics for 1989

	JAN	5f8	MAA	APR	MAY	${ }_{1} \mathrm{~N}$	01	AUG	SEP	OCT	NOV	$0 ¢ C$ 6817	Year 3 3.391
Flows Avg	3187	6095	9377	3479	1.606	1199	0851	0767	0925	1380	5.187	6817	3.391
\{m's - ') Peak	780	3294	29.88	848	260	2.51	162	2.15	3.46	728	1660	2011	32.94
Runotf (imm)	50	87	149	53	25	18	13	12	14	22	80	108	632
Rainfal (mm)	84	187	148	90	16	52	21	69	101	177	145	191	1281

Monthly and yearty statistics for previous record (Oct 1961 to Oec 1988)

| Mean Avg 9414 | 8.293 | 6048 | 4152 | 3050 | $2: 92$ | 1864 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	Avg	9414	8.293	6048	4152	3050	$2:$
Nows	Low	3071	3304	2.727	1808	1048	0.693

$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	17330	21780	12130	7.641	6447	5.479	4859
Peak flow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	10480	11190	4562	24.57	2262	3944	3110

Runoft \{mm\}
Ran! (mm)
Factors affectim

Grad raference: 20 (SX) 098624
Lovel stn. (m OD) 920

Catchment area (sq km): 169 Mar ali (m OD) 420

Nov

4658	6685	9115	5.003
0617	0.921	4401	3493
11.720	15450	20890	7.440
3507	22370	12660	223.70
74	102	144	934
14 i	169	183	1514

1989 runoff is 68% of previous mean rainfall 85\%

049001 Camel at Denby

Measurng authority: NRA.SW
Grid raference: 20 (SX) 017682
Lovel stn. (m OOf 460
(
Hydrometric statistics for 1989

Catchment area (sq km): 2088 Max all (m OOf 420

	JAN	feb	MAA	APA	MAY	NN	un	AUG	StP	OCT	Kov	$0 \in C$	
Flows Avg	5007	9057	11.310	4634	2422.	1484	0315	0787	1572	2999	8172	10050	4.843
(m²-1. Peak	1654	7934	4148	1077	445	3.25	1.52	2.53	772	1593	2100	3841	7934
Runotf (mm)	64	105	145	58	31	18	12	10	20	38	101	129	731
Rainlall (mm)	82	165	134	85	21	56	22	19	117	159	123	184	1227
Monthly and yearly statistics for previous record (Sep 1984 to Dec 1988)													
Mean Avg.	11410	9580	6989	4.598	3315	2.434	2291	2547	3000	5660	7.795	10940	5.868
flows Low	4833	4.249	2835	2.081	0.960	0888	0582	0421	0798	0882	1371	6135	4.081
	19600	20940	16420	9395	8.491	5.463	7322	7858	11920	16640	17.990	19110	8.165
Peak flow (m^{3} 's)	7318	8021	9415	3542	2338	4532	4059	6398	12580	92. 14	9475	227.90	227.90
Runotf (mm)	146	112	90	57	43	30	29	33	37	73	97	140	887
Rantad (mm)	171	105	120	72	85	86	95	103	115	138	152	165	1407
Factors affecting flow regime. SRP E Station type: VA										1989 runoff is 82% of previous mean rainfall 87%			

049002 Hayle at St Erth

Measuring authority: NRA-SW First yesr 1957
Hydrometric statistics for 1989

	JAN	FE8	MAR	APR	MAY	JuN	JL	AUG	SfP	OCT	NOV	$\mathrm{O}+\mathrm{C}$	Yoar
Flows Avg	0963	1098	2111	1225	0706	0425	0297	0234	0249	0273	0724	1589	0.830
$\left(m^{3} s^{-1}\right)$. Peak	1.73	345	499	180	0.98	053	037	0.30	048	058	217	410	4.99
Runotf (mm)	53	54	119	65	39	23	16	13	13	15	38	87	535
Rainfall (mm)	64	112	126	82	9	29	17	46	15	123	110	182	975
Monthly and yearly statistics for previous record (Oct 1957 to Dec 1988 --incomplete or missing monthe total 9.3 years)													
Mean Avg	1992	2069	1.564	1093	0690	$05 \cdot 4$	0405	0347	0361	0509	0932	1.559	0.998
flows Low	0746	0863	0.810	0573	0445	0335	0237	0167	0193	0179	0181	0.503	0.653
(m)'s li) High	3009	3426	2.582	1643	1464	0859	1063	0743	1067	1180	2297	2584	1.265
Peak flow (m's ')	916	7.38	583	387	2.36	172	199	2.27	188	402	3.81	631	9.16
Runoti (mm)	109	103	86	58	38	27	22	19	19	28	49	85	644
Rainfall (mm)	139	105	:04	54	65	68	60	76	90	101	122	134	1124

Factors affecting flow regune: Gi
Station type: CC

Grid roference 10 (SW) 549342 Level s:n. (m OD) 7.00

Catchment area (sq km): 48.9 Max HIt. (m OD) 238

1989 runotf is 83% of previous mean rainfall 87%

050002 Torridge at Torrington

Measuring autharity NRA.SW
First year 1962
Hydrometric statistics for 1989

	JAN	1ft	MAR	APR	MAV	JuN	N	aug	SrP	OCT	NOV	dec	Year
Flows Avg	14350	28940	29840	10380	3560	- 254	0779	0633	4291	15290	26.120	33780	14.019
$\left(\mathrm{m}^{3} \mathrm{~s}^{\text {j }}\right.$). Peok	6856	151.60	17780	6347	4207	194	311	340	4032	15370	191.50	196.70	196.70
Runotf (mm)	58	106	121	41	14	5	3	3	11	62	102	136	667
Rainfall (mm)	78	148	131	87	22	48	37	69	140	160	101	177	1198

Monthty and yearly statistics for previous record (Oct 1982 to Dec 1988)

Mean Avg.	30460	23840	18620	11130	8137	4750	4433	5265	7.161	16130	26.300	31140	15.588
flows Low	5018	4695	5792	3082	1.594	1092	0443	0252	0954	0668	3798	10.270	8.968
$\left(\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{l}^{\text {d }}\right.$ High	57510	47590	51280	28120	3: 290	-4960	21540	19690	45910	49230	55730	64530	21.036
Poak "ow (m's ${ }^{-1}$)	39110	29440	53560	16440	20510	18.30	3.060	22850	4:500	27640	37040	73000	730.00
Runoff (\%u;)	123	88	75	43	33	19	18	21	28	65	103	126	742
Rainfal (mm)	129	86	99	65	75	73	75	86	96	114	134	131	1183
Faciors affecting Station typo. VA	reyır	SHP EI								1989	of is 9 fall 10	of prev	ous mean

Grid relerence 21 (SS) 500185
Level stn. (n (DD). 13.90

Catchment area (sq kmp 663.0 rainfall 103\%

052007 Parrett at Chiselborough

Measuring authority. NRA.W
First year 1966

Grid reforence 31 (ST) 461144
Level stn (m OD): 2070

	JAN	PEG	MAR	APR	MAY	JUN	NUL	AUS	SEP	OCT	nov	DEC	Yeor
Flows Avg	0722	1.967	2424	1211	0442	0251	0230	0191	02.6	0364	0708	4219	1.077
(m's-') Peak	974	2659	2559	2120	408	055	179	105	071	173	723	32.76	3276
Rujnoff (mm)	26	64	87	42	16	9	8	7	7	13	25	151	454
Rainfal (mm)	47	98	109	87	24	28	49	48	58	109	60	205	922
Monthty and yoarty statistics for previous record (Aug 1966 to Dec 1988)													
Meon Avg.	2435	1907	1541	0842	0741	0506	0360	0360	0444	1006	1326	2.056	1.125
thows Low	0258	0593	0523	0285	0206	0130	0106	0090	0.145	0186	0218	0523	0.584
(m's-') High	4914	3.865	3055	1867	2048	1053	0921	0988	2225	4819	3789	3.917	1.534
Pask flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	3638	2714	2746	$1 / 95$	5721	:281	1614	2388	1529	2722	29.12	4494	57.21
Runotf (mm)	87	62	55	29	27	18	$\cdot 3$	13	15	36	46	74	475
Rainiay (:ntn)	107	72	82	44	12	65	55	63	74	88	85	104	917

Factors affecting flow regime: E
Station type C
Hydrometric statistics for 1989
runotf is 96% of previous mean raintall 101\%

052010 Brue at Lovington

Measuring authority: NRA.W
First year: 1964
Hydrometric statistics for 1989

Station type. C VA

Grid reference 31 (ST) 590318
level stn. (m OD) 1980
 865

4

1989 runoff is 82% of pravrous mean rainfall 94\%

053006 Frome(Bristol) at Frenchay

Measuring authonty: NRA.W Fust vear: 1961
Hydrometric statistics for 1989

	JAN	FE日	MAR	APP	mar	M ${ }^{\text {N }}$	μ	auc	Step	OCT	NOV	DfC	Yoar
Flows Avg.	1.190	3.743	3.144	1.927	0509	0326	0276	0313	0.314	0874	1485	4470	1.535
(m) ${ }^{\text {c }}$-1: Peak	430	20.16	15.52	1061	5.53	3.19	344	5.25	328	12.68	1368	18.67	20.16
Pumatt (trm)	21	61	57	34	9	6	5	6	5	16	26	80	325
Ronfal (mm)	46	98	82	70	24	41	29	63	54	109	55	133	804
Monthly and yearty statistics for provious record (Sep 1981 to Dec 1988)													
Mayn Avg	3.439	2.797	2387	1.411	1.204	0795	0622	0552	0.743	1.256	2.231	3092	1.707
flows Low	0670	0.613	0636	0476	0290	0220	0122	0.139	0208	0.162	0211	0820	0.804
($\mathrm{n}^{2} \mathrm{~s}^{-2}$) Hing	6.152	6.040	5762	3434	5028	2.973	3516	2.398	5.113	4.691	5434	9.807	2.255
Posk flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	3505	41.09	33.84	2963	4900	2901	70.79	12.75	2973	42.93	3990	6655	70.79
Runofs (mm)	62	46	43	25	22	14	11	10	13	23	39	56	362
Rainfall (mm)	76	52	66	49	66	63	56	70	14	71	76	85	804
Factors affecting flow regme N Station type: Fl										1989 rumff is 90% of provous mean rainfall 100\%			

Factors affecting flow regume N
Station type: Fl

Grod reference: 31 (SN) 637772 Level sin. (m OO): 20.00

Catchment ares (sq km): 1489 Max att (m OD): 193

053007 Frome(Somerset) at Tellisford

1989

Massurng authority: NRA.W
Fust year. 1961
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	MAY	JUN	ת几	AUS,	St ${ }^{\text {P }}$	OCT	NOV	Dr	Year
Flows Avg	3.269	6286	8859	4.977	1846	1002	0675	0569	0574	0805	2066	9291	3.341
$\left(\mathrm{n}^{3} \mathbf{s}^{-1} \mid\right.$: Peak	16.26	32.66	4139	2316	4.49	170	162	1.95	120	3.09	931	8189	81.89
Runotf (mm)	33	58	91	49	19	10	7	6	6	8	20	95	403
Raniall (mme	60	106	123	91	30	38	30	45	54	102	66	179	924
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1988)													
Mran Avg	6961	6271	5487	3.688	2745	1863	1437	1475	1.771	2872	4614	6382	3.787
flows low	1.684	2072	1938	1.510	0843	0518	0329	0291	0649	0612	0962	2627	2.334
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{Hrgh}$	12.340	12460	12690	8314	6317	4812	4931	4605	7459	8841	10730	14.860	4.872
Peak now ($\mathrm{m}^{\mathbf{3}}{ }^{-1}$)	7799	6475	6883	57.51	9880	3752	10810	8249	7103	5990	64 58	8364	108.10
Runotf (mm)	71	59	56	37	28	18	15	15	18	29	46	65	457
Rainfall (mm)	97	67	86	60	76	66	65	80	87	84	95	102	965

Factors affecting flow regime PG
Station type: FL

Grid reference: 31 (ST) 805564
Level stn. (m OD): 35.10

Catchment area (sq km): 261.6 Max alt (m OD): 305

1989 runoff is 88% of previous mean rainfall 96%

054012 Tern at Walcot

Measuring authorily: NRA-ST
First year: 1960
Hydrometric statistics for 1989

	JAN	feb	MAR	APR	MAV	JUN	M	AUS	StP	OCT	NOV	Of	Yoar
flows Avg	4804	6444	7099	10360	4.110	2423	2570	2572	2.712	3103	4.171	14330	5.388
(m's ${ }^{-1}$): Peak	583	26.12	1434	3225	6.16	339	521	322	432	5.78	923	3964	39.84
Runot (mm)	15	18	22	32	13	1	8	8	8	10	13	45	199
Ranisel (mm)	26	51	51	81	30	48	32	37	28	73	58	120	635
Monthly and yearly statistics for previous record (Oct 1980 to Dec 1988$)$													
Moan Avg	11290	10350	9033	7379	6546	4690	3948	3.977	4009	5.689	8080	10570	7.118
flows Low	4018	4002	4.800	3.557	2917	2199	1.393	1171	1680	2.227	2538	3563	3.757
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right\} \quad \mathrm{High}$	20.320	22.280	17810	12320	22390	9069	14060	6655	9490	16920	21830	24950	10.266
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-:}$)	4751	4598	4053	4073	4035	2700	4871	3853	$32: 7$	3759	4454	5582	55.82
Runoff (mm)	35	30	28	22	21	14	12	13	12	18	25	33	264
Rainta'l (mm)	61	45	56	50	64	57	55	65	62	60	70	66	711

factors affecting flow regime: GEI
Station type: FV

Grid reference 33 (S.J) 592123
Level stn (in OD) 44.60

Catchment area (sq kmi. 8520 Max al: (m OD): 366

89 sunoff is 76% of prevrous mean ranfall 89\%

054019 Avon at Stareton

Measuring authority: NRA-ST
First yoar 1962
Hydrometric statistics for 1989

	JAN	FCB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Yeat
Flows Avg.	2.348	2904	3773	6356	1238	1000	0.912	0724	0724	0.760	1381	5822	2.323
$\left(\mathrm{m}^{2}-1\right)$ Peak	7.21	1406	1355	23.92	304	345	605	383	423	2.17	172	22.90	23.92
Runotf (mm)	18	20	29	47	10	7	7	6	5	6	10	45	211
Hainfoll (mm)	39	42	53	96	16	11	53	64	45	51	45	100	675
Monthly and yearty statistics for previous record (Oct 1982 to Doc 1988)													
Man Avg	4.581	4481	4309	2789	2.145	1428	1016	1067	1016	1580	2400	3943	2.558
flows Low	0798	0.777	0545	0485	0474	0368	0247	0356	- 0442	0.507	0549	0667	1.094
(m's ${ }^{-1}$) High	9.678	12890	8577	5945	6.149	4862	5.379	3332	2858	5274	5587	10400	3.588
Peak flow (m's ${ }^{-1}$	55.83	5960	5689	4267	3905	4289	7136	2608	1659	3289	3411	5628	71.36
Rujnoty (mm)	35	32	3.3	21	17	11	8	8	8	12	18	30	232
Ra:nfall (mm)	55	44	56	47	59	60	55	69	53	52	58	61	669

Factors affecting flow regume S EI
Station type: C

Grid relerence 42 (SP) 333715
Leval $\sin (m$ OD) 5470

Caschment area (sq km); 3470 Max alt (in OD) 214

1989 runotf is 91% of previous mean ranfall 101%

054020 Perry at Yeaton

1989

Merasuring authority: NRA.ST First yoar: 1963

Hydrometric statistics for 1989

Factors affecting fiow regime GEI Staton type: C

Grid reference 33 (S.J) 434192
Lavel stn (T ODI 6130

Catchment area tsq kmf 180.8 Mox alt (m OD). 356

1989 runoff is 75% of previous mean ranfall 92%

054022 Severn at Plynlimon flume

1989

Measuring authority IH
First year 1953
Hydrornetric statistics for 1989

	JAN	FCB	MAA	APA	may	ภuv	Jul	AUS	SEP	OCT	NOV	DEC	Year
Flows Avg	0569	0908	1253	0.353	0131	0144	0:38	0:97	0273	1007	0101	0789	0.537
$\left.(\mathrm{m})^{5} \mathrm{~s}^{-1}\right) \quad$ Peak	590	1034	784	247	047	233	090	1.30	143	1885	6.36	777	18.85
Runotf (mm)	175	253	386	105	40	43	42	61	81	310	209	243	1948
Reinfall (mm)	195	309	362	137	50	131	58	175	108	381	181	315	2408
Monthly and yearty statistics for previous record tOct 1953 to Dec 1988 -incomplate or misging months total 10.4 yeare)													
Mean Avg.	0762	0559	0.599	0337	0241	0224	0284	0404	0521	0618	0.774	0163	0507
tows l.ow	0363	0136	0171	0046	0046	0045	0043	0032	0073	0059	0268	0174	0.317
(m) s^{-1}) Hugh	1567	1.104	1.566	0878	0818	0638	0.754	0.935	1092	1464	1420	1313	0646
Peak flow (m's ')	1449	1330	14.53	1164	986	1066	883	3222	1538	1699	1)77	1711	32.22
Runoti (mm)	235	157	184	100	74	67	88	124	155	190	231	235	1840
Rainfall (mm)	287	175	213	128	135	-35	154	184	228	243	280	280	2442
Factors affocting flow regime: \mathbf{N} Station type: FL										1989 runoff is 106% of previous mean ranfall 99\%			

Station type: FL

Grid reterence 22 (SN) 853872 Levelsin (m OD) 33100

Catchinunt ares (sq km) 87 Max alt (m OD) 740

054029 Teme at Knightsford Bridge

Measuring authority. NRA.ST

First year: 1970

Hydrometric statistics for 1989

	JAN	FEB	NAR	APn	vay	JUN	M	Auc;	S¢. ${ }^{\text {P }}$	OCT	NOV	DEC	Yoat
Flows Avg	10010	17600	25900	26700	6783	3512	2166	1.269	1120	2083	9561	55010	13.483
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$). Peak	16.22	12390	7413	3033	976	574	567	287	354	8.91	3579	17410	174.10
Runciff (mm)	18	29	47	47	12	6	4	2	2	4	17	100	287
Rasifal (mm)	35	71	65	77	24	30	41	45	40	98	60	179	765
Monthty and yearly statistics for previous record (Ape 1970 to Dec 1988)													
Mean Avg	37140	32.310	28290	19730	12090	8442	4.682	5.031	5037	11750	19610	29380	17.732
flows Low	10940	12000	10230	6.526	3354	2010	1381	1000	2050	2127	3.791	6973	11.235
(m's-:) H (ght	$60220{ }^{\circ}$	70950	61.880	41.850	34430	16000	9482	10020	10420	45190	44930	53.130	23.901
Peak (k)w (m)' ${ }^{\text {S }}$ ')	19860	22040	18430	23080	13:00	9893	4069	828 i	11590	119.40	16160	28460	284.60
Runoff (mm)	67	53	$5 i$	35	22	: 5	8	9	9	21	34	53	378
Rasinal (mm)	90	59	75	55	61	63	51	71	73	69	80	84	831

Grid reforence 32 (SO) 735557 Levet \sin. (m OD) 2100

Catchment orea (sq km) 14800 Max alt (m OD) 546
ranfall 92%

054034 Dowles Brook at Dowles

Measuring authority NRA.ST Firsi year 1971
Hydrometric statistics for 1989

054038 Tanat at Llanyblodwel

Measuring authority: NRA-ST
First year: 1973
Hydrometric statistics for 1989

	JAN	Fも日	MaR	APP	MAY	תN	Mr	AUS	StP	OCT	NOV	DEC	Ye
Fows Avg.	5037	10.810	13.130	7751	1.474	0699	0.670	0443	0520	2.544	7.383	13640	5.531
($\mathrm{m}^{2} \mathrm{~s}^{-1}$): Peak	15.13	51.12	6002	3154	264	1.36	851	1.34	142	1928	33.98	53.11	60.02
Runoft (mm)	59	114	184	88	17	8	8	5	6	30	84	160	762
Raintal (mm)	69	169	151	105	23	61	55	66	44	121	99	207	1176
Monthly and yearty statistics for previous record (Jun 1973 to Dec 1988 -- incomplete or missing morms total 0.4 years)													
Mean Avg	11840	9.491	8.141	5364	3483	2375	1365	2.680	3636	7.408	9811	11.590	6.473
flows low	5203	3707	2.693	1.392.	0867	0.728	0348	0190	1199	1701	2895	5738	4.185
(m's ') Hing	19270	19900	17800	3686	10250	4660	2589	7609	9.885	15020	17370	21410	7.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9399	6477	8577	3985	3127	5687	15.68	118.20	6956	82.17	7612	87.99	18820
Runotf (mm)	138	101	102	61	41	27	16	31	41	87	111	136	892
Rantal (mm)	134	89	113	64	79	69	62	92	111	122	135	145	1215
Factors affecting flow regime N E1 Staton type. VA										1989 runoff is 85% of prevous mean rainfall 97\%			

Factors affecting flow regime $N E 1$
Staton type. VA

Grad reference. 33 (SS) 252225 Level \sin. (m OD): 77.00

Caichment ares (sq kms: 229.0 Max aft. (m OD): 827

055008 Wye at Cefn Brwyn

1989

Measuring authority: IH
First year. 1951
Hydrometric statistics for 1989

Factors affecting flow rogime N
Station type $C C$

Grad reference. 22 (SN) 829838 Level \sin (m OD) 34100

Catchment ares (sq km) 10.6

055013 Arrow at Titley Mill

1989

Measuring authority. NRA WEL
irst year: 1966
Hydrometric statistics for 1989

Grud reference. 32 (SO) 328585
Level sin (mOD) 12900

Catchment area (si km) 1264 Max alt (m OD) - 542 ra.n!all 103\%

055014 Lugg at Byton

Measuring authority NRA-WEL
First year 1966

Hydrometric statistics for 1989

Measuring authority NHA.WEL
First year 1968
Hydrometric statistics for 1989

	-Al	1tt	NAH	Ara	Mav	JUN:	JUl	AUG	SEP	OCT	N(JV	OEC	Yea'
Flows Avg	0439	1226	1040	1995	0740	0390	0171	0102	0096	0149	0335	4230	0.909
[m's-1) Peak	170	1119	352	1338	- 80	05	0.92	044	018	i: 0	2.73	1816	1816
Runots (min)	8	21	19	36	14	7	3	2	2	3	6	79	199
Rainfall (mm)	31	56	40	70	23	26	40	49	41	94	54	164	688
Monthly and yearly statistics for previous record \{Oet 1968 to Dec 1988 -incomplete or missing months total 0.1 years\}													
Mean Avg	2743	2528	2192	1314	1108	0648	0369	0.338	0319	0498	1015	1930	1.245
flows Low	0214	0389	0560	0.359	02.74	0146	0091	0063	$0 \cdot 46$	0155	$0 \cdot 71$	0210	0.672
($\mathrm{m}^{3} \mathrm{~s}{ }^{\text {') }}$ H Hrg!	4668	5456	5176	3299	3912	1349	0630	0759	0970	2405	2266	3594	1.628
Peak flow ($\mathrm{m}^{\text {3 }} \mathrm{s}^{-1}$)	2384	2499	2428	2457	2.589	1699	596	96.	1568	1034	$18{ }^{\circ}$	2514	2589
Runufy (min)	5:	43	41	24	21	12	7	6	6	9	18.	36	273
Rainfall (mm)	14	50	64	45	62	59	41	67	6.	58	64	69	720

[^6]Sta:ion type VA

Grid relerence: 32 (SO) 615428
Letvel stn. (m OD): 5540

Catchment area (s) km) 1440 Max alt. (m OD) 244

1989 runoff is 73% of provious mean rainfall 96%

055023 Wye at Redbrook

		JAN	ceb	MAR	AP号	NAY	JUN	Ju	ALS;	sip	ОСт	mos	Or:	Year
F:ows	Aves	64630	106700	179600	95250	23690	14 O5O	13050	8083	11610	45790	86650	213300	71804
($\mathrm{m}^{3} \mathrm{~s}^{-}$)	Peak	18880	34360	43590	2:130	4272	1762	5154	1909	3889	38250	29000	55460	554.60
Rumbtf (mm)		43	64	120	i^{2}	16	9	9	5	8	3.	56	142	565
Rainfall (mm)		59	:23	110	82.	22	40	58	58	54	146	81	201	1034

Monthly and yearty statistics for previous record (Oct 1936 to Dec 1988)
 Kows Low $25050 \quad 30760$ 22 1.0 $17930 \quad 12340$ 10910 $7426 \quad 5180 \quad 1211$
 Ruroft (mm)

Factors aftecting fow reg me SPE
Station type. VA
$95 \quad 112 \quad 113 \quad 1025$

1989 runetf is 100% of previous metan rainfall 101\%

056013 Yscir at Pontaryscir

Measuring authority NRA-WEL
First year 1972
Hydrometric statistics for 1989

		(A)	reb	MAR	AP9	Mar	Jun	Ju.	AUG,	sep	OCT	NOV	OfC	Year
Hows	Avg	$2 \cdot 47$	3386	4258	1930	0430	0247	0250	0184	0261	2:01	3025	4926	1923
((1) $^{3}{ }^{-1}$)	Peak	99 i	1/96	2\% 88	664	179	044	173	073	204	2974	1645	3420	34.20
Runotf (mm)		92	130	182	80	18	10	11	8	$\cdot 1$	90	125	210	966
Rainlall (\%)		103	204	169	9.3	18	65	64	80	69	206	113	258	1442

Monthly and yearly statistics for previous record (May 1972 to Dec 1988 -incomplete or missing months total 02 years)

Meat	Avg	3480	2608	2584	1452	- 056	0768	0) 527	0737	1186	2186	3004	3508	1.923
flows	Low	: 146	0998	0852.	0431	0269	0214	0150	0104	0283	0214	0341	1540.	1.286
$\left(\mathrm{m}^{3} \mathrm{~s}{ }^{1}\right.$)	High	5795	4959	6303	3211	3041	: 788	1158	2964	3947	4279	5291	6324	2465
Peak flow	$\mathrm{m}^{\text {' }}$ - $]$	3698	3178	4055	1374	148:	7433	$1 \cdot 06$	3069	2144	8501	3402	5993	85.01
Runot ${ }^{\text {(m }}$		148	101	110	60	45	32	22	31	$\cdot 49$	93	124	150	966
Raintall (m)		164	100	139	70	89	14	77	101	-36	146	157	181	1434

'\{19/3-1988)
factors alfecting flow reigime N
Station type: C

Grid relerence 32 (SO) 003304
Level stn (mOD) '6120

Catchment aret (sq km) 628 Max alt (m OO) 474

1989

Measuring authonty: NRA.WEL
Firsi year. 1971
Hydrometric statistics for 1989

	JAN	FEB	MAR	APR	may	MN	是	AUG	SEP	OCT	NOV	OfC	Year
Flows Avg.	3.446	6072	6454	1.102	0466	0343	0380	0418	0.928	4610	3.856	8317	3.073
($\mathrm{m}^{3} \mathrm{~s}^{-1}$). Peak	30.35	5642	4690	7.29	0.99	0.91	240	2.50	998	43.34	22.70	7941	79.41
Pumats Inut	140	223	263	67	19	13	15	17	37	188	152	339	1473
Remfalin (mm)	169	294	261	104	19	87	5)	113	96	310	138	285	1933
Monthly and yearty statistics for previous record (Oct 1971 to Dec 1988 -incomplete or missing months total 0.3 veers)													
mean Avg	5011	3572	3.761	2.118	1.719	1.273	1.127	1.796	2.499	3541	4.708	5.219	3.029
Sows Low	1.932	0913	1.378	0497	0383	0.322	0242	0207	0562	0548	1883	2.166	1.985
(m's m^{-1}) High	8.274	7231	10670	5095	4.283	3559	4269	6802	6.876	6305	9.471	8.739	3.814
Peak flow (m) m^{-1})	82.30	66.12	82.30	3902	21.45	3356	4498	58.52	8101	9678	106.80	127.60	127.60
Rumofi (mm)	204	133	153	83	70	50	46	73	98	144	185	212	1453
Reantal (mm)	246	148	194	103	126	107	106	154	179	208	237	257	2065
Factors affecting flow regurne: S P Station type: FVVA										1989 runof is 101% of prevous mean rainfall 94\%			

Grid reference: 22 (SM) 915082
Level stn. (m OOI: 90.00
Caichment area (sq km): 65.8 Max alt. (m OO): 734 rainfall 94\%

060002 Cothi at Felin Mynachdy

Measurtng authorty: NRA.WEL
First year 1961
Hydrometric statistics for 1989

Flows		$\begin{aligned} & \text { JAN } \\ & 10.590 \end{aligned}$	FEB 16690	$\begin{aligned} & \text { MAA } \\ & 24690 \end{aligned}$	APR 8 928	may 2098	NN 0966	M 0638	AUG 0838	SEP 1934	OCT 14010	$\begin{aligned} & \text { NOV } \\ & 20860 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 23.570 \end{aligned}$	Year 10.459
$\left(\mathrm{m}^{2} \mathrm{~s}\right.$)	Peak	3858	6466	15310	81.26	4	1.72	161	+ 38	873	32.63	19450	136.50	194.50
Runotf (mum)		95	136	222	78	19	8	6	8	17	126	182	212	1108
Rainfall (mm)		128	206	227	114	24	74	40	108	85	223	137	238	1604

Monthly and yearty statistics for previous record (Oct 1961 to Dec 1988 -incomplete or misging months total 2.0 years)

Mean Avg.	18.140	13820	12880	8767	6678	4381	3648	6475	8.145	15490	18130	20220	11.397
flows Low	2.990	3708	2821	1.444	0835	0824	0418	0362	1500	1610	7211	6.723	7174
(m's ') High	37580	31.100	40.710	20380	14820	13.070	11.810	23350	23920	37940	36.270	41.140	14950
Peak flow ($\mathrm{m}^{\text {'s }}{ }^{-1}$)	14160	18120	22090	8588	8722	9033	14440	17100	129.70	28370	175.80	27470	283.70
Rumotf (mm)	163	113	116	76	60	38	33	58	71	139	158	182	1208
Rasialal (tmen)	173	113	136	94	104	95	100	125	148	183	177	189	1637
Factors affecting Station type: VA	w rogim	N								1989	notf is 92 fall 98	$\%$ of prev \%	us mean

Grad relerence: 22 (SN) 508225
Level stn (m OD): 16.10
(m^{\prime} 's ') Hegh $37580 \quad 31.100 \quad 40.710$

Factors affecting flow rogime. N
Station type: VA

060003 Taf at Clog-y-fran

Messunng suthority NRA-WEL
First year: 1965

Grid reference 22 (SN) 238160 Level stn. (m OD): 700

Catchment area (sq km) 2173 Max att. (m OD): 395

Hydrometric statistics for 1989

		JAS	reb	MAR	APR	MAY	JUN	Jut.	AUG,	SEP	OC:	NOV	DEC	Year
Flows	Avg	6792	10690	:6990	5.256	2471	: 527	1167	$1 \cdot 90$	1410	39:0	10800	12240	6.183
(m 's ${ }^{\text {c }}$ ')	Peuk	2323	8115	7746	1844	422	1.91	183	2.89	385	3656	5418	5919	81.15
Runoty (mm)		84	119	209	63	30	18	14	15	17	48	129	151	897
Ruxinfall (mm)		111	142	177	93	11	58	33	104	70	$1 \% 3$	113	184	1269

Monthly and yeasty statistics for previous record (Oet 1965 to Dec 1988 -incomplete or missing monthe total 1.2 vears)

Masen Avg.	13420	10730	8590	5.767	3829	2597	1934	3028	3918	9630	11.710	13960	7.417
flows Low	4835	3.858	3796	2179	1207	0.781	0.375	0363	0983	1018	3757	5075	4672
(m's ${ }^{-1}$) High	25.900	27200	26610	11800	8412	8820	6335	10760	15340	22310	22730	25520	9662
Peok flow (m's' ')	7343	7397	85.73	6003	3585	4511	3825	10100	5802	8649	8082	7774	101.00
Runoff (mm)	165	120	106	69	47	31	24	37	47	119	140	172	1077
Rainiall (mm)	160	:07	!19	81	86	80	14	106	126	165	157	177	1438
Factors affecting Station type: VA	regim	N								1989	otf is 83 lall 88		ous mean

060010 Tywi at Nantgaredig

Measuring authority. NRA.WEL
firsi year 1959.
Hydrometric statistics for 1989

	JAN	FE8	MAR	APR	May	JN	π	AUG	S¢.P	$\bigcirc C T$	NOV	DEC	Year
Flows Avg	41400	59990	81.870	31800	8700	4597	3715	6098	10080	39.780	57.190	71.500	34.615
(m's ') Peak	11030	18210	25520	10400	1830	872	965	3341	32.70	229.10	26580	26650	266.50
Runotf (mm)	102	133	201	76	21	11	9	15	24	98	136	176	1001
Rantal (mm)	121	192	211	109	28	74	45	112	81	221	138	238	1570
Manthly and yearty statistics for previous record (Oct 1958 to Dec 1988 -incomplete or missing months total 2.1 years)													
Meon Avg	66980	4) 510	40710	31980	23210	15430	13180	20710	27810	49400	60.800	65.950	38.624
flows Low	9.473	12210	9657	6201	4503	3736	2752	2699	1523	8708	23910	19470	22.516
($\mathrm{m}^{3} \mathrm{~s}$ ') Hgh	120600	100600	137800	64470	$5: 420$	39400	42120	78470	76440	128700	122.600	128.300	54.099
Peak flow (m's ${ }^{-}$)	50740	57880	702.30	21530	18010	25680	29590	31250	32280	89200	46110	52670	892.00
Runoff (mm)	165	106	100	76	57	37	32	51	66	121	145	162	1118
Rainfall (mm)	178	111	103	109	106	94	111	124	131	156	167	175	1565
Factors affecting flow regime: Station type FVVA										1989 runolf is 90% of previous mean ranfall 100\%			

064001 Dyfi at Dyfi Bridge

1989

Mossuring authorily NRA.WEL
Fust year 1962
Hydrometric statistics for 1989

		JAN	FE日	MAH	APP	MAY	Juv	Jut	aug,	58	O:T	NOV	OEC	Ye
Flows	Avg	23090	38220	50410	17380	41.38	3.288	3881	4481	6158	21140	28070	34870	20.015
(m's-')	Peak	10330	21440	23020	8905	1119	5950	3466	2855	14.12	21100	155.80	18850	230.20
Runotf (mim)		131	196	286	96	24	18	22	25	34	154	154	198	1339
Rainfall (mm)		134	257	263	117	42	116	40	137	67	235	136	235	1779

Monthty and yearty statistics for previous record (Oct 1962 to Dec 1988 -incomplete or missing months total 9.8 years)

Mean Avg	35090	22640	27460	17440	11610	10910	9076	13930	19280	$30 / 50$	34450	42370	22.945
'lows Low	6.245	$5{ }^{174}$	5.789	2626	1295	1618	0822	1819	5986	: 0770	14530	7501	18343
$\left(\mathrm{m}^{3} \mathrm{~s}^{-}\right) \mathrm{Hrgn}$	68810	46060	75790	42490	23600	21710	18780	40440	36260	76960	70470	88.280	26.520
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35020	34000	36070	27130	33720	40210	16200	21000	329.80	34400	37550	58050	58050
Runotf (mm)	199	117	156	96	66	60	52	79	106	175	189	241	1536
Rainfall (mm)	204	123	168	109	113	108	114	148	175	204	207	245	1918

Factors affecling flow regime: N
Station type VA
Grid reference: 23 (SH) 745019
Level stl (m OD) 590
Catchment area (sq km): 471.3
Max alt (m OD): 905

1989 runoff is 87% of previous mean rainfall 93\%

064002 Dysynni at Pont-y-garth

Measuring authonity. NRA.WEL
First year: 1966
Hydrometric statistics for 1989

	JAN	FF8	MAR	APR	MAY	N N	Jul	AUG	SEP	OCt	nov	DfC	Year
Flows Avg	4.773	5567	10990	3727	1298	1343	1512	2362	2019	7319	7448	6.286	4.555
(m's-') Peak	1622	16:7	4194	1099	288	26.67	17.60	2460	896	3169	$34 / 4$	3351	4194
Runotf (imm)	170	179	392	129	46	46	54	84	70	261	257	224	1913
Ranfell (mm)	153	238	294	134	48	137	48	194	76	291	156	228	1997
Monthly and yearly statistics for previous record (Jan 1986 to Dec 1988 - incomplete O missing months total 1.8 years)													
Mean Avg	6.109	4 108	4842	3.498	2479	2.346	2689	3336	4.244	5742	6130	7081	4.485
Hows low	3.371	1548	0986	0457	0298	0427	0278	0289	1926	0556	3011	2.770	3.612
(m's'l) High	11830	8809	$14 / 80$	7209	7602	5921	5407	8899	7285	12350	12.680	12580	5434
Paak flow (m's 1)	6140	4; 34	987 !	3685	7632	48.42	5335	5162	7014	10170	$: 2130$	8470	121.30
Runolf (min)	218	153	173	121	88	81	96	119	146	205	232	253	1885
Rainfal (mm)	222	144	188	124	130	139	147	169	201	246	249	253	2212

Factors affecting flow regirne N
Stotion type VA

Grad reterence 23 (SH) 632066
Level stn (m OD) 230

Caiciment area (sq km) 75 1 Max alt. (m OD) 892
ranfall 90\%

065005 Erch at Pencaenewydd

Moasuring authority: NRA.WEL
First year- 1973
Hydrometric statistics for 1989

	JAN	FEB	MAR	APA	MAY	JuN	תu	AUK;	SEP	OCT	NOV	OEC	Year
Flows Avg	0714	0.727	1.159	0549	0229	0134	0094	0.119	0103	0464	0865	0985	0.511
$\left(m^{\mathbf{3}} \mathbf{s}^{-1}\right)$ Peak	357	476	904	3.45	084	0.78	033	1.13	041	320	599	696	9.04
Runotf (mm)	:06	97	172	79	34	19	14	18	15	69	124	146	691
Rainfoll (mm)	113	125	203	106	29	77	26	130	35	$1 / 8$	133	211	1366
Monthly and yearly statistics for previous record (Jan 1973 to Oec 1988)													
Mesn Avg	1007	0809	0754	0479	0334	0220	0189	0324	0.428	0197	1015	1087	0.620
Nows Low	0629	0365	0.311	0.177	0120	0089	0081	0061	0167	0236	0.264	0600	0.430
(m's-') High	1.673	1869	1804	0892	0728	0539	0427	1113	0.919	1736	1816	1764	0.739
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	1041	1545	1978	1100	468	699	552	922	742	2501	169 i	1549	25.01
Rumotf (mm)	149	109	112	69	49	31	28	48	61	118	145	161	1081
Roinfall \{mm\}	148	94	129	70	78	71	82	119	134	-60	161	164	1410

Factors affecting flow regime \mathbf{N}
Station type: C

Grid reference: 23 (SH) 400404
Level sin (m OD) 5610

Catchment area (sq km) 18 I Max alt (m OD). 564

1989 runoff is 82% of previous mean rainfall 97\%

066006 Elwy at Pont-y-gwyddel

Measuring authority: NRA.WEL First year: 1973

Hydrometric statistics for 1989

	JAN		MAR	APR	MAY	JUN	ル	avg	SEP	OCT	NOV	OfC	Year
Flows Avg	3695	6.726	8943	5.275	0824	0.557	0583	0357	0249	2353	7.983	9074	3866
$\left(\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}\right.$). Peak	1439	32.26	4197	39.11	398	1.73	348	055	046	1402	4402	5685	56.85
Runoti (mm)	51	84	123	70	11	7	8	5	3	32	107	125	628
Ranfall (mm)	71	126	150	102	39	73	48	73	40	159	118	178	1177
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1988)													
Masen Avg	8046	5845	5261	3018	1791	: 321	0707	13.31	2615	5460	7.233	7724	4.191
flows Low	3.115	2650	1539	0.823	0479	0359	0278	0242	0629	1360	2263	4644	2.908
(m's s^{-1}) Hagh	11660	12050	11.950	6939	5918	3.300	1402	4351	7450	11.530	11850	14.450	5.094
Peak tow (m's ')	82.42	5082	7659	5076	2166	1800	2705	3813	58.57	14300	10160	7542	143.00
Runoff (mm)	111	74	73	40	25	18	10	18	35	75	97.	107	682
Rainfol (mm)	130	81	105	59	75	73	69	32	124	131	144	139	1222

Factors affecting flow regime SRP
Station type VA

Grid roforonce: 23 (SH) 952718 Level sin (m OO): 87.90

Catchment area (sq km): 194.0 Max alt. (m OO1 518

Measuring authority: NRA-WEL Firsi vear: 1965
Hydrometric statistics for 1989

	JAN	FE日	MAR	APA	Mar	On	0	AUG	5 SP	OCT	NOV	DEC	Yess
Flows Avg.	1.327	1.553	2.798	4107	0963	0606	0532	0.454	0474	0.673	2.123	5.391	1.751
($\mathrm{n}^{3} \mathrm{~s}^{-1}$): Peak	2.19	831	16.84	1429	2.05	1.04	2.72	1.21	206	3.37	9.75	25.41	25.41
Runott (mor)	16	17	33	47	11	7	6	5	5	8	24	64	243
Rental frum	33	70	68	103	40	55	42	61	47	106	80	135	840
Morthly and yearty statistics for previous record (tun 1965 to Dec 1988)													
Meen Avg	4470	3897	3281	2.581	1.807	1.201	0886	0916	0996	2025	3037	4.217	2.433
flows tow	1.753	1628	1448	1.023	0.712	0438	0331	0.287	0.474	0452	0614	1246	1.288
$\left(m^{3} s^{-1}\right)$ High	7219	9085	8027	6.474	5.657	2873	2098	2456	3906	6896	6.168	9.480	3.027
Peak flow ($\mathrm{m}^{1} \mathrm{~s}^{-1}$)	27.53	28.52	26.11	2528	2686	1834	2323	2081	5911	2646	28.21	35.92	59.11
Aunotf (mm)	52	42	39	29	21	14	10	11	11	24	35	50	338
Rantall (mm)	87	64	77	60	72	65	61	74	81	85	104	95	925

Factors affecuing flow regirne S EI
Station type: CC

Grid reference: 33 (SN) 336541
level su. (m OO): 37.30

Catchment ares (sq km): 227.1 Max att. (m OD): 562

069002 Irwell at Adelphi Weir

Measuring authority: NRA.NW First year: 1949

Hydrometric statistics for 1989

	JAN	FEB	MAA	APR	MAY	JN	μ	AUK;	S5P	OCT	NOV	DeC	Yoar
Flows Avg.	13670	20710	26670	18.760	7.641	9.782	8007	7.864	5820	15630	22.590	16.720	14440
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$) Peak	7250	12670	13200	77.72	37.05	159.20	8969	2405	1206	125.80	14390	70.21	159.20
Runots (mm)	65	90	128	87	37	45	38	38	27	75	105	80	814
Raufal (mm)	63	134	135	105	37	120	52	95	32	158	109	102	1142
Monthly and yearty statistics for previous record (Oct 1949 to Dec 1988-incomplete or missing months total 2.0 years)													
Mean Avg.	25360	21650	17580	14.190	11.800	10.240	11.210	15900	16670	20810	24860	29.470	18.290
flows Low	3705	4787	7803	5408	4348	2750	4031	3676	2991	4990	7.534	7469	10.489
(m) $\mathrm{m}^{\text {- }}$) H (Hagh	40260	67230	48030	27070	21530	18900	26150	56000	43.480	52510	51100	84660	30.489
Peak flow (m)'s ${ }^{\text {' }}$)	43040	40030	29560	184.20	14160	238.00	38560	39570	39080	485.10	33490	419.50	48510
Runotf (mm)	121	94	84	66	57	47	54	76	77	99	115	141	1032
Rainfall (mm)	120	82	94	76	81	86	100	125	119	125	132	139	1279
Factors affecting flow regime S PGEI Station type B										1989 runoff is 79% of previous mean rantall 89\%			

Factors affecting fow regime S PGEI
Station type 8

Grid reforence: 33 (SJ) 824987 Level sin. (m OD): 24.10

Caichment ares (sq km): 559.4 Max alt. (m OD) 473

069007 Mersey at Ashton Weir

Measuring authonty: NRA.NW First year: 1958

Grid reference: 33 (SJ) 772936
Lovel stn. (m OO) 1490

Catchment aras (sq km): 6600

Hydrometric statistics for 1989

	Jan	1te	MAh	APR	MAY	JN	ת	AUG	SrP	©T	NOV	DEC	Year
flows Avy	8297	11670	20220	15360	4969	5.196	4487	3358	2574	6.439	10550	12310	8.766
(m 's ${ }^{-1}$): Peak	3037	7659	16450	5368	2306	5480	4921	1015	680	51.67	5686	6934	164.50
funatt (mm)	34	43	82	60	20	20	18	14	10	26	41	50	419
Rainfall (mm)	54	112	115	111	46	102	40	65	29	143	81	107	1005
Monthly and yearty statistics for provious record (Jen 1981 to Dec 1988 -incomplete or missing months total 0.1 years)													
Moan Avg.	21930	12.360	16.540	10910	6755	7307	4843	7193	8.199	12.540	15500	18450	11.889
flows Low	11010	7399	5544	4.698	3585	3847	2447	2.160	4.361	5.978	7300	8.686	8.438
[m's ${ }^{-1}{ }^{-1}$ Hegh	29220	23100	36210	17190	11.420	18.090	7866	12560	11110	25500	25190	36810	15.876
Pask flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	18880	12500	17670	11300	5625	15750	3799	21670	8770	202.50	303.70	502.90	502.90
Runoti (mm)	89	46	67	43	27	29	20	29	32	51	61	75	589
Rasiall $\{\mathrm{mm}$ \}	130	53	123	71	70	83	70	107	101	122	124	122	1176
Factors affecting flow regime. S PGEI Station type: CB										1989 runotf is 74\% of previous mesn rantall 85\%			

069015 Etherow at Compstall

Measuring authority NRA.NW
First yoar 1977
Hydrometric statistics for 1989

Factors affectung flow regime S PGEI
Station type: C

Grid reference: 33 (SJJ 962908
Level stn (m OD) 7350

Catchment area (sq km) 156.0 Max alt (m OD): 628

071001 Ribble at Samlesbury

1989

Measurng authority: NRA.NW First year. 1960
Hydrometric statistics for 1989

		JAN	FEB	MAA	APA	NAY	JUN	Mr	Aus;	SEP	OCT	NOV	drc	Yeat
Flows	Avg.	26.570	49450	52670	30190	9522	13260	9210	8145	4265	34820	34.530	33.980	25.409
(in's' ').	Peak	23780	19720	36760	18590	4139	18370	155.90	3340	12.05	24940	20730	19150	367.60
Runotf (mm)		62	104	123	68	22	30	22	19	10	81	78	19	700
Rainiall (mm)		71	144	144	95	41	111	47	101	27	186	89	114	1170

Monthly and yearly statistics for previous record (May 1960 to Doc 1988)

Meyan Avg	51770	36440	34530	25930	18310	14320	16620	24920	30680	42020	52320	56560	33712
flows Low	10610	9565	11790	5601	4048	5031	2638	2958	5782	5716	2.0 .770	15190	22.045
(rn)') High	82.510	80890	104700	54820	46460	33520	40500)	68920	65820	118400	88610	120)200	45022
Pasax flow (m's ${ }^{-1}$)	75460	51310	643.30	46660	3:910	49480	39980	52080	6.930	81000	61320	89:30	891.30
Runott (mm)	121	78	81	59	43	32	39	58	69	98	118	132	929
Rainfal (mmp*	135	82	108	79	84	89	94	:19	134	139	143	150	1356

Factors affecting flow regime SE
Station Iypa. Mis

Grid reference 34 (SD) 589304 Level stn. (m OD) 600

Catchment area (sq km) 11450 Max dit. (m OD). 680

1989 runoff is 75% of prevrous mean rainfall 86\%

071004 Calder at Whalley Weir

Muasuring authority NRA.NW
First year. 1963
Hydrometric statistics for 1989

	JAN	FCB	MAA	APM	AY	JUN	0	AUG	SEP	0×1	NOV	DEC	Year
Flows Avg.	6.969	9/16	12160	8796	3050	4.147	2904	2852	1921	7781	9125	9660	6.571
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Poak	7976	6578	11800	5242	3877	7043	2923	13.32	3.15	8050	4513	6847	118.00
Rumbtf (mm)	59	74	103	72	26	34	25	24	16	66	75	82	656
Reinfal (mm)	59	124	12.9	97	37	$1 \cdot 5$	51	86	2.5	160	85	110	1078
Monthly and yearty statistics for previous record tOct 1983 to Dec 1988-incomptete or missing months total 2.8 veara)													
Mean Avg	13340	9461	9184	6558	5198	4334	3961	6119	7588	11070	12860	13710	8.617
flows Low	5.766	3320	3989	2272	2053	1888	1773	1564	2065	2397	5625	4886	6.225
[m's-'] Hegh	20590	17170	25320	13010	9916	7609	9059	16280	18.620	23910	21990	25610	11.485
Payk flow (m)'s ${ }^{-1}$)	18320	14610	18520	10840	9166	135.50	23060	17160	20600	22950	148.60	19430	230.60
Runoff (mm)	113	73	78	54	44	36	34	52	62	94	105	116	861
Ranisal (mm)	125	75	104	10	79	85	83	111	121	130	131	131	1245
Factors affecting flow regime. El Station type: FV													

Factors affecting flow regime. El
Station type: FV

Grid reterence 34 (SD) 729360
Level stn. (m OD\} 39.90

Calchment area (sq km) 316.0 Max alt. (MOO) 558

072002 Wyre at St Michaels

Measurisg authority: NRA.NW
First year 1963
Hydrometric statistics for 1989

		JAN	Ff\%	MAR	APR	MAY	JuN	JUl.	AUG	SEP	OTT	Nov	DEC	Year
Flows	Avg	5282	9786	8542	5960	1109	1358	0859	1230	0671	6429	6986	6896	4.564
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Peak	2723	5903	3190	5136	384	2353	. 561	2121	237	4. 02	53.59	54.24	59.03
Runolf (mm)		51	86	83	56	11	13	8	13	6	63	68	67	523
Ramifall (mun)		64	138	121	87	36	98	35	115	22	173	88	103	1080

Monthly and yearty statistics for previous record (Oct 1963 to Dec 1988 —incomplete or missing months totad 0.2 years)

Mean Avg	10.160	6888	7097	4776	3302	2882	3.113	4859	6724	9529	10360	11350	6.758
Sows Low	3983	1746	2.270	0774	0732	0444	0431	0248	0902	0617	4.859	2581	3.186
(m)'s ') High	17.820	16030	25920	12090	10450	7096	7477	16240	13290	25500	18510	26530	10329
Peak flow (m's ' ${ }^{\text {') }}$	156.50	14560	168.90	12300	128.20	14660	14810	16210	17650	18040	16310	19050	190.50
Rusnotf (mm)	99	61	69	45	32	27	30	47	63	93	98	111	776
Rasinfall (:nin)	121	70	101	70	80	89	94	:15	133	140	137	133	1283
Factors affecting	w regim	S PG								1989 r	ff is 67	of pro	ous mean

Station type FV

Grid relerence 34 (SD) 463411
Levol stn. (m OD): 440
MAY JUN JUI.

989 runoff is 67% of provюus mean rainibll 84\%

073005 Kent at Sedgwick

Measuring authority. NRA-NW
First year. 1968
Hydrometric statistics for 1989

Monthly and yearly statistics for previous record (Nov 1968 to Dec 1988)

Mean Avg.	12.920	9505	9409	6485	4281	3850	3974	5.858	8385	10780	13.620	13470	8.543
flows Low	5998	3094	3348	2038	1222	0.872	0658	0740	: 753	1396	5484	5466	5.995
(m's-') High	20950	16800	22850	12620	1:580	$130 \cdot 0$	10570	18810	15.630	17960	21430	23210	10.316
Peak (low (m) ${ }^{-1}$ -	19770	11400	16610	11110	5344	7288	9465	8868	12070	12350	17500	23140	231.40
Runot (mm)	166	1 i 1	121	80	55	48	31	75	104	138	169	173	1290
मainfal (min)	194	105	154	88	90	101	115	133	178	183	208	191	1746

Factors affecting flow rogime: N I
Station Iypa: CBVA
Grid roforence 34 (SD) 509874
Level stn. (m OD). 1890
Catchment area (sq kin) 209.0 Max alt (m OD) 817

[^7]1989 runoff is 91% of previous mean rainfal 93\%

074002 Irt at Galesyke

1989

Measuring authonty: NRA-NW first year: 1967

Hydrometric statistics for 1989

	JAN	FEB	MAR	APP	may	2N	${ }^{2}$	AUG	SxP	$\propto 1$	NOV	DEC	Year
Flows Avg	3.976	5523	6.157	3.129	0.947	0.515	0637	3.641	1767	4441	3655	1661	2.991
($\mathrm{m}^{3}{ }^{-1}$): Peak	9.49	12.70	1908	925	1.38	2.21	2.26	1487	993	9.91	1003	608	19.08
Runott (mun)	241	302	373	183	57	30	39	221	104	269	214	101	2134
Ramfall (mm)	225	301	422	175	61	110	43	340	42	342	144	163	2368
Monthty and yearty statistics for previous record (Dec 1967 to Dec 1988 -incomplete or mizsing monthe total 0.1 vears)													
Mesen Avg	4488	2910	3061	2.740	1479	1.795	2.309	2.701	3.708	4571	4745	4354	3.241
Hows Low	1.321	0.736	0.737	0430	0.257	0545	0467	0286	0400	0.554	1.885	1.802	2.440
$\left(\mathrm{m}^{1} \mathrm{~s}^{-1}\right.$) High	8.242	5.111	6575	5.947	3901	5216	4667	6757	1630	8.174	7.094	7645	3.950
Peak flow (m's ${ }^{-1}$)	31.73	1867	2002	34.04	684	1027	2726	1846	17.89	27.29	21.85	2033	34.04
Runotf (mm)	272	161	185	161	90	105	140	164	217	277	278	264	2314
Ranfal (mm)	316	174	245	150	129	163	197	219	279	311	322	310	2815
Factors pffocting fow regima: S P I Station type: VA										1989 runoff is $\mathbf{9 2 \%}$ of previous mean reintall 84\%			

Factors offoctung now regima: S P
Station type: VA

Grid reference: $\mathbf{3 5}$ (NY) 136038
Leved stn. (in OO): 5420

Catchment area (50 gm): 442
Mox alt. (m OO): 978

074005 Ehen at Braystones

1989

Measuring authority. NRA.NW
First yoar: 1974
Hydrometric statistics for 1989

075002 Derwent at Camerton

Measuring authority NRA.NW
first year: 1960
Grid reference 35 (NY) 038305
Level stn (m OD) 1670

Catchment area (sq kms. 6630 Max alt. (m OD) 950

Hydrometric statistics for 1989

Monthly and yearly statistics for previous record (Sep 1980 to Dec 1988 -incomplate or missing months total 03 yoars)

Mean	Avg	38360	27380	24890	19840	12940	10270	11800	18580	25990	35880	40660	41350	25.666
flows	Low	9587	4837	7466	4359	2753	204 :	2503	2384	2885	2.755	14570	14740	14823
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	84550	56570	51550	38940	36280	34800	23140	55940	62980	107800	16340	75.840	34.235
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	219.20	16570	21550	14550	10290	135.80	11450	216.20	18920	264.70	21130	19900	26470
Rumotf (mm		155	101	101	78	52	40	48	75	102	145	159	167	1222
Rainfall (m -11961 -19		181	101	144	95	102	108	119	147	184	201	194	190	1788
Feciors affecting flow regime. S P Station type: VA											1989 runoff is 96% of previous mean rantall 98\%			

078003 Annan at Brydekirk

Measunng authority. SRPB
First yoar. 1967
Hydrometric statistics for 1989

078004 Kinnel Water at Redhall

080002 Dee at Glenlochar

Measuring authority. SRPB
First year 1977
Hydrometric statistics for 1989

	JAN	Fib	MAR	APR	MAY	JUN	Ω	AUG,	SEP	OCT	NOV	DEC	Year
Flows Avg	61.680	70570	82.160	38140	8756	2885	2800	20490	24120	38420	36570	41.240	35478
$\left(\mathrm{m}^{\text {' }}{ }^{-1}\right.$) Poak	16430	12620	19670	10420	5438	4.43	483	9036	13700	9068	10340	176.90	196.70
Runoff (mm) Rainlall (min)	204	211	272	122	29	9	9	68	77	127	111	137	1383
Monthly and yearly statistics for previous record (Now 1977 to Dec 1988)													
Mean Avg	62670	50110	51.970	27530	18450	14560	13530	29020	39350	62130	64840	66.940	41.757
flows . Low	32440	23820	21140	17.100	6267	3184	2945	2054	8630	25920	17140	32690	35105
($\mathrm{m}^{3} \mathrm{~s} \mathrm{~s}^{\text {1) }} \mathrm{High}$	90240	85790	68910	43040	54930	35520	33200	74350	96.120	84170	112700	114900	48.086
Peiak flow (m's ${ }^{-1}$ \}	34180	24200	18000	13130	11790	12300	'6360	20950	26280	29380	27300	31180	341.80
Runoty (mm)	208	152	172	88	61	47	45	96	126	206	208	222	1630
Rainlall (min)* $\cdot\{1977-1985\}$	196	120	177	62	18	101	97	137	217	221	215	215	1836
Factors affecting flow regime: Station type. VA 1989 runoff is 85% of previcus mean													

	JAN	frb	MAR	APA	MAY	JuN	ת几	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	61.680	70570	82.160	38140	8756	2885	2800	20490	24120	38420	36570	41.240	35478
[$\mathrm{m}^{3} \mathrm{~s}^{-1}$] Poak	16430	12620	19670	10420	5438	4.43	483	9036	13700	9068	10340	176.90	196.70
Runoff (mm) Rainlall (min)	204	211	272	122	29	9	9	68	77.	127	111	137	1383
Monthly and yearly statistics for previous record (Now 1977 to Dec 1988)													
Mean ${ }^{\text {avg }}$	62670	50110	51.970	27530	18450	14560	13530	29020	39350	62130	64840	66.940	41.757
flows . Low	32440	23820	21140	17.100	6267	3184	2945	2054	8630	25920	17140	32690	35105
(ms ${ }^{\text {a }}$) High	90240	85790	68910	43040	54930	35520	33200	74350	96.120	84170	112700	114900	48.086
Peiak flow (m's s^{-1} \}	34180	24200	18000	:3130	11790	12300	. 6360	20950	26280	29380	27300	31180	341.80
Runott (mm)	208	152	172	88	61	47	45	96	126	206	208	222	1630
Raintall (rmin)* $\cdot(1977-1985)$	196	120	177	62	18	101	97	137	217	221	215	215	1836
Factors affecting flow regime: Station type. VA													

Grid referenco 25 (NX) 733641
Level sin. (in OD) 4260

Cotchrment area (sq km). 8090 Max alt (m OD) 814

081003 Luce at Airyhemming

Measuring authortly SRPB
First year 1967
Hydrometric statistics for 1989

	JAN	Ffr	MAR			UN		AUG	SEP	OCT	Nov	DEC	Yeat
Frows Avg.	7.908	7436	8835	6059	0903	0571	0485	4463	2463	10310	5237	7856	5.210
(m's '): Peak	9828	4740	5769	7091	417	987	560	4951	25.59	6031	5483	11060	110.60
Runotf (min)	124	105	138	92	14	9	8	70	37	162	79	123	981
Painfall (mm)	:33	134	174	127	36	92	69	16%	69	207	74	140	1422
Monthly and yeariy atatistics for previous record (Jan 1967 to Dec 1988)													
Mean Avg	10320	6815	6361	3485	2573	1929	2.333	3688	6353	8838	9892	9105	5.979
flows Low	4540	0789	1359	0454	0260	0225	0191	0277	0385	1689	3857	2445	3.691
(m's ${ }^{-1}$) High	15.600	12. 110	12310	8289	7597	5360	6445	14290	17.660	16750	15940	17090	7.787
Peak flow $\left\{\mathrm{m}^{\prime} \mathrm{s}^{-1}\right.$ \}	177.10	14610	19730	19760	6364	19030	13150	283.60	19240	23180	16840	20400	28360
Rumotf (min)	162	98	100	53	40	29	37	58	96	138	150	143	1104.
Rainfall (mm)	168	96	121	74	19	82	98	115	151	162	166	150	1462
Factors affecting flow rogime: S P Siation type VA										1989 runotf is 87% of previous mean rainfal 97\%			

Measuring authority CRPB
First year. 1974
Hydrometric statistics for 1989

083003 Ayr at Catrine

Measurung authority: CRPB
First year: 1970
Gind reference: 26 (NS) 525259
Level sin. (m OD): 89.90
Catctrment ates (sq km): 166.3

Hydrometric statistics for 1989

084012 White Cart Water at Hawkhead

1989

Measurng authority: CRPB Furst year: 1963

Hydrometric statistics for 1989

	JAN	FEB	MAR	APA	MAY	JUN	U	AUG	SEP	OCT	NOV	$0 \times C$	Year
Flows Avg	13.230	13460	14.600	4253	1.208	1.131	0.746	5800	3738	7834	4.795	5.524	6.333
($\left.m^{3}\right)^{-1}$) Peak	100.70	10850	88.15			1160	3.13	43.98	4257	3743	1490	7118	
Rumoft (mm)	156	143	172	49	14	13	9	68	43	92	55	65	879
Rainfall (mm)	181	171	206	56	34	79	35	187	73	146	46	86	1300
Monthly and vearly statistics for previous record (Oct 1963 to Dec 1988)													
Mean Avg	10570	7.312	6954	3961	3369	2472	2345	3835	1256	10540	11.240	10460	6.693
fows Low	4692	2.341	1.676	1.112	0824	0827	0.562	0629	1141	1212	3014	3.211	4.419
	21190	12830	14000	8.523	9188	6542	7863	12640	21990	46570	19470	19610	-10.946
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	18140	139.20	11700	8246	115.10	6513	8631	11130	13290	13440	13400	18710	187.40
Runotf (mm)	125	19	82	45	40	28	28	45	83	124	128	123	930
Rantall (mm)	124	76	105	62	81	72	80	99	1.38	141	148	132	1258
Factors affecting flow rogime. S Station type VA										1989 runoff is 95% of previous mean ranfall 103\%			

Station type VA
Grid reference: 26 (NS) 499629
Level sin. (m OD): 410
Catchment area (sq km). 227.2 Max att. (m OD): 375

084016 Luggie Water at Condorrat

1989

Moasuring authority. CRPB
First year 1966
Grad reference. 26 (NS) 739725
Level sin (m 0D): 68.00
Catchment area (sq km) 33.9

Hydrometric statistics for 1989

		JAN	HEB	MAR	APR	may	SUN	M	AUG	SEP	$\bigcirc \subset$	NOV	DEC	Your
Flows	Avg	1059	1335	1483	0533	0261	0223	0186	0499	0336	0709	0593	0696	0.657
(m^{2} 's ${ }^{\text {l }}$	Peak	524	845	1055	332	1.62	124	076	500	193	373	2.65	8.54	10.55
Runotf (mm)		84	95	117	41	21	17	15	39	26	56	45	55	611
Ramfall (mm)		109	126	151	47	28	58	26	170	56	111	37	73	992

Monthly and yearty statistics for previous record (Oct 1968 to Dec 1988 -incomplete or missing months total 0.5 years]

Masn Avg	1491	1013	0970	0573	0475	0310	0311	0.505	0827	1094	1379	1.384	0.881
flows Low	0680	0415	0370	0287	0:66	01.38	0147	0:23	0125	0129	0367	0592	0.539
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3104	1944	1.636	1030	1.199	0692	1751	1606	3386	2.121	2362	2.669	1121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3025	1934	2811	1080	1454	619	27.14	2206	4446	3253	3068	3604	44.46
Runoff (mm)	118	73	77	44	38	24	25	40	63	86	105	109	801
Rainfall (mm)	106	68	90	51	71	65	76	88	115	118	119	108	1075

Factors affecting flow regune.
Station type VA

1989 runoff is 76% of provious mean
rainfal 92%

085001 Leven at Linnbrane

Measuring authority CRPB Firsi year. 1963
Hydrometric statistics for 1989

	JAN	ftB	MAR	APR	MAY	JUN	Ω	aug	SEP	OCT	NOV	08 C	Year
Flows Avg.	84640	104000	88300	47230	11070	11.450	11060	26610	38000	46550	52.810	17.580	44.539
(m's - ${ }^{\text {(}}$) Peak	11610	12820	10460	9185	:5 35	1624	1610	5848	7:64	8480	8562	5647	128.20
Rumolf (mm)	289	321	302	156	38	38	38	91	126	159	175	60	1791
Rainfanl (mm)	323	364	310	. 77	54	106	59	278	154	261	83	130	2205
Monthly and yaarly statistics for provious record (Jut 1963 to Dec 1988)													
Mean Avg	63280	52450	44.460	32.560	25710	20510	18.970	24460	36430	54780	61040	63370	41.462
fows Low	27910	18610	16630	10540	10620	9716	7303	4556	8736	10830	24.540	35930	30.712
(m's ') Ping	119100	102100	98.410	52050	73120	51860	44640	85.740	91360	90150	115000	12.5500	52.784
Pask flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15050	14080	12220	83.14	9202	1848	8612	11530	121.60	13850	14570	14850	150.50
Rumoth (mm)	216	163	152	108	88	68	65	84	120	187	202	216	1888
Rainfall (mm)	230	138	178	99	124	112	126	146	216	279	234	227	2059
Factors affecting flow regime. S Station lype: VA										1989 runoft is $10 \% \%$ of previous mean ranfall 107%			

Factors affecting flow regime. S
Stetion lype: VA
Grid reference: 26 (NS) 394803 Leval sin (mOD): 430

Carchment area (sq kin) 784.3 Max alt. (m OD) 1130

085003 Falloch at Glen Falloch

Measuring authority. CRPB
Firsi year: 1970
Hydrometric statistics for 1989

090003 Nevis at Claggan

Measuring authority HRPB
First year. 1982
tydrometric statistics for 1989

094001 Ewe at Poolewe

Measuring authority: HRPB
First year: 1970
Hydrometric statistics for 1989

	JAN	fee	MAR	APA	Mav	Jヵ,	M	AUG	Ster	$0 \cdot 1$	NOV	DEC	Yeat
Hows Avg	75470	83670	40.960	16600	13320	9939	12.120	41430	30190	53630	37.500	17:10	35.744
($\mathrm{m}^{2} \mathrm{~s}^{-1}$). Peak	16560	24770	69.13	4115	2023	2691	2784	9398	5487	9101	8197	4839	247.70
Runolf (mm)	458	459	249	98	81	58	74	252	177	32.6	220	104	2556
Ramtas (mxm)	506	538	341	70	101	133	78	301	164	394	108	146	2886
Monthly and yearly statistics for previous record (Now 1970 to Dec 1988)													
Mean Avg	40630	28490	27830	22720	15.540	12880	14020	16820	31.940	35320	46.520	47580	28354
flows Low	13820	10660	8842	4537	3862	3725	7884	6740	8046	:3160	21020	. 6500	19.389
(m's ${ }^{-1}$) High	81:30	46880	54440	38210	36280	27180	26180	33070	57270	66220	78300	81840	35.549
Peak flow (m)s ${ }^{-1 \text {) }}$	17710	10500	11700	7359	6563	6443	4508	8546	109.20	12550	136.10	$1 / 980$	179.80
Runoft (mm)	247	158	169	134	94	76	85	102	188	214	273	289	2029
Hainfal (mm)	258	161	209	125	114	111	142	155	254	284	327	315	2461
Factors affecing flow regime: N Station type: VA										1989 runotf is 126% of previous mean rainfall 117\%			

095001 Inver at Little Assynt

Measuring outhority HRPB First year: 1977

Hydrometric statistics for 1989

	JAN	ffr	MAR	$\triangle P$ R	May	Juv	Jur	Aug,	SEP	(C.T	NOV	UtC	Yeat
Flows Avg.	14920	21150	12460	5154	3396	2484	3835	10050	5938	11410	8660	5620	8.690
(m's m^{1}) Peok	3344	6364	1881	1128	634	536	1149	2355	9.79	2475	22.31	12.60	63.64
Runotf (mm)	291	372	243	97	66	47	75	196	112	222	163	109	1993
Rainfall (mm)	370	444	274	14	80	104	103	237	116	313	107	136	2358
Monthly and vearly statistics for previous record (Aug 1977 to Dec 1988)													
Noan Avg	10690	7411	92.4	5612	3987	3241	4934	5960	10680	12820	13.380	1) 540	8.298
fkws Low	4082	2.397	4179	3453	: 660	1812	2432	3394	5.263	6227	6.572	4631	6.956
$\mathrm{fm}^{(\mathrm{s}} \mathrm{s}^{-1} \mathrm{l}$ Hegh	19.950	11460	19400	7552	7131	5636	10340	8579	16390	21180	23960	17580	10.784
Peak flow ($\mathrm{m}^{3} \mathrm{~s} \mathrm{~s}^{\text {-1 }}$)	5524	3102	62.82	1493	2092	1972	15.19	1780	5650	5751	5006	4665	82.82
Rujnofi (mm)	208	132	179	106	78	61	96	116	201	250	252	225	1904
Rainfall (mm)* $(1978 \cdot 1988)$	227	115	207	94	81	104	138	156	255	253	289	259	2178
Factors affocting flow regime: N Station type. VA										1989 runoff is 105% of provious mean rainfall 108\%			

Measuring authority: MRPP Finst year: 1976

Hydrometric statistics for 1989

	SAN	fE8	MAR	${ }_{\text {APP }}$	mar 0.781	5 0904	0.763	AUG 0.783	$\begin{aligned} & \text { SEP } \\ & 0447 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 4951 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 3.741 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 5.496 \end{aligned}$	Year 3.326
$\begin{array}{ll} \text { flows } & \text { Avg } \\ \left\{m_{3}^{3}-1\right): ~ P e a k \end{array}$	$\begin{aligned} & 4.478 \\ & 85.03 \end{aligned}$	$\begin{array}{r} 10660 \\ 59.64 \end{array}$	$\begin{aligned} & 5.285 \\ & 34.64 \end{aligned}$	$\begin{aligned} & 2.139 \\ & 2393 \end{aligned}$	3.85	0904 388	482	305	342	9530	27.89	98.79	98.79
Runotf (mm)	59	126	69	27	10	11	10	10	6	65	47	72	513
Rainfall (mms	92	162	82	53	45	57	36	78	36.	111	53	79	884
Monthly and yearty statistics for previous record (Jan 1978 to Dec 1988)													
Meon Avg	8.853	6.252	6.100	2841	2.128	1.751	1.793	2639	4.814	7.147	8.887	7.972	5.100
fiows Low	5.333	1.555	2907	0624	0279	0.271	0215	0186	2.181	1441	2.510	3004	3.420
$\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right) \mathrm{High}$	11.900	10.940	9.753	8.442	5434	4128	4.943	9.192	7886	16560	14730	12.390	6.418
Peak fow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9896	6852	12260	6928	10800	14080	129.10	76.64	189.10	126.00	16320	16200	189.10
Runott (mm)	116	75	80	36	28	22	23	35	62	94	113	104	787
Rainfoll (mm)	138	68	109	64	60	64	69	79	12.2	131	143	126	1173
Factors affocting flow regime: \mathbf{N}													

Factors affocting flow regime: \mathbf{N}
Station type: VA

Grid reference: $29(\mathbb{N C}) 89156$
Level \sin. (m OO): 23.20

Catchment ares (sq km): 204.6 Max aht (m OO): 580

1989 runoff is 65% of previous mean rainfall 75\%

101002 Medina at Upper Shide

Measuring authorny: NAA.S
First year: 1965
Hydrometric statistics for 1989

	JAN	FEB	MAR	APA	MAY	NN	JUL	AUG	SFP	$0 \subset T$	NOV	OfC	Yoar
Flows Avg	0187	0353	0317	0.219	0129	0099	0078	0064	0.089	0114	0131	0424	0.183
$\left(m^{2} s^{-1}\right)$. Peak	033	2.86	1.93	106	025	026	0.20	014	032	0.87	047	309	3.09
Runoff (mm)	17	29	28	19	12	9	7	6	8	10	11	38	193
Rantan (mm)	40	84	77	67	15	28	20	25	47	107	62	157	724
Monthty and yearly statistics for previous record (Oct 1985 to Doc 1988 -incomplete or missing months total 6.8 years)													
Mesn Avg	0.456	0405	0346	0271	0208	0147	0129	0120	0159	0241	0340	0382	0.286
Hows Low	0150	0.160	0.121	0.104	0094	0069	0073	0044	0080	0110	0088	0116	0.122
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{pmgh}$	0.928	0760	0903	0522	0356	0212	0.199	0180	0365	0555	0769	0663	0.335
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	6.47	600	728	544	700	179	3.72	1.74	3.74	4.73	864	630	8.64
Runotf (mmi)	41	33	31	24	19	13	12	11	14	22	30	34	282
Raninall (mme* $\cdot(1966 \cdot 1988)$	95	66	97	47	63	50	52	60	60	109	19	103	881
Factors affecting flow regume GI Stalion type. FL										1989 runoff is 69% of prevrous mean rainfall 82\%			

Factors affecting flow regume GI
Stalion type. FL

Grid reterence: 40 (SZ) 503874
Level stn. (m OD): 10.40

Catchment atea (sq km): 29.8

201007 Burn Dennet at Burndennet Bridge

Measuring authority. DOEN
First yoar 1975
Hydrometric statistics for 1989

		Jan	-E8	MAR	APG	MAY	JuN	JuL	AUS;	St ${ }^{\text {P }}$	OCT	Nov	DEC	Yoar
flows	Avg	4.400	5.904	1811	6.115	2838	1769	1385	3038	2. 185	7019	5456	3203	4.251
($\mathrm{m}^{3} \mathrm{~s}$ - : ${ }^{\text {\% }}$	Peak	2814	33.09	4748	3685	553	229	2.67	21.96	1219	4957	2236	18.36	49.57
Runot (mm)		81	98	144	109	52	32	26	56	39	129	97	59	923
Rainfall (mm)		93	130	14)	111	39	44	50	144	63	188	62	54	1125

Monthly and yearty statistics for previous record (Jun 1975 to Dec 1988 -incomplete or missing months total 0.1 years)

Meen Avg	6393	4724	4.585	2.780	2.335	1780	1872	2485	3.454	4557	4865	551	3.778
lows Low	3410	2244	2.441	1687	0925	0843	0832	0579	0664	2.596	2.130	3208	2.634
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$) High	9.542	8897	6.992	5003	5024	3649	3990	7213	8151	7874	7351	8156	5.012
Peak flow ($\mathrm{m}^{3} \mathrm{~s}$ ')	7002	5300	3902	25.39	2551	1884	5079	5546	67.37	11080	64.52	5953	110.80
Runotf (mm)	118	80	85	50	43	32	35	46	62	84	87	-02	821
Rainfal (mm)	132	70	109	56	72	7.	90	9 -	1:	- 24	- 11	115	1152
Factors affecting flow regrne E										1989 runff is 112% of previous mean rainfall 98\%			

factors affecting flow rogrme E
Station type VA
Grid efeference 24 (IC) 372047
Level stn (m OD) 200
Catchment area (sq km) 1453 Max all (m OD) 539

201008 Derg at Castlederg

1989

Messuring authority. DOEN
Grad reference 23 (IIH) 265842
l.evel stn (in OD): 43.00

Catchment area (sq km): 337.3 Max alt (m OO) 543

Hydrometric statistics for $\mathbf{1 9 8 9}$

	JAN	FEB	MAR	APA	MAY	Jus	Jx	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	20410	29140	28480	13690	3439	12.58	1143	12.700	5441	24750	12060	8233	13.324
$\left(\mathrm{m}^{3} \mathrm{~s}_{5}-1\right)$. Poak	103.40	9334	15950	7853	13.03	838	10.79	98.70	3740	22320	4814	64.61	223.20
Runotf (mm)	162	209	226	105	27	10	9	101	42	197	93	65	1246 1559
Rainial (mm)	165	243	222	111	41	68	55	191	68	246	67	82	1559
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1988)													
Mean Arg	22600	14110	16390	7056	6897	5058	6153	$933 ?$	14980	17460	20800	21370	13.530
fows Low	12090	2356	8844	1862	0534	1048	1336	$025{ }^{\circ}$	1703	9480	7358	13420	11.403
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Hingh	33100	24550	23410	15.360	$1) 200$	11.230	11710	30260	30630	30.140	35830	32690	15.763
Peak flow (m)s ${ }^{\text {' }}$)	20260	187.30	153.70	13560	16350	$8 / 33$	16100	$1 / 690$	23290	19290	20520	18730	232.90
Runot (mm)	179	103	130	54	55	39	49	74	115	139	160	170	1266
Rairfall (mme)* (1983.1988)	200	94	165	83	100	78	124	154	157	190	144	200	1689
Factors affecting flow rogime E Station type VA										1989 runoff is 98% of prevrous mean ranfall 92\%			

203012 Ballinderry at Ballinderry Bridge

1989

Measuring authority DOEN First yoar 1970				Grid reference: 23 (IH) 926799 Lovel stn (m OD): 16.00						Catchment area (sq km): 419.5 Max alt (m OD): 476			
Hydrometric statistics for 1989													
	JAN	FEB	MAR	APA	May	JN	π	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	9526	12830	17260	11880	3895	2636	1794	2775	2469	8019	7045	7533	7274
(m's ${ }^{\text {- }}$) Pask	3042	3848	6704	5332	13.62	1262	492	1630	939	7342	2765	5984	73.42
Runoff (mm)	61	74	:10	73	25	16	:	18	15	51	44	48	547
Rusinay (mm)	70	107	133	103	33	56	49	118	52	142	46	70	979
Monthly and yearly statistics for previous record (Jul 1970 to Doc 1988)													
Mean Avg	16.510	12220	10570	6423	5.374	3753	2864	5102	6.244	9.317	12.240	14280	8.733
fows Low	9.339	4805	5.502	3515	2454	1627	1.518	1060	1965	2331	5122	4946	5251
(m 's- ${ }^{\text {- }}$) High	24.690	2.4430	16560	13140	12.740	7524	7496	17640	21020	17200	21860	21.490	11.532
Peak flow (m's ${ }^{-1}$)	18320	139.90	9837	10670	10920	6160	12720	14010	14100	194.80	11770	138.00	194.80
Runolf (mm)	105	71	67	40	34	23	18	33	39	59	76	91	857
Rainfall (mm)* -(1983.1988)	133	64	110	60	68	64	73	-19	97	117	88	114	1107
Factors affecting flow regime N Statmon type: VA										1989 runoff is 83% of prevюus mean raintall 88\%			

203020 Moyola at Moyola New Bridge

1989
Measuring authority: DOEN
Grid reference: 23 (IH) 955905
Level stn (m OD): 13.00
Catchment area (5 q km). 3065
First year: 1971 Max alt (m OD): 554
Hydrometric statistics for 1989

	JAN	H6	MAR	APA	MAY	JUソ	JUL	AUG;	Sf.P	OCI	Nov	OfC	Year
Flows Avg	7707	12880	17150	13280	2.921	2424	1689	3.286	2921	11410	8001	6606	7489
\{m's-j. Puak	2641	5655	86.93	10280	720	2981	480	26.28	1979	79.40	2948	54.55	102.80
Runotf (mm)	67	102	150	112	26	21	15	29	25	100	68	58	771
Rannfal (mm)	82	139	170	121	43	72	54	124	64	164	56	78	1167
Monthly and yearly statistics for previous record (Feb 1971 to Oec 1988)													
Mean Avg.	15370	11120	9873	5419	4769	3397	2730	4545	6069	8.978	11110	13.440	8.083
flows Low.	9707	3696	3776	2238	13.35	1015	0952	0748	1.366	2000	4567	5088	4981
(m's-1) High	23.280	21510	15.590	11140	12360	6900	6496	15310	19100	15880	20770	22170	10598
Peak flow (m)'s ${ }^{\text {'/ }}$	15220	121.90	81.02	7038	11410	6784	8333	11100	11270	13480	116.50	154.60	154.60
Runoff (mm)	134	89	86	46	42	29	24	40	51	78	94	117	830
Raintab (mm)* $\text { ' } 1983 \cdot 1988$	161	77	127	65	78	65	82	126	112	135	105	131	1264
Factors affecting flow regime S PGI Station type: VA										1989 runoff is 93% of previous mean raınfall 92\%			

205004 Lagan at Newforge

Measuring authority DOEN
First year: 1972
Hydrometric statistics for 1989

	JAN		MAR	APA	MAY	JUN	JUL	AUK;	S5P	0 Cl	Nov	DEC	Year
Flows Avg	8509	8163	11220	-17430	2163	1832	1348	1943	1587	7.187	8567	12790	6.879
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1662	1343	2624	5698	485	1161	11.17	11.49	925	4578	1116	48.12	56.98
Runoff (mm) Rainfal (mm)	46	40	61	32	12	10	7	11	8	39	45	70	442
Monthty and yearly statistics for previous record (Aug 1972 to Dec 1988$)$													
Mean Avg	17.750	12180	11000	6257	4749	3420	2634	4680	6277	11.170	11.300	16.290	9.024
flows Low	10300	5311	2.820	2064	1208	0944	0789	0615	0902	1075	3059	3843	4810
$\left(m^{3} s^{-1}\right) \mathrm{High}$	26460	22.330	18740	19170	16600	11.230	8018	19470	18090	27600	27690	43090	12.235
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	8430	6622	69.56	11220	5515	6272	2430	7610	7053	12100	9108	128.40	12840
Runotf (mm)	97	61	60	33	26	18	14	26	33	61	63	89	581
Roinfas (mmi** - 11983 -1985)	96	63	86	47	58	53	47	87	106	71	68	100	882
Factors affecting flow regime GEI Siation type: VA										1989 runoff is 76% of previous mean			

Catchment ares (sq km): 4904 Max alt. (m OD): 532

1989
Catchment area (sa km) 69.5 Max alt (m OD): 163
Moasuring authority DOEN
Grad reterence 33 (IJ) 267613 Level $\sin (\mathrm{m} \mathrm{OO}) 31.00$

THE SURFACE WATER DATA RETRIEVAL SERVICE

The Surface Water Archive comprises some 26,000 station-years of daily river flows and incorporates data from over 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed below, and examples of the computer output are given on pages 145 to 153. The data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 154 to 159, and the Summary of Archived Data on pages 160 to 168 , be consulted to check the availability of suitable data sets.

In response to user requirements the data retrieval facilities are being continually extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available on line-printer listings, magnetic tape or IBM compatible disk, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

Surface Water Archive Office
Institute of Hydrology
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX 10 8BB

Tel: (0491) 38800 Fax: (0491) 32256

Hydrological Data at the Institute of Hydrology

The Surface Water Archive is one of several major sources of hydrological data held at Wallingford. Others include an archive of flood peaks from over 600 catchments, a flood event archive comprising rainfall and river flows at short time intervals for over 4000 individual events and experimental catchment data for Plynlimon (mid-Wales) and Balquhidder (Scotland) Data may be retrieved from these sources in a variety of formats. Advice can also be given on equivalent European data through staff involved in the FRIEND project of the International Hydrological Programme.

The Surface Water Archive is part of ENDNET, the environmental data network of the Natural Environment Research Council.

LIST OF SURFACE WATER RETRIEVAL OPTIONS*

OPTION TITLE
NLMBER
1 Table of daily mean gauged discharges

Table of daily mean naturalised discharges

Yearbook data tabulation (daily)

Table of monthly mean gauged discharges

NOTES

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

[^8]Table of monthly mean naturalised discharges
Yearbook data tabulation (monthly)

Table of monthly extreme flows

Table of catchment monthly rainfall

Table of catchment monthly areal rainfall and runoff

Hydrographs of daily mean flows

Hydrographs of monthly mean flows

Flow duration statistics

Table of gauging station reference information

Table of hydrometric statistics

Gauging station and catchment description

River flow pattern plots

Includes monthly and annual summary statistics. Flows in cubic metres per second.
Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff may also be tabulated.
The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.
Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.
Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.
Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running mean flows.
Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.
Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.
Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.
Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record.
A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.
Three plots on an A4 sheet:
a) daily mean flow hydrograph for a selected year
b) monthly mean flow hydrograph for the selected year. The maximum and minimum monthly flows, together with the 30 -day running mean for the preceding period of record may be included
c) flow duration curve for the specified year. A flow duration curve for the period of record may be included.
Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

OPTION 1 TABLE OF DAILY MEAN GAUGED DISCHARGES

OPTION 2 TABLE OF DAILY MEAN NATURALISED DISCHARGES

OPTION 3 YEARBOOK DATA TABULATION (DAILY)

Daily mam saugej dischareis teuble eotres pef second

\%	Jan	eb	ast	Apr	Ms\%	Jun	Jul	Aug	Sep	Oct	mov	Dec
:	45.922	18.993	3.66!	31.03?	11.699	0.653	$6 . 今 7$	3.709	13.832	3.356	62.247	26.013
2	65.611	: 5.510	3.561	26.653	10.668	5.513	3.970	3.945	13.786	3.240	\$1.689	11.208
3	33.09:	: 6.188	3.699	21.080	7.670	$5.37:$	3.017	3.053	13.607	3.018	28.820	14.010
6	31.356	12.693	-. 703	18.030	12.338	3.018	6.965	0.258	10.316	2.981	23.63 C	16.190
,	33.756	11. 306	21.279	15.390	10.192	4.671	8.872	5.508	9.181	2.186	22.010	21.575
\bigcirc	28.535	:0.417	:0.379	13.854	8. 204	4.252	S.693	5.377	8.612	2.708	19.350	19.575
7	62.357	-. 347	3.357	14.585	8.793	6.177	4.203	1.406	7.095	2.537	19.701	P4.vs?
3	47.615	4. 383	7.360	17.608	9.032	\$.935	6.538	3.801	7.0ss	2.578	25.670	6A. 6^{61}
-	33.912	7.508	10.315	16.122	A.15s	12.600	3.770	4.976	6.326	2.352	29.678	67.166
10	20.317	7. 269	9.31s	11.702	8.123	\$3.508	3.614	12.831	3.756	2.ABS	31.13s	37.830
11	59.633	6.196	7.759	13.316	7.324	57.535	3.799	65.093	3.436	2.370	31.709	69.360
12	\$1.120	5.536	7.043	10.111	7.486	Pc.326	3.364	16.051	3.055	7.605	25.056	69.83s
13	64.088	0. 359	0.313	11.170	7.135	13.017	3.184	11.318	17.067	2.403	40.861	-3. 150
16	60.020	5.735	6.018	21.778	46.588	13.286	2.978	9.582	21.159	2.623	127.889	\$3. 317
. 15	16.137	S. 361	S.7S 3	31.328	31.185	11,171	2.812	7.763	11.432	2.325	S1.152	89.636
16	\$2.206	\$. 179	9.558	25.300	25.283	7. 358	2.468	6.313	9.663	2.16)	47.607	75.17s
17	31.113	4.361	3.913	22.478	27.619	3.539	2.812	S. 321	7.860	2.037	48.47 ?	66.180
18	36.256	6.416	0.608	19.092	22.558	1.399	2.151	21.257	6.809	2.156	190.704	50. 590
14	33.584	6.773	7.125	23.908	17.116	6.633	2.042	13.615	0.159	3.303	176.727	63.603
20	37.851	6.098	1.107	43.595	16.262	5.986	2.131	9.176	3.738	17.384	106.840	so. 59 ?
$2:$	12.161	3.944	6.67s	\$0.706	15.669	7.548	2.236	3.650	5.631	29.351	80.850	45.105
23	76.691	3.726	1.247	46.683	12.302	3. 406	2.109	20.983	5.106	53.352	80.697	36.562
is	80.058	3.703	14.096	47.316	1:20.	6. 503	1.961	20.253	4.871	45.350	\$3.009	29.293
26	60.162	3.861	17.:17	41.626	10.070	7.160	1.801	20.980	6.563	16.370	63.314	35.377
25	46.132	4.131	23.593	34.178	9.163	5.670	1.992	70.878	6.764	43.982	11.674	67.217
30	36. 361	6.776	22,503	27.079	9.683	4.680	2.253	\$7.600	6.037	34.072	75.536	63.610
27	30.185	4.668	29.563	22.312	7.809	4.137	2.161	64.335	3.890	\$6.152	\$6.160	37.013
? 3	10.362	6.290	63.032	19.818	7.235	3.057	2.784	38.900	5.790	77.585	+9.063	36.8980
29	26.79:		62.968	:5.100	0.581	s.9as	5.030	29.109	3.507	\$0.638	59.020	32.123
30	21.017		69.238	13.274	3.3s0	5.086	3.301	22.587	3.60 A	47.310	26.239	72.375
31	13.531		39.862		5.200		6.837	18.13?		\$7.509	26.230	73.129
Averese	42.75	7.1s3	15.100	24.090	: 5.150	9.542	1.313	18.c:c	7.911	10.150	54.12 C	67.06:
tovest	19.531	3.561	3.661	10.1:1	0.350	3.935	1.86:	3.233	3.498	2.037	:9.707	10.100
Mianme	89.053	16.995	49.258	S0.756	64.598	37.55s	8.672	70.328	21.159	77.595	170.127	37.636
Prok tion	105.320	18.233	00.097	65.316	99.539	19.060	10.853	176.359	41.069	77.051	251.793	123.939
د大y ol Drak nonemir cotel	15	:	26	2.1	1)	15	,	11	16	28	19	is
lellitioncu	114.50	1\%.31	40.67	52.63	35.30	26.15	3.8)	68.73	20.51	\$1.30	160.30	13\%.00
Runoft (ion	138	21	47	76	63	30	11	53	25	5)	$1 / 6$:53
Relntall test	14\%	,	103	97	93	\%	35	131	± 0	138	183	100

$\begin{aligned} & \text { Mean. } \\ & \text { flous: } \end{aligned}$	Aug.	35.970	28.919	29.510	13.110	9.059	3.213	C. 328	3.815	7.776	18.723	25.300	17.230
	Low	6.357	3.264	1.649	3.389	2.073	1.329	c. 793	0.423	0.861	1.043	3.453	13.212
	(reas)	1703	1950	1984	1976	1976	1984	1986	1975	1450	1978	1978	- 1903
	M19n	62.:00	\$4. 760	52.160	37.800	37.000	:8.650	23.190	19.130	47.670	17.300	58.500	73.070
	teest	1986	1973	1981	:960	1983	1072	1968	129s	1776	1900	1033	1 108
Runopf:	avg.	117	35	67	43	31	16	is	18	26	61	89	121
	Low	22	10	26	1)	7	6	3	1	3	3	11	43
	H13n	201	160	109	103	120	52	10	62	150	251	134	239
Relneall	ava.	:32	80	90	69	12	\% ${ }^{\text {d }}$	71	97	95	11)	178	160
	Los	23	3	18	3	23	:0	[3	26	14	16	56	61
	Migh	262	173	183	165	146	164	132	160	(6)	378	239	271

Station ano catcmant otscatptijm

 grate sans 6 volls.

OPTION 4 TABLE OF MONTHLY MEAN GAUGED DISCHARGES

OPTION 5 TABLE OF MONTHLY MEAN NATURALISED DISCHARGES

OPTION 6 YEARBOOK DATA TABULATION (MONTHLY)

OPTION 7 TABLE OF MONTHLY EXTREME FLOWS

M：：A！inest insicnt oncous sineroe za

OPTION 8 TABLE OF CATCHMENT MONTHLY RAINFALL

OPTION 9 TABLE OF CATCHMENT MONTHLY AREAL RAINFALL AND RUNOFF

					21093：		：						
：：：$:$	A：	：$:$	：．．	：$:$	：：	…	$\cdots!$	＊：！	：：	\％：	：．：	\％：	：．：．：
（100） 8 \％inn： 0^{11}	：	i	：	\％	ii	：9	is	\％\％	\because	\％	n	1：＂	${ }^{1081}$
：1764 Etant：${ }^{\text {a }}$	1；9	2	\because	\％	\because	\because	ii	＇：！	3	\％	：$: 8$	i\％	13\％
	\％	\％	104	\because	is	：	！	\because	\because	i3	13；	＂	咢；
－a！：＂	＂	＂	102	＂	${ }^{\circ}$	＂	＊	\cdots	＂	1.6	\％	\cdots	${ }^{11 \times}$
：$:$ ：	10；	1．ss	aidi	1．0is	103	：\sim_{0}	1．i）	เif		ロッ：	10n	1．3＇	涄；
＊＊＊	：3\％	1．i	1384	$\cdots \cdots$	1：3］	：\％	189\％	：10；	AB	，${ }^{\prime \prime}$	，183	1：\％	；${ }_{\text {\％}}$
＂＂noin	＊	＂	＂	：	＂	2	12	＂	${ }^{4}$	－	\bullet	104	＂＇，
！$: 1$	iii		ıit	\cdots	（12）	，i9；	14．	， $0 \cdot$	109：	， 8	：i^{3}	12：＂	： 7 i
$\cdots \quad$ ：－．：	13：	：${ }^{\prime}$	112	10i）	：i	1．18	－ ais 3	ari		，i8；	12\％	1．3\％	：3i：
	130	＊	＊	${ }^{*}$	\because	2	： 1	＂	＂	＂	＂	＂	＂
：$: 1$	1．3；	，${ }^{3}$	．：	1．i：	：20\％	12i	A！	10；	i．9；	1．3：	1．i	，ir；	13：＂
$\cdots \quad . \quad \therefore$	i 13	ipio	4i8	，\quad ；	：\％	1230	： 2	ai；	10ii	14i	ni：	，${ }^{4}$	ni：

OPTION 10 HYDROGRAPH OF DAILY MEAN FLOWS

050001
 tan at umberleigh
 1981

Previous record 1958-1980
Catchment area 826.2 km

OPTION 11 HYDROGRAPH OF MONTHLY MEAN FLOWS

OPTION 12 FLOW DURATION STATISTICS

OPTION 13 TABLE OF GAUGING STATION REFERENCE INFORMATION

OPTION 14 TABLE OF HYDROMETRIC STATISTICS

STATION suneza	tlen	nas	aria:	asizal	Meas	Nu.	3 PCK	nichis:	cate	l.curst	batic	10	su	4s
		1961	Ralk	cauces	mulio	Res	NLu	0ulir		dally		114	114	314
		1970	FALL	cesous	flus	RLC	How	Mes		Nos)				
		\%or	nor	m	a m/s			a $n / \%$		Cl m/S		[0/ m/	01 W/s	C) N
021003	puk	1370	1250	616	1.99	1s		185.50	30/01/176	1.19	01/10/72	10.20	3.39	1.41
	191)		1630	329	9.80		123	92.31	11/10	1.39	21/08	20.20	7.03	1.05
	1973		1317	731	4.95		112	35.16	13/11	1.ts	$19 / \mathrm{Co}$	20.31	0.01	2.25
	1979		130)	913	10.6		138	H2.13	20/11	2.7)	23107	24.29	6.11	2.00
	1980		12 ba	193	9.36		117	49.27	24/11	2.01	$01 / 06$	19.90	1.00	2.14
02100\%	ros	1227	1180	-94:	37.94	1s		393.60	20/01/14	3.46	01/10/72	*-9. 19	22.22	0. 33
	1911		121)	4s	40.20		122	3s3. 60	31/10	4.13	14108	36.42	29.:0	3.62
	1978		1244	131	36.11		:0s	320.30	1s/11	3.8?	20/C0	14.11	22.20	7.01
	1919		$: 210$	41	41.90		121	202.70	20/11	3.2 ;	210]	93.82	17.04	-. 31
	-980		(18)	140	39.68		:cs	111.60	20/11	3.17	19/心)	16.63	25.41	7,6e
021007	pon	1613	1121	178	13.89	is		209.80	3i/01/16	0.31	01/c9/70	31.29	8. 30	1.11
	1911		1526	1108	11.34		120	2 be .10	31/10	0.11	18108	-1.:0	10.86	1.11
	1978		1396	ves	14.02		101	210.00	1s/11	U.97	19107	32.00	3.26	1.21
	1979		1620	1109	17.48		120	180.90	20/11	1.42	26/0)	-1.30	10.4)	1.85
	1480		1300	964	14.93		101	98.07	20/11	1.18	$13 / 08$	33.21	9.10	1.3s
021008	puk	1000	\%9	306	11.14	16		200.00	$06 / 03103$	1.71	12103/70	29.64	11.05	2.ay
	1911		1019	200	21.23		120	187.20	31110	1.44	17108	65.30	16.01	6.30
	1976		10.1	341	19.03		101	111.90	:3/11	2.04	2010)	63. 36	11.08	2.51
	1979		100s	-43	26.00		130	173.10	23/03	2.22	03100	35.64	:5.1:	3.67
	1980		742	386	20.02		110	122.0	101:	s.3s	03/20	4., 35	1:.30	$\therefore 1$

OPTION 15 GAUGING STATION AND CATCHMENT DESCRIPTION

```
48003 Fal et Tregonr
    Originally veloclty-ared seatlon ln e forealised trapezoldal chamel: augaented
        by lou flow, side contracted fluee 2.8e wide In Auguse i967. Slte not ldedl for
        high flows. Data avallable frof June ligs. Earlifer data unreliable due to siliting
        of inlet pipes. Moderate eodiflcation to flows oving to industrial abstractions
        and returns. S. Noderate codiflcation to flows oulng to industrial ebstraction
        and returns.
        Moderate to lov rellef catcheent drainligg Devontan slates, shales and grlis.
        Upper reaches platedu-llke alluviel flats. iraverses the kaolinised se mustell
        Granite. Lov grade agriculture end grazing.
Varleggan at trengoffe
    Three-bay coepound crump oroflle veir, crest lengins l.52o and 8.53e ttotalle
    |ing valls at l.b70. Flood banks contalin flous up to wing uall helght. Dugreopoed
    t the hlynest flows. The only gauged natural catchoent on yodeln moor.
    The upper 70: drains the kaolinlsed granlte of godelin moor. The rellef is coderate
    to steep. the lover sot treverses eetamorphosed Devonldn sidtes. iaseflov hlgh
    For an upland catchment oving to storage In the granlte.
    Three-Day compound Crump proflle velr, crest lengths 1.22e and 3.0S itotal). Pier
    and ulng uall helght l.9BG. Contalns all flovs: potential for non-acdulaflity at
    the ilahest flows. Varlable shoaling affects lov flow preclsion. Substantialiv
    natural catcheent. Nigh baseflow, low percentage runoff catchment for the relief.
    catcheent of moderate relief, with wooded, inclsed vallevs. Geologr is Devoniden
    jrles ans shales.
```

OPTION 16 RIVER FLOW PATTERE PLOTS

56001
USK AT CHAIN BRIDGE
1983
Previous record 1958-1982 Cotchment area $911.7 \mathrm{~km}^{2}$

OPTION 17 GAUGING STATION SUMMARY SHEET

	Gauging Station Sunmary TAW AT UMBERLEIGH	
Station Number 050001		Gauged Flows $1958-1987$

Measuring Authority: NRA - South West
Grid Reference: 21 (SS) 608237

Mean flow	18.06	
Moan flow (ls ${ }^{-1 / \mathrm{km}^{2} \text {) }}$	21.85	
Maan flow ($10^{6} \mathrm{~m} 3 / \mathrm{yr}$)	569.9	
Peak flow 8 date	644.9	4
Highest daily mean 8 date	363.8	4
Lowast daily mean 8 date	0.200	28
10 day minimum end date	0.237	28
60 day minimm a and date	0.542	10
10 percentila	46.820	
50 percentile	9.330	
95 percentile	1.219	
Maan arrumal flood	247.0	
Bankfull flow	170.00	
Catchment Characteristics		
Catchument ares (km^{2})	826.2	
Leval stn. (m00)	14.10	
Max alt. (m00)	604	
IH Baseflow inclex	0.42	
FSR slope (m / km)	4.80	
1941-70 rainfall (mm)	1193	
FSR stream freq. (junctions $/ \mathrm{km}^{\mathbf{2}}$)		
FSR percentage urban		

Factors Affecting Flow Regime

- Reservoir(s) in catchment.
- Abstraction for public water supply
- Augmentation from effluent returns.

Rainfall (mm) Runoff (mm)
(1950~1987)
Mean Max/Yr Min/Yr Mean Max/Vr Min/Yr

Jan	129	242	1984	28	1963	116	201	1984	22	1963

$\begin{array}{lllllllllll}\text { Jan } & 129 & 242 & 1984 & 28 & 1963 & 116 & 201 & 1984 & 22 & 1963\end{array}$
$\begin{array}{lllllllllllll}\text { Feb } & 84 & 173 & 1977 & 3 & 1986 & 82 & 160 & 1970 & 10 & 1959\end{array}$
$\begin{array}{llllllllllll}\text { Mar } & 11 & 183 & 1981 & 18 & 1961 & 67 & 169 & 1981 & 24 & 1984\end{array}$
$\begin{array}{llllllllllll}\text { Apr } & 71 & 145 & 1966 & 8 & 1984 & 46 & 103 & 1966 & 12 & 1974\end{array}$
$\begin{array}{llllrllllll}\text { Apr } & 71 & 145 & 1966 & 8 & 1984 & 46 & 103 & 1966 & 12 & 1974 \\ \text { May } & 73 & 146 & 1983 & 28 & 1961 & 31 & 120 & 1983 & 7 & 1976\end{array}$
Jun $60 \quad 164 \quad 1980 \quad 10 \quad 1975 \quad 17 \quad 52 \quad 1972 \quad 4 \quad 1984$
Jul $\quad 71 \quad 152 \quad 1965 \quad 23 \quad 1976 \quad 15 \quad 76$
$\begin{array}{llllllllllll}\text { Jul } & 71 & 152 & 1965 & 23 & 1976 & 15 & 76 & 1968 & 3 & 1984\end{array}$
$\begin{array}{llllllllllll}\text { Aug } & 87 & 160 & 1985 & 24 & 1983 & 19 & 62 & 1985 & 1 & 1976\end{array}$
$\begin{array}{lllllllllllll}\text { Sep } & 92 & 247 & 1974 & 14 & 1959 & 24 & 150 & 1974 & 3 & 1959\end{array}$
$\begin{array}{lllllllllll}\text { Oet } & 116 & 278 & 1960 & 14 & 1978 & 62 & 251 & 1960 & 3 & 1978\end{array}$
$\begin{array}{lllllllllll} & 130 & 239 & 1963 & 56 & 1961 & 92 & 184 & 1963 & 11 & 1978\end{array}$
$\begin{array}{llllllllllll}\text { Dec } & 139 & 271 & 1965 & 41 & 1965 & 119 & 239 & 1965 & 43 & 1963\end{array}$
$\begin{array}{lllllllllll}\text { Andual } & 1151 & 1525 & 1960 & 893 & 1975 & 689 & 1055 & 1960 & 432 & 1964\end{array}$

Station and Catchment Description

Velocity-area etetion, main channel 34 m wide, cableway spen 54.9 m . Rock step d / s forms the control. Bypaseing begins at mbout 3.7 m on the rb , but a good rating accommodates this. Significant modification to flows owing to PHS abstraction. Soma naturalised flow data availsble.

Large rural catchment - drains both Dartmoor (granite) to the south and Devonian shales and sandstones of Exmoor to the north. Central area is underlain mainly by Culm sheles and sandstones (Carboni ferous). Agriculture is conditioned by the grada 3 and 4 soils.

Summary of Archived Data

Gauged Flows and Rainfall

Naturalised Flows

[^9]Oxon 0x10 88B, UK. Tel. 049138800.

Station number	River and station name	Grid reference	Auth－ ority	Area \｛sq km\}	Station number．	River and station name	Grid． reference	Auth－ ority	Area （ sq qm k）
002001	Helmsdale at Kilphedir	29979181	HRPB	551.4	018001	Allan Water at Kinbuck	27927053	FAPB	161.0
					018002	Devon at Glenochil	28586960	－	181.0
003001	Shin at Lairg	25819062	SE	494.6	018003	Teith at Bridge of Teith	27257011	FRPB	518.0
003002	Carron at Sgodachail	24908921	HRPB	241.1	018005	Allan Water at Bridge of Allan	27866980	FFPB	210.0
с03003	Oykel at Easter Turnaig	24039001	HRP日	330.7	018007	Devon at Fossoway Bridge	30117018	fRPB	69.5
003004	Cassloy at Rosenall	24729022	HRPB	187.5	018008	Leny at Anie	25857096	FAPB	190.0
003005	Shin at inveran	25748974	HPPB	575.0	018010	Forth at Gargunnock	27146953	FRPB	397.0
					018011	Forth at Craigorth	27756955	¢RP日	036.0
004001		24828547	HRPB	961.8	018012	Ardoch Burn at Doune Castie	27297008	FRPB	48.0
004003	Ainess at Alness	26548695	HRPP	201.0	018013	Black Devon at Fould Mill	29146924	FRPB	67.0
004005	Blackwater at Contin	22868528	HRPB	336.7	018014	Bannockburn at Bannock Bur	28126908	FRPg	23.7
	Meig at Gienmeannie．			120.5	018016	Kelty Water at Clashmore	24686968	FRPB	2.8
					018017	Monachyle Surn at Balquhidder	24757230		7
005001005002	Beauly at Erchless Farrar at Struy	24268405	SE	849.5	018018	Kirkton Burn at Balqutidder	25327219	${ }_{\text {IH }}$	6.9
		23908405	HRPB	311.3	018019	Comer Burn at Comer	23867043	FRPB	0.9
006001 006003 006006 006007 006008	Ness at Ness Costle Farm	26398410	SE	1792.3	019001	Almond at Craigiehall	31656752	FAPB	369.0
	Moriston at Invermoriston Alt Bhlaraidh at Invermoriston	24168169	SE	391.0	019002	Almond at Almond Weir	30046652	FRPg	43.8
		23778168	SE	27.5	019003.	Breich Water at Breich Weir	30146639	fRPB	51.8
	$\begin{aligned} & \text { Alt 8hlaraidh at Inverrmoriston } \\ & \text { Ness at Ness Side } \end{aligned}$	24508300	HRPE	105.9	019004	North Esk at Dalmore Weir	32526616	FRPB	81.6
	Enrick at Mill of Tore				019005	Almond at Almondall	30866686	FRPB	229.0
					019006	Water of Leith at Murrayield	32286732	FRPB	107.0
007001	Findhom at Shenachis	28268337	HRPB	415.6	019007	Esk at Musselburgh	33396723	fRPB	330.0
007002	Findhorn at Forres	30188583	HRPB	781.9	019008	South Esk at Prestonholm	33256623	FRPB	112.0
007003	Lossie at Sheriffmills	31948626	NERPB	216.0	019010	Braid Burn at Liberton	32736707	FAPB	16.2
007004	Nairn at Firtall	28828551	HRPB	313.0	019011	North Esk at Dalkeith Palacs	33336679	FRPB	137.0
${ }_{0}^{007006}$	Lossie at Torwinny	30059480	HRPB	165.0	019012	Water of Leith at Colinton	32126688	fRPE．	72.0
		31358489	NERPB	20.0	019014 019017	Brox Burn at Newliston	31146732 31616733	FAPP	34.1
008001.		32788439		2654.7	019017	Gogar Burn at Turnhouse	31616733		38.8
008002	Spey at Kirrara	28818082	NERPB	1011.7	020001	Tyne at East Linton	35916768	fapg	307.01
008003	Spey at Ruthven Eridge	27597996	NERPB	$533 . \mathrm{B}$	020002	West Peffer Burn at Luffnes	34896811	FRPB	26.2
008004	Avon at Delnashaugh	31868352	NERPB	542.8	020003	Tyne at Spilmersford	34566689	FRPB	161.0
008005	Spey at Boat of Garten	29468191	NERPB	1267.8	020004	East Peffer Burn at Lochhouses	36106824	FRPB	31.
008006	Spey at Boat o Brig	33188518	NERPB	2861.2	020005	Birns Water at Saltoun Hall	34576688	FAPB	93.0
008007	Spey at Inverruim	26877962	NERPB	400.4	020006	Biel Water at Belton House	36456768	FAPB	51.8
008008	Tromie at Tromie Bridge	27897995	NERPB	130.3	020007	Gifford Water at Lennoxiove	35116717	FAPB	64.0
008009	Dulinain al Bainaan Bridgs	29778247	NERPB	272.2	020008	Brox Burn at Broxmouth	36976776	frpb	19.
008011	Livet at Minmore	32018291	NERPB	1748.8					
			NERPB	104.0	021001 ．	－Fruid Water at Fruid	30886205	LRWD	23.7
					021002	Whiteadder Water at Hungry Snout	36636633	LRWD	45.6
009001	Deveron at Avochis	35328464	NeRPB	441.6	021003	Tweed at Peebles	32576400	TWAP	
${ }^{0} \mathbf{0 9 0 9 0 3}$	－${ }^{\text {Disveron at at Muirask }}$	37058498 34948506	NeRPB NERPB	954.9 176.1	（ 021004.	Watch Water at Watch Water Reservoir Tweed at Lyna Ford	36646566 32066397	ERWD	10.7 373.0
O09004	Bogie pt Redcraig	35198373	NERPB	179.0	021006	Tweed at Boleside	34986334	TWhP	1500.0
009005	Allt Deveron at Cabrach	33788291	GRWD	67.0	021007	Etrrick Water at Lindean	34866315	TWAP	499.0
					021008	Teviot at Ormiston Mill	37026280	TWRP	1110.0
010002	Ugie at Inverugie	41018485	NERPB	325.0	021009	Tweed at Norham	38986477	TWAP	4390.0
010003	Ythan at EHon C	39478303	NERPB	523.0	021010 ．	Tweed at Dryburgh	35886320	TWR	2080.0
					021011	Yarrow Water at Philiphaugh	34396277	TWRP	231.0
011001	Don at Parkhill	38878141	NERPE	1273.0	021012	Teviot at Hawick	35226159	TWFP	323.0
011002	Don at Haughton	37568201	NERPB	787.0	021013	Gala Water at Galashiels	34796374	TWRP	207.0
011004	Urie at Pitcapla	37218260	NERPB	499.0	021014	Tweed at Kingledores	31096285	TWR	139.0
				198.0	021075	Leader Water at Eariston	35656388	TWR	239.0
					021016	Eve Water at Eyemouth Mill	39426635	TWhP	119.0
012001	Dee at Woodend	36357956	NEEPP	${ }^{1370.0}$	021017	Etrrick Water at Erockhoperig	32346132	TWRP	37.5
012002	Dee at Park	37987983	NERPB	1844.0	021018	Lyne Wazer at Lyne Station	32096401	TWRP	175.0
012003	Dee at Poihollick	33447965	NERPB	690.0	021019	Manor Water at Cademuir	32176369	TWhP	61.6
012004	Girnock Burn at Littlemill	33247956	NERPB	30.3	021020	Yarrow Water at Gordon Arms	33096247	TWRP	155.0
012005	Muick ar Ifvermuick	33647947	NERPB	110.0	021021	Tweed at Sprouston	37526354.	TWRP	3330.0
012006	Gairn at Invergairn	33537971	NERPB	150.0	021022	Whiteadder Water at Hutton Castle	38816550°	TWRP	503.0
012007	Dee at Mar Lodge	30987895	NERPE	289.0	021023	Leet Water at Coldstream	38396396	TWRP	113.0
012008	Feugh at Heugh Head	36877928	NERPB	229.0	021024	Jed Water at Jedburgh	36556214	TWRP	139.0
					021025	Ale Water at Ancrum	36346244	TWRP	174.0
013001	Bervie at Inverbervie	38267733	NERPB	123.0	021026	Tima Water at Deephope	32786138	TWRP	31.0
013002	Luther Woter at Luther Bridge	38607668	${ }^{\text {TRPPB }}$	138.0	021027	Blackadder Water at Mouth Bridgo	38266530	TWRP	159.0
013003	South Esk at Stannochy Bridge	35837593	${ }_{\text {TRPB }}$	487.0	021030	－Megget Water at Henderland	32316232	TWR	56.2
013004	Prosen Woter at Prosen Bridge	33967586	TRPB	104.0	021031.	Till at Etal	39276396	NRA－N	648.0
013005	Lunan Water at Kirkton Mill	36557494	TRPB	124.0	021032	Glen àt Kirknewton	39196310	NRA－N	198.9
013007	North Esk at Logia Mill	36997640	${ }_{\text {TRPB }}$	730.0	021034	Yarrow Water at Craig Douglas	32886244	TWRP	116.0
013008	South Esk at Brachin	36007596	TRPB	490.0		，			
013010	Brothock Water at Brothock Beidge	36397418	${ }_{\text {TRPB }}$	50.0	022001.	Coguet at Morwick	－ 42346044	NRA－N	569.8
			TRPB		022002.	Coquet at Bygate	38706083	NRA－N	51．
					022003.	Usway Burn at Shillmoor	38866077	NRA－N	21.4
014001	Eden at Kemback	34157158	TRPB	307.4	$022004^{\text {．}}$	Aln at Hawkhill	42116129	NRA－N	205.0
014002	Dighty Water at Salmossie Mill	34777324	TRPB	126.9	022006	Blyth at Harford Bridge	42435880	NRA－N	269.4
014005	Motray Water at St Michaels	34417224	TRPB	52.0	022007	Wansbeck at Mitford	41755858	NRA－N	287.3
014006	Monikie Burn at Panbride	35747361	TRPB	16.0	022008 ．	Alwin at Clemnell	39256063	NRA－N	27.7
014007	Craigmill Burn at Craigmill	35757360	TRPB	29.0	022009	Coquet at Rothbury	40676016	NRA－N	346.0
015001 ：	Isla at Forter	31877847	TRWS	70.7	023001	Tyne at Bywell	40385617	NRA－N	2175.6
015002.	Newton Burn at Newton	32307605	TRWS	15.4	023002	Derwent at Eddys Bridge	40415508	NRA－N	118.0
015003	Tay at Caputh	30827395	TRPB	3211.0	023003	North Tyne at Reaverhils	39065732	NRA－N	1007.5
015004	－Inzion at Loch of Lintrathen	32807559	TRWS	24.7	023004	South Tyne at Haydon Bridge	38565647	NRA－N	751.1
015005.	Melgan at Loch of Lintrathen	32757558	TRWS	40.9	023005	Norrth Tyne at Tarset	37765861	NRA－N	284.9
015006	Tey at Ballathie	31477367	TRPB	4587.1	023006.	South Tyne at Featherstone	36725611	NRA－N	321.9
015007	Tay at Pitnacree	29247534	TRPB	1149.4	023007	Derwent at Rowlands Gill	41685581	NRA－N	242.1
015008	Dean Water at Cookston	33407479	TRPB	177.1	023008	Rede at Rede Bridge	38685832	NRA－N	343.8
015010	Isla at Wester Cardean	327857466	${ }_{\text {TPPB }}$	366.5	${ }^{023009}$ ．	South Tyre at Alston	37165465	NRA－N	118.5
015011	Lyon at Comrie Bridge	27867486	TRPB	391.1	023010°	Tarset Burn at Greenhaugh	37895879	NRA－N	96.0
015012	Tummel at Port－na－craig	29407577	TRPB	1649.0	023011	Kielder Burn at Kielder	36445946	NRA－N	58.8
015013	Almond at Almondbank	30677258	TRPB	174.8	023012.	East Allen at Wide Eais	38025583	NRA－N	88.0
015014	Ardie at Kindrogan	30567631	TRPB	103.0	023013.	West Allen at Hindiey Wras	37915583	NRA－N	75.1
015015	Almond at Newton Bridge	28887316	TRPB	84.0	023014.	North Tyne at Kielder temporary	36315931	NRA－N	27.0
015016	Tay at Kennore	27827467	TRPB	600.9	023015.	North Tyne at Barrastord	39245721	NGWC	1043.8
015017	Braan at Eallinloan	29797406	${ }_{\text {TRPB }}$	197.0	023016	Ouse Burn at Crag Hall	42545674	NRA－N	55.0
015018	Lyon at Moar	25347448	SE	181.4	023022	North Tyne at Uglydub	37125875	NRA－N	241.5
015021	Lunan Burn at Mill Bank	31827400	TRPB	94.0	023023	Tyne at Riding Mill	40265619	NRA－N	2174.5
015023	Braen at Hermitage	30147422	${ }_{\text {TRPB }}^{\text {TR }}$	210.0					
015024	Dochart at Killin	25677320	TRPB	239.0	024001.	Wear at Sunderland Bridge	42645376	NRA－N	657.8
${ }_{0} 015025$	Ericht at Craighall	31747472	${ }_{\text {TRPB }}$	432.0	024002 ．	Gaunless at Bishop Auckland	42155306	NRA－N	93.0
015028	Ordie Burn at Luncarty	30937306	TRPB	20.0	024003	Wear at Stanhope	39845391	NRA－N	71.9
				54.0	024004	Bedburn Beck at Bedburn	41185322	NRA－N	74.9
					024005	Browney ai Burn Hall	42595387	NRA－N	178.5
$\begin{aligned} & 016001 \\ & 016002 . \end{aligned}$	Earn at Kirkell Bridge	29337167	TRPB	590.5	$024006{ }^{\text {．}}$	Rookhope Burn at Eastgate	39525390	NRA－N	36.5
${ }_{0}^{016002}{ }^{016003}$	Earn at Aberuchill Ruchill Water at Culybraggan	27547216 27647204	${ }_{\text {TRPB }}^{\text {TRPB }}$	176.9 99.5	${ }_{0240008} 024$	Browney at Lanchester Wear at Witton Park	41655462 41745309	NRA－N	44.6 455.0
016004	Earn at Forteviot Bridge	30437184	TRPB	782.2	024009	Wear at Chester ie Street	42835512	NRA－N	1008.3
016006	Dunning Burn at Granco	30197147	TRPB	1208.0					
					025001	Teas at Broken Scar	42595137	NRA－N	818.4
017001	Carron at Headswood	28326820	FRP日	122.3	025002 ．	Tees at Dent Bank	39325250	NRA－N	217.3
017002	Leven at Leven	333697006	${ }_{\text {FRPB }}$	424.0	025003.	Trout Beck at Moor Houss	37595336	NRA－N	11.4
017003	Banny Water at Bonnybridge	28246804	FRPB	50.5	025004	Skerne at South Perk	42845129	NRA－N	250.1
017004	Ore at Bafifour Mains	33306997	FRPB	162.0	025005	Leven at Leven Bridge	44455122	NRA－N	196.3
017005 017008	Avon at Polmanthill	29526797 31227015	${ }_{\text {FRPB }}$	195.3 337	${ }^{025026}$	Greta at Rutherford Bridge	40345122	NRA－N	86.1
017008 017012	South Queich at Kinross Red Burn at Castlecary	31227015 27886780	$\mathrm{lig}_{\text {FRPB }}$	33.7 22.0	${ }^{025007}{ }^{025008}$	Clow Beck at Crott	42825101 4045166	NRA－N NRA－	78.2 509.2
017016	Lochty Bum at Whinnyhall	32216987	FRPB	14.0	025009	Tees at Low Moor	${ }_{43645105}$	NRA－N	${ }_{1}^{509.2}$
017017	Greens Burn at Killyford Bridge	31507053	FRPB	$\cdot 7.9$	025010^{-}	Baydale Beck ar Mowden Bridge	42605156	NRA－N	31.1

Suation number	River and station name	Grid reftarence	Authority	Area (89 km)	Station nurnber	River and Efration name	Grid reference	Autho ority	Area (sq kmet
025011 .	- Langcon Beck at Langion	38525309	nra-n	13.0	028027 .	Etewast as Suapletard	44823364	NHAST	182.2
025012	Herwood Beck at Herwood	38495309	Nran	25.1	028029.	Kingston Brook at Kingston Hest	25033277	NRAST	57.0
025013	- Bangram Eleck at Trape Tremes	44095237	NRA N	61.4	028030.	gack Brook at Onebierow	44663173	NHAST	8.4
025014	Morcon Stell at Morcon Schiod	43235274	NRA	2.5	028031	Mantote at mam	41403507	NRA-ST	148.5
025015	Wooctram kern an South ferm	42855283	nran	29.1	028032 .	Madern at Church Warso	45583680	NHAST	62.8
025018	Tees at Mastatoton in Toescath	39505250	Nran	242.1	028033.	Dove at HoElinsclough	40633668	NRA-ST	${ }^{\text {日. }}$
025019	Loven at Esaby	45855087	NRA-N	14.8	028035.	Loen al Nortingham	45493392	nhast	11.0
025020	Stierne an Preston le Skeme	42925238	Nra-N	147.0	028036.	Pouter a 1 Wriford Enidge	47003752	NRAST	128.2
025021	Skerne an Bratuxy	43195285	NRA-N	70.1	028038.	Merifold at theree End	41063595	NGA-ST	46.0
025022	- Batber at Badcertiead Peservir	39315182	NRAN	20.4	028039	fees at Caxtiorpe Perk	40712847	NRA.ST	74.0
025023	Tees an Cow Green Reservoi	38135288	NRA-N	58.2	028040	Trent at Stoke on Trent	38923467	nga-st	
025024	Crapel Bock at Grisborount	45995163	NRA-N	13.4	028041	Hamps at Waternouses	40823502	NRA-ST	35.1
					028043	Derwent at Chatsworth	42613683	NRA.ST	335.0
026001	- West Beck ot Wanstord Bridge	50644560	NRA.Y	192.0	028044	Poutier at Cuckney	45703713	NRA.ST	32.2
026002	Hed at Hermhotne Lock	50804498	NRA.Y	378.1	028045	Meden/Msun at Botrumisal/Hexgtron	46813732	nrast	262.6
026003	Foston Beck at Foston Mal	50934548	nras y	57.2	028046	Dove at lrask Wation	41463509	NRA.ST	83.0
026004	- Gypsoy Race at Bnitiongoon	51654675	NRA-Y	253.8	028047°	Ondosites Dyke et Elyth	46153876	nRA-ST	85.2
026005	Gypsey Race at Boynton	51374677	NRA.Y	240.0	028048	Amboer at Wingiek Park	43763520	NRA.ST	139.0
026006	Elmswell Bock at Litre Diffiekd	50094575	NRA.Y	136.0	$028049{ }^{\text {. }}$	Ryton at Worksop	45753794	NRA-ST	77.0
026007	- Carchwater at Watherrwick	51714403	NRA-Y	\$5.5	028050.	Torne ar Auckey	46464012	NRA-ST	135.5
026008	Mires Beck at North Cave	48904316	NRA-Y		028052	Sow at Great Enidgtord	38833270	NRA-ST	163.0
					028053	Penk at Penkridge	39233144	NRAST	272.0
027001	Niod at thensingora W	44284530	NRA-Y	484.3	028054	Sence at Elaby	45662985	NRA-ST	\$33.0
027002	Wherto at firit Mal Woir	44224473 45344255	NRAY	758.9	${ }_{028056} 028$	- Ecclossoumie at Duffield	43203447 45803121	NRA-ST	50.4 940
$\begin{aligned} & 027003 \\ & 027004 \end{aligned}$	- Aire at Basi Weir Casder at Newlards	$\begin{aligned} & 45344255 \\ & 43654220 \end{aligned}$	NRA-Y	1932.1 899.0	-028056.	Rointey Brook at Rotriey Henmoce Brook si Ashboume	45803121 4176363	NRAAST	94.0 42.0
027006.	Don ar hadielids Woir	43903810	NRA-Y	373.0	028059	Maum at Mansifield	45483623	NRA.ST	28.8
027007	Ure at Westwick Lock	43564671	NRA-Y	914.6	028060.	Dover Beck at Lowdham	46533479	NRA-ST	69.0
027009	- Swate at Leckby Grange	44154748	NRA-Y	1345.6	028061	Chumet at Bastord Bridge	39833520	NRA-St	139.0
027009	Ouse at Sketion	45684554	NRA-Y	3315.0	028062	Trent at fledborough	48153715	NRA.ST	8433.0
027010.	- Hodge Sock at Sransdale Weir	46274944	NRA-Y	18.9	028065 .	Trent at Torksey	48273780	NRA-ST	8547.0
027012.	- Hebden Water al High Greerwood	39734309	NRA-Y	36.0	028066	Cote al Coleshill	41832874	NRA-St	130.0
027013	Ewden Bock at Mora Hall heservoir	42893957	NRA-Y	26.4	028067	Derwent at Church Waine	44393316	Nfa-st	177.5
$027014^{\text {. }}$	- Rye al Livile Habion	47434771	NRA-Y	679.0	028070	Burbage Brook at Burbage	42593804	NAA-St	9.1
027015 .	- Derwent al Stamford Bridge	47144557	NAA-Y	1634.3	028072 .	Greet at Southwell	47113541	NRA-ST	46.2
027018	- Rycurn at Rybumf feservoir	40254187	nhas Y	10.7	028073	Ashop at Ashop diversion	41713896	NHA.ST	42.0
027019.	Booth Desen Clough at Booth Wood Mill	40334168	NfA-Y	15.9	028075	Derwent at Slippery Stones	41693951	NRA-ST	17.0
027021.	- Don al Doncaster	45694040	NRA-Y	1256.2	028079	Mesce at Shallowtord	38743291	NRA-ST	86.3
027022	Don al Rothertham Weir	44273928	NRA-Y	826.0	028080	Tame at Lea Marston Lokes	42072937	NAA-ST	799.0
027023	Dearme at Resmsley Woir	43504073	NRA-Y	$1: 18.9$	028081	Tame at Bescot	40122958	NRA-ST	169.0
027024	Swale at fichmond	4:465008	NRA-Y	381.0	028082	Soar al Litteethorpe	45422973	NAA-ST	183.9
027025	Rother at Woodhouse MaI	44323857	NRA-Y	352.2	028083	Trent al Dartaston	38853355	NRA-ST	195.2
027026	Rother at Whiturgton	43943744	NRA-Y	:65.0	028085	Derwent at St. Marrs Eridge	43553368	nfa-st	1054.0
027027	Whatte at likiay	4112448 :	NRA-Y	443.0	028085	Sence at South Wigston	45882977	NRA-ST	113.0
${ }^{\text {027028 }}$	Aire at Armley	42814340	NRA-Y	691.5	028091	Ayton at Blyth	46313871	NRA-ST	231.0
027029	Cakder at Elland	41244219	NRA-Y	341.9	028093	Soar at Pidings Lock	4565 3:82	NRA.ST	1108.4
027030	Deame at Adwick	44774020	NRA-Y	310.8	028094	Bryte at Castle Farm	42132888	NRA-ST	183.8
027031	Cotne at Colne Bridge	41744199	NRA-Y	2450	028095	Tame at Hopwas Exidge	41823052	NRA-ST	1421.7
027032	Hebden Beck at Hebden	40254643	NRA-Y	22.2	028101	Tame at Sheeowash	39742918	NRA-ST	27.9
027033	Saa Cut at Scarborough	50284908	NRA-Y	33.2	028102	Blythe at Whitacre	42122911	NRA-ST	194.3
027034	Ure et Kilgram Bridge	41904860	NRA-Y	510.2					
027035	Aire at Kidwwick Bridge	40134457	nRa-y	282.3	029001	Woinh Beck at Brigsley	52534016	NRA.A	108.3
027036	- Derwena at Malton	47894715	NRA-Y	1421.0	029002	Greas Eav at Claythorpe Mill	54163793	NRA-A	77.4
027038	Costa Beck at Gatehousas	47744836	NBA-Y	7.8	029003	lud at Louth	53373879	NRA-A	55.2
027040	Doe Lea at Staveley	44433746	NRA-Y	67.9	029004	Anchotme at Eishopbridge	50323911	NRA-A	54.7
027041	Derwent at Buttercrambe	47314587	NRA.Y	1586.0	029005	Rase at Bishopbridge	50323912	NRA-A	${ }^{66.6}$
027042	Dove at Kirkby Mills	47054855	NRA-Y	59.2	029009	Ancholme at Toft Newton	50333877	NRA-A	27.2
027043	Wharfe at Addingham	40924494	NRA-Y	427.0					
027044	Btackfoss Beck at Senchilils Bridge	47254475	NRA.Y	47.0	030001	Witham at Claypole Mill	48423480	NRA.A	297.9
027047	Sneizeholme feck at Low Houses	38334883	NRA-Y	:0.2	030002	Earrings Eau at Langworth Bridge	50683766	NRA-A	210.1
027048	Derwent at West Ayton	49904853	NRA-Y	127.0	030003	Bain at Fulsby Lock	52413611	NRA-A	197.1
027049	Rye at Ness	46964791	NRA-Y	238.7	030004	Pantiey Lymn at Parnay Mill	54023676	Nfa-A	61.6
027050	Esk at Sloights	48655081	NRA-Y	308.0	030005	Witham at Satterstord toral	49273335	nfa-A	126.1
027051	Crimpit at Burn Bridge	42844519	NRA-Y	8.1	030006	Slea at Leasingham Mill	50883485	NHA-A	. 48.4
027052	Whitting at Sheepbridge	43763747	NRA-Y	50.2	030011	Bain at Goulceby Bridge	52463795	NHA-A	62.5
027053	Nidd st Birstwith	42304603	NRA-Y	217.6	030012	Stainfield Beck at Stainfied	51273739	NRA-A	37.4
027054	Hodge Beck at Chery ferm	46524902	NRA-Y	37.1	030013	Heighington Beck at Heighington	50423696	NRA-A	21.2
027055	Rye at Eroodway Foot	45604883	NRA-Y	131.7	030014	Pointon Lode at Pointon	51283313	NRA.A	11.9
027056	Pickering Beck at tings Eridge	47914819	NRA-Y	68.6	030015	Cringle Arook at Stoke Rochford	49253297	NRA-A	50.5
027057	Seven at Normanby	47364821	NRA-Y	121.6	030017	Witham at Colsterworth	49293246	NRA-A	51.3
027058	Riccal at Crook House Farm	46614810	NRAM	57.6					
027059	Laver at Ripon	43014710	NRA.Y	87.5	031001	Eye Brook at Eye Brook Reservo	48532941	CDWC	60.1
027060	Kylo at Nowton On Ouse	45094602	NRA-Y	167.6	031002	Glon at Kates Brdg and King St Erdg	51063149	NRA-A	34.9
027081	Colne at Longroyd Eridge	4i364161	NRA-Y	72.3	031005	Woltand at Tixovar	49702997	NRA-A	417.0
027062	Nidd at Skip Bridge	44824561	NRA-Y	516.0	031006	Gwash at Belmesthorpe	50383097	NRA-A	150.0
027064	Went at Walden Stubbs	45514163	NRA-Y	83.7	031007	Welland at Barrowden	49482999	NRA-A	411.6
027065	Holme at Queens Mill	41424157	NRA-Y	97.4	031010	Chater at Fosters Bridge	49613030	NRA-A	68.9
027066	Blackburn Brook at Ashlowes	43933914	NRA-Y	42.8	031012	Tham at Litule Eythem	50163779	NRA.A	24.9
027087	Sheef at Hightried Rosd	43573883	NRA-Y	49.1	031016	North Brook at Empingham	49573089	NRA-A	36.5
027068	Ryburn al Ripponden	40354189	NRA.Y	33.0	031021	Wolland at Ashley	48192915	NRA-A	250.7
027069	Wisko at Kirby Wiske	43754844	NRAM	215.5	031023	West Glan at Easton Wood	49653258	NRA.A	4.4
027070	Eller Beck at Skipton	19844502	NRA-Y	35.3	031025	Gwash South Arm at Manton	48753051	NRA-A	24.5
027071	Swale at Crakehill	44254734	nRa.y	1363.0	031026	Egleton Brook at Egleton	48783073	NRA.A	2.5
027072	Worth at Keighthy	40644408	NRA-Y	71.7	031028	Gwash at Church Bridge	49513082	NRA-A	76.5
027073	Brompton Beck ot Srainton Ings	49364794	NRA.Y	12.9					
027074	Spen Beck at Northorpe	42254210	NRA-Y	46.3	032001	Nene at Orion	51662972	NRA-A	634.3
027075	Bedale Beck at Leeming	43064902	NRA.Y	160.3	032002	Willow Brook at Fotheringray	50672933	NAA-A	89.6
027076	Biallby Beck at Thomton Lock	47604444	NRAY	103.1	${ }^{032003}$	Harpers Prook at Old Mill Bridge	49832799	NFA-A	74.3
027077	Bradford Beck at Shipley	41514375	NRA-Y	58.0	032004	. 1 se Brook at Herrowden Old Mill	48982715	NRA-A	194.0
027080	Aire at Fleet Weir	43814285	NRA.Y		032006	Neno/Kisisingbury at Upton	47212592	NRA-A	223.0
027082	Cuncall Beck ar Bat Eridge	44194724	NRA-Y		032007	Nene Brampton ar St Andrews	47472617	NRA.A	232.8
027083	Foss at Huntington	46124543	NRA.Y		032008	Nene/Kislingtury al Dodiord	46272607	NRA.A	107.0
028001	Derwent at Yorkshice Bridge	41983851	NRA-ST	126.0	032029	Floro at Experimental Catchment Wootron Brook at Wooton Park	46602610 47262577	NRAA-A	73.0
028002	Bilthe at Harstall lidware	41093192	nfa-st	163.0					
028003	Tame at Water Orton	41692915	NRA-ST	408.0	033001 -	Bedford Ouse at Brownstill Staunch	53692727	NRA-A	3030.0
028004	Tame at Lee Marston	42062935	NRA-ST	795.0	033002	Bediord Ouse at Bedtord	50552495	NRA.A	1460.0
028005	Tame at Elford	41733105	NRA-ST	1475.0	033003	Cam al Botisham	55082857	NRA-A	803.0
028006	Trent at Great Harwood	39943231	NRA-ST	325.0	033004	Lark at steham	56482760	NRA-A	466.2
028007	Trent at Shardiow	44483299	nhast	4400.0	033005	Bediord Ouse at Thornborough Mill	47362353	NRA.A	388.5
028008	Dove at Rocester Weir	41123397	NRA-ST	399.0	033006	Wissey at Northwold	57712965	NRA-A	274.5
028009	Trent at Colwick	46203399	NRA-ST	7486.0	033007	Nar at Martam	57233119	NRA-A	153.3
028010	Derwent al Longbridge Weir/St.Marys	43563363	NRA-ST	1054.0	033008	Littie Ouse al Theitord No1 Staunch	58602832	NRA-A	699.0
028011	Derwent al Matiock Bath	42963588	NHA-ST	690.0	033009	Bectiord Ouse at harrold Min	49512565	NRA-A	1320.0
028012	Trent al Yoxal	41313177	NRA-ST	1229.0	033011	Littio Ouse at County Bridge Eusion	58922801	NRA-A	128.7
028013	Soar at Zouch	44983240	NRA.ST	1289.8	-033012	Kym at Meagre Farm	51552631	NRA A A	137.5
028014	Sow at Miltord	39753215	NRA-ST	59.0	033013	Sopiston at Rectory Pridge	58962791	NRA-A	205.9
028015	Idie at Mattersay	46903895	NRA.ST	529.0	033014	Lark at Temple	57582730	NFA-A	272.0
028016	Ryton at Seriby Park	46413897	NRA.ST	231.0	033015	Ourel at Willen	48822408	NTA-A	277.1
028017	Devon at Cotham	47873476	NRA.ST	284.0	033016	Cam at Jesus Lock	54502593	NRA.A	761.5
028018	Dove at Marsion on Dove	42353288	NRA-ST	883.2	033018	Tove at Cappenham Bridga	47142488	NRA-A	138.1
028019	Trent at Drakelow Park	42393204	NRA-ST	3072.0	033019	Thet at Meflord Bridge	58802830	NHA-A	316.0
028020	Churnet at Rocester	41033389	NRA.ST	236.0	033020	Alcontury Brook at Brampton	52082717	NRA.A	201.5
028021	Derwert at Draycotr	44433327	NRA-ST	1175.0	033021	Rhee at Burnt Mill	54152523	NRA.A	303.0
028022	Trent at North Muskham	48013601	NRA-ST	8231.0	033022	Ivei at Bunham	51532509	NRA-A	541.3
028023	Wye at Ashtord	41823696	NRA.ST	154.0	033023	Lea Brook ar Eack Bridgs	56622733	NRA-A	101.8
028024	Wraake at Syston Mill	46153124	NRA-ST	413.8	033024	Cam at Derrford	54862506	NRA.A	198.0
028025	Sence ot Ratcifife Cuby	43212996	NRA-ST	169.4	033025	Habingly at West Newton Mill	56963256	NRA-A	39.6
028026	Anker at Polesworth	42633034	NRA.ST	368.0	033026	Bedford Ouse at Offord	52162669	NRA-A	2570.0

Station number	River and atation name	Grid reference	Authority	Area (39 km)	Station number	River and station name	Grid reference	Authority	Area (sakm)
033027	Rhee at Wimpols	53332485	NRA-A	119.1	038007	Canors Brook at Eizaboth Way	54312104	nra T $^{\text {T }}$	21.4
033028	Flit at Shefford	51432393	NRA-A	119.6	038011	Mimram at Fulling Mill	52252169	NFA-T	98.7
033029	Stringside at White Bridge	57163006	NRA-A	98.8	038012	Stevenage Brook at Bragbury Park	52742211	nfa.t	36.0
033030	Clipstone Brook at Clipstone	49332255	NRA-A	40.2	038013	Upper Lee at Luton Hoo	51182185	NRA-T	70.7
033031	Broughton Brook ar Broughton	48892408	nRa-A	66.6	038014	Salmon Brook at Edmonion	53431937	NRA-T	20.5
033032	Hescham at Heacham	56853375	nata-A	59.0	038015	Intercepting Drain at Enfield	53551932	NRA-T	7.4
033033	Hiz at Arlesey	51902379	NRA-A	108.0	038016	Stanstead Springs at Mountifichet	55002248	NRA-T	20.5
033034	Litile Ouse at Abbey Heath	58512844	NRA.A	699.3	038017	Minram al Whitwell	51842212	NRA-T	39.1
033035	Ely Ouse at Denver Complex	55883010	NRA-A	3430.0	038018	Upper Lee at Water Hall	52992099	NRA-T	150.0
033037	Bodford Ouse at Newp't Pagnali Wr	48772443	NFA-A	8000	038020	Cobbins Prook at Sewardstone Road	53871999	NRA-T	38.4
033039	Bedford Ouse at Roxion	51602535	NAA.A	1660.0	038021	Turkey Brook at Albany Park	53591985	NRA-T	42.2
033040	Rhee at Ashwell	52672401	NRA.A		038022	Pymmes Brook at Edmontion Silver Street	5340 :925	NRA-T	42.6
033044	Thet at Bridgham	59572855	NBA-A	277.8	038024	Small River Lee at Ordnance Road	53701988	NRA-T	41.5
033045	Wittle at Quidonham	60272878	NFA.A	28.3	038026	Pincey Brook at Sheering Hall	54952126	NRA-T	54.6
033046	Thet at Red Bridge	59962923	NRA-A	145.3	038027	Stort at Glen Faba	53932093	NRA-T	280.2
033048	Laring Brook at Stonebridge	59282907	NRA-A	21.4	038028	Stansted Brook at Gypsy Lane	55062241	NRA-T	25.9
033049	Stantord Water at Buckenham Totis	59342953	NRA-A	43.5	038029	Ouin at Griggs Bridg	53922248	NRA-T	50.4
033050	Snail at Fordham	56312703	NRA-A	60.6	038030	Beane al Hartham	53252131	NRA-T	175.1
033051	Com at Chesterford	55052426	NRA-A	141.0					
033052	Swatham Lode at Swattham Bulbeck	55532628	NRA-A	36.4	039001	Thames at Kingston	51771698	NRA-T	9948.0
033053	Granta at Stapleford	54712515	NRA-A	114.0	039002	Thames at Days Weir	45681935	NRA-T	3444.7
033054	Babingley at Castie Rising	56803252	NRA-A	47.7	039003	Wandie at Connollys Mit	52651705	NRA-T	176.1
033055	Granta at Babraham	55102504	NRA-A	98.7	039004	Wandie at Beddington Park	52961655	NRA-T	122.0
033056	Ouy Water al Lode	55312627	NRA-A	76.4	039005	Beveriey Brook at Wimbledon Commen	52161717	NRA-T	43.6
033057	Ouzel al Leighton Buzzard	49172241	NRA-A	199.0	039006	Windush at Newbridge	44022019	NRA-T	362.6
033058	Ouzel at Bletchioy	48832322	NRA-A	215.0	039007	Blackwater at Swallowfield	47311648	NHA-T	354.8
033059	Cut-off Channel at Tolgate	-5729 2757	NRA-A		039008	Thames at Eyrsham	44452087	NRA-T	1616.2
033060 .	Kings Dike at Stanground	52082973	NRA-A		039010	Colne at Denhom	50521884	NRA-T	743.0
033062	Guriden Brook at Fowimers two	54032457	NRA-A		039014	Wey at Tilford	48741433	NHAT T	396.3
033063	Litte Ouse at Knettishall	59552807	NRA-A	101.0	039012	Hogsmill at Kingston upon Thames	51821688	NRA-T	69.1
033064	Whaddon Brook at Whaddon	53592466	NRA-A	16.0	039013	Colne st Berrygrove	51231982	NRA-T	352.2
033065	Hiz at Mitchin	51852290	NRA-A	6.8	039014	Ver at Hanstaads	51512016	NRA-T	132.0
033066	Granta at Linton	55702464	NRA•A	59.8	039016	Kennet at Theale	46491708	NRA-T	1033.4
033067	New River at Eurwell	56082696	NRA-A	19.6	039017	Ray at Grendon Underwood	46802211	NRA-T	18.6
033068	Cheney Water at Gatley End	52962411	NAA-A	5.0	039019	Lambourn at Shaw	44701682	nfa-t	234.1
					039020	Coln at Bribury	41222062	NRA-T	106.7
034001	Yare at Coinay	61823082	NFA-A	239.8	039021	Cherwell at Enslow Mill	44822183	NRA-T	551.7
034002	Tas at Shotesham	62262994	NAA-A	146.5	039022	Loddon at Sheepbridga	47201652	NRA-T	164.5
034003	Bure at ligworth	61923296	NRA.A	164.7	039023	Wye at Hedsor	48961867	NRA-T	137.3
034004	Wensum at Costessay Mill	61773128	NAA-A	536.1	039025	Enbourne al Brimpton	45681648	NRA-T	147.6
034005	Tud at Costassey Park	61703113	NAA-A	73.2	039026	Cherwell al Banbury	44582411	NRA-T	199.4
034006	Waveney at Needham Mill	62292811	Nfa-A	370.0	039027	Pang at Pangboume	46341766	NRA-T	170.9
034007	Dove at Oaklay Park	61742772	NRA-A	133.9	039028	Dun at Hungerford	43211685	NRA-T	101.3
034008	Ant at Honing Lock	63313270	NFA-A	49.3	039029	Tillingbourne at Shatiord	50001478	NRA-T	59.0
034010	Waveney at Billingtord Bridge	61682782	NfA-A	149.4	039030	Gade at Croxley Green	50821952	NRA-T	184.0
034011	Wensum at Fakenham	59193294	NFA.A	127.1	039031	Lambourn at Welford	44111731	NRA-T	176.0
034012	Burn at Bumham Overy	58423428	NAA-A.	80.0	039032	Lambourn at East Sheftord	43901745	NRA-T	154.0
034013	Waveney at Elingham Mill	63642917	NfA-A	670.0	039033	Wifterbourne Stat Bagnor	44531694	NRA-T	49.2
034014	Wensum at Swarton Morley Total	60203184	NRA-A	363.0	039034	Evenlode at Cassingion Mill	44482099	NRA-T	430.0
034018	Stififiey at Wartam All Saints	59443414	NAA-A	77.9	039035	Churn al Cerney Wick	40761963	NRA-T	124.3
034019	Bure at Horstead Mill	62673194	NfA-A	313.0	039036	Law Brook al Albury	50451468	NRA-T	16.0
					039037	Kennet at Marlborough	41871686	NRA-T	142.0
035001	Gipping at Constanting Weir	61542441	NRA-A	310.8	039038	Thame al Shabbington	46702055	NRA-T	443.0
035002	Deben at Naunton Hall	63222534	NRA-A	163.1	039040	Thames ot West Mili Cricklade	40941942	NRA-T	185.0
035003	Alde at Famham	63602601	NRA-A	63.9	039042	Leach at Priory Mill L echlade	42271994	NRA-T	76.9
035004	Ore at Beversham Bridge	63592583	NRA-A	54.9	039043	Kennet at Knighton	42951710	NRA-T	295.0
035008	Gipping at Stowmarket	60582578	NRA-A	128.9	039044	Hart at Bramshill House	47551593	NRA-T	84.0
035010	Gipping at Bramford	61272465	NRA-A	298.0	039046	Thames at Sution Courtenay	45181946	NRA-T	414.0
035013	Blyth at Holton	84062769	NRA-A	92.9	039049	Silk Stream at Cotindeep Lane	52171895	NRA-T	29.0
					039051	Sor Brook al Adderbury	44752346	NRA-T	106.4
036001	Stour at Stratord St Mary	60422340	EWC	844.3	039052	The Cut al Binfield	48531713	NRA-T	50.2
036002	Glem at Glamstord	58462472	NRA-A	87.3	039053	Mole at Hortey	52711434	NRA-T	89.9
036003	Box at Polstead	59852378	NRA-A	53.9	039054	Mole at Gatwick Airport	52601399	NRA-T	31.8
036004	Chad Brook at Long Melford	58682459	NRA-A	47.4	039055	Yeading 8k West at Yeading West	50831846	NRA-T	17.6
036005	Erett et Hacleigh	60252429	NRA-A	156.0	039056	Ravensbourne at Cattord hill	53721732	NRA-T	67.6
036006	Stour at Langham	60202344	NRA-A	578.0	039057	Crane at Cranford Park	51031778	NHA-T	61.7
036007	Betchamp Brook at Barstiek Bridge	58482423	NRA-A	59.6	03905B	Pool at Winsford Road	53711725	nRa-T	38.3
036008	Stour at Westmill	58272463	NRA-A	224.5	039061	Letcombe Brook at Letcombe Bassett	43751853	NRA-T	2.7
036009	Brett at Cockield	59142525	NRA•A	25.7	039065	Ewelme Brook at Ewelme	46421916	NRA-T	13.4
036010	Bumpstaad Brook at Broad Green	${ }_{5689} 2418$	NRA-A	28.3	039068	Mole at Castio Mill	51791502	NRAAT	316.0
036011	Stour Brook at Sturmer	56962441	NRA.A	34.5	039069	Mole at Kinnersley Manor	52621482	NRA-T	142.0
036012	Stour at Kedington	57082450	NRA-A	76.2	039071	Thames at Ewen	40071973	nfa-t	63.7
036013	Brett at Higham	60322354	NRA-A	195.0	039072	Thames at Roval Windsor Park	49821773	NRA-T	046.0
036015	Stour at Lamarsh	58972358	NRA.A	480.7	039073	Churn at Cirencester	40202028	NRA-T	84.0
036016 .	- Ramsey at Great Oaklay	62062288	NRA-A	13.9	039074	Ampney Brook at Sheepen Bridgo	41051950	NHA-T	74.4
036017 .	- Ely Ouse Outfoll at Kirtling Green	56812559	NRA-A		039075	Marston Meysey Bk at Wherstona Bridge	41281964	nRa-T	25.0
					039076	Windrush at Worsham	4292107	NRA-T	296.0
037001	Roding at Redbridge	54151884	nRA-T	303.3	039077	Og at Marlborough Poulton Fm	41941697	NRA-T	59.2
037002	Cheimer at Rushes lock	57942090	NRA-A	533.9	039078	Weyfnorth) at Fartham	48381465	NRA-T	191.1
037003	Ter at Crabbs Bridge	57862107	NRA-A	77.8	039079	Wey at Weybridge	50681641	NRA-T	1008.0
037005	Colne at Lexden	59622261	NRA-A	238.2	039081	Ock at Allott Gardens	44811966	NRA-T	234.0
037006	Can at Beachs Mill	56902072	NRA-A	228.4	039095	Wandle at Wandis Park	52661703	NRA.T	176.1
037007	Wid at Writte	56862060	NRA-A	136.3	039086	Gatwick Stream at Gatwick Link	52851417	NRA-T	33.6
037008	Chelmer at Springfield	57132071	NAA-A	190.3	039087	Hay at Water Eaton	41211935	NRA-T	84.1
037009	Brain at Guithavon Valley	55182147	NAA.A	60.7	0393089	Chess al Rickmansworth	50661947	NRA-T	105.0
037010	Blackwater at Appleford Bridga	58452158	NfA-A	247.3	039089	Gade al Bury Mill	50532077	NRA-T	48.2
037011	Chelmer at Churchend	56292233	NRA.A	72.6	039090	Cole at Inglesham	42081970	nfa-T	140.0
037012	Colne at Poolstreat	57712364	NRA-A	65.1	039091	Misbourne at Quarrenton Mill	49751963	NRA-T	66.3
037013	Sandon Brook al Sandon Bridge	57552055	NAA.A	60.6	039092	Dollis Brook at Hendon Lane Bridga	52401895	NRA-T	25.1
037014	Roding at High Ongar	55612040	NRA-T	95.1	039093	Brent at Monks Park	52021850	nra-t	117.6
037015	Cripsey Brook at Chipping Ongar	55482035	NRA-T	62.2	039094	Crane al Marst Farm	51541734	NRA-T	81.0
037016	Pant at Copford Hall	56682313	NRA-A	62.5	039095	Ouaggy at Manor House Gardens	53941748	nra-t	
037017	Blackwater at Stisted	57932243	NRA-A	139.2	039096	Wealdstona Brook at Wembley	51921862	NRA-T	21.7
037018	Ingrebourne at Gaynes Park	55531862	NAA-T	47.9	039097	Thames at Buscot	42301981	NRA.T	997.0
037019	Beam at Bretons Farm	55151853	nfa-t	49.7	039098	Pinn st Uxbridge	50621826	NRA-T	33.3
037020	Chelmer at Felisted	56702193	NRA-A	132.1	039099	Amprey Brook at Ampney St. Peter	40762013	NRA-T	45.3
037021	Roman at bounstesd Bridge	59852205	NRA-A	52.6	039100	Swill Brook at Oakser	39971927	NRA-T	53.3
037022	Holland Brock at Thorpe le Soken	61792212	NrA-A	54.9	039101	Aldtourre at Ramstury	42881717	NRA-T	53.1
037024	Colne at Earis Colne	58552298	NRA-A	154.2	039102	Misbourne at Denham Lodge	50461866	NRA-T	136.0
037025 .	- Bourne Brook at Perces Bridge	58222276	NRA-A	32.1	039103	Kennet at Newbury	44721672	NRA-T	548.1
037026 .	- Tenpenny Brook at Tenpenny Bridge	60792207	NRA-A	29.0	039104	Mole at Esher	51301653	NRA-T	469.6
037027.	- Sixpenny Brook at Ship House Bridge	60542214	NRA-A	5.1	039105	Thame at Wheartey	46122050	NRA-T	533.8
${ }_{0}^{037029} \mathbf{0 3 7 0 2 9}$.	- Bentley Brook at Saltwater Bridge	$\begin{array}{r}61092193 \\ 6134 \\ \hline 159\end{array}$	NRA-A	12.1	039106	Mole at Leatherhead	51611564	nRa-t	371.4
${ }_{0}^{037029}{ }^{\text {a }}$	- St Osyth Brook at Main Road Bridge	61342159	NRAA	8.0					
037030°	- Holland Brook at Cradle Bridge	61712217	NRA-A	48.6	040001	- Medway at Weir Wood Reservoir	54071353	SW	26.9
037031	Crouch at Wickford	57481934	NRA-A	71.8	040002	Darwell al Darwell Reservoir	57221213	Sw	9.6
037033	Eastwood Brook at Eastwood	58591888	NRA-A	10.4	040003	Medway at Teston	57081530	NRA-S	1256.1
037034	Marcyke at Stifford	55961806	NRA-A	90.7	040004	Rother at Udiam	57731245	NHAS	206.0
037036 .	- Evy Ouse Ourtall ot Great Samptord	56462351	NRA-A		040005	Beutr at Stile Bridge	57581478	NRA-S	277.1
037037	Toppesfiehd Brook at Cornish Hatl Enc	56752377	NRA-A	1.3	040006	Bourne at Hadiow	56321497	NRA-S	50.3
037038 -	- Wid ar Margaratting	58722000	NRA-A	98.6	040007	Medway at Chafford Weir	55171405	Nha.s	255.1
037039	Blackwater at Langlord (low flows)	58352090	NRA-A	337.0	040008	Greal Sour at Wye	60491470	nRa-s	230.0
					040009	Teiso at Stone Bridgr	57181399	NRA.S	136.2
${ }_{0}^{0388002}$.	Lee at Feildes Weir	53902092	NRA-T	1036.0	040010	Eden al Pensturst	55201437	nhas	224.3
${ }^{0388022}$	- Ash al Mardocik	53932148 582822133	NRA.T	79.7 133.9	040011 040012	Grast Stour at Horion	51161554	NRAS	345.0
038003 038004	Mimram at Ponshanger Park	52822133 53602174	NRA-T	133.9	040012 040013	Oarent at Hawley	55511718 55251584	NRA.S	191.4 100.5
${ }_{038005}$	- Aibst or Easmeye	53602174 $\mathbf{5 3 8 0} 2138$	NRAA-T	$\begin{array}{r}136.5 \\ \hline 8.2\end{array}$	040013 040014	Darent at Offord	55251584 62761576	NHA.S NRA.S	100.5 37.7
038006 .	- Rib at Herts Training School	53352158	NRA-T	148.1	040015	Whito Drain at Feirbrook Farm	60551606	NRA-S	31.8

Station number	River and station name	Grid reference	Authority	Area (sq kmi)	Station number	River and station narne	Grid reference	Authority	Area (sq kmi)
040016	Cray at Craytord	55111746	nfas	119.7	048001	Fowey at Trekeivesteps	22270698	NRA-SW	36.8
040017	Duxwell at Buwash	56791240	NRA.S	27.5	048002	Fowey at Restormel 0	21080613		
040018	Daxent at Luthegstone	55301643	nRas	118.4	048003	Fal at Tregony	19210447	Nha-sw	87.0
040020	Grioge Stream at herdal Eride	55221367	NRA-S	53.7	048904	Warieggan at Trengoffe	21590674	NRA-SW	25.3
040021	Hexden Chamel at Hopernal Br Sandurst	59131290	NRA-S	32.4	048005	Kermpro at Tnro	18200450	NRA-SW	19.1
040022	Great Stour at Chart Leacon	59731423	NRA-S	72.5	048006	Cober at Hestion	16540273	NRA-SW	40.1
040023	East Stour at South Waesborouxh	60:5 1407	NRA-S	58.8	048007	Kernali it Ponsanooth	17620377	NRA-SW	26.6
040024 .	Bartey Mal St at Bartley Ma	56331357	NRA-S	25.1	048009	St Neot at Craigshil Wood	21840652	nrasw	
					048010	Seaton at Trebrownericge	22990596	NRA-SW	38.1
041001	Nerrningham Sream at Tley Bridge	56621129	NRA.S	16.9	$0480: 1$	Fowey at Resto	20980624	NRA-SW	. 1
041002	Ash Bourne at Harmmer Wood Bidge	56841141	NRA-S	18.4					
041003	Cuxkmere at Sherman Bridge	55331051	NRA-S	134.7	049001	Camel ar Denby	20170682	NRA-SW	209.8
041004	Ouse at Earconbe Mat	5433 :148	NRA-S	395.7	049002	Hayle at St Ent			48.9
041005	Ouse at Gokd Bridge	5429:214	NRAS	:80.9	04900	De Lank at De Lank	21320765 1829	NRA-SW	21.7 410
041006	Uck at isfield	$5459: 190$	NRA-S	87.8	049004	Ga	18290593	NRA-SW	41.0
041009	Rother at Haxdiman	$5034: 178$ $5178: 197$	NRAS	345.8 109.1		Taw at Umberleigh	26081237	NRA-SW	826.2
041010	Adur W Branch of Hatterel Bridge	51781197	NRASAS	$\begin{aligned} & 109.1 \\ & 154.0 \end{aligned}$	${ }_{050002}$	Towridge as Torrington	25001185	NRA-SW	826.2 663.0
041011		485212199	NRA-S	93.3	050004	Hole Water at Muxworthy	27051373	NRA-SW	5.4
04 :013	Huggletts Stream at Henler Bridge	56711138	Nhas	14.2	050005	West Okement at Vellake	25570903	NRA-SW	. 3
041014	Arun at Palaingham Cuay	50471229	NRAS	379.0	050006	Mole at Woodteigh	26601211	NRA-SW	5
041015	Ems at Westroume	47551074	NRAS	58.3	050007	Taw at Taw Bridge	88	NRA-SW	71.4
041016	Cuckrnere at Cowbeech	56111150	NRA-S	18.7					75.8
041017	Combehaven at Crowturst	57651102	NRAS	30.5	051001	Doniford Stream at Swill beidg	3088 :428	NRA-W	75.8
041018	Kird at Tanyards	55441256	NRA-S	${ }^{66.8}$	051002 051003	Horner Water at West tuccombe	28981458 $3040: 395$	NRA-W	${ }_{36.3}$
041019	Arun at Altoldean	5417118161	NRAAS	139.0	051003	Washord ar Degyeam			
		54481153	NRAS	7.1	052001 .	Axe at Wookey	271458	nra w	18.2
04102	Claynall Stream at Ofd Shup	49311223	NRA.S	52.0	052002	Yeo at Sution Bingham Res.	35561116	nha.w	30.3
041022	Lad at Hal way linge	49711064	NRAS	97.2	052003	Halse Water at Bishops Hual	32061253	NRA-W	87.8
041024	Shell Brook ar Shell Brook P S	53351286	NRA-S	22.6	052004	Iste at Ashford Mill	33611188	NAA-W	90.1
041025	Loxwood Stream at Drungewick	50601309	NRA-S	91.6	052005	Tone at Bishops Hull	32061250	NRA-W	202.0
041026	Cockhaise Brook at Holywell	53761262	NRA-S	36.1	052006	Yeo at Pen Mill	35731162	NRA-W	213.1
041027	Rother at Princes Marsh	47721270	NRA-S	37.2	052007	Parrett at Chiselt	34611144	NRA-W	74.8
041028	Chess Siteam at Chess Bridge	52171173	NRA-S	24.0	052008.	Tone at Clatworthy Resern	30441313	NRA-W	8. 1
041029	Butl at Lealands	55751131	NRA.S	40.8	052009	Sheppey at Fenny Castie	34981439	NRA-W	59.6
041030	Ouse at Ardingly	53331283	NRA-S	37.2	052010	Brue at Lovington	35901318	nRa-w	35.2
042001	Wallington at North Fareham	45871075	nfa-s	111.0	052014	Tone at Greenham	30781202	NRA.W	57.2
042003	Lymington at Brockenhurst Park	43181019	NRA-S	98.9	052015 .	Land Yeo at Wraxall Rridge	34831716	NRA-W	23.3
042004	Test at Eroadlands	43541188	NRA-S	1040.0	052016	Currypool Stream at Curypool Farm	32211382	NRA-W	15.7
042005	Watiop Brook at Broughton	43111330	NRA-S	53.6	052017.	Congrestury Yeo at twood	34521631 35711100	NRA-W	66.6
042006	Meon at Mistingtord	45891141	NRA-S	72.8	052020	Gallica Stream at Gallica Bridge	35711100	NRA.W	4
042007	Alre at Drove Lane Alrestord	45741326	NRAS	57.0					
042008	Cheriton Stream at Sewards Bridge	45741323	NRA.S	75.1	053001.	Avon at Melkshom	03 1641	NRA-W	665.6
042009	Candover Stream at Borough Bridgs	45681323	NRAS	71.2	053002	Semington Brook at Semington	39571605		157.7
042010	Itchen at Highbridge + Allbrook	44671213	NFA-S	360.0	053003 .	Avon at Bath St James	37531645	NRA-W	1595.0
042011	Hamble at frog Mill	4523.1149	NRA-S	56.6	053004	Chew at Compton Dando	36481647	NRA.W	129.5
042012	Anton at fullerton	43791393	NRA-S	185.0	053005	Midford Brook at Mictord	37631611	NRA-W	147
042014	Blackwater at Ower	43281174	NFA. 5	104.7	053006	Froms(Bristol) at Frenchay	36371772	NRA.W	148.9
042015	Dever at Westan Colley	44961394	NRA.S	52.7	053007	FromelSomerset) at Tellisto	38051564	W	251.6
042016 .	Itchen at Easton	45121325	NRA.S	236.8	053009	Avon at Great Someriord	39661832	NRA-W	303.0
042017	Herrnitage at Havant	47111067	NRA.S	17.0	053009	Wellow Brook at Wellow	37411581	NRA.W	72.6
042018	Monks Brook at Easteigh	44431179	NRA-S	43.3	053013	Marden at Stanle	39551729	NRA-W	9.2
042020	Tadburn Lake at Romsey	43621212	NRA-S	19.0	053017	Boyd at Eitton	36811698	nRa-W	48.0
042021	Branch of Test at Nursing	43551159	NRA-S	1050.0	053018	Avon at Bathford Woodbridge Brook at Crab mall	37861671	NRA.W	552.0 46.6
	Av	41421054	NRA-W	1649.8	${ }_{0}^{053020}$	Gauze Brook at fodbourne	39371840	NRA-W	28.2
043003.	Avon at East Mils	41581154	NRA.W	1477.8	053022 .	Avon at Eath ultrasonic	37381651	nha.w	605.0
043004	Bourne ar Leverstock Mill	41571304	NRA-W	163.6	053023	Sherston Avon at Fosseway	38911870	NRA.W	89.7
043005	Avon at Amesbury	41511413	NRA.W	323.7	053024	Tetbury Avon at Brokenborou	39141893	NRA-W	73.6
043006	Nadder ot Witon Park	40981308	NRA-W	220.6	053025.	Mells at Valilis	37571491	NRA-W	19.0
043007	Stour at Throop Mill	41130958	NRA.W	1073.0	053026	FromelBristol) ar Frampton Cotterell	36671822	NRA.W	78.5
043008	Wrye at South Newton	40861343	NRA-W	445.4	053028	By Brook at Middleh	3815.1688	NfA-W	2.0
043009	Stour at Hammoon	38201147	NRA-W	523.1	053029	Biss at Trowbridge	38541579	NRA-W	
043010	Allen at Loveriey Mill	40061085	NRA.W	94.0					
043011	Ebble at Bodenham	41621263	NRA-W	109.0	054001	Severn at Bewciley	${ }_{4} 37822762$	NRA-ST	
043012	Wriye at Nonton Savant	39091428	NRA.W	112.4	054002	Avon at Evesham	40402438	NRA-ST	${ }^{2210.0}$
043013	Mude at Someriord	41840936	NRA.W	12.4	054004	Sowe at Stoneleigh	43322731	NRA-ST	262.0
043014	East Avon at Upavon	41331559	NRA.W	86.2	054005	Severn at Montord	34123144	NRA-ST	225.0
043015	Wylye at Longbridge Deverill	38681413	NRA.W	${ }^{69.0}$	054006	Stour at Kidderminste	38292768	NRA-ST	324.0
043017	West Avon at Upavon	41331559	NRA-W	76.0	054007	Arrow at Broom	40862536	NRA-ST	319.0
043018	Allen at Walford Mill	40081007	NRA.W	176.5	054008	Teme at Tenbury	35972686	NRA-ST	
043019	Shreen Water at Colesbrook	38071278	NRA-W	29.1	054010.	Stour at Alscot Park	42082507	NRA-ST	319.0 184.0
043021	Avon at Knapp Mill	41550943	NRA.W	1706.0	054011.	Salwarpe at Hariord Mil	38682618	NRA-ST	184.0
					054012	Tern at Walcot	35923123	NRA-ST	852.0
044001	Frome at East Stoke total	38660867	NRA.W	414.4	054013 .	Clywedog at Cribynau	29442855	NRA-ST	57.0
044002	Piddle at Eaggs Mill	39130876	NRA-W	183.1	054014	Severn at Abermule	31642958	NRA-ST	5850
044003	Asker at Bridpont	34700928	NfA.W	49:1	054015 .	Bow Brook at Besford Bridge	39272463	NRA-ST	156.0
044004	Frome at Dorchester total	37080903	NRA.W	206.0	054016	Roden at Rodington	35893141	NRA-ST	259.0
044006	Syding Water at Syding St Nicholas	36320997	NRA-W	12.4	054017	Leadon at Wedderburn Bridge	37772234	NRA-ST	293.0
044008	Sth Wintarbourne at W'bourne Steepleton	36290897	NRA W	19.9	054019	Rea Brook at Hookegate	34663092	NRA-ST	178.0
044009	Wey at droadwey	36660839	NFA-W	.	054019	Avon at Startion Perry at Yeaton	$\begin{aligned} & 43332715 \\ & 34343192 \end{aligned}$	NRA-ST	347.0 180.8
						Perry ar Yeaion			
${ }_{0} 045003$	Exe at Stoodeigh	${ }^{2921} 1058$	NRA.SW	226.1	054024	Worfe at Burcote	37472953	NRA-ST	258.0
045003	Culm at Wood Mill	30211058	NRASW	228.1 288.5	054025	Dutas at Ahos-\%-pentref	29502824		
045004 045005	Axe at Whifford Otter at Ootton	32620953 3087 885	NRA-SW	288.5 202.5	${ }_{054026}$	Cheit at Slate Mill	38922264	NRA-ST	${ }_{34.5}$
045006	Cuarme at Enterwell	29191356	NRA-SW	20.4	054027	Frome at Ebley Mill	38312047	NRA-ST	198.0
045008	Otter at Fenny Bridges	31150986	NRA-SW	104.2	054028	Vyrrny at Lanymynech	32523195	NRA-ST	778.0
045009	Exe at Pixton	29351260	NRA-SW	147.6	054029	Teme at Knightsford Bridge	37352557	NRA-ST	1480.0
045010	Haddeo at Hartord	29521294	NRA-SW	50.0	054032	Severn at Saxons Lode	38732390	NRA-ST	
045011	Barle at Brushtord	29271258	NRA.SW	128.0	${ }_{0} 054034$.	Dowles Brook at Dowles			40.8 907
045012	Creedy at Cowley	29010967	NRA-SW	261.6	-054036 ${ }^{054038}$	Istourne at Hinton on the Green Tanat at Llanyblodwel	40232408 3252325	NRAST	90.7 29.0
046002	Teign at Prestion	28560746	nRa-sw	380.0	054040	Meese al Tibberton	36803205	nRa-st	167.8
046003	Dart at Austins Bridge	27510659	NRA.SW	247.6	054041	Tern at Eaton On Tern	36493230	NRA-ST	192.0
046005	East Dant at Bellever	26570775	NRA-SW	21.5	054042 .	Clywedog at Clywedog Dm Lower Weir	29142867 38632399	NRA-ST	49.0 68500
046006	Erme at Emington	26420532	NRA-SW	43.5	054043.	Severn at Upton On Severn	38632399	NRA-ST	6850.0
046007	West Dart at Dunnabridge	26430742	NRA-SW	47.9	054044.	Tern at Ternhill	36293316	NRA-ST	92.6
046008	Avon at Loddiswell	27190476	NRA-SW	102.3	054045	Perry at Perry Farm	33473303 37813046	NRA-ST	49.1 54.9
047001	Tamar at Gunnislake	24260725	NRA-SW	916.9	${ }_{0} 54047$.	Perry at Ruyton Bridge	34033223	NaA-ST	54.9 155.0
047003	Tavy at Lopwell	24740650	NRA-SW	205.9	054048 .	Dene at Wellesbourne	42732556	NAA-ST	102.0
047004	Lynher at Pillaton Mill	23690626	NRA-SW	135.5	054049	Leam at Princes Drive Weir	43072654	NFA-ST	362.0
047005	Ottery at Werrington Park	23360866	NRA-SW	120.7	054052 :	Bailey Brook at Ternhilt	36293316	NAA-ST	34.4
047006	Lyd at Lifton Park	23880842	NRA-SW	218.1	054054 .	Onny at Onibury	34552789	NRA-ST	235.0
047007	Yealm at Pussinch	25740511	NRA-SW	54.9	054055 .	Rea at Nean Sollars	36642724	NRA-ST	129.0
047008	Thrushel at Tinhay	23980856	- NRA-SW	112.7	054056	Clun at Clungunford	33932796	NRA-ST	195.0
047009	Tiddy at Tideford	23430595	NRA-SW	37.2	054057	Severn at Haw Bridge	38442279	NRA-ST	9895.0
047010	Tamar at Crowford Bridge	22900991	NRA-SW	76.7	054058	Stoke Park Srook at Stoke Park	36443260	NRA-ST	14.3
047011	Plym at Carn Wood	25220613	NRA-SW	79.2	054059	Allford Brook at Alford	36643223	NRA-ST	10.2
. 047013	Withey Brook at Bastreet	22440763	NRA-SW	16.2	054060	Potford Brook at Potford	36343220	NRA-ST	25.0
047014	Walkham at Horrabridge	25130699	NRA-SW	43.2	054061	Hodnet Brook at Hodnet	36233288	NRA-ST	5.1
047015	Tavy at Denham / Ludbrook	24760681	NRA-SW	197.3	. 054062	Stoke Brook at Stoke	36373280	NRA-ST	13.7
047016	Lumburn at Lumburn Bridge	24590731	NRA-SW	20.5	054063	Stour at Prestwood Hospital	38652858	NRA-ST	89.9
047017	Wolf at Combe Park Farm	24190898	NRA-SW	31.1	054065 054066	Roden at Stanton Platt Brook at Platt	$\begin{array}{r}35653241 \\ \hline 36283229\end{array}$	${ }_{\text {NRA-ST }}$	210.0 15.7

Station number	River and station name	Grid reference	Auth. ority	Ares isq kmi	Station number	Rivar and station name	Grid reference	Auth ority	Area (sq km)
054067	Smestow Brook at Swindon	38612906	NRA-ST	81.3	063003	Wyre at Lanchyst	25422898	NRA.WEL	40.6
054068	Tetchill Brook at Hordiey	33793288	NAA.ST	21.2	063004	Ysiwyth at Cwm Ystwyth	27912737	NRA-WEL	32.1
054069	Springs Brook at Lower Hordiay	33873297	NAA.ST	10.4	063005	Maesnant at Nant- - Moch C	27782877		0.6
054070	War Brook at Waltord	34323198	NRA-ST	22.5	063006	Massnant Fach at Nant- γ-Moch E	27652865	1 H	
054080	Severn at Dolwen	29962851	NAA.ST	187.0		-	2785		
054081	Clywedog at Bryntail	29132868	NAA-ST	49.0	064001	Oyfiar Dyfi Bridge	27453019	NRA-WEL	471.3
${ }^{054083}$	Crow Brook at Horion	36783141	NRA-ST	16.7	064002	Dysynni at Pont- $\%$-garth	26323066	NRA-WEL	75.
054084	Cannop 8rook at Parkend	36162075	NAA-ST	31.5	064006	Leri at Dolybont	26352882	NRA-WEL	47.2
054085	Cannop Brook at Connop Cross	36092115	NAA-ST	10.4	064007	Dalyn at Llanbrynmair	28993062		1.1
054086	Cownwy Diversion st Cownwy Weir	29993179	NRA-ST	13.2	064008	Cwm al Lanbrynnair E	29163087	${ }_{1 H}$	
054087	Allford Brook at Childs Ercall	36673228	NRA-ST	4.7					
054088	Little Avon at Berkeley Kennels	36831988	NRA.W	134.0	065001	Glastyn at Poddgeler?	25923478	nra-wel	69.6
054090	Tanllwyth at Tanllwyth furme	28442876	${ }_{\text {It }}$	0.9	065002	Owrryd at Maentwricg	26703415	NRA-WEL	78.2
054091 054092	Severn at Hatren Fiwme Hore at Hore Fume	28432878 28462873	$\underset{\mid H}{1+1}$	3.6 3.2	065004	Gwyriaia Bontrewryd	24843549	NRA-WEL	47.9
054094	Strine at Crudingo	28462873	It	3.2	065005	Erch ol Pencaenewydd	24003404	NRA-WEL	18.
054095	Sovern at Buildwas	36443044	NRA.ST	37170	055007	Soiont at Pebig Mild	24933623	NRA.wEL	74.
054096	Hadly Erook at Wards Bridge	38702631	NRA.ST	53.4	06507	Dwytawl at Garndolbenmaen	24993429	NRA-WEL	52.
					066001	Clwyd at Pont-y-cambwill	30693709	NHA.WEL	404.
055002	Wye at Belmont	34852388	NRA.wEL	1895.9	066002 .	Elwy at Pant yr Onen	30213704	NRA.WEL	220.0
055003	Lugg at Lugwarcine	35482405	NRA.WEL	${ }^{885.8}$	${ }^{066003}$	Aled at Bryn Aled	29573703	NRA-WEL	70.0
055004	Ifon at Abernant	28922460	NRA-WEL	72.8	068004 .	Wheeler at Bodiari	31053714	NRA-WEL	62.9
055005	Wye at Rhayader	29692676	NRA-wEL	166.8	066005	- Clwyd at Ruthin Weir	31223592	NRA-WEL	5.3
055006	Elan at Caban Coch Reservoir	29262645	NRA-WEL	184.0	066006	Elwy at Pont-\%-gwyddel	29523718	NRA-wEL	194.0
055007 055008	Wye at Erwood Wye at Cefn Brwy	30762445	NRA-WEL	1282.1	066008	Aled at Aled Isat Reservoir	29153598	NRA-WEL	11.6
${ }_{055009}$	WYe at Cefn Brwy Monnow al Kentchur	$\begin{aligned} & 28292838 \\ & 3419225 ; \end{aligned}$	IHRA.WEL	10.6	066011	Conwy at Cwm Lanerch	28023581	NRA-WEL	4.5
055010	Wye at Pant Mawr	28432825	NRA.WEL	27.2	067001	Dee at Aata			
055011	trton at Laskdewi	31052683	NRA-WEL	111.4	067002.	Dee at Ertistock Rectory	${ }_{3357}^{29413}$	NRA-WEL	1040.0
055012	trion at Cilmery	29952507	NRA.WEL	244.2	067003	Brenig al Lyrn Brenig outfow	29743539	NRA-WEL	20.2
055013	Arrow al Titiey Mill	33282585	NAA-WEL	126.4	067005	Ceiriog at Brykinalt Weir	32953373	nfa-wel	113.7
055014 055015	Lugy at Byton	33642647 3277294	NRA-WEL	${ }_{25}^{203.3}$	067006	Alwen al Druid	30423436	NBA-WEL	184.7
055016	Honduu at ratolog	$327) 2294$	NRA-WEL	25.1	067008	Alyn at Pont-y-crpel	33363541	NRA-WEL	22
055017	Chweffu at Carreg-y-wen	29982531	Na			Alyn ar Rhydymy	32063667	NAA-WEL	77.8
055018	Frome at Yarkhill	36152428	NRA-WEL	144.0	067011.	Nant Aberderifl at Nant Aberderifel	$\begin{aligned} & 28433420 \\ & 28513392 \end{aligned}$	NHA-WEL	13.1 3.7
055021	Lugg at Buths Bridge	35022589	NRA.WEL	371.0	067012 .	Tryweryn at Upper Trwweryn	28383398	NRA-WEL	27.2
055022	Trothy at Mitchel Troy	35032112	NRA-WEL	142.0	067013.	Hirnant at Plas Rhiwedog	29463349	NRA-WEL	33.9
055023	Wre ar Redbrook	35282110	NRA-WEL	4010.0	067015	Dee at Manloy Hall	33483415	NRA-WEL	019.3
055025	Llynfi at Three Cocks	31662373	NRA.WEL	132.0	067016	Worthenbury Brook at Worrhenbury	34183464	NRA-WEL	142.1
055026 055027	Wye at Ddol Farm	29762676	nha-wel	174.0	067017	Tryweryn al Lyn Celyn outiow	28803399	NRA-WEL	9.9
${ }^{055027}$	Rudhall Brook at Sandford Bridge	36412257	NRA.WEL	13.2	067018	Dee at New Inn	28743308	NRA-wEL	9.9
055028 055029	Frome at Bishops Frome	36672489	NRA.WEL	77.7	067025.	Clywedog at Bowling Bank	33963483	NRA-WEL	98.6
055029 055030	Monnow at Grosmont Claerwen at Daly-my	34152249 2910 2620	NRA-WEL	354.0 95.3	067026.	Dee at Eccleston Ferry	34153612	NRA-WEL	16.8
055031	Yazor Brook at Three Elms	29192620 349245	NAA WEL WEL	95.3 42.3		Cexitiog al Lasadrillo	30343379	NRA-WEL	
055032	Elan at Elan Village	29342653	NRA-WEL	184.0			30863405	NRA-WEL	12.3
055033	Wye at Gwy fume	28242853	$\mathrm{IH}^{\text {d }}$	3.9	068001	Wegver at Ashbrook	36703633	nhanw	622.0
055034	Cyff at Cytf flume	28242842	1 H	3.1	068002	Gowy at Picion	34433714	NHANW	156.2
055035	lago at lago flume	28262854	1 H	1.1	${ }_{0}^{088003}$	Dane at fudheath	36683718	NRA-NW	407.1
056001	Usk at Chain Bridge	334520	NRA.WEL	911.7	${ }_{0}^{0688004}$	Wistaston Brook at Marshfield Bridge Weaver at Audlem	38743552	NRANW	2.7
056002	Ebow at Rhiwderyn	32591889	NRA.WEL	216.5	068006	Dane at Hulme Walfield	36533431 38453644	NRA-NW	207.0
056003	Honddu at The Forge Erecon	30512297	NRA.WEL	62.1	068007	Wincham Brook at Lostock Gralam	3845 36973757	NRA-NW	150.0 148.0
056004	Usk at Llandetty	31272203	NRA-WEL	543.9	088010	Fender at Ford	32813880	NRA-NW	11.4
056005	Lwyd at Ponthir	33301924	NRA-WEL	98.1	068015	Gowy at Huxiey	34973624	NRA-NW	49.0
056006 056007	Usk at Trallong	29472295	NRA-WEL	183.8	068018	Dane at Conglaton Park	38613632	NRA-NW	;45.0
056007 056008	Senni at Pont Hen Hatod	29282255	NRA.WEL	19.9	068020	Gowy at Bridge Traftord	34483711	NRA-NW	156.0
056008 056010	Monks Ditch at Lanwern	33721885	NRA.WEL	15.4					
${ }_{056011} 05601$	Usk at Trostrey Weir	33582042	NAA.WEL	927.2	069001	Mersey at crlam Weir	37283936	RA	679.0
${ }_{0}^{056011}$	Sirhowy at Wattsville	32061912	NRA.WEL	76.1	069002	Irwell st Adelphi Weir	38243987	NRA-NW	559.4
${ }^{056012}$	Grwyne at Millbrook	32412176	NAA.WEL	82.2	069003	Ink at Scotand Weir	38413992	NRA-NW	72.5
-056013	Yscir at Pontaryscir	30032304	NRA-WEL	${ }^{62.8}$	069004	Etherow at Botroms Reservoir	40233971	nfa-nw	3.2
${ }_{0} 056014$	Usk at Usk Reservoir	28402290	NRA.WEL	17.0	069005	Glaze Brook al Litte Wcolden H	36853939	NRA-NW	152.0
$\begin{aligned} & 056015 \\ & 056016 \end{aligned}$	Otway Brook st Olway inn	33842010	NRA-WEL	105.1	069006	Bollin at Ountram Massey	37273875	NHA NW	256.0
057001 .	Taf fechan at Tal Fechan Reservoir	30602117	nra-wel			Dean at Stanneylands	38463830	NRA NW	51.8
057002	Taf Fawr at Ulwrnon Reservoir	30122111	NRA.WEL	43.0	069012	Micker trow at Cheade	3855 3850 3815	NRA-NW	67.3 72.5
057003 .	Taff at Tongwynlais	31321818	NRA.wEL	486.9	069013	Sinderland Brook at Partington	37263905	NRA-NW	44.8
057004	Cynon at Abercynon	30791956	NRA.WEL	106.0	069015	Etherow at Compstall	39623908	NRA-NW	156.0
057005	Taff at Pontypridd	30791897	NRA-WEL	454.8	069017	Goyt at Marple Bridge	39643898	NRA-NW	183.0
057006	Rhondda at Trethatod	30541909	NRA.WEL	100.5	069018	Newton Brcok at Newton Le Willows	35853933	NRA-NW	32.8
057007 057008	Taff at Fiddlers Elbow	3089195%	NRA-WEL	194.5	069019	Worstey Brook at Eccles	37533980	NRA-NW	24.9
057008 057009	Rhymney at Llanedaym	32251821	NAA-WEL	178.7	069020	Madlock al London foad	38493975	NRA-NW	57.5
057010	Ely at St ragans	31211770	NRA.WEL	145.0	069023	Roch at elackford Bridge	38074077	NRA-NW	186.0
057011.	Blaen Tat Fewr at Bascons Resorvoir	29872193	Na.wel	59	069024	Crioal at famworn Weir	37434068	NRA-NW	145.0
057012.	Garwnant al Uwynon Reservoir	30042129	NAA WEL	4.3	0690270	Trane at Poriwo	39063918 35889	NRA-NW	150.0
057015	Taff at Merthyr Tyofil	30432068	nra-wel	104.1	069031	Diton Brook at Greens Bridge	34573865	NRA -NW	47.9
057016	Tat Fechan al Pontsticill	30602115	NRA-WEL	33.8	069032	All at Kirkby	33923983	NRA NW	
					069034	Musbury Brook at Helmshore	37754213	NHA NW	3.1
058001 058002	Ogmore at Endigend	29047794	NRA.wEL	158.0	069035	Irwall at Bury Bridge	37974109	NRA-NW	155.0
058003	Ewenny at Ewenny Priory	281541780	NRA.WEL	190.9	669037	Mersey at Wesiy	36173877	NRA-NW	2030.0
058005	Ogmore at Brymeny	29041844	NRA. WEL	74.3	069042	Iirwil grook at Naden Reservoir	37934188 38504175	NRA-NW	+2.0
058006	Mellte at Pontneddtechen	29152082	nha-wel	65.8		Ding drook at Naden Reservoir	38504175	NRA-NW	
058007	Llynfi at Coytrahen	28911855	NRA-WEL	50.2	070002	Douglas at Wanes Blades Bridge	34764126	NRA-NW	
058009	Dulais at Cilfrew	27782008	NRA. WEL	43.0	070003	Douglas al Central Park Wigan	35874061	NRA.NW	55.3
058009 058010	Ewenny at Koepers Lodge	29201782	NRA-WEL	62.5	${ }^{070004}$	Yarrow at Croston Mill	34984180	NRA-NW	74.4
058011	Hepste at Esgair Carnau	29692134	NRA-WEL	11.0	070005	Lostock at Littlewood Bridge	34974197	NRA-NW	56.0
058012	Afan at Marcroft Weir	30171716 27711910	NRA -WEL NAA-WEL,	49.2 87.8	071001	Rible at Sarriesbuy	35994304		
					071003	Croasdaie at Croasdale fume	37064546	NWW	10.4
059001	Tewe at Yynstanglws	26851998	NRA.WEL	227.7	071004	Calder at Whelley Weir	37294360	NRA-NW	316.0
059002	Loughor at Tir-y-dail	26232127	NRA-WEL	46.4	071005	Botroms Beck at Bottorms Beck furne	37454565	NWW	10.6
					071006	Ribble at Hentrorn	37224392	NFANW	456.0
060002 060003	Cothi at Felin Mynachdy	25082225	NRA-	297.8	071007	Fibole at Hoddertiont	37094379	NHA-NW	720.0
060004	Dewi Fawr at Glastryn Ford	22382160	NRA-WEL	21.3	071008	Hodder at Hodder Place	37044399	NRA-NW	261.0
060005	Bran at Llandovery	27712343	nra.wel	66.8	071010	Pandle Wator at Barcten Lan	31027 435	NRA-NW	1053.0
060008	Gwill at Glangwill	24312220	NRA.WEL,	129.5	071011	Ribbite at Arnford	38394556	NRAA-NW	108.0
060007	Tywi at Dolau hirion	27622362	nra-wel	231.8	071013	Oarwen at Ewood Bridgo	36774262	NRA-NW	39.5
060008	Trwi at Ystradffin	27862472	NRA.WEL	89.8	071014	Darwen at Blue Bridge	35654278	NRA-NW	128.0
060009	Sawdde at Felin-y-cwm	27122266	NRA-WEL	81.1					
060010 060012	Tywi st Nantgaredig	24852206	NRA.WEL	1090.4	072001	Luna at Kalion	35034647	NRA-NW	
060012	Twrch at Ddol Las	26502440	NRA.WEL	20.7	072002	Wyre at St Michaels	34634411	NRA-NW	275.0
060013	Cothi at Pont Ynys Brechta	25372301	NAA-WEL	261.6	072004	Lune at Caton	35294653	NRA-NW	${ }_{983.0}$
					072005	Lune at Killington New Bridge	36224907	NRA-NW	219.0
061002	Western Cleddau ot Prendergast Mill Eastern Cleddau at Canaston Bridge	$\begin{aligned} & 19542177 \\ & 20722153 \end{aligned}$	NRA-WEL	197.6	072006	Lune at Kirkby Lonsdale	36154778	NRA-NW	507.1
061003	Gwaun at Cithedyn Bridge	20052349	NRA.WEL	183.1	072007	Brock at U/S A6	35124405	NFA-NW	32.0
061004	Western Creddau al Redriut	19422184	NRA-WEL	31.3 197.6	072008 072009	Werning ol Wernington Hoad Bridgo	34884447 36154701	NRA-NW	114.0 142.0
					072011	fawthey at Brigg Flatis	36394911	NRA-NW	200.0
${ }_{082002}^{06201}$.	Teifif at Glan Terti	22442416	NRA.WEL	893.6	072015	Lune ot Lunes Bridge	36125029	nhanw	141.5
082002	Terif at Llantair	24332406	NRA.wEL	510.0	072016	Wyre at Scorton Weir	35014500	NRA-NW	88.8
$\begin{aligned} & 063001 \\ & 063002 \end{aligned}$	Ystwyth at Pont Liolwyn Rheidol at Llanbadarn Fawr	$\begin{aligned} & 25912774 \\ & 26012804 \end{aligned}$	NRA.WEL NRA.WEL	$\begin{aligned} & 169.6 \\ & 182.1 \end{aligned}$	$\begin{aligned} & 073001 \\ & 073002 \end{aligned}$	Leven 81 Newby Bridge Crake at Low Nibthwaite	$\begin{aligned} & 33714863 \\ & 32944882 \end{aligned}$	NRA-NW NRA-NW	241.0 73.0

italic denotes Irish Grid.

- me closed, or no data for post 1986 have been received.

Refer to page 196 for key to measuring authorities: -

Gauged daily flows, monthly peaks and monthly rainfall

 KEY:| | Complete
 rainfall | Incomplete or
 missing rainfall |
| :--- | :---: | :---: |
| Complete daily and complete peaks | A | a |
| Complete daily and partial peaks | B | b |
| Complete daily and no peaks | C | c |
| Partial daily and complete peaks | D | d |
| Partial daily and partial peaks | E | e |
| Partial daily and no peaks | F | f |
| No flow data | (| - |

Summary is presented in decade blocks

Stn. number	Gauged daily flows. monthly peaks and rainfall			
002001	70s	-----aaaa	80 s	aAAAAAAAAA
003001	50s	---eAAA日--	608	
	70s		80s	-------1\%t
003002	70s	----asaaas	80 s	a A AAAAAAAA
003003	705	------AA	80 s	AAAAAAAAAA
003004	70s		80 s	AAAAAABasA
003005	B0s	- өазa Abaaa		
004001	40 s	-fcf	50s	cccbaEAAEA
	60s	bababaAAAA	70s	eftilitaaba
	B0s	AAAAAAAAAA		
004003	70s	- azasaa	BOs	aAAAAAAAAA
004004	80s	- вяaдAдaaa		
004005	80s	- аазA		
005009	50s	---bAAAAAA	60s	AAE-f1tilt
	70 s	1		
005002	80s	as		
006001	30s	-----eAAAB	40 s	bsbabbbaa
	50s	EtiEAAAAAA	60s	AAAEtititt
	70s	$11 t$		
006003	20s	--	30s	cetcecectc
	40 s	ccce	505	
	60 s		70s	
	805	------tttt		
006008	50s	---gAAAAAB	60s	BAO-------
	70 s		BOs	------tit ${ }^{\text {a }}$
006007	703	---AAAAAAA	80s	AAAAAABaas
006008	70s	-E	B0s	AAAAAAAAAA
007001	60s	gatamatana	70s	a A amamama
	80s	AaAAAAAAAAA		
007002	50s	-------8A	60s	AAAAAAAAAA
	70s	AAAAAAAAAA	809	afacaiamaa
007003	60s	---eataAaAA	70s	amabaiamaa
	808	AAAAAADDAA		
007004	70s	--a	B0s	afAAAAAAEA
007005	70s	---fff	B0s	$f-$ asAAAAA
007006	80s	-eat		
008001	305	-ic	40s	ffececcecc
	50s	brbaamaata	60 s	amanamama
	70 s	AAAAAItttt	B6s	------111:
008002	50s	- ${ }^{\text {a }}$ abbabab	603	AAAAAAAAAA
	70s	AAABAAAAAA	B0s	AAAAAAAAAA
008003	50 s	-eadasamaia	60s	AAAAAAAAAA
	70s	a AaAttittt		
008004	50s	--EAAAAAAA	60s	AAAAAAAAAA
	70s	AAAAAAAAAA	B0s	aAameasama
008005	50s	-ebasamata	60s	afatamama
	70 s	anamanama A	80s	asamanamia
008006	50s	--aAAAAAAA	60s	amatabama
	70s	AAAAAAAAAAA	80 s	AAAAAAAAAAA
008007	508	--baAAAAAA	60s	afasamama
	70s	AAAAAAAAAAA	805	AAAAAAAAAA
008008	50s	--sAAAAAAA	60s	AAAAAAAAAA
	708	AAAAAAAAAA	805	AAAAAABasa
008009	50s	--EABBABBA	608	AAAAAAAAAA
	70s	afaiamanat	80s	aAAACAAAAA
008010	50s	---tAAAAAA	60 s	AAAAAAAAAA
	70s	AAAAAAAAAA	80s	AAAACAAAAA
008011	70s	$\cdots-\cdots$ -	80s	fessasaAAA
009001	50s	-	60s	anamanama
	70s	AAAAAAAAAA	80s	AAAAAAAAAA
009002	60 s	eatabaiamat	70s	asamganama
	80s	AaAAAAATAA		
009003	60 s	-tttttttte	703	afamamama
	80s	anamtanama		
$\begin{aligned} & 009004 \\ & 009005 \end{aligned}$	80 s	eaaacaAAAA		
	40s	--------fc	50s	Iffeffice
	605	cccececcfc	70s	ecceccecce
	80s	ccccccasAA		
010002	60s	-ttrittitt	703	teamasaaka
	BOs	AAAAAAAAAA		
010003	BO_{3}	---maAAAA		
011001	60s	-titttitie	70s	AAAAAAAAAA
	808	alamatamas		
011002	605	-titttittF	703	CbaAAAAAAA
	B0s	aAAACAAAAA		
011003	608	-titititit	70s	titeasama
	BO 5	AAAACAAAAA		
011004	BO_{3}	---------		
012001	205	---------ө	303	bibsbraata
	403	babbaabccc	50s	$\operatorname{cccccccccc}$
	605	ccccceanam	70s	bcbamanama
	BOs	AAAAAAAAAA		
012002	70s	--eatababa	80s	amatabamaa
012003	705	----- вaaaa	90s	aAAAAAAAAA
012004	60 s	---------	70s	aasaasbaaa
	BOs	bCCCCAAAAA		
012005	70s	----easa	80s	oamamanama
012006	705	--ea	903	a A AAAAAAAA
012007	BOs	--eaaAAAAC		
012008	B0s	-----daca A		
013001	70s	-----6	80s	a A AAAAAAAA

Stn. number	Gauged daily flowz. monthly peaks and rainfall				Stn. number	Gauged daily flows. monthly peaks and rainfall			
013002	80 s	--cceasala			019003	60 s	-gAAAAAAAA	70s	AAAAAAAAAA
013003	70s		803	csc---113t		80s	Dit---titt		
013004	80s	-----Acca			019004	603	AAAAAAAAAA	70s	abacamana
013005	80s	-ectcasama				803	asabamadda		
013007	70s	----CCCC	803	CCCDAAAAAA	019005	608	-- ${ }^{\text {a }}$	70s	AAAAAAAAAA
013008	80s	---AAAAAAA				80 s	atamamadda		
013009	80s	-----tAAAA			019006	60s	- tta AAAAAA	70s	afanamataí
013010	80s					$8 \mathrm{SO}_{3}$	asamamalda		
					019007	60s	-tbasamasa	70s	AAAAAAAAAA
014001	60s	-ttttttea	70s	AAAAAAAAAA		80s	afabamadda		
	80s	AAAAAAAAAA			019008	60s	-ttfbasama	70s	AAAAAAAAAA
014002	60s	-tttttttte	70s	afamatatam		803	ababamadda		
	80s	ACCFCAAAAA			019010	60s	---------A	70s	afaAamatai
014005	80s	----caazaa				80s	AAAAAEEEEA		
014008	80 s	-caa			019011	605	---ccccecc	70s	ccccceaaaa
014007	B0s	------- asa				80s	AAAAAAAADA		
					019012	80s	---tteads		
015001	50s	---ee-----	60s	aAAAAAAAEt	019014	80 s	----ttct		
	70s	tttitttit	808	tttttttt	019017	80 s	-..-ttaADA		
015002	50 s		60s	AAAAAAAEEt					
	70s	tttilitit	80s	116titit	020001	60s	- 4 AAAAAAAA	70s	AAAAAAAAAA
015003	40 s	-------fc	50 s	Cramamaba		80 s	AAAAAAAAAA		
	60s	AAAAAAAAAA	70s	afamatabat	020002	60 s	-tititeasa	70s	AAAAAAAAAA
	80s	ABCFCAasaa				803	AAAAAAAADA		
015004	203	---CCC	308	Cccccciab-	020003	603	-ttitaAAAA	70s	abamasamaa
	40s	--tit	508	EEtIItItE		80 s	afacameada		
	60s	AAAAAAAEE	70s	せt1ttitit	020004	603	-tititiAAA	70s	AAAAAAAAAA
	80 s	tttititit				80s	AAAAAEsada		
015005	205	-------CCC	305	Ccccccbag	020005	608	$-1 t+C C C C C$	70s	ccccccaaaa
	40s	ttt	503	EEtEEETtIE		80 s	AAAAAAEADA		
	60 s	AEAAAAAAE \uparrow	70s	tttfttttt	020006	703	---cccaAAD	B0s	AAAAAAAADA
	805	$19 t+t+t!t$			020007	60s	--------t	70s	tftcccaial
015006	50 s	--8AAAAAAA	60 s	AAAAAAAAAA		80 s	AAAAAAAADA		
	70s	AAAAAAAAAAA	80s	baAaAamata	020008	80s	--ttabit		
	90s	f							
015007	50s	-eAA	603	AAAAAAAAAA	021001	50s	-.--------*	$60{ }^{*}$	aAameeamet
	70s	AAAAAAAAAA	808	AACCCAasaa		70s	titttitti	B0s	-- 1111
015008	50s	---EA	608	AAAAAAAAAA	021002	50s	------1t-e	60 s	abCBAAAAEt
	70s	AAAAAAAAAA	80s	bafCCAaaaa		70s	1tttitim-	B0s	------1111
$\begin{aligned} & 015010 \\ & 015011 \end{aligned}$	70s	--cAAAAAAA	80s	AFCFCAAAAA	021003	50 s		60s	AAAAAAABAA
	50s	--------ce	60 s	сесессссес		70s	AAAAAAAAAA	BOs	abBCCAAAAA
	70 s	ccbatamana	808	accccalamaa	021004	605	-----sAAG-	70s	- 111
015012	70s	---BAAAAas	80s	a acccaccaa	021005	60s	-EAAAAAAAB	70s	asamanama
015013	50s	--ccece	605	ecccceccce		80s	AABCCAAAAA		
	70s	CCCBAAAAAA	80s	anbccaama	021006	60s	-eamamasa	70s	afamamabaa
015014	80s	--acasa				80 s	asabamaba		
015015	80s	----ccaa			021007	60s	- EaAAAAAAAA	70s	afaAasabai
015016	70s	-.--bAAAAA	803	AACCCAazaa		803	a A bccamama		
015017	70s	-----eAAAA	803	Att---ttt	021008	608	gatamatana	70s	AAAAAAAAAA
015018	50s	---өавазе				80s	a abccaamaa		
015021	80s	-----tc-cc			021009	60s	-teasabasa	70s	AAAAAAAAAA
015023	80s	--ccaAAAA				80s	atamamaba		
015024	80s	- cocDasaa			021010	60s	ffteanaiasa	70s	afaiambaba
015025	80s	----†Aasaa				80 s	Attttotit		
015027	80s	-caa			021011	608	-tteamata	70s	afamamata
015028	80s	cca				80s	a abccamana		
					021012	60s	-tteasabas	70s	afamatabat
016001	40s	--------Cc	50s	cBAAbbAAAA		80s	AAAAAAAAAA		
	60s	andanamana	70s	afamasaiam	021013	60 s	-ttteasaas	70s	abamatanam
	80s	gDFCCAAAAA	905			80s	ascccamaab		
016002	50s	-----aAAAA	608	AAAAAAAAAA	021014	60s	-eamanabaa	70s	amamababas
	70s	afaAaAAAtt				803	ansccaama		
016003	60s	-ttittiti	70s	EDAABAAAAA	021015	603	-tititeasa	70s	AAAAAAAAAA
	80s	AAAAAAAAAA				803	ancccanama		
016004 016006	70s	--8AAAAAAA	808	ADDAAAAAAA	021016	608	-tititteas	70s	asamataiam
	80s	--------cc				80 s	atcccanaan		
					021017	60 s	-titieasai	70s	afanamaias
017001	60s	-E	70s	AAAAAAAAAB		80s	asbccaama		
	80s	AAAAAAAAAA			021018	603	-itititiea	70s	asamanama
017002	60s		70s	AAAAAAAAAA		80 s	AAAAAAAAAA		
	80s	atababaman			021019	60 s	-ttititea	70s	anamamaba
017003	70s	teamabamaa	80s	AAAAAAAADA		80s	a ${ }^{\text {abchanaba }}$		
017004	70s	--EAAAAAAA	805	AAAAAAAADA	021020	60 s	-ttttteba	70s	amanamana
017005	70s	-eamamaasb	80 s	AAAAAAEADA.		80s	a $A B C C A A A A A$		
017008	80s	------da			021021	60 s	---------E	70s	AAAAAAAAAA
017012	80s	----tteada				B0s	abbccanama		
017016	80s	------asda			021022	60s	- +1 Itittte	70s	asadamaial
017017	80 s	------ac				805	afamatama		
					021023	60 s	-tttttttt	70s	eatanamana
018001	50s	-------EAA	603	abamanama		803	atbccanama		
	70s	AAAAAAAAAAA	80s	AaAAAAAADA	021024	60s	-t1t1titt	70s	teasamasa
018002	50s	---------b	608	ababamata		B0s	ancccamaa		
	70s	bibatasama	803	AAAAAAasda	021025	603	-titititt	70s	t!eanamaa
018003	50s	-------cce	60s	eccbaidasa		803	aacccaamaa		
	70s	aneamamana	805	amanamana	021026	60s	-t!tit:tt	70s	\#tieabamas
018005	70s	teamasabas	808	AAAAAAAAAA		80s	ascciamaaa		
018007	80s	----ttaada			021027	603	-1\%titit	70s	
018008	70s	---qAAAAAA	803	AAAAAAAADA		80s	a $A C C C A A A A A$		
018010	80s	----ttaada			021030	60s	-tilititea	70s	batamanama
018011	80s	-fcasamada				B0s	a abccanama		
018012	80s	----ttae			021031	50s	------AAAB	60 s	aeanamaama
018013	80s	----tiacta				70s	Aabamamat	BOs	e-----titt
018014	80s	--.--traada			021032	60s	------aAAA	70s	afanamaeam
018016	80s	------AADA				80s	AAAE--T11E		
018017	80s	--өasaAAAA			021034	60 s	-ttitttiff	70s	CCCCCAAAAA
018018	80s	.-.-ajaADE				BOs	AAACCAdssa		
018019	80s	-tAFt							
					022001	60s	---fffbaA	70s	afamamasab
019001	50s	-------AAA	60s	atamasasam		BOs	AAAAAABAAA		
	70s	AAAAAAAAAAA	808	AAAAAAAAAA	022002	50s	---eAA	608	EAEAAAAAAA
019002	60s	-taAAAAAAAA	703	aAACAAAAAA		70s	AAAAAAAAAA	80 s	ө-----ttt
		AAAAAAAADA							

Stn． neariber	Gauged daily flows． mortity peaks and raintal				Stn． number	Gauged daily flows． monthly peaks and raintell				Stn． number	Gauged daily fiows． monthly peaks and raintal				
03	$50 \mathrm{~s}$	－－－－－－－AA	$\begin{aligned} & 605 \\ & 805 \end{aligned}$	baeasamaat	027006		－－－eabaa	705	AAAAAAAAAA	028010	30_{3}	$\begin{aligned} & -\quad \text { FFFCC } \\ & \text { CCCFFCCCCC } \end{aligned}$	$\begin{aligned} & 403 \\ & 400 \end{aligned}$	ccorccecoc соссссссоС	
		atabatasaa		AAMA	027007		alamamata	60_{3}							
022004	$\begin{aligned} & 105 \\ & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$		703			$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	EBDAAAAEA		ataAasama	028011	${ }^{703}$	ccccranama	$\begin{aligned} & 803 \\ & 604 \\ & 803 \end{aligned}$	AAAAAAAItI EFBAAAAAAA AAAAAAAAAA	
		Etu－－					eboamatate	803	AAAAAAAAAA		505				
022006	60		${ }^{70}$	daataamaat	027008	${ }^{505}$	ataaameeae	${ }^{603}$	AEDEETt1：	028012	703	E			
	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	baabanama		AabaAasama	027009							－			
022007		DAAAMAMEMA	703			$\begin{aligned} & 60 \mathrm{~S} \text { - } \\ & 80 \mathrm{~s} \text { A } \end{aligned}$	ADAAAAAAAA		AAABDEAAA			AAAAAAAAAA 803		AAAAAAAAAA	
	$80 s$	AAAAAAAAAD			027010						Hfthtrft				OS
2008	605		70，	AA		50 s 70 s	efffbaAAAA ABAAAAEEAE	803	babeamaata	$\begin{aligned} & 028013 \\ & 028014 \end{aligned}$	70 s	－－－－t：mit	${ }_{703}$		－－－IIt AAAAAAADIt
022009	$\begin{aligned} & 80 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	AAAEIIItII －－EDAAAAAA	80：	anamanaasa	027012				min		80s	$\begin{aligned} & \text { bBABBCTEAA } \quad \text { 70s } \\ & \vdots t!t!t i \end{aligned}$			
	${ }^{50}$ s	－－－－－eata				${ }_{705}^{505}$	AAAEItitit		AAAAAAAAAA	02801					t1
0			60：		027013						$\begin{aligned} & 805 \\ & 80 s \end{aligned}$$60 \mathrm{~s}$	$\begin{aligned} & - \text { eetiA } \\ & -=A E E A A A A \end{aligned}$			
		－－－fcccce	603	AAAAAAAAAA		$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \end{aligned}$	AAABBBCBEE	$\begin{aligned} & 60 \mathrm{~s} \\ & 803 \end{aligned}$	bregbeaata	028016			908		
02300					027014			60s	AAAAAAAABA	028017	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$		0－	asaeameaet	
023003	705	Aabbaiamat	80	AAAAAAAEA AAAAAAADA		$\begin{aligned} & \text { 50s } \\ & \text { 70s } \end{aligned}$	E－1titit								
	${ }^{\text {70s }}$ A	AA	$\begin{aligned} & 008 \\ & 803 \\ & 703 \end{aligned}$	EAEAAAasea AAEAAAABAA	027015	60s	－eataAasas	203	AAAAAE	028018	bos				
04	605	A A			027018		－－－tttitt					－eadamama	703	anaeanama	
	${ }^{80}$	AAAA				503	eAA	${ }^{60} 3$	b8abebaasa		${ }^{\text {Bos }}$	AAAAAAAAAA		A	
023005	605		708	asabasa		70s	68bbe－－11t	${ }_{803}^{803}$	－	028019	${ }_{80 \mathrm{~s}}^{60}$	AaA		alaeamaama	
006	${ }_{60 \mathrm{~s}}^{80 \mathrm{~s}}$	AAAAAAAETH	703	afatanaek		50s 70 s	EABAA－－tit	803 808	AAEBAAAA	028020	${ }^{805}$	Aachacha	$\begin{aligned} & 905 \\ & 603 \end{aligned}$	baabaAaEog	
	${ }_{805}^{605}$	AAAAAAAAAAA		a amamatea	027021	505		603	aekabaaba		70 s	amaAAAAAA	803	AAETT－－－t	
3007	605	－eamamaa	\％	afatahatea		703	AAAAAAEIt	${ }^{803}$	TA ${ }^{\text {abasaAF }}$	028021	${ }^{605}$		703	EeEEAAAAT：	
	805	basabamead			027022	${ }^{605}$	eAAAAAABA	703			sos	－－－tit			
008	${ }_{805}^{605}$	－－AEAAAAAEAE		AAAAAAABAA	0270	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	easasalial	708	asabasama	2802	${ }_{805}^{605}$	AAAAETIAAA	$\begin{aligned} & 704 \\ & 905 \end{aligned}$	mabaacaab	
009	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	AEAAAAAEAE	70，	atadoanaet	027	${ }^{805}$	AAAAAAEDA	5	azamamaza	02	60s	－－．－－easas	703	AAE	
	${ }^{80}$	EA			702	${ }^{605}$	－eAAAAAAA	70s	AAAAAAEAA	028024	B0s	ti－ttitit		esAAAAAAAA	
23010	$60 \mathrm{~s}$	－－－－－－－1t			02702	${ }^{805}$	EeAAAAAA	703	ataEtiasas		${ }^{60}$	AeEAEEEAAA	903		
023011	60s	－	20．	edabasabaa		805	AAAAAAAAA			028025	60 s	ease	70s	asAAAAAAAA	
	80s	easasas			02702	${ }^{605}$	－－－eaAAAAA	70n	AAAAAAAA		${ }_{60 \mathrm{~s}}^{80 \mathrm{~s}}$	AAAAE：T1：			
012	${ }^{70}$	tebahaAAAA	${ }_{803}^{803}$			80s	1111AAAAAA －eAAAAAAEA	703	AAAAAE，		$\begin{aligned} & \text { 60s } \\ & 80 \mathrm{~s} \end{aligned}$	AAAAETHAAA	$\begin{aligned} & 70 \mathrm{sas} \\ & 90 \mathrm{~s} \end{aligned}$		
023013	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	tEAAAAAAAAA feceeccace	$\begin{aligned} & 807 \\ & 703 \end{aligned}$	${ }_{\text {Altititt }}^{\text {ctabettit }}$	02702	605 80 s	－eAAAAAAEA	10s	anamagi	028027	60s	AAA－EAEAA	703	atabateti	
	80				02702	605	－A amataAA	70s	asamatanea		${ }^{80}$	TEAse－tit			
023015	40s	－tFEEEEEE	503	afebibe		80s	AAAAADaasa				Os	－－－－－－eeee	S		
0230	${ }^{80}$				027029	${ }_{80 \mathrm{~s}}^{60}$	－eAAAAAAAAE	703	teasamata		S	AAAAEITit	10s	aetasama	
	80s				02703	80s	AAEAAABaaa	70s	AAAAEEAAEA		${ }_{80}$	AAAAETITt			
						80s	amdasama			028031	60s		70s	afasaa	
00	50s	fCC		CC	270	605	－－－－AAAAAA	70 s	afanateae		80 s	AAAAA			
024002	70s	AAAAAAEAAA	${ }_{608}^{808}$	EAAA		805	AAAAAAAAA	70s	anasaeea		$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	－T－－－EAAAA			
	70s	anambababa	805	AAAETtIt		sos	aEAAAAAAA			028033	${ }^{60}$	－－өagae	70s	andababata	
024003	50 s	A	60\％	abamabaeas	027033	60s		70s	ccccceea		80 s	AAEttittt			
024	708 50 s	AAAAAAAAAA	803	AAAAADAAAAA	703	80s	AAAAAABaaa	70s	baAasaba	${ }_{028036}^{028035}$	60s．		${ }_{705}$	asAEAETIt	
	70s	aAaAAAAAEA	803	anamamana		${ }^{\text {80s }}$	AAAAAAAAAA				80s	t1		aseateana	
024005	${ }^{503}$	－－－－өeEAAA	603	AAAAAAAEA	02703	${ }_{\text {gos }}^{\text {gos }}$	EAAAAAAAAA	70s	anambaeaa		80s	AAETITItt		dateanea	
024006	70s	anamaamea	${ }_{803}$	bAAAAAAAA	02703	S	寿	708	EETtittt	02803	60s	－eAE	70 s	ajeaeamaaa	
	70s	AAAAAAAAAA	803	－－Itro		80s					${ }^{80}$	AAAAAAAAAA	903		
024007	605		703	AAAAAAAAA	027038	70 s	EAAAAAAAAA EBAAAAAAAA	${ }_{808}^{808}$	EAADADAAAA	0280	$60 \mathrm{~s}$ $80 \mathrm{~s}$		$70 s$	asamanabas	
	${ }_{708}^{808}$	AA			－02704	70 \％	ExAAAAAA	${ }_{808}$	AAAAAAAAAA	028041	60 s		70 s	aeadalataAa	
02400	705		803	AAAAAADAA	02704	70 s	tieasamasa	808	afasamamaa		${ }^{803}$	AAEttitit			
					02704	70 s	－－－－AAAAA	803	easabaabaa	280	${ }^{60 s}$	－－TtIEA	05	adaamaabaa	
025001	50s	－－tAAA	603	anamaamda	02704	70 s	－－tteasaAA	803	AAAADAAA		80 s	AAAAEAAAA	903		
	70s	AAAAAAAAAA	BO	AAAAAAAAAAA	${ }^{02704}$	70 s	－tBAAAAAA	${ }^{80}$	AEADAEDDA	0280	608			eacanamaab	
02500	50s		603	alamana	02	70s	－teasaeea	${ }^{\text {B03 }}$			$80 s$	AAAAET－－t\％		asa	
	70s	baAA－－itt	${ }^{803}$	－－－－－itit	02704	70 s	－－－－eAA	${ }_{\text {B0s }}$	AAAAA		80s	AAAEET－-1	s	abadaak	
02500	70	AAAAABaABA	${ }_{808}^{603}$	Aaseanait	027051	70 s	－－bAAEAAA	${ }_{80 \mathrm{~s}}$	AADAAAAAA	2804	60s		70s	AAAAAAAAA	
025004	50s	－A A A	605	anamamaba	027052	70 s	－－－－－－eaaa	${ }^{80}$	AAAAAA		${ }^{80} 5$	AAAAAAAAAA	908		
	70s	AAAAAAAAAD	${ }^{808}$	AAEADDDADA	027053	70 s	－－－－－eEAAA	80 s	AAAAAAAAAA	028	7	eeabaidanaia	80s	AAAAAAAAA	
025005	50s			afasamana	0	70 s	－－－－FFFAAE	80 s 80 s	AAAAAAAAA	028048	70s				
02500	70 s 60 s	AAAABAAEAA	803	AAAAAAAAAAA	－02705	70s	－－－－－fCCEAE	${ }_{80 \mathrm{~s}}$	AAAAAAAAA	280	70 s	өаaaga的A	80 s	AAAAEttit	
	80 s	AAAAAAAAAAA			027057	70s	－－－－fFCEAE	80 s	a Aasamama	0280	70s	－eezaAAEAA	80 s	AAAAETtt	
02500	60s	－ $\operatorname{abamamaba~}$	70s	AA	02705	70s	－－－－fCCEAE	985	aAaAamanaa	0280	70 s	－eDEAA	30 s	AAAAEttaAa	
	Bos	Et－－－－ttit			027059	70 s	－－－－－－－－－－－	88	EAAAAAAAA		70s	－－titeaba	803	AAAE	
025008	60s	IEAAA		AAAABAAA	270	70s	－－－－－－－－－－${ }^{\text {－}}$	80s	AAAAAAAAA	280	70 s	－\quad AAAAAAAA	Os		
5009	80s	AEAEET－－${ }^{\text {－}}$			O2706	70s		BOs	AEAAAAAAA	028055	70s	－eamafanaa	$80 s$	AAEtitttt	
	80s	AAAAAAbaa A			027064	70s		805	ajasadata	02805	70s	－－－eada AEA	80s	aAAAEttaAA	
02501	603	－－－－－－EAA	70s．	AEAAETHII	027065	70 s	－－－－－	80	adaacasaba		90 s				
02	6s		70：	AAAA	02706	880 s	－－－－AAAAAA			02805	70s	－teamaa	${ }_{70 \mathrm{~s}}$	ababasama	
	$\begin{aligned} & 80 \mathrm{~s} \\ & 605 \end{aligned}$	AAAEtT！tt	70s	basatanas	${ }_{0} 027068$	${ }_{80}$	－－－－－даалаа				Bos	AAAEEt－－tt			
	80 s	AAAAAAAAAA			027069	80 s	－－－－AAAAA			028060	70 s	－baAAAAAA	80 s	AAAEEETIt	
02501	60s		70.	EEAEE	0270	${ }^{80}$	－extadasaas			028061	70s	－－tt－AAAAA		AAAAET：AAA	
	${ }^{\text {BOs }}$				027	${ }_{\text {B0s }}$	ө日ataAAAAA			280	70s	－－－－titt	80 s	Himy	
014	${ }_{\text {cos }}^{605}$		70 s		${ }_{027073}$	${ }_{80 \mathrm{~s}}$	－－－－AAaa			028065	70.	－－－－－17t1t	803	－－－17：	
02501	60s		70s		027074	80s	－－－AabaA			28068	705	－eAAAAAA	80：	asamatana	
	as				027075	${ }^{80 \mathrm{~s}}$	－－－eazaAAA				70s				
025019	70s	teeanamata	${ }_{808}^{808}$			8805	－－－өааааа				90 s				
025019	70 s 70 s	TeAAAAAAAA	${ }_{808}^{808}$	AAAAAAAAAA	027080	$8{ }^{805}$	－－－ваазаая			2807	60s	－－－－－fftff	70s	eeveeessas	
025021	70 s	trebabasa	80.		027082	80 s					${ }^{\text {80s }}$	AAEtItItt			
025022	70s	－eabeea	808	a－－－t！	02	80 s				28072	70s	－－－－－EAAAA	${ }_{\text {cos }}$	AAAEET 1	
025023	70s	－EAEEAAEAA	803		02800		－c		cccccc	－028873	70 s		B0s		
5024	70s				0280	50 s	AAABbAAAAA	605	AAAAAAAAA	028079	80 s	－eaaza AAAA	905		
026001	508	－asabs	605	bвbвbabab		70s	anamameata	80	alamatana	028080	50s	$-8 A E$	60 s	EAAEAAAAAA	
	\％	AEABETtIt	80s	－1tttt		90s	－				70 s	AAAAAAAAAA	s	AAAAAAAAAA	
025002	60s	－ 9 AAAEEBEE	70s	EAAAA	028002	30 s	－－－－－－qAA	S	amamaamaa		90s	A	90s		
026003	80s 50 s	BtCcccecee		anamaama		50s	anbaamana	${ }_{805}^{605}$	AAAAEETIIt	028082	70s	－eaAAAAAAA	808	atameanaa	
	70s	anameemaa	80s	asamamaaba	028003	50s	－－bAAAA	605	afatanama		90s	a			
026004	70s	teeteefeba	80s	anababtif		70s	AaEAasamat	805	AAEItH－－－1	028083	${ }^{80}$	－－eazeEETE	905		
026005	80s	－DazaAAAAA			28004	50s	－－fbaE	${ }^{605}$	EAAEAAA	028085	${ }^{30 \mathrm{~s}}$	\cdots	40 S	сссनссccce	
026006	80s	－－－aaaab				70 s	AAAAAAAAAA	${ }_{60 \text { cos }}$					${ }_{805}$	${ }_{\text {AAAADOAAAA }}$	
026007	$60 \mathrm{~s}$ $80 \mathrm{~s}$	－－－－－ffice	，	tecettcece	800	${ }_{70 \text { c }}$	AAAAAAAAAA	80s	AAAAAAA AAAAE；		${ }^{705}$	ccccbasaaa		a a amdoana	
026008	80s	asas			2800	50s	－ba A	603	atabe	028086	70s	－eatamaas	BOs	asaateaaaa	
						70s	ttitt：tt	BO_{3}	17t！		90s	－			
027001	30s	ataet	403	tebaabccfo	028007	50s	－	605	AAAAAAEt	028091	BOs	－－－－beAAAA	903		
	50s	titeasamae	603	afabamaaba		705	itimitt	803	IIII：	028093	${ }^{805}$	－EAAE	908	－	
	70s	AAAAAAAAAA	B0s	AEt\％t：1\％	02800	50s	－－－eadamaa	605	AAAAAAAAAA	028094	80 s	－－－－－－tit1			
027002	30s		403	THititit		70s	AAAAAAA	805	alabaababa	5	805	－－－－－－titt			
	50s	titteasaa	60s	afacababaa		$\stackrel{90 \text { s }}{5}$	${ }^{\text {a }}$			${ }_{028102}$	${ }_{80 \text { s }}$	－－－EEE			
	703	asamanama	80s	asabamatac	028009	50 s	－－－－－－－A	80s	anamajaa						
027003	70s	－－－－－－－－AEE	S	afanalamaaa		$\begin{aligned} & 7 \mathrm{~s} \\ & 90 \mathrm{~s} \end{aligned}$	AAAAAAAAAA		ababamaaba	029001	60s	ebBaAAAAA	70s	anamam	
027004	60s	easabamat	70s	heasaeit							80s	AAAAAAAAAE			

Stn． number	Gauged daily flowe． monthly peaks and rainfals				Stn． number	Gauged daily flows， monthly peaks and rainfall				nber	Gauged daily flows． monthly peaks and rainfall			
9002	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	－－eAAAAABA AAAAAAEAAE	70s	amatadanam	033021	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	－－$A A A A A A B B$ BAABABbaab	10s	bibaAAAAA	036003	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	fBAAAAAAAA AAAAAAAAAA	70s	atabaa
9003	60s	－－－－－－－EA	703	a ababamaba	03302	50s		60s	aboeeba	03600	60 s	－fBAAA	70	AAAAAAAAAA
	${ }^{808}$	AAAAAAAAAB				${ }^{70 \mathrm{~s}}$	AAAAAAAAAA	B0s	AaAAAABbea		80 s	a A AAAAAAAA		俍
029004	${ }^{605}$	－EA	Ss	AAAAAAAAAA	033023	60 s	－－eataAasea	70s		0360	60s	－－biataAAA	70s	asamatasaa
$\begin{aligned} & 029005 \\ & 029009 \end{aligned}$	${ }^{808}$	－EAAAAAAAA －－－－BAAAAA	$\begin{aligned} & 80 \mathrm{~s} \\ & \mathrm{BOs} \end{aligned}$	aAAAAAEAAE AAAAAAAEAE	03302	805 40 s	CCCAAAAAA			0360	$\begin{aligned} & 808 \\ & 60: \end{aligned}$	aAabasama		abaiamana
	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$					$\begin{aligned} & 40 \mathrm{~s} \\ & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$				－良ABAAAA	70s	
										03	${ }_{808}^{608}$	fCCFBDABAA	70s	
030001	${ }^{50}$	－－－－－－－－－E	60 s	A ${ }^{\text {A }}$ A $A A A A$	033025	80 s 60 s	－－－fEAAAAA	$\begin{aligned} & 70 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AaEABC			S AAAA		
		AAAAAAAAAA	808708	AAAAAAAAAAA	033027	70s	tecccccccc		Ccccecf tcF	036008		AAAAAAAAAA	70s	aAaAasama
030002	60s	easamanam		AAAAAAAAE；			－－－－－taAbe	70s			$80 s$			
030003	60s	EEEEAAAATt	708	afasabasaa	033028	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	－－－－－－EAEEE	70s	A		605 803	$--E A$	70s	afacama
	${ }^{808}$	AAAAABEAAE －－sEABAAAB AAAAAAAAAE			033029					036010	603		70s	s
0004	$\begin{aligned} & 60 \mathrm{~s} \\ & 80= \end{aligned}$		10s	asamasab			－－－－－8AAEA aAAABABAAA	70 s	AB			AAAAAAAAAA		
030005	605		70s	ccceccccec	033030					0360			70 s	
	${ }^{80}$	cecct				$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	－－－－－－－－t	${ }_{80 \mathrm{~s}}^{60}$		036012	$80 \mathrm{~s}$	AAAAAAAA	70s	atabamabas
030006	${ }^{70}$	－－Ebrbaa	88	AE	$\begin{aligned} & 033031 \\ & 033032 \end{aligned}$	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	－- AAABAABAA	$\begin{aligned} & 80 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	${ }_{\text {A }}$ A	036013	${ }_{803}^{68}$			
030011	${ }^{703}$	EAAAAAAAAAA		afababedat							80 s808		70s	tEEEEEEEFF
030012	708		808	DEBABBEEEE		${ }^{80}$	－－EAAAAAAA	$\begin{aligned} & 80 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$				FFFFFFffef		
$\begin{aligned} & 030013 \\ & 030014 \end{aligned}$	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	－－e－emabaia	$\begin{aligned} & 80 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$		033033 033034	$70 \mathrm{~s}$			AAAAAAABAA． AAAAAAAAAA		808	－－EAAAAAAA	80 s	AAABAAAEAA
030015	708	－tAAA		baAAAAAAAE AAAAAABage AAAAAABaaE		80s	AAAAAAAAAB			038	${ }_{70 \mathrm{~s}}$	－ вbaaaazaa		
001	70s				033035	50 s	${ }_{\text {f }}$	60 s	ccccccoccc					bae
031001					033037	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	ccccccctrt，	$\begin{array}{r} 80 \mathrm{~s} \\ 70 \mathrm{~s} \end{array}$	tititicF：	037001		gAAAAAAAAAA	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	anamanama
	$\begin{aligned} & 30 \mathrm{~s} \\ & 50 \mathrm{~s} \end{aligned}$	－－－－－－－－788888							asamanama			AAAAAAAAAA		afacamata
	705	AABAAAAEAB	$\begin{aligned} & 80 \mathrm{~s} \\ & 40 \mathrm{~s} \end{aligned}$	ВАААААаяө	033039		－－EAAADBAA			037002	90s 305	${ }_{-}^{\text {a }}$－ ccccesb		
002	30					60s		70s			s	вввее	60 s	beabababaa bebbabbbaa
	${ }^{508}$		60 s	＋cccccccce		808	AAAABBaba				70 s	baAAAAAAA	во	AAAAAAAAA
	708	cc	B0s	cccecccab	033044	${ }^{605}$		20s		00	308	－－Fccccccc	40s	ccccecccce
	${ }_{808}^{905}$				0330	${ }_{60 \mathrm{~s}}^{80}$	AbaAabibeb					cccccccc	${ }^{603}$	cccbabaama
031006	60 s	－－EAA	70s	baAamatama		80s	babaatbBa	70s	cccaamaana	037005	70 s 50 s	AAAAAAAAA	805	afamabaek
	BOs	AAAAAAAA				60s		70s	cccaabaaa		70 s	AAAAAAAA	${ }_{80}$	AAAAAAAAAAA
0	60s	－－EE	70s	cccbcbaa		80s	baAaAbbaA				90 s			
031010	${ }_{60 \mathrm{~s}}^{80}$	AAAAAAAAAF	90s		033048	${ }^{605}$			cccasasa	37006	60s	－－ataAa	70s	afasamata
	$\begin{aligned} & 608 \\ & 80 \mathrm{~s} \end{aligned}$	AAAAAABAE	705	abambaama		$\begin{aligned} & \mathrm{BOs} \\ & 70 \mathrm{~s} \end{aligned}$	bBBAAaAAIt			037007	80 s 60 s	AAAAAAAAAE	S	afanamana
031012	608		0s	Eeeeeeteee	033050	60s	Hffffifecc	70 s	i－～－FCCC		808	AAAABAAAAA		
	${ }^{80} 8$	EEEeeeftt				80s	BCCBaeaaab			037008	60s	－eatas	70s	AAAAAAAAAA
031016	60s		70s	abasanaial	305	${ }^{605}$	－－－－sccccc	70 s	caabbasana		80 s	asamabaa		
1021	$\begin{aligned} & 80 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	AAAAAAAAE eEAEEBBEAA				80 s 60 s	anamatetat	708		009	${ }_{8}^{603}$	－A AAAA	705	AA
1023	703	－－Ebabibab	808	AAAAAAAA		80 s	AAABAA				60s	－－eEAAAAA	70s	
1025	${ }^{70}$	－－－－－－aA	${ }^{80}$	EAAAAAABEt	053	40s		503	He		B03	atahataba		
${ }^{1028}$	708	－ttititea	805	AAAAAAAAEt		60 s	cecteffficc	70s	cco	037011	60s	－－－eaAAAAA	70s	asadanaias
1028		Et				$\begin{aligned} & 80 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	cab		AABAABasaa		${ }_{\text {cos }} 8$	AAAAAAAAA		
032001	308	－$-\frac{1}{4}$	${ }^{40}$	ebabamama		60s	－－－fecci－－	70s	硡		${ }^{\text {BOs }}$	AAAABAAAAE	Tos	AAA
		ABAAAAAAAB	${ }^{605}$	BAAABAABCC		80s	AAAAAAabl			037013	60s	－－－eAAAAAA	70	AA
2002	${ }_{3} 7$	baAabbccaa	808	baAamabaset	033056	${ }^{605}$		70 s	cfefficcce		${ }^{808}$	asambabasa		
	50	BA	603	AA		70s		805		0370		保AAA	70 s	AAAAAAA
	70	basabamaat	B0s	AAAAAAAAE	0330	70s	：TEA	${ }^{80}$			803	ana		
032003	30s		40s	abbabbaab	033059	${ }^{60}$		70 s	cota		903			
	$\xrightarrow{508}$	AAAAABABAB	${ }^{605}$	braAbianaa		${ }^{80}$ s	cccca			037016	608	－－EAAAA	70	AA
	70 s 90 s	AAAAAAAADA	80s	a AAAAAAAEb	033060	$60 \mathrm{~s}$		70s	cecrceccec		${ }_{605}^{80}$	acamanama		
03200	408	－－－eatabas	50		03306	60 s	－－－－fot	Os			${ }_{80}$	AAAAAAAAE	70 s	asabata
	608	bbbageamab	70s	A		80 s	ccccbee－a			03701	70s	eatamataat	80 s	AAAAABA
032006	${ }^{805}$	AAAAAAABAB	${ }^{90}$		033063	80 s	eanabababa				908			
	${ }_{50 \mathrm{~s}}$	－8	${ }_{60 \mathrm{~s}}^{408}$	baAa		${ }^{80}$	вasabae			037019	${ }^{608}$	－EAAAE	70s	AaADAABEEA．
	70 s	ceccececcc	${ }_{80} 8$	Cccecccaet	033066	80 s					805 608	anamamaa	os	EAAAAAAAAA
032007	303		408	afamabasba	03306	805	－－eaattat				80 s	asambanala		
	${ }_{7}^{508}$	ABAABABA	${ }^{\text {cos }}$	bbaAAABAA	30	80 s	－－tcbBa－a			3702	60s		70s	asamanama
032008	705 409	coccececccc	${ }^{808}$	Bccceccast							80s	AAAAAAAEAE		
	605	bibBbataba	70s	anamamanaa		70s	AAAAAAAAAA	${ }^{80}$	amamanam		${ }^{80}$		70 s	eatanaana
		AAAAAAAAE			00	50s		60 s	AAAAAAAAAAA	037024	70 s	－EAAAAAAAA	80 s	
032029	${ }^{70}$	－взвeвае	808			70s	easamanata	80s	aebamaname	037025	B0s	－－－CbaAE	70 s	EEEETt
032031	${ }^{80}$	өe日eEEEt			034003	50 s		60 s	amanamama		$\mathrm{BO}^{\text {s }}$	tt＋		
033001						708	anamanamab	${ }^{80}$	AABAAAAAB	0370	${ }^{60} 5$	－ввяeяbasa	70 s	эаваеев
	505	FFcccccccc	${ }_{60} 0^{4}$	Ecccccccc		60 s 80 s	AAAAAAAAAAA	70s	AAAAAAAAAB	03	60	feaeaebosa		
	${ }^{708}$	1111t111	Bos		034005	60 s	－ $\operatorname{AaAAAAAAA}$	Os	a	037029	60 s	leersebasa	70s	
033002	30 s	\cdots	40 s	bвbвbccccc		80 s	ababamatab			037030	60s	－－eeebraab	70 s	
	50	cccccccecb	60s	baAasamab	4006	60s	－－－aAaAbaa	Os	anamamaba		${ }^{80}$	$--{ }_{\text {ttt }}$		
	708	batasamat	b0s	basbabbaa		${ }^{\text {B0s }}$	AAAAAAAAAA			037031	70s	－－－－－－8BAA	bos	AaAbAAAEtt
033003	${ }^{305}$	－－－－－1CCC	${ }^{403}$	CCFCFLCCCC	034007	${ }^{605}$	－－－－－－aAA	70 s	AAAAAAAAA	037033	${ }^{70}$	－－－－eAAAA	80s	AAAAAEease
	50s 708	baEABbabcC Bcccccccc	8098	BAAAAACCA		${ }_{60 \mathrm{~s}}^{80 \mathrm{~s}}$	AaAamana			037034	708	－－－－feesas	80 s	asedeeaaes
033004	30：	HCC	40s	ccccecrfcc		80s	fcfobbseed		analeata	－037037	80s	－bbasbeetees		
	50s	сссссвавсс	60	ceccecfef	034010	60s	EA	70s	anasamana	037038	50 s	－－8e9e－－ө8	605	beebabbab
	70s	ccccfecccc	BO_{3}	CFCCCFFtit		80s	eabaamatae				703	abbae		
3005	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	－сьсссссссс всввваввсв	608 808	BAAAABBCCB bbBbBbeEEE	034011	${ }_{80 \mathrm{~s}}^{60 \mathrm{~s}}$	ABAAAAAABA	70s	abaaba	037039	70s	－－－feebbeE	80s	EEE
033006	${ }_{70}^{50}$	－－－－－8BCC	${ }^{605}$	BAAAAAABBB	034012	60s	－－－－－${ }^{\text {a }}$ a	70s	amdaba	03800	70s	－－－－－－－－－1	sos	
	${ }^{708}$	abatbrabab	88	abrbbbbbea		${ }^{80} 5$	AAAAAAAABA				90s	cecececticce	Dos	ccefeccocc
033007	${ }_{702}^{508}$	－－－B BCCCCC baAAAABAAA	608 808	сссссbbrab aABBAAAAAA	034013 034014	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	－－EEEAEADB	$\begin{aligned} & 80 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	ADEDOETIEE ctecfecffc		${ }^{10}$	crcececcoca	${ }_{4}^{205}$	сссесессес
033008	50	－－．．．－－－ic	60 s	cboasbbo！－		80 s	¢fficbecat				503	tececceccc cccccccec	${ }_{60 \mathrm{~s}}^{40}$	cccccccccc
	${ }^{703}$		${ }^{805}$		034018	70s	－－FFCCADDE	80s	afataeamat		703	baAabcftea	BOs	AAAAAAAAAA
033009	${ }^{503}$	－－－－－aABCC	${ }^{805}$	bamatanaba	19	70s	－－－－EAAAAA	80 s	AAAAAAAABt		${ }^{308}$	－		
	${ }^{703}$	bABBAAAAAA	80 s 508	8AAABAETAE						038002	${ }^{\text {B0\％}}$	өзааааиваA	90s	
033011	${ }_{608}^{408}$	－aAAAAAAEA	508 708	fffcfceff BAAAAAAAAA	035001	${ }_{\text {80s }}^{\text {60s }}$	－titFEETI！ befabable	70 s	tittffcre	03800	50\％	－－taAAAAAAA	60s	afamatana
	BO_{3}	bababasbea			035002	60 s	－	\％os	ataabaeata		90s	asabasaba	BOs	AAAAAAAA
033012	60s	afamamasea	703	baAasaada		80s	anamaambae			038004	709		BOs	alamamana
	b0s	AAAAAAAAAA			035003	60s	－eamamama	70s	abasamana		903	－		
033013	40 s		${ }_{70 \mathrm{~s}}$	${ }^{\text {tricccecff }}$		${ }^{80}$ s	AbBaAAzaeA			038005	${ }^{30}$	－－．－－－ittt	40s	ttritt
	60s 80 s	－A AAAAAAAAAA	705	AAAAAAAAAA	035004	${ }^{605}$	－－－－EAAAA	70s	a amatacaab		50s	titi－	60 s	easambabaa
033014	608	easamanama	70s	abaamaataa	008	60 \％	Abeatanafe	Os	AAAA	03800	50s	anamanama	805	EEttit
	${ }^{80}$	AAAAAAAAAB				80 s	abbacaase		amabataa		70s	AAAABAAAAA	${ }_{80 \mathrm{~s}}^{608}$	
033015	60：	－－AAAAAAAAA	70s	asamanaabe	35010	60s	－－－e	70s	AAAAAAAAAE	03800	60s	－－－－EAAAA	70s	AAAAAAAAA
033018	50 s		608	bate	03	80s 60 s	ABEAAABabb	Os	EA		803		905	
	70s	всcccccecc	80s	CCCFtt		${ }_{80 \mathrm{~s}}$	ABAAAAAAE	Tos			70s	－－－－－－－1ct	${ }_{8}^{60 \mathrm{~s}}$	ccccccbe AAAAEt
033018	${ }^{60}$	－－EAAAAEEA	70s	anamasama						038012	50s		60s	ttitittt
	80s	baAabsabab			036001	20s	－－－－－－－－CC	30s	tFcecccecc		70s	titeaaba	80s	AAAAAAasa
019	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	ABAAAAAAA	60s B0s	ttaAaAAAEA AAAAAABAAA		$\begin{aligned} & 40 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	cccccccccc bBbaABAAAA	$50 \mathrm{~s}$	ccccccbaan BBebabcccc	038013	905 305	－－－－－ttet		
033020	50 s	－－tt	60 s	th－eafebeee		805	ceccccfiff				50 s	ItI－	60 s	eaabbbaaaa－
	70s	egebbacaaa	80s	AABAABAAA	03600	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	eAABAAAABA AAAAAAAAAA	70s	asamatama		$\begin{aligned} & 70 \mathrm{~s} \\ & 90 \mathrm{~s} \end{aligned}$	aasaabbaaa θ	80 s	AAAAABsasa

Stn. number	Gauged daijy flows. monthly peeks and rainfall				Str. ruurrber	Gauged daily flows. montity peaks and rainfall				Stn. number	Gauged daily flows, morthty peaks and raintall			
038014	$50 \mathrm{~s}$	------ecce cCCCCCBAAA	$60 \mathrm{~s}$	ссссссесос EAAAAAAAAA	039043	$\begin{aligned} & 603 \\ & 80 \end{aligned}$	--eEAAAAAA AAAAAAAAAA	70 s	atamanama	04100	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	a3AAAAA AAAAAADA	60s	AABAAAAA
03801	903				039044	${ }^{\text {70s }}$	Aheadandan	${ }^{805}$	anaiazaAAA	041002	${ }_{505}$	-eAAAAAAAAA	${ }_{605}$	AAAAAAAAAAD
	605		70s	asambasaaa		90s	\&				70 s	AAABAAAAAA	80 s	addododaaa
	805	Ate			039046	${ }^{705}$	---eaEEEEA	805	Etitedodab	04100	505	---.-.---	60 s	afasamataa
038016	60s		70s	сСв8вcccra	039049	70s	EEETHE	${ }^{805}$	daAbeama		70s	AAAAAAAAAA	805	dodododoa
	${ }^{805}$	AABCOCccha	gos			90s	e			041004	50 s		60s	afafataa
038017	705	ebatanaia	b0s	AAAAA	039051	${ }^{605}$	-EAA	70s	AaAaAAAAAA		${ }_{\text {cos }} 7$	AbBbaAAAAE	805	:FCCFFCCCC
	905					${ }^{805}$	AaEAAAAAEt			041005	${ }^{603}$	eatamatana	70 s	afabama
038018	705	-eAAAABAa	805	AAAAAAAAAA	039052	505	-------eAA	605	EdaAaAaAAA		80s	AadDaAAAAA	905	
038020	${ }^{905}$	-eamanama	80 s	aneeaaiaa		705 90s	агазазаааа	Bos	AAAA	041006	$\begin{aligned} & 60 \mathrm{~s} \\ & \text { 805 } \end{aligned}$	AAAAAAAAAAA	70 s	AA
	${ }_{90}$				039	${ }_{\text {cos }}$	- $\mathrm{A} A \mathrm{~A} A \mathrm{~A} A A A A$	70s	A	041009	${ }^{\text {cos }}$	anamanaaba	605	cccccceccc
02	70s	-eatamaana	803	atamatana		805	AAAAAAAAAA	90s			70s	ccce	803	
	${ }^{908}$				039054	${ }^{605}$	-eaAasaAAA	${ }^{\text {70s }}$	AAA	041010	${ }^{503}$	-eeamadiaa	70s	ABEDDODODA
038022	708	cccaa	80s	AAA		${ }^{805}$	AAAAAAAAAA	${ }^{905}$			${ }^{80} 5$	dodadadoao		
038024	${ }_{7}^{708}$	Aat	80 s	anamanat		$\begin{aligned} & 75 \mathrm{~s} \\ & 90 \mathrm{~s} \end{aligned}$		80s	eEEAAAAAAA	0410	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	DOADAAAAAA	70s	AAAAAAAAAA
	90s				056	70s	-------ese	30 s	деааадааа A	041012	60 s	-trad	70s	AAAAAAADAA
038026	70 s	-easama	80s	anamaamaa		90s	e				${ }^{805}$	doaadoamaa		
	${ }^{\text {gos }}$	e			039057	${ }^{703}$		805	dasaeas	041013	${ }^{505}$	eaAAAAAAAAA	60 s	AAAAAAAAAAA
$\begin{aligned} & 038027 \\ & 038028 \end{aligned}$	80s	edade	90s			90s	e				${ }^{70 \mathrm{~s}}$	aAAAAAAAAA eadaAAADAD	80 s BOs	doamdodama
	$\begin{aligned} & 70 \mathrm{~s} \\ & 90 \mathrm{~s} \end{aligned}$	-eEA	${ }^{\text {BOs }}$	AAAAAAAAAA	039058	70 s 90 s		80 s	deeasaaaa	$\begin{aligned} & 041014 \\ & 041015 \end{aligned}$	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	eADAAAADAD	$\begin{aligned} & \mathrm{BOs} \\ & 70 \mathrm{~s} \end{aligned}$	AAADDAADAA DAADDOADOD
038029	${ }^{70}$	--------eA	BOS	AAABAAA	039051	${ }^{\text {70s }}$	- еазsaaaa	30s	aeceadDEB		${ }^{\text {B0s }}$	DDAAAAAAAA		
03	${ }_{7} 905$		803	afasamat	03	70s		803	ebeebbatab	0410	$\begin{aligned} & 30 \mathrm{~s} \\ & 50 \mathrm{~s} \end{aligned}$	fFFF	$40 \mathrm{~s}$	ffFFFFFFFFF FFFFFFFEAA
	${ }^{908}$	-				90s					70s	AAAAAAAAAD	${ }^{\text {B0s }}$	anamanama
					039068	70 s	-eAAAAEtEA	80s	AAAAAAA	041017	60s		70 s	AAEAAADDDA
039001	BOs	--- \quad cccccc	90 s	сссссссссС	03906	$\begin{aligned} & 90 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$		805	AAAAAAAA		S	AAAAAAAAAA		
	20 s	cccocccocc	30 s	соccoccecc	039069	$\xrightarrow{705}$	${ }^{--}$	80s			${ }_{\text {b0s }}^{605}$	oadadoanab	70s	abaambad
	40	сссссссссс	50s	ccccccccec	039	70		30s	eeeeeeda		70s	eatamamaa		
	${ }^{60}$	cccccccccc	70 s	cccccbaama		${ }^{\text {90s }}$					${ }^{605}$		70s	asbanamaa
	80 s	bramanama	90 s		0390	70s		805	edd		${ }^{\text {B0s }}$	AAADAAAAAA		
039002	305		40 s	cccccccecc	0390	70s		80 s	азаааа	04102	60s			ebabaabeed
	50 s	сссссссссс	${ }^{605}$	cccccccccc		${ }^{905}$					B0s	AABBBABAAB		
	${ }^{70}$	ccccccecce	80 s	сccccccecc		80s	A			里	${ }^{70}$	eaAAAAADDD	${ }^{808}$	afacaamana
	908					80s	aabDo	Sos		0410	70s	fBBCBB8B8B	bos	日BEBEBbebc
039003	60 s	--eAAEEEEE	705	eEEAEEEEDA	0390	${ }^{70} 5$	вeaa	80 s	зазеааAAAA	04102	70s	- EAAAAABB	80 s	daAAAADAAA
039004	50s	titieasaas	60 s	afatasaeke	03	70s		80 s	aәaaaa AAAE	041027	70s	--eAAAAADD	80s	daamamama
	70 s	teeaeear	B0s	EEEEAAAAAA		90s	-			04	60 s	-eEEAAA	70s	AAAAAAAAAD
	90s	-			039079	70s	------f	${ }^{80}$	ffededdaas		80s	daddoadaaa		
039005	${ }^{30}$	-----eAAEt	40 s	Tt+	03908	${ }^{80}$	-eadamana	70 s	AAAAAAA	041029	${ }^{80}$	--edaAAAA		
	50 s	titteeaasa	60 s	EEAEEEEE		80s	AAAaazAAAA	90s		041030				
	70	EEEAEEEEE	808	BbAA		30s	-----в8еа	40s						
039006	908 505					${ }_{\text {70s }}^{\text {50s }}$	----eaAAAA	${ }_{80 \mathrm{~s}}^{60 \mathrm{~s}}$	${ }_{\text {AAAAAAA }}$	042	$50 \mathrm{~s}$	-fCccecccc ccccceboana	60s 80 s	CCCCCCCCCCC AEDAAAAAAA
	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	AAAA	805	AAAAAAAAADA		90s	----qaAa			042002	50s		60 s	tittrtttt
	${ }^{905}$				9087	70s	----eAAAAA	80s	aAAAAAaAAA		70 s	ti-	80 s	
039007	${ }^{508}$	--ataAaAas	${ }^{605}$	AAAAAAAAAAA		90s				042003	${ }_{80 \mathrm{~s}}^{60}$	teccccocce	70 s	ccco
	70 s	AAAAAAAAAA	803	anamabama	088	70s	---eAaAAA	80 s	AAAAABAAAA		80s	DAAAAAAAA		
039008	+90s			cc	03908	70 s		80s	аазааздаз A		70s	cccccoccce	80	Fccccccccc
	70 s	cccccecccc	80 s	ccccc		90s	8			200	50s	--fcccc	60 s	ссссcceccc
	90 s	f			039090	B0s	-teA	90s			70 s	cccccecfff	80 s	fccceceoab
039010	50s	--eataAaAAA	60s	AAAAAAAAAA	039091	70s	-es	80s		042006	50s		60 s	cccecceccc
	70s	AAAAAAAAAA	80s	asabamaana	039092	70 s		805	азеаееEAAA		${ }^{70}$	сссccbaata	80 s	a AaAAAAAA
	${ }^{905}$	-			039093	${ }^{70 \mathrm{~s}}$		80s	аевееаааа	042007	7	fCCCCFCCcc FCCCCBAAA	${ }^{80 \mathrm{~s}}$	cfrccecccc
011	${ }_{7} 508$	---qAAAAA	60s	AAAAAAAAAAA		${ }_{70 \mathrm{~s}}^{90}$		80 s		0	70 s	$\begin{aligned} & \text { FCCCCBAAAA } \\ & \text { fCCCCBAAAA } \end{aligned}$	80 s	AAAAAAAAAA
	90s	anabamaaba				90s	-			042010	50 s		60 s	cccccccccc
039012	50s	-----EAAA	${ }^{60}$	AA	39095	${ }^{70}$	-------- ва	80s	ааеөаааааз		70 s	cccccceccc	80 s	cccceccccc
	${ }^{708}$	AAAAAAAAAA	805	AAEEEAAEA		${ }^{90} 5$					90s			
	905 30 s				039096	70s 90s		80s	aee	$\begin{aligned} & 042011 \\ & 042012 \end{aligned}$	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	--fCceaAAA	$80 \mathrm{~s}$ $80 \mathrm{~s}$	AAAAAA
	50s	AAAAAAAAAA	B0s	AAAAAAAAAA	909	B0s	fccceccccc	90s		042014	60s		70s	$\mathrm{ttrote}^{\text {a }}$
	70 s	aAabamamea.	803	anamaboama	03909	80s	----eddaaa				80s	AAAaaaAAA		
	${ }^{903}$					${ }^{80} 5$	---езаазая	90 s	0	042015	${ }^{80 \mathrm{~s}}$	-		
039014	${ }^{50} 5$	-----EAAA	60s	AAAAAAAAAA	039100	80s BOs	----eeddea			042016	70s		80 s	ctcf
	70s $90 \mathrm{~s}$	AAAAAAAAAA	80s	AAAAAAAAAA	$\begin{aligned} & 039101 \\ & 039102 \end{aligned}$	$\begin{aligned} & 80 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	-- --zaaAAAA	90s		(042017	80 s 80 s			
039016	60s	-baAasama	70s	anamanamas	039103	80s	---------e	90s	-	042020	80 s	------aa		
	${ }^{80}$	AAAAAAAAAAA	90 s		039104	${ }^{80}$				042021		---------	80 s	fee
	603	--eAAAAAAAA	70s	ababanama		805								
039019	80s	AEEAAETEEE --EAAAAAAA	70 s	A		80 s		90 s	-	$\begin{aligned} & 043001 \\ & 043003 \end{aligned}$	${ }_{60 \mathrm{~s}}^{60 \mathrm{~s}}$	eAAAAETtit	70 s	$\begin{aligned} & \text { ttttttttt1 } \\ & \text { cccccccccc } \end{aligned}$
	B0s	AAAAAAAAAA	${ }^{90}$	e	040001	50 s	---EAAAAA	${ }^{605}$	AAAAABAEt		${ }^{80} 8$	$\mathrm{cccocctit1}$		
039020	80s	---өAAAAAA	703	anasaasaas		70s	ttrittti	80s	111---titit	043004	60 s	----EEAEA	70s	AA
	80s	AAAAAAAAAA	$\begin{aligned} & 90 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	afanamana	04000	50s	BBAAAe-ttt	60s	AAAAAAAA	043005	80s	BEEEEBEDEB	90s	Aasamatasa
	80 s	AAAAAAAAAA			040003	50 s	----eAAA	60 s	anaabieeff		bos	afamababia	908	e
039022	60s	---taAAA	70s	asamaanal		708	FFCFCccccc	80s	bBBAAACCCC	04300	608	-----AAAA	70s	asamaabasa
	${ }^{\mathrm{Bos}}$	AAAAAAAAAAA	${ }^{908}$			${ }_{605}$					${ }^{80}$	AAAAAABBBB	${ }^{905}$	
039023	608	----aAAAAA	708	asamasamas	0004	${ }^{60 \mathrm{~s}}$	--aAAAAEEB	70s	asamamama	043007	70 s	--taAAAAAA	BOs	ababamabaa
	${ }_{80 \mathrm{~s}}^{80}$	AAAAAAAAA	70s	a ${ }^{\text {a }}$ aba		808	AAAAADAAAA	60s	AAAAAAAABE	30	60s	---AAA	708	afbatasama
039025	${ }_{80}$	AAAAAAAAAA		afamazaa		70s	AAAEAEAAAE	${ }_{80}$	aAaAADDDAD		80 s	aabaaabbba	90 s	
039028	60 s	-----eAAA	70s	ata	040006	50s		60s	AAAAAAABE	04300	60s	------eA	70s	afacasamaa
	${ }^{\text {BOs }}$	AaAaAAAEEA	${ }^{905}$	9		703	Aabedeaeee	${ }^{80}$	EEETttteeo		80 s	AAAAAAAADA	${ }_{7} 98$	
039027	${ }^{608}$	-----AA	708	AAAAAAAAAA	04000	${ }^{603}$	eatanateea	70s	AAAAAAAAAE	4301	${ }^{60 s}$	----	70 s	eatamabbaa
	808	AAAAAAAAAA	${ }^{905}$	e		80 s	EEEEEBAADA				70s			
039028	${ }^{60}$	-------EA	70 s	AAAAAAAAA	040008	${ }_{80 \mathrm{~s}}^{60}$	--eEAAAABA	70s	aatabeatee	$\begin{aligned} & 043011 \\ & 043012 \end{aligned}$	$70 \mathrm{~s}$ $60 \mathrm{~s}$	Eeccffitt	80 s 70 s	TEAAAAABAA
039029	${ }_{60} 8$	---atat-tea	708	atabamanas	40009	60s	- a Abbsa ${ }^{\text {aba }}$	70s	asamaniana		803	AAABABAAEB	90 s	
	80	AAAAAAAAAAA	905	a		80 s 60	AAAAAAAAAAA			043013	${ }_{80 \mathrm{~s}}^{60}$	----------	705	tebabsbaaa
039030	$70 \mathrm{~s}$	EAAA	80s	AAAAADaAAA	010	${ }_{80 \mathrm{~s}}^{60}$	- -8 A	70s	AAEA	04301	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	AEEETtTt	70s	teasamasaa
039031	60s	--धAAAAAAA	70s	anamatama		60 s	----eaABAA	70s	AAAA		80 s	AAAAAAAEAA	90 s	
	80s	AAAEttttt ${ }^{\text {a }}$				80 s	badoanama			04301	60 s	---tttt	70s	tFFFFFFTt
039032	60s	-----etAA	0s	atababasal	040012	60s	---gAAAAAA	70s	atabasama		${ }^{805}$	---------†		
	${ }^{80}$	AAAEttitt				${ }^{80} \mathrm{~s}^{\text {S }}$	AAAAAAAAAAA	90s		04	60s	-----ttt	70 s	teasanamaa
039033	605	--aAaAAAAA	Os	ataamaama	40013	60s	-------tE	703	asamabaial		80	AaAbabibea	90 s	
	80 s	AAAAAAAAAAA				${ }^{\text {B0s }}$	AAAAAAAAAA	90 s		043018	${ }^{705}$	--aAAAAA		asaAab
0	${ }^{70}$	easamanama	80s	AAAAAAAAAA	04001	${ }^{705}$	- t +EEEEAEE	${ }^{805}$	DEDETITIT		70s			
039035	908 608	--------TE	708	anamasama		60s	edeeetteda	70s	examanas	0430	90s	---EAAAAAA	80 s	AABAABaab
	80 s	AAAAAABaaa	905		040016	60s	--------tE	70s	AAAAAAAAAA	043021	70 s	----bBbab	80	8вcccccfe
039038	605		70 s	asaamataat		80s	AAAAAAazaA	90 s			90s			
	80 s	afabaedaaa	90s	-	040017	70s	-BeaEebbie	80 s	eedeetddad					
039037	70 s	-	80s	AA	040018	${ }^{60}$	A4Aaza	70 s	AAAAAAAAA	44001	${ }_{80 \mathrm{~s}}^{8}$	--cccc	70s	cccccce
	60 s	-	708	anamaamas		80 s 70 s	AAAaaaAAAA - eEAEEDE	90 s 80 s	EEAEt	044002	80 s 60 s	ccccccitt	70 s	afanamaana
039038	80s	aseebeeda A	905	${ }_{\text {a }}$	040021	70s	-----EEEAE	80 s	DDEDETttt		80 s	AaAAAAAEAA	-90s	
039040	70s	-teasamaa	805	asamadamas	040022	${ }^{\text {80s }}$	fttit			044003	60s	------EAAA	70s	asaasbeasa
	90 s	e			040023	70s	------deeA	80 s	ADDAEEDDDD		${ }^{80}$	-----tttt		
039042	70s	--EAAAAAAA	80s	AAAAAAAA	040024	70s	---eEEEAA	80s	EFtttittt	04400	70s	-fccceccec	80s	cBB+t

Stn.
Stn.
numb 044006 044008 044009
 nged daily flows,
nthly peaks and r

ainfall

045001

0450

0450 0450

046002

04600

046006
046007
047001
047003
047004
047006
047007
047008

047010

047010
047011
047011
047013
047014
047015
047015
047016 047017
048001

048003

048004

050007

051002

052001

052002
052003

Stn.

Stn.
number 054026
054027 054029

Gauged daily flows.
monthly peaks and rainfall

$\begin{array}{llll}054036 & 70 \mathrm{~s} & \text {-TEAAAAAAAA } & 80 \mathrm{~s} \text { AAAAEtttt } \\ 054038 & 70 \mathrm{~s} & \text {--TEABAAAA } & 80 \mathrm{~s} \text { AAAAEAAAAA } \\ & 90 \mathrm{~s} & \\ 054040 & 70 \mathrm{~s} & -- \text { FABAAAA } & \text { gos AAAAAAaaaA }\end{array}$ $054041 \begin{array}{lll}90 \mathrm{~s} & \mathrm{e} \\ 70 \mathrm{~s} & - \text {-FCCCAAAA } \\ 90 & 80 s & \text { AAAAAAAAAA }\end{array}$

054042 054043

 054044
054045

054047
054048

$$
80 \mathrm{~s} \text { aAAAEt }
$$ 054048

054049

$$
80 \mathrm{~s}-1 t 1 t t
$$

$$
\begin{aligned}
& \text { 80s - } 1 t 1 t t \\
& \text { 80s AAAAEttttt } \\
& \text { 80s JaaaaAAEA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 80s AAAAE1tit1 } \\
& 80 \mathrm{~s} \text { saaaaaAAEA }
\end{aligned}
$$

054052
054054
054055 054054
054055
054056

$$
\begin{aligned}
& 80 \mathrm{~s} \text { AAAA1tIEtt } \\
& 80 \mathrm{~s} \text {-- } 1571 t 1 t
\end{aligned}
$$

5	703	--ebo	80
056	708	--EEEEE	
4057	703	-locctbasa	805 دaaa3aAAA

$$
805 \text { دaaaaa } A A A A
$$

054058 054059 054060

054059 054060

054061
054063
054065 70s tEAEA
50 s
70 s
Ft--
70 s
90 s

$$
\begin{aligned}
& 80 \mathrm{~s}-\ldots-\mathrm{tttt} \\
& 80 \mathrm{~s} \text {-fcff-tEAE }
\end{aligned}
$$

054062 80 s AAAAAAAAAA

$$
\begin{aligned}
& \text {-- ebaebe } \\
& \text {--EAEEBEAE } \\
& \text {-- Aahabana }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 80s AAAATIItIt } \\
& 80 \mathrm{~s} \text { aaae }
\end{aligned}
$$ 054065

054066
054067

$$
\begin{aligned}
& 80 \mathrm{~s} \text { AAA } \\
& 80 \mathrm{~s} \text { aaae } \\
& \text { 80s }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Os } \\
& \text { Os --EAABEAE } \\
& \text { Os } \\
& \text { Os ----bBbbaA }
\end{aligned}
$$

$$
\begin{aligned}
& 30 \mathrm{~s} \text { aaae } \\
& 10 \mathrm{~s}-\mathrm{ADA} \\
& 30 \mathrm{~s} \text { AAATtIt }
\end{aligned}
$$

054067
054068
054069
054070
054070
054080 054081
054083
054084
054085
054086 054085
054086

054087
054090
054090
054091
054092
054092
054095
055002
60 s ceccfccecc

$$
\begin{array}{ll}
\text { os } & --- \text { bbbae } \\
\text { Os } \\
\text { Os } & -
\end{array}
$$

80s aaaa
s abae--it $1 \dagger$
Os asaa-- 1111
sasaa--tttt
eeaae-aaa
80s
80 s aseo--t- 1
asaaaaAAAA
80s azaaazAADt
80s AAAdadAAD
80 s AAAdadAADt
BOs AAAazaAADT
 $055003 \begin{array}{lll}30 \mathrm{~s} & ------- & 40 \mathrm{~s} \text { AAAAAAAAAA }\end{array}$
055004
 50s AAAAAAAAA 40 s AEt------ \dagger Os AAAAAAAAAA $60 s$ AAAEAAAAAA

055006
054007

\section*{| e- | |
| :--- | :--- |
| BCEEBBBAAA | 60 s AAAAAAAAAAA |} Os

\section*{CCA

-}
\qquad
60 s AAAAAAAABB
055007
055008

055009

055011
055012
05501

05501

055016
055017
055018
055021
055022
055023

 AAAAAAAAAA 70 s AAAAAAAAAAABCC cCCFC
$\begin{array}{ll}\text { AAAAAAAAA } & \text { 40s AAAAAAAAAAA } \\ \text { 60s AAAEAAAAAA }\end{array}$
 Os AAAAADAAAA BOs AAAAAAAAAAA AAAEAAAAAA 70 s AAE AAAAAA

AAAAAABAAA	$60 s$
0 s DBF $\dagger t \dagger t \dagger \dagger \dagger$	

AAAAAAAAAA $70 s$ AAAAAAAEE
---CAAAAAAAAAAA
AAAAAAAAAAA 70s AA
AAAAAAAAAA
EADIt:
AAAAAAAAEE
AAAAAAAAAA
$A E----11$
70s baAEEAAAAA
AAAAAAAAAA
70s AAAAAAAAAE
---~--ItIE

-.---IBAA
AAAAAAAAA
CCCCCCCCCC
40s AABAAAAAAA
60s AAAAAAAAAA
805 CAAAAAAAAA

$$
\begin{aligned}
& \begin{array}{l}
70 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \mathrm{~s} \\
90 \mathrm{~s} \\
90 \\
70 \mathrm{~s} \\
90 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \mathrm{~s} \\
90 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \mathrm{~s} \\
90 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \mathrm{~s} \\
70 \\
70 \mathrm{~s} \\
80 \mathrm{~s}
\end{array} \\
& \begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}
\end{aligned}
$$

Stn． number	Gauged daily flows． monthty peaks and rairfiall				Stn． number	Gauged daily flows． montitly peaks and reimfall				Stn． ruarsber	Gauged daily flows． morthly peaks and rairfall			
055025	60 s	tit	70s	eamamanama	063001	60s	AAAA	70s	afasamasa	069013	${ }^{\text {B0 }}$	AAA		
	${ }^{\text {bos }}$	atabamata				803	eatasaasad			06901	${ }^{705}$	－AEE	${ }^{\text {cos }}$	AAAAAAAAAAA
026	305		40s	afamasaba	063002	60s	－eAEAA	20s	AAAAAAAAEE	069017	${ }^{\text {70s }}$	AAT	${ }_{80}^{885}$	：AAAAAAAAAA
	${ }^{505}$	ababatabat	60s	Aateamaa		80s	AAAADt			069018	60s		70s	： t 11 tt － t
	70s	AAAAAAAAAA	80s	a A AAAAAAA	063003	70s	eeseAAEAAE	80s	11－－－－tit		${ }^{805}$	：t－－－－tit！		
055027	70s	－eamabase：	bos	tit－－－tit	063004	80s	171			06901	${ }^{605}$		70s	еазаагсctb
055028	70s	－eatanama	805	adatamcasa							BOS			
055029	40s		50s	AAAAAAAAAA	063006	05	oddde				${ }^{205}$	－－－－－AAAA	B0s	A
	60	AA	70	AAAA							70			
	${ }^{805}$	EAAAADAAAD	305	crecoccefic	064001	60_{5}	－－EAAAAEAA tDAAAAAAAA	70s	AEttertitit	$\begin{aligned} & 069024 \\ & 089027 \end{aligned}$	$\begin{aligned} & 805 \\ & \end{aligned}$	：AAAAAsasa	805	tasamanas
055030	$\begin{aligned} & 20 \mathrm{~s} \\ & 40 \mathrm{~s} \end{aligned}$	соссоессес	50 s	，	064002	60 s	taEEA	Os		06903	705	toa	80 s	AAAAAAasa
	603		70	：！：1		$8{ }^{\text {cos }}$	atamabasa			06903	80 s	－areeeAAA：		
$\begin{aligned} & 055031 \\ & 055032 \end{aligned}$	70s	－tieataAas	80s	afamatama	064006	60s	feccocecce	70s	cbabaiama		，		80 s	AAAAAAea－a
	${ }^{\text {OOS }}$		${ }^{105}$	coccccaccc		${ }^{80 \mathrm{~s}}$	AAAAAAAA			069034	${ }^{805}$	－2ttf		
	20 s	ccccocccec	${ }^{30}$	cccccianaa	06	${ }^{\text {BOs }}$	ddadeE			${ }_{0} 069035$	${ }^{70 \mathrm{~s}}$	－－－－－－AEA	80s	taAadas
	40s	atanamana	50s	AAAAAAAAAA	06	80s	cadddeE			069037	80s	－－－－－tCCFF		
	60 s	abamamaba	70s	AAAAAAABCC						069040	${ }^{805}$	－азазазa		
	${ }^{80}$	caAAAAadas	70 s		065001	${ }_{80 \mathrm{~s}}$	－eaABAABAE AAAAAAAAAA	70s	EeEEAaAAAD		S			
055033	${ }_{80}$		S		5500	60s	－eee	70s	eEEEEtEEt	070002	80s	babbababat		
$\begin{aligned} & 055034 \\ & 055035 \end{aligned}$	70s	－－－епезеаа	80s	easaas	06500	70s	efEEAAAAAA	B0s	AAAAAAAAA	07000	70s		80s	－－－аазазев
	70s	asaas	B0s	àazaaA		70s	－－taAAAAAA	bos	amanamana	070004	70s	－－－－－AAAA	805	asamana
					06	70s	－－－－－eAAA	80s	afanamatae	070005	70s		80s	－asaaeassa
056001	50s	－－－－－－－EAA		AA		70s	tea	bos		071001	60 s		70 s	bcabranama
	70		BOs_{8}							07	${ }^{80}$			bсяbramaaa
056002	${ }^{505}$	－${ }^{\text {AAA }}$ A	${ }^{605}$	AAAAAAAAAAE	066001	50s	－－－－－－7AACO	60 s	AAAAAAAAA	071003	${ }_{5} 5$ s		60 s	asamanaia
	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	AAAAAEtiAA	80s 70 s	AAAAAAAAAAA	066002	$\begin{aligned} & 70 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	－eABAAAAACC	${ }^{80 \mathrm{~s}}$	Cそtけttt1A BAAAEttttt		70s	AAAaEt－tIt	80 s	Aasanatasa
056003		AAt－－－tttt				80s	$-\mathrm{ttt}$			07100	60s	－－－egaAaAA	70s	AEttamasab
056004	60s	－－eatas	Os	AAAAAAAAA	600	605	－－－eaEtEAT	70s	HtreEEE		${ }^{\text {80s }}$	AAAAAAAAAAB		
	80 s	Ett－－－titt				80s	AADtriaaas			071005	60 s	easamatasa	20s	AABbEt－HIt
056005	60s	tEAAA	70s	AAAAAAAAAA	06600	${ }^{\text {70s }}$	aAAAAAAAT	80 s			805			
056006	${ }^{80} 5$	AAAAAAAAAA	70 s	AAAAAAAAAA	0660	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	－EAEAAATt＇	80 s	At－－－titit	071006	${ }_{\text {cos }}^{\text {cos }}$	DAAAAAAAAE	205	crccaafaaa
	80s	AATtItit			066008	70s	－－－－－－заа	80 s	bbazadAAAE	071007	80s	${ }_{\text {ttt }}$		
056007	60s	－tEAE	70s	AA	066011	60s	－e	70s	AAEAAAAAA	07	70s			
	80s	AAAAAAAAAA				80s	AAAAAAA			0710	${ }^{808}$	азааааAAAE		
$\begin{aligned} & 056008 \\ & 056010 \end{aligned}$	70s	ebsAAEETtI	${ }^{805}$	${ }^{11}$						071010	$\begin{gathered} 70 \mathrm{~s} \\ 60 \mathrm{~s} \end{gathered}$	－foccetat	$\begin{aligned} & 80 \mathrm{~s} \\ & \hline \end{aligned}$	CCFF
	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	ea－－－－titt		eeeea		${ }^{\text {70s }}$	ABAAAAAAAA	80 s	AAACC		80s	eamanamab		
056011	70s	eba A AAAAAA	80s	AAT－－－†	067002	30 s	$-{ }^{-8 A}$	40s	aAAAAAAAAA	07101	Bos	езезе		
	70s	－AAAAAAABE	80 s	Aat		50	AAAAAAAA	60s	ababamatas	07101	70s	－－－－－－－aas	80s	－дaаaееfca
056013	70s	－－taAAAAAA	80 s	AAAAAAAAA		70 s	Attiti－tti							
055014	70s		80s	eodf	067003	20 s	－－eaAAAAAAA	30 s	AAAAAAAAA	072001	50s		60 s	ссcceccbec
056015 056015	70s	－－ttteAAAE	80s	AAtt－		40	AAAAAAAAAA	50 s	AAAAAAAA		60 s		os	a ${ }^{\text {bCCCAAAE }}$
	70s		80s	ааавааааа		$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AAABBAAAAA AAATFAAAAA	70 s	AABAABCAAA	072002	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AAAAAAAAAAB		
057001	30 s	eeEa	40s		06700	50s	－－－ttteasa	60 s	AAAAAAAA	07200	50s	－－	60s	ссcccceceb
	50s	－－eaAABAA	60 s	ABB8		70s	AAAAAAATt｜	80s			70s	cccccccit	${ }^{805}$	－aacaAAAAA
	70s	AaAAftttt	80s	ttit	067006	60s	eafanamata	70s	baAasama	072005	60s		70s	ccccccfat
057002	30s	－ваа⿱аaаа AA	40s	AAAAAEAAAA		${ }^{80}{ }^{\text {s }}$	AAAAAAAAAAA				${ }^{805}$	†AAAAAOAAA		
	50s	a A doambaa	60s	AAAAAAAAAA	067008	${ }^{605}$	－EbaAa	70 s	AAAAAAAAA	072006	60s		70s	
	${ }^{\text {70s }}$	ABAAttitt	${ }^{80}$	tit		80s	AAAAAAAAAA				805 80 s	＋tt1－－ttt		
057003	$60 \mathrm{~s}$	\cdots	70s	AAA		$\begin{aligned} & \text { 60s } \\ & \mathrm{BOs} \end{aligned}$	$\begin{aligned} & \text { BTODDDdedEB } \\ & \hline \end{aligned}$	70 s	bebbebebab	072008	60s	－aAAAA	70s	cccaama
057004	50s	－ AA $^{\text {a }}$	60s	aeeamaama	067010	60s	－EAAA	70s	atabat		80s	AAAAAAEEAA		
	${ }^{705}$	AAAAAAAAAAA	80s	AAAAAAAAAAA		${ }^{\text {80s }}$	t1－－－－ttit			072009	${ }^{70 \mathrm{~s}}$	titittt	${ }^{\text {B0s }}$	taAasamana
05700057700	70s	eatabamana	Bos	AAAAAAAAAAA	0670	${ }^{605}$		Os	cefficcecff	072011	80 s			－EEA
	${ }^{705}$	eamanamaa	80s	EttraAAAAA		${ }^{\text {Bos }}$					80s	toaezadatt		
$\begin{aligned} & 057007 \\ & 057008 \end{aligned}$	70s	－－teamaaba	80s	AAAAAAzaaD	067012	${ }^{605}$	－－－－－－－EE	705	trtit－tit	072015	80s 80 s	－eDECE．		
	70s	－taAAAAAA	80s	abasamabaa		60	ED	70 s	AAAAAaattt	0720	80s			
057008 057009	7	－- AAAAAA	80 s 808	AAAAAAAAAA		80s 30 s	eat		AA		70s	fccecctt－－		
057010 057011	70 s	－\quad AAAAA	${ }^{808}$	eanamaaka		50s	AAAAAAAAAA	60 s	AAAAAAAAAA	0730	60s	－－－EAAAADA	70s	bbbcasaata
05701 057012	70s	－езав	80 s			70s	AAAAAAAAA	80s	afacamatan		${ }^{80}$ s	anamanataa		
$\begin{aligned} & 057015 \\ & 057016 \end{aligned}$	70s	－－－eA	${ }_{8}^{805}$	ABACCCaaa ${ }^{\text {a }}$	7016	${ }^{60 \mathrm{~s}}$	－－－－－－－EAE	70s	tttettit	073003. 073005	$80 \mathrm{~s}$	－aoaasEAt；	Os	bbabaacaa
	70s		80s		067017	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	11－－－－－－－\dagger	70s	AAAAAAAAAA		${ }^{60} 8$	AAAAAAAAAA		
058001	60s	－－－eaAAAAA	70s	amamamaata		${ }^{805}$	AAAAAAaaaa			073008	${ }^{605}$	－－－－－－－－E．	70s	AAE
	80s	amamameana			018	${ }^{605}$		70s	AAAAAAAAAA		${ }_{7}^{805}$	taAaAAAAAA		
$\begin{aligned} & 058002 \\ & 058003 \end{aligned}$	70s 60 s	－－－－－AAEEE	$\begin{gathered} 80 \mathrm{~s} \\ 7 \end{gathered}$	${ }_{\text {EAADAAAAA }}^{\text {Ettrtit }}$		80s	AAAAAAAAA			073009 073010	70s	tttttitt	80s 405	ta
	${ }_{80 \text { s }}$	－－－－－－－ttt			067026	70s	ccccce	B0s	cccccco		50 s	ссссвсссес	：80s	cccceccccc
058005058006	70s	gAAAAAAAAA	80s	AAADFADBAA	067028	70s		80s	ө日		70s	cbbscccaa	－80s	AAAAAAAAA
	70s	－eamamana	80 s	eamanamana	067029	70s		80s	eed	073011	70s	FCCCCCtatt	80s	taAaAEEAtt
058007	708	gbabamama	80s	easabamana						073013	${ }^{805}$	t＋1tttaa		
058009	70s	－eamabana	80s	edadadacaa	06800	30s	－－－－－－eAB	40 s	Aabcriabisb	073014	80s	ttr		
058010	70s	－eatamana	80 s	asadatdan		${ }^{505}$	baAAAAAAAA	${ }^{605}$	AAAAAAAEAE					
	${ }^{70 \text { 70s }}$	－－－－－өaaaa	${ }_{80}^{808}$	eEti－－titt		70s 40 s	AAAAAEAAAT	80 s 50 s	EAAAAAAAA AAAAAAAAA	07400	$\begin{aligned} & 60 \mathbf{s} \\ & 80 \mathrm{~s} \end{aligned}$		70 s	ccbcccbaa
0588012	${ }^{70} 8$	－ 8 AA	S	AAAAAAAA		60 s	AAAAAAAEA	70s	AAAAAAE $\dagger+1$	7400	60 s		70s	asaabbbada
						80 s	tt－－－－tttt				80s	AAAAAAAAAA		
059001		－－beA	60 s	asabanama	6800	40s		50s	asabamasa	074003	70s	－－－eEADAAA	808	AAAAAAAAAAA
	70 s	afaemamaa	808	damamatasa		60 s	AAAAAAAEAA	70s	AAAAAETtt	074005	70s	－－tBAAAAA	${ }^{805}$	AAAAAAAAAAA
059002	60s	－－－－－－FFB	70s	aAbBrbaAAA		805	tDAAAAAAAA			074006	${ }^{60}$	$\cdots-$－fCCFCC	70s	CCFtbbbaAa
	B0s	alamanasa			300	50 s	－－－－－－aAA	60s	AAAAADADAA		${ }^{805}$	Aabanatana		
060002			70s	baAaAAAAEE	068005	70s 50 s	AAAAAEAATt	80 s 60 s	＋AAAAAAAEE	074007 074008	70 s 70 s	－AA	80 s 80 s	AAAAAA －babaaaa
	${ }_{80} 8$	EAADAAADAA				70 s	AaAaAEEEAA	80 s	AAAAAAAEAA					
060003	60s	－－－－EAAAA	\％s	AEEAAAAAAA	6800	50s	－－－eamataa	60 s	AAAAAAAEEA	075001	30s	－9ttEAET	40s	tittitanam
	Bos	aAAAAADAAA				70s	AAAAAEEIt	805	teeastitit		50s	AAAAAAAAAA	60s	AAABAAAAEE
060004	．60s	－－－－－－－ttE	70s	EEAAA	800	${ }^{60 s}$	－ebabasaa	70s	AAAAAEAAE		${ }^{703}$	EttaAAEAAA	${ }^{80}$	AAAAAAAAAAA
	${ }^{\text {BOs }}$	AAt－－－ttt				80 s	AaEEAAAAAA			00	${ }^{605}$	fcbebrabsea	70s	anamanamaa
060005	60 s		70s	badaamasaa	068	70s	－－－1ttitt	80s	†t－－－－tttt		${ }^{80}$	asabaseasa		
	B0s	amabamataa			068015	80s	－aaaaaAAA			7500	${ }^{60 \mathrm{~s}}$	$-\theta A$	70s	baAbasbasa
060006	60s		70s	bbbabasaas	068018	70s	－－－－－－－\dagger				${ }^{80}{ }^{80}$	AAAAAAAAAA		
	B0s	AAAAAAAAAA			06	80 s	－aAaAAAAD			07500	605	－－－－－－－iba	70 s	bbabaacaaa
060007	${ }^{805}$	－－－－－－－－1A	70s	AAAAAAAAAA							80s 70 s	AAAAAAAAAA		
	80s	AAAAAAAADA			069001	50s	AAAAAAAAABA	60s	BAAAAAABE	075006	60s	－－AAABCAAA	${ }^{80 \mathrm{~s}}$	AaAamana
0008	70 s	FCCCCFFTt＋	80 s	Tttrtttt		70s	AAABABAAA ${ }^{+}$	80s	tAAAAcaaaa		80s	a－－－－－t＋t		
060010	50s	－－eB	60 s	AAAAAAAAA	069002	40s		50s	AAAAAAAAAA	07500	60s	－－－－－－－－－e	70 s	asabasamat
	70s	AAAAAazae－	80 s	вазаазвAA		60s	AAAAAAAEAA	70s	AAEEATAAAA		${ }^{80}$	－－－－－－ttit		
$\begin{aligned} & 060012 \\ & 060013 \end{aligned}$	70s	taabbsaeka	${ }^{80}$	EEt－－－ttt		80 s	AAAAAAAAAA			075009	70 s	－eAAABBAAA	${ }^{805}$	ABAAAAAAAA
	70s	－EBCCCFFtt	80s	$-\mathrm{ttt}$	069003	30s	－eEt	40s	thtattte	075016	70s	－－－－－－DDD	80s	AAABAA
						50 s	AAAAAAAAAA	60 s	AAAAAAAEAA	075017	80 s	－aAAAAAAA		
100	${ }^{60}$	－－－－－eAEAE	70s	EAAEttttt		705 405	AAAEETAEAE	80 s 50 s	AAAAAAAAA					easbanamaa
061002	${ }^{80}$	${ }_{\text {eaba }}$	． 70 s	afeadamaa	069004	${ }_{60 \mathrm{~s}}^{4}$	AAAAAAAAEt	${ }_{70 \text { s }}$			70 5	EtIttetea	80s	AEAAAABaaa
	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AAAAAFAEDA	． 0 s	aneadaama		80s	cctt			076002	60 s	－－－－ttebra	70s	abbabecaae
061003	60 s		70s	afanamasas	069005	50s	－－－－eatasa	60s	AaAasameal		80 s	abamanama		
	80s	AAAAAAAEEA				70s	Aateameena	80s	EAAEtt	076003	60s	－eaAAAAAEA	70	AAAAAAAA
061004	60s	－－tAEAE	70s	EAaaaaaese	9000	50s	－－－eAAAA	60s	AAAAAAAAAAA		80 s	ABbAAAaaaa		
	80 s	eaaactaEta				70s	－DaAEAEAAAA	80 s	AAAAAAAAAAA	07600	${ }^{605}$	－－eAAAADAA	70s	aeamanataa
						70s	－ttittott	80 s	taAasamata		80 s	tamanaman		
062001	50s	－－－－－－－－－E	60s	AAAAAAAAAA	069008	80s	$\xrightarrow{\text { tttoaEttt }}$			076005	605	－－－eAABBB	0s	AAAABBBAAA
	708 708	－eeaidatas	80s	AAAAAAAAAA	069011 069012	80s	tttt－－ttt				80 s	asamatasaa		

Stn. number	Gauged dally flows. monthly peaks and rainfall				Stn, number	Gauged daily flows. monthly poaks and rainfald				Stn. number	Gauged daily flows. monthly peaks and rainfall			
076007	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$..-------eAA taAAAAAAAB	70s	AAAAAAAAT1	$\begin{aligned} & 093007 \\ & 083008 \end{aligned}$	$\begin{aligned} & 70 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$		80s	aaaaaaAAA	093001	70s	--A	80\%	AAAAAAAAAA
076008	60 s	---mat	70s	eataieetat	083009	70s	-- заяаев	803	aazasaABA	094001	60s		70.	
	B0s	tafacasama			083010	70s	-------еве	B0s	aaaazaAAAA		$\begin{aligned} & 605 \\ & 80 \mathrm{~s} \end{aligned}$	AAAAAAAAAA	70s	EAAA
078009	60 s	-----*E	70s	baAamaEttt										
	${ }^{80}$	tBAAAAAAAA			084001	40 s	------- EE	50s	eeebbebeeb	095007	70 s	--*AA	80s	AAAAAAAAAA
076010	60 s 80 s	TAAAAAAAAT	70s	EAAAAAEttt		60 s 80 s	AAAAAAAAAA AAAAAAAAAB	70s	AAAAAAAAAA	095002	B0s	- вaзas		AAAAAAAAAA
076011	60 s	-------8as	70s	asaeeazaas	084002	50s	--batEAEEE	608	AAEEAEEEFC	096001	70s	------AAAA	80s	AAAAAAAAAA
	80 s	aeaabotAADE				70s	AAEEEEET:	805	tittittt	096002	70 s	-------eAA	803	AAAAAAAAAA
$\begin{aligned} & 078014 \\ & 076015 \end{aligned}$	70s	-EAAAAAATt	80 s	taAAAAAAAE	084003	50s	------8BDA	60 s	AAAAAAAAAA	098003	80 s	-----esasa		
	70s	eadbambaaa	80s	AAAAADAAAA		70s	AAAAAAAAAA	80 s	AAAAAAAAAA	098004	80s	------639		
					084004	50 s	------AAA	603	AAAAAAAAAA					
077001	60 s	--- dDaEEAE	70 s	eeebaamat		70 s	AAAAAAAAAA	80s	AAAAAAAAAD	097001	50 s	-	60s	-tttt-
	808	IAAAAAAAAA			084005	50s	--8A	60:	AAAAAAAAAA		70s	-ttttto-	80	1t-fft
077002	605	-tFCCBAAAA	70 s	afanamanam		70s	AAAAAAAAAA	80 s	AAAAAAAAAA	097002	60s	-tttttttt	70 s	ttaAamana
	80	AAAAAAAAAA			084006	60s	-tiEAAAAAA	70s	AAAAAAAEAA		805	AAAAAAAAAA		thamaaha
077003	70 s	---DAAAAAA	80 s	AAAAAAAAAA		80 s	AAAEtttitt							
077004	70 s	-d	80s	aAAAAAAAAA	084007	60 s	---- ${ }^{\text {eEAAA }}$	70s	AAAAAAABBA	101001	60 s	-fcffFcfff	70s	$\mathrm{FcCCrc}+111$
077005	70 s	-------a--	B0s	---easaAAE		80 s	AAAAAAbasb				80s	ttititttt		
078001	50s	-A	60s	AEtIT-	084008	60 s 80 s	AAAAAAAAAA	70s	AAAAAAAAAA	101002	60 s 80 s	----- вeoef ebeabaanaa	70s	eeebbeeEEE
	70s	tittit--a*	80 s	------titt	084009	60s	-----bAAA	70s	AAAAAAAAAA	101003	80 s	f--eddDBEA		
078002	60 s	---mAEttit	70s	ttittim--		80 s	AAAEtEfEAA			101004	80s	--eassAAAA		
	80 s	------7tit			084011	60s	---gAAAAAA	70s	AAAAAAAAAA	101005	80s	--easasAAA		
078003	60 s	- ITITITAA	70s	AAAAAAAAAA		80s	AAAAAAAAAB			101006	90s	-----tif A		
	80 s	AAAAAAAAAAA			084012	60s	-tteamamaa	70s	AAAAAAAAAA	101007	80 s	--oadAADA		
078004	60s	-ttegeeana	70s	AAAAAAAAAA		80 s	AAAAAAAAAB					- aocaADA		
	805	AaAAAAAAAA			084013	60s	--- A AAAAAA	70 s	AAAAAAAAAA	201002	70s	- вasasaea	80s	aаaAAAaaas
078005	70s	---------A	80 s	AAAAAAAAAA		805	AAAAAAAAAA			201005	70 s	-tEAAAAAAA	80 s	AAAAAAAAAA
078006	805	- bsaAAAA			084014	60 s	---aAAAAA	70 s	AAAAAAAAAA	201006	70 s	-- maaasaAA	80s	AAAAAAaass
	60 s	-ttttebref	70s	FFCCCFCCco	084015	80s	AAAAAAAAAE			201007	70 s	ttttteama	B0s	AAAAAAAAAA
079001	B6s	of			,	805	AAAAAAAAAA	70s	afamaakeaa	201008	$\begin{aligned} & 70 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { еааавазава } \\ & \text { еава } \end{aligned}$	B0s	a amAAAAAAA
079002	508	--2---EAA	60s	AAAAAAAAAA	084016	60s	-tittteeda	70 s	amatabbaat	201010	80s	--easaasa		
	70s	AAAAAAAAAA	80 s	AAAAAAAAAA		B0s	amanamana			2010		-- еаяааяа		
079003	50s	-	60s	AAAAAAAAAA	084017	60s	-----EAA	70 s	AAAAAAAAAA	202001	80s	---aeeaAAA		
	70s	AAAAAAAAAA	803	AAAAAAAAAA		80s	AAAAAAsass			202002	70s	----oaea	803	aıaaaaaaa
079004	60s	-tIFCBAAAA	70s	AAAAAAAAAA	084018	60 s	--------A	70s	AAAAAAAAAA	20202.	7os	- -aee	ass	asaanaaaad
	80s	AAAAAAAAAA				80 s	AAAAAAAAAA			203010	60s	-tttrttit	70s	EAAAAAAAAA
079005	$\begin{aligned} & 60 \mathrm{~s} \\ & 908 \end{aligned}$	-tiEAAAAAA AAAAAAAAAA	70s	AAAAAAAAAA	084019	60s	--AAAAAAAA	70s	AAAAAAAAAA		80s	AAAAAAAAAA		
079006	60 s	-tttttea	70 s	AAAAAAAAAA	084020	60 s	AAAAAAasas	70s	ADAAADAEAE	203011	70 s 70 s	еаasa3asaa	80s	e-- $\dagger \uparrow \dagger$
	80 s	AAAAAAAAAA				80 s	AAAAAAAAAA	$70 s$	adahadaeae	203013	70s	eaaasasas	80s	saaAAAAAAA aaaaaasaas
					084021	60 s	---------E	70s	AAEFFttit \dagger	203017	70 s	eaAAAAAAAA	B0s	AAAABAAAAA
080001	$\begin{aligned} & 60 \mathrm{~s} \\ & \mathrm{BNe} \end{aligned}$	-ttEAAAAAA AAAAAAAAAA	70 s	AAAAAAAAAA	084022	60 s	------eEEE	70 s	geeameamea	203018	70s	eaaeazaAAA	808	AAAAAAaaaa
	BOs	AAAAAAAAAA				80 s	AAAAAABAAD			203019	70s	--өававаея	80s	авазаяasas
080002	70 s	------dAA	80 s	AAAAAABasa	084023	70s	---EAAAAEA	80 s	AAAAAAAAAA	203020	70s	-easasassa	80 s	asaAAAAAAA
080003 080004	80 s BOs	caasaaABAA			084024	70s	-- AAAAAAAE	80 S	AAEAAAaba	203021	70s	-easasaasa	808	aaaAAAaasa
080004 080005	80s	--ceastiAA			084025	70s	---ITAAAAE	80s	AAAAAAAAAA	203023	70s	--saaasase	80:	өөөазөевая
080006	80s	---asa-Aa			084026	60s	-- eaabso	80 s	дasaasAAAA	203024	70 s	- easassasa	808	взааааазаз
080007	80s	θ			084027	80s	--8ac	70 s	eaaEAEEDE:	203025	70 s	- easasasas	80s	8aaAAAaasa
					084028	70s	- **ea	80 s	abaaaaeada	203	Os	- eaeesasaa	80 s	аааадазазa
081001	60s	-----*BBa-	70s	--tit	084029	70s	_----вааая	80 s	abazasas	203027	70 s	-teanamana	B0s	AAAAAAazea
081002	60 s	-ttEAAAAAA	70s	AAAAAAAAAA	084030	80 s	- вasaasaad		aaaaaaAAAE	203028	70 s	-tEAAAAAAA	${ }^{\text {BOs }}$	AAAAAAAAAA
	808	AAAAAAAAAA								$\begin{aligned} & 203029 \\ & 203033 \end{aligned}$	70s	--- е8asaaa	BOs	аааааааааa aAsAAEaaae
081003	60 s	-tttrta	70 s	AAAAAAAAAA	085001	60s	---qAAAAAA	70 s	AAAAAAAAAA	203040	80 s	езеааеазая		aAsAAEaase
	80 s	AAAAAAAAAA				80s	AAAAAAAAAA			203042	80 s	-евваалавз		
081004	70s	-------dAA	80s	AAAAAAAAAA	085002	60s	-tiEAAAAAA	70s	AAAAAAAAAA	203092	80s	--- вasasas		
081005	80s	-----easas				80s	AAAAAEAAAA			203093	80 s	---- авязаа		
081006	80s	---888A			085003	60s	-ttititti	70s	EaAAAEAAEE					
082001	60s	-tteana	70s	AAAAAAAAAA	085004	80s	AAAAAAAAAD	S	aaae-eAAAA	204001	70s	--easaaesa	80s	gasAAAaaaa
	80 s	AAAAAAAAAD								205003	70s	-cbasasaa	B0s	ваааа
$\begin{aligned} & 082002 \\ & 082003 \end{aligned}$	70 s	---IEAAAAA	80s	AAAAAAssas	086001	60 s	--------*A	70s	AAAAAABEBb	205004	70s	-- عазавава	80 s	sasAAAsaaa
	70 s	---AAAEEAA	80s	AAAAAAAAAD		80 s	AAAAABaead			205005	70s	--EAAAAAAA	B0s	AAAAAAAAAA
					086002	60 s	-ttitttee	70s	AaAAAEBAAA	205006	70s	--eaaaasa	803	a
083001	80s	\#---titio-	70 s	-fFFFFFiff		80 s	AAAAAAAAAE			205008	70s	----өaaaaa	808	aaaAAAasea
083002	60 s	---bAAAAas	70s	AAAAAAAB--	089008	80s	-ееааевзе			205010	70 s 80 s	----ө8елаа	805 905	aaaaaeeaaa
	80s	----Tf			089009	80s	-өөвяевавз							-
083003	60 s	-1ttttttt	70 s	EaAAAAAAAA						206001	70s	------saas	808	a
	B0s	AAAAAAAAAA			090003	80s	--өaaaAAAA			206002	70s	--a8asasaa	80s	зaasabasaa
0833004	708 708	- teanalama	80s	AAAAAAAAAO										
083006	70 s	------dod	805	AAAAADAAAA aasaasAAAA	091002	80s	eAAAAAasas			236005	$70 \mathrm{~s}$		B0s	- eeaaseasa

Summary of Archived Data-2

Naturalised daily and monthly flows

KEY:
Complete daily and complete monthly

Partial daily and complete monthly
Partial daily and partial monthly Partial daily and no monthly No daily and complete monthly No daily and partial monthly No naturalised flow data
$\left.\begin{array}{llll}\begin{array}{l}\text { Stn. } \\ \text { number }\end{array} & \begin{array}{l}\text { Naturalized daily } \\ \text { and monthty flown }\end{array} \\ 006007 & 70 \mathrm{~s} & --- \text { EEEEEEF }\end{array}\right]$

Summary is presented in decade blocks

Sin. number	Naturalised daily and monthly flows				Stn. number	Naturalised daily and monthly flows			
014001	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	---F--E			015024	80s	--EEEE		
014002		--E--E							
					016001	60 s	$\rightarrow-$ FEEEEEE	70s	eeteeeefee
015003	70s	---EEEEEEE	80 s	Eegeee		80s	EEEEEE		
015006	60 s	------FEE	70s	F--EEEEEEE	016004	70s	-----EEEEE	B0s	E
	80s	EEEEEE							
015007	70 s	---EEEEEEE	80 s	EEEEEE	017001	60 s	-------F	708	EF----E
015008	70s	---EEEEEEE	BOs	EEEEEE	017002	60s	---------F	70 s	EF----E
015010	70 s	---EEEEEEE	B6s	EEEEEE	017003	70s	------E		-
015011	70s	---EEEEEEE	803	EEEEEE	017004	70s	----E		
015012	70 s	---EEEEEEE	80s	EEEEEE	017005	70s	----E		
015013	70s	---EEEEEEE	80 s	efeese					
015016	70s	----EEEEEE	803	EEEEEE	018001	70 s	------E		
015017	70 s	--------F			018002	60s	-----FEEEE	708	F-----E

Stn. number	Naturalised daily and monthly flows				Stn. number	Naturalised daily and monthly flows				Stn. number	Naturalised daily and monthly flows			
075002	608	-feeeef			082001	60s	---FEEEEEE	70s	Ef	$\begin{aligned} & 084017 \\ & 084018 \end{aligned}$	$\begin{aligned} & 608 \\ & 60 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	EEEEF EEEEF
078001	50s	---FEEEF--	60 s	FEEEEEEEEE	084001	70 s	feeef			084019	60s	--------FE	70s	EEFFF
	70s	F			084002	60s	--------FE	70s	EEFFF	084020	703	FEEEF		
076003	60\%	-feEEEF			084003	60s	-----FEEEE	709	EEEEF	084021	705	FEF		
076004	60 s	--FEEF			084004	50s	------FEE	605	EEEEEEEEEE	084022	705	---FF		
078007	80s	---------F				70s	FFEEF			084023	70s	-FF		
					084005	50s	--fE	60s	EeEEEEEEEE	084024	70s	---FF		
077002	60s	-------FEE	70s	EF		70s	EEEEEF			084027	703	---FF		
					084006	70 s	FEEEF							
078004	708	-F			084007 084008	60 s 60 s	---------FEE	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	FEEEF FEEEF	$\begin{aligned} & 085001 \\ & 085002 \end{aligned}$	${ }_{60 \mathrm{~s}}^{60}$	---FEEEEEE	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	EEEEF
079002	50:	---------F	603	EEEFFEEEEE	084009	60 s	-------FFF	70s	EEEEF	085003	703	FEEEF		
	70s	EF			084011	60 s	----FEEEEE	70s	EEEEF					
079003	50s	--F	60s	eexeeeeeee	084012	60 s	---FEEEEEE	70 s	EEEEF	086001	708	FEEEF		
	705	EEF			084013	60 s	-------FEE	70s	EEEEF	086002	70s	FEEEF		
079006	60s	-------FEE	708	EF	084014	60s	----FEEEEE	70s	EEEEF					
					084015	70 s	FEEEF			097002	70s	--EEEEEF		
081003	60s	--------fE	70s	FF	084016	70s	feEEF							

GROUNDWATER LEVEI DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 13, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 17; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

There are few artificial reservoirs in the United Kingdom which are sufficiently large to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead in many rivers to reduced flow, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-
able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, and to a lesser degree in $1988 / 89$, a dry summer succeeds a notably dry winter.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$. During the last few years, it has become apparent in some districts that satisfactory information can be obtained with fewer wells, while in others the densities had to be substantially increased.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing Water Data Unit archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom'; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175^{2}.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 178).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 millimetre.

Some observation wells are equipped with continuous water level recorders, almost invariably activated by a float on the water surface. These recorders may be driven by clockwork or by electric battery power, and are capable of running unattended for periods of one to six months.

TABLE 13 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Figure 17. Principal aquifers and representative borehole locations.

Levels are usually recorded on paper charts or on punched paper tapes, but a number of solid state loggers have been deployed in recent years.

At a relatively small but increasing number of observation boreholes provision is made for the routine transmission - usually by telephone line - of groundwater levels to local, or regional, centres.

Pressure transducers have also been considered for water level measurement. However, available transducers will measure accurately over only a narrow range of fluctuation (up to 2 to 3 metres), or much less accurately over a wide range. They are being used more frequently but are still not yet in general use.

Observation Well Hydrographs 1987-89

Well hydrographs for 24 observation sites are shown in Figure 18; the format differs from that used in earlier Yearbooks in the Hydrological data UK series*. For each borehole the 1987 to 1989 groundwater hydrographs are illustrated, as a blue trace, together with the average and extreme monthly levels for the pre-1989 record (provided sufficient historical data are available): A break in the well hydrograph trace indicates an interruption in the record of greater than eight weeks. Three-year plots have been used because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of $1988 / 89$, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water-table fluctuations.

The majority of observation boreholes for which contemporary data are held on the Groundwater Archive monitor the natural variation in groundwater levels. However, in parts of the United Kingdom groundwater levels have been influenced, sometimes over long periods, by pumping for water supply or other purposes which exceeds the natural rate of replenishment. As a consequence the regional water-table may become substantially depressed. For instance, the levels at the Eastwick Farm site are indicative of a significant regional decline. By contrast those at Rushyford now stand some 10 metres higher than a decade ago (due partly to a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering). On a larger scale, groundwater levels in the confined Chalk and Upper Greensand aquifer below London have risen substantially over the last twentyfive years. Annual mean levels in the National Gallery well (Trafalgar Square) testify to a 20 metre rise since the mid-1960s. This is principally a consequence of abstractors increasingly switching to

[^10]surface water supplies drawn from reservoirs in the Thames and Lee valleys. The decreased rate of groundwater abstraction initially stabilised the water-table, which had been declining steadily over the preceding 150 years in response to London's water demands, and subsequently levels have risen at the rate of approximately one metre per year. More moderate increases have been reported for other conurbations in Britain. The implications of rising groundwater levels extend beyond the potential improvement in resources that the rise represents. Groundwater quality may be adversely affected as levels more closely approach the surface and a number of geotechnical problems may result - for instance, the flooding of tunnels and foundations.

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected so as to give a reasonably representative cover for aquifers throughout England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 170 . While the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. In the Coal Measures and the Millstone Grit, certain sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells (see page 178).

The following sites have been added to the Register for 1989:

Chalk and Upper Greensand

SU76/46	Riseley Mill
TF73/10	Moor Farm
TL55/109	Lower Farm
TM17/1	Old Parsonage House

Lower Greensand

Permo-Triassic sandstones

SJ37/2H	Bowater 6
SK68/21	Crossley Hill

Magnesian Limestone

NZ33/20 Garmondsway
SE51/2 Westfield Farm
The following sites have been removed from the Register for 1989:

Chalk and Upper Greensand

SU04/2	Tilshead
TF94/1	Cuckoo Lodge
TQ66/48	Owletts
TR05/11	Portway House, Faversham
TR34/81	Church Farm

Permo-Triassic sandstones
SJ33/38 Hordley Wharf
SJ96/41 Rushton Spencer 1

The Register - data items

The six columns of the register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square into the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always ' I '.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 174 to 177 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 17.

Grid Reference

The six or eight figure references given in the register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two figure code; the corresponding two-letter code appears as the prefix characters in the Well Number. The Irish Grid References are italicised.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the register are shown on Figure 17.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 196 and 198.

Records Commence

The first year for which records are held for the groundwater archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession and that measured at the beginning of the summer recession in the following year expressed as a percentage of the mean fluctuation. Details of the method of calculation are given in the Hydrometric Register and Statistics 1981-85 (see page 199). The method is intended to provide a guide to annual recharge variations only. It is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows a very uneven pattern resulting in poorly defined or multiple peaks the percentage annual re-charge may be somewhat unrepresentative. Equally, where recharge has been very limited as was the case over the 1988/89 winter especially in eastern areas - the effect on the hydrograph trace may only take the form of an inflection or levellingoff in the seasonal recession. Under such circumstances the calculated percentage annual recharge will be zero and clearly may underestimate actual infiltration.

References

1. Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No WD/81/1, 18 pages.

Figure 18. Hydrographs of groundwater level fluctuations.
Site name: Dalton Holme
National grid reference: SE 9651 4530
Aquifer: Chalk and Upper Greensand
Measuring level: 33.50 mOD

Max, Min and Mean values calculated from years 1971 to 1988

Site name: Rockley
National grid reference: SU 16557174
Aquifer: Chalk and Upper Greensand
Measuring level: $146-39 \mathrm{mOD}$

Figure 18-(continued)

Figure 18-(continued)

Figure 18-(continued)

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1988/89
Aquifer: Superficial Deposits					
IJ28/1	225862	Dunadry	GSNI	1985	---
SO44/4	46834253	Stretton Sugwas	NRA-WEL	1973	---
Aquifer: Chalk and Upper Greensand					
ID30/1**	368030	Killyglen	GSNI	1985	51
SE93/4	92123634	Dale Plantation	NRA-Y	1970	36
SE94/5**	96514530	Dalton Holme	NRA-Y	1889	40
SE97/31	93457079	Green Lane	NRA-Y	1972	22
SP90/26	94700875	Champneys	NRA-T	1962.	29
SP91/59	93801570	Pitstone Green Farm	NRA-A	1970	80
ST30/7**	37630667	Lime Kiln Way	NRA-SW	1969	46
SU01/5B**	01601946	West Woodyates Manor	NRA-W	1942	88
SU17/57**	16557174	Rockley	NRA-T	1933	69
SU32/3	38172743	Bailey's Down Farm	NRA-S	1963	60
SU35/14	33155645	Woodside	NRA-S	1963	60
SU51/10	58751655	Hill Place Farm	NRA-S	1965	67
SU53/94	55863498	Abbotstone	NRA-S	1976	36
SU57/159	56287530	Calversleys Farm	NRA-T	1973	21
SU61/32	65781775	Chidden Farm	NRA-S	1958	91
SU61/46	68901532	Hinton Manor	NRS-S	1953	40
SU64/28	63604049	Lower Wield Farm	NRA-S	$1958{ }^{\circ}$	39
SU68/49	64428525	Well Place Farm	NRA-T	1976	70
SU71/23**	77551490	Compton House	NRA-S	1893	64
SU73/8	70483491	Faringdon Station	NRA-T	1961	70
SU76/46	73676251	Riseley Mill	NRA-T	1975	25
SU78/45A	74198924	Stonor Park	NRA-T	1961	32
SU81/1	83561440	Chilgrove House	NRA-S	1836	50
SU87/1	83367885	Farm Cottage, Coldharbour	NRA-T	1950	55
SU89/7	81039417	Piddington	NRA-T	1966	46
SY68/34**	662.881	Ashton Farm	NRA-W	1974	60
TA06/16	04906120	Nafferton	NRA-Y	1964	18
TA07/28	09407740	Hunmanby Hall	NRA-Y	1976	10
TA10/40**	13750885	Little Brocklesby	NRA-A	1926	35
TA21/14	26701890	Church Farm	NRA-Y	1971	36
TF72/11	77102330	Off Farm	NRA-A	1971	17
TF73/10	76903290	Moor Farm	NRA-A	1977	10
TF80/33	87380526	Houghton Common	NRA-A	1971	59
TF81/2^*	81381960	Washpit Farm	NRA-A	1950	10
TF92/5	98692183	Tower Hills P.S.	NRA-A	1977	17
TG00/92	04400020	High Elm Farm,	NRA-A	1971	34
TG03/25B	03823583	The Hall, Brinton	NRA-A	1952	14
TG11/5	16911101	The Spinney, Costessey	NRA-A	1952	20
TG12/7	11262722	Heydon Pumping Station	NRA-A	1974	10
TG21/9	24001657	Frettenham Depot	NRA-A	1952	77
TG21/10	26991140	Grange Farm	NRA-A	1952	65
TG23/21	29323101	Melbourne House	NRA-A	1974	14
TG31/20	33651606	Woodbastwick	NRA-A	1974	23
TG32/16	37002682	Brumstead Hall	NRA-A	1978	19
TL11/4	15601555	Mackerye End House	NRA-T	1960	57
TL11/9**	16921965	The Holt	NRA-T	1964	29
TL13/24	12003026	West Hitchin	NRA-A	1970	16
TL22/10	29782433	Box Hall	NRA-T	1964	43
TL33/4**	33303720	Therfield Rectory	NRA-T	1883	48
TL42/6	45362676	Hixham Hall	NRA-T	1964	29
TL42/8	46692955	Berden Hall	NRA-T	1964	24
TL44/12	45224182	Redlands Hall	NRA-A	1964	55
TL55/109	59255605	Lower Farm	NRA-A	1983	40
TL72/54	79822516	Rectory Road	NRA-A	1968	18
TL84/6	84654106	Smeetham Cottages, Bulmer	NRA-A	1963	45

Weil Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1988/89
TL86/110	88506470	Cattishall Farm	NRA-A	1969	53
TL89/37	81319001	Grimes Graves	NRA-A	1971	43
TL92/1	96572562	Lexden Pumping Station	NRA-A	1961	--
TM15/112	12015618	Dial Farm	NRA-A	1968	59
TM17/1	16717903	Old Parsonage House	NRA-A	1952	21
TM26/46**	24616109	Fairfields	NRA-A	1974	26
TM26/95	27866397	Strawberry Hill	NRA-A	1974	52
TQ01/133	08501170	Chantry Post, Sullington	NRA-S	1977	96
TQ21/11	28501289	Old Rectory, Pyecombe	NRA-S	1958	14
TQ28/119B	29968051	Trafalgar Square	NRA-T	1845	---
TQ31/50	32201180	North Bottom	NRA-S	1979	65
TQ35/5	33635924	Rose \& Crown	NRA-T	1876	51
TQ38/9	35098536	Hackney Public Baths	NRA-T	1953	---
TQ50/7	55920380	Old Rectory, Folkington	NRA-S	1965	98
TQ56/19	56486124	West Kingsdown	NRA-T	1961	57
TQ57/118	58807943	Thurrock A13	NRA-A	1979	---
TQ58/2B	56228408	Bush Pit Farm	NRA-T	1967	---
TQ86/44	85956092	Little Pett Farm	NRA-S	1982	10
TQ99/11	947971	Burnham	NRA-A	1975	---
TR14/9**	12254690	Little Bucket Farm	NRA-S	1971	39
TR14/50	12654167	Glebe Cottage	NRA-S	1970	---
TR35/49	33305090	Cross Manor Cottages	NRA-S	1971	31
TR36/62	32086634	Alland Grange	NRA-S	1969	31
TV59/7C**	52909920	Westdean 3	NRA-S	1940	25
Aquifer : Lower Greensand					
SU82/57	88882505	Madam's Farm	NRA-S	1984	---
SU84/8A	87164087	Tilford Pumping Station	NRA-T	1971	25
TL45/19	41105204	River Farm	NRA-A	1973	---
TQ41/82	43701320	Lower Barn Cottages	NRA-S	1975	32
TR13/21	11323881	Ashley House	NRA-S	1972	---
TR23/32	20753650	Morehall Depot	NRA-S	1972	10
Aquifer : Hastings Beds					
TQ22/1	23482770	The Bungalow	NRA-S	1964	78
TQ32/19	37602890	Horsted Keynes	NRA-S	- 1968	86
TQ42/80A	47252990	Kingstanding	NRA-S	1979	71
TQ61/44	66581803	Dallington Herrings	NRA-S	1964	57
TQ62/99	61992282	Whiteoaks	NRA-S	1978	56
TQ71/123	79691659	Red House	NRA-S	1974	78
Aquifer : Upper Jurassic					
SE68/16	68908590	Kirkbymoorside	NRA-Y	1973	25
SE77/76	76907300	Broughton	NRA-Y	1975	14
SE98/8	99108540	Seavegate Farm	NRA-Y	1971	33
SU49/40B	41179307	East Hanney	NRA-T	1978	63
Aquifer : Middle Jurassic					
SP00/62**	05950190	Ampney Crucis	NRA-T	1958	54
SP20/113	27210634	Alvescot Road	NRA-T	1975	---
ST51/57	591169	Over Compton	NRA-W	1971	83
ST88/62A	82758743	Didmarton 1	NRA-W	1977	58

Aquifer: Lincolnshire Limestone

SK97/25	98007817	Grange de Lings	NRA-A	1975	$5 \dot{7}$
TF03/37**	08853034	New Red Lion	NRA-A	1964	50
TF04/14	04294273	Silk Willoughby	NRA-A	1972	52

Aquifer : Permo-Triassic sandstones

IJ26/1**	291694	Dunmurry	GSNI	1985	94
NX97/1	96677432	Redbank	SRPB	1981	--
NY00/328	05110247	Brownbank Layby	NRA-NW	1974	44
NY45/16	49475667	Corby Hill	NRA-NW	1977	27

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1988/89
NY63/2	61303250	Skirwith	NRA-NW	1978	64
NZ41/34	48611835	Northern Dairies	NRA-N	1974	44
SD27/8	21727171	Furness Abbey	NRA-NW	1972	75
SD41/32	44001164	Yew Tree Farm	NRA-NW	1971	68
SD44/15	43964928	Moss Edge Farm	NRA-NW	1961	84
SE36/47	39456575	Kelly's Cafe	NRA-Y	1977	23
SE39/20B	30049244	Scruton Village	NRA-Y	1969	34
SE45/3	44705580	Cattal Maltings	NRA-Y	1969	40
SE52/4	54732363	Southfield Lane	NRA-Y	1955	81
SE54/32A	55324646	Bilborough	NRA-Y	1984	---
SE55/4	58295383	Clifton Hospital	NRA-Y	1967	33
SE60/76**	67840709	Woodhouse Grange	NRA-ST	1980	---
SE64/1	67514463	Wheldrake Station	NRA-Y	1971	53
SE72/3B	70472149	Rawcliffe Bridge	NRA-Y	1971	---
SE83/9	80403640	Holme on Spalding Moor	NRA-Y	1972	75
SJ15/15**	13745556	Llanfair D.C.	NRA-WEL	1972	53
SJ33/39**	38143831	Eastwick Farm	NRA-WEL	1974	---
SJ37/2H	38057676	Bowater 6	NRA-NW	1971	---
SJ56/45E	50426953	Ashton 4	NRA-NW	1969	---
SJ83/1A	89693474	Stone	NRA-ST	1974	71
SJ87/32	89697598	Dale Brow	NRA-NW	1973	. 14
SJ88/93	86118645	- Bruntwood Hall	NRA-NW	1972	---
SK00/41	067012	Nuttal's Farm	NRA-ST	1974	10
SK21/111	27311419	Grange Wood	NRA-ST	1967	25
SK24/22	25394431	Burtonshuts Farm	NRA-ST	1972	16
SK56/53	56326440	Peafield Lane	NRA-ST	1969	---
SK68/21	61008374	Crossley Hill	NRA-ST	1969	10
SK73/50	76933228	Woodland Farm	NRA-ST	1980	---
SO71/18	71701970	Stores Cottage	NRA-ST	1973	41
SO87/28	81607970	Hillfields	NRA-ST	1961	---
ST12/48	108267	Milverton Bypass	NRA-W	1972	---
SX99/37B**	95289872	Bussels 7A	NRA-SW	1971	36
SY09/21A	06669235	Heathlands	NRA-SW	1951	70
Aquifer : Magnesian Limestone					
NZ22/22**	. 28752896	Rushyford NE	NRA-N	1967	19
NZ32/19	35752650	Heley House	NRA-N	1969	---
NZ33/20	33493501	Garmondsway	NRA-N	1974	10
SE28/28	24608520	Bedale	NRA-Y	1972	64
SE35/4	38305830	Castle Farm	NRA-Y	1970	18
SE43/9**	45353964	Peggy Ellerton Farm	NRA-Y	1968	10
SE43/14	46603550	Coldhill Farm 35	NRA-Y	1971	26
SE51/2	52101530	Westfield Farm	NRA-Y	1971	10
SK46/71	48006030	Stanton Hill	NRA-ST	1973	68
SK58/43	52488018	Southeads Lane	NRA-ST	1973	19

Aquifer : Coal Measures

SE23/4	28503414	Silver Blades Ice Rink	NRA-Y	1971	30
Aquifer : Millstone Grit					
SE02/46	07712528	Thrum Hall	NRA-Y	1977	18
SE04/7	02954792	Lower Heights Farm	NRA-Y	1971	70
SE24/2B	20674053	Green Lane Dyeworks	NRA-Y	1971	---
SE27/8	21207380	Kirkby Moor Farm	NRA-Y	1971	80

Aquifer : Carboniferous Limestone

NT95/21	96955055	Middle Ord	NRA-N	1974	41
SE06/1	02416183	Jerry Laithe Farm	NRA-Y	1971	143
SK15/16**	12925547	Alstonfield	NRA-ST	1974	75
SK17/13	17787762	Hucklow South	NRA-ST	1969	19
ST64/33	65604790	Oakhill 1	NRA-W	1974	103

[^11]
THE GROUNDWATER DATA RETRIEVAL SERVICE

A suite of retrieval programs has been written in order to facilitate data usage. At the present time, retrievals using the options described below are available for most of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within this archive have been validated.

Five options are available for retrieving data. A description of each option is given below and examples of the computer listings and graphical output are given on pages 182 to 184 . Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the
output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate) and the title of the required option. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey
Hydrogeology Research Group
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: (0491) 38800
Fax: (0491) 25338

LIST OF GROUNDWATER RETRIEVAL OPTIONS

OPTION TITLE

1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

NOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.
Annual maximum and minimum groundwater levels in metres above Ordnance Datum with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.
Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.
Provides a well hydrograph for a number of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly
maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the measuring authority area in which the well or borehole is located.

OPTION 1 TABLE OF GROUNDWATER LEVELS

Station number	TFO3/37
Station name	NEW RED LION, ASLACKBY (CONTINUES OLD RED LION)
Grid Reference	TF 08853034
Measuring Authority	NRA-A
Hydrometric Area	30
Aquifer	Lincolnshire Limestone
Aquifer Code	13
EEC Unit	ANO3
Surface Level (MOD)	33.82
Datum Point (MOD)	33.45
Well Depth (M)	50.00
Max. Expected (MOD)	33.45
Min. Expected (MOD)	5.00
Period of records in Archive:-	1964 to 1985
Maximum GW Level for period of records	23.69
Number of Maxima 1	
Date(s):-	
14031977	
Minimum GW Level for period of records	3.29
Number of Minima 1	
Date(s):- 24081976	

(Note: The above reference information is also provided with the output from options 2-4)

Station Number	TF03/37
Year of record	1975
Date	Level (MOD)
03 Jan	17.29
31 Jan	16.68
28 Feb	17.85
04 Apr	20.31
24 Apr	20.12
02 May	20.13
30 May	18.58
13 Jun	17.34
11 Jul	15.77

01 Aug	14.44
29 Aug	13.24
26 Sep	12.11
10 Oct	11.57
07 Nov	10.42
21 Nov	9.85
19 Dec	8.98
Maximum GW level for year	20.31
Number of maxima	
Dates 04 Apr	
Minimum GW Level for year	8.98
Number of minima	
Dates 19 Dec	

OPTION 2 TABLE OF ANNUAL MAXIMUM AND MINIMUM GROUNDWATER LEVELS

Year	Max/Min	Level(MOD)	Date(s)	No. of occasions
1965	Max	21.50	26 Dec	1
	Min	7.85	24 Jan	
1966	Max	23.51	06 Mar	1
	Min	14.43	09 Oct-16 Oct	1 Period
1967	Max	19.79	04 Jun	
	Min	12.69	29 Oct	
1968	Max	22.06	17 Nov	
	Min	14.08	07 Jul	
1969	Max	23.17	30 Mar	
	Min	11.83	16 Nov	
1970	Max	20.21	26 Apr	
	Min	10.76	15 Nov	1

OPTION 3 TABLE OF MONTHLY MAXIMUM, MINIMUM AND MEAN GROUNDWATER LEVELS
Period maximum, minimum and mean groundwater levels for years 1964 to 1985

	Maximuan	Minimum	Mean	No. of years
Jan	22.58	7.85	14.75	21
Feb	23.29	7.97	16.50	21
Mar	23.69	6.14	17.27	21
Apr	22.97	5.61	17.17	22
May	22.00	4.80	16.52	21
Jun	21.28	4.11	15.40	21
Jul	19.69	3.42	14.03	21
Aug	17.08	3.29	12.97	21
Sep	18.84	3.37	11.78	21
Oct	17.98	3.82	12.08	21
Nov	22.06	7.03	13.04	21
Dec	21.51	7.81		21

OPTION 4 HYDROGRAPHS OF GROUNDWATER LEVELS

Hydrograph of monthly maximums, minimums and means calculated from years 1964 to 1982
Therefore maximum number of years from which monthly maxs, mins and means may be calculated is 19

	Maximum	Minimum	Mean	No. of Years
Jan	22.58	7.85	14.77	18
Feb	23.29	7.97	16.47	18
Mar	23.69	6.14	17.34	18
Apr	22.97	5.61	17.23	19
May	22.00	4.80	15.42	19
Jun	21.28	4.11	13.97	19
Jul	19.69	3.42	12.98	19
Aug	17.08	3.29	12.28	19
Sep	18.84	3.37	11.85	19
Oct	17.98	3.82	13.20	19
Nov	22.06	7.03	19.09	19
Dec	21.51			

Hydrograph(s) plotted for year ranges:- 1973 to 1977

Max, Min and Mean values calculated from years 1964 to 1982

OPTION 5 SITE DETAILS

BGS NUMBER	COMPUTER NUMBER		$A Q$	NAME-LOCATION REC-PERIOD-MA AQUIFER	'GRID REF.	DEPTH (M)	datum POINT	SURFACE LEVEL
NZ22/22.	25624	25	17	RUSHYFORD NORTH EAST, GREAT CHILTON 1957-1985 NRA-N MAGNESIAN LIMESTONE	NZ 28752896	62.50	92.65	92.53
SE94/5	26352	26	6	DALTON ESTATE, DALTON HOLME 1889-1985 NRA-Y CHALK AND UPPER GREENSA	$\begin{aligned} & \text { SE } 96514530 \\ & \text { ND } \end{aligned}$	28.50	34.57	33.50
SE43/9	27360	27	17	PEGGY ELLERTON FARM, HAZELWOOD 1968-1985 NRA-Y MAGNESIAN LIMESTONE	SE 45353964	55.42	51.40	51.40
TF03/37	30229	30	13	NEW RED LION, ASLACKBY (CONTINUES OLD RED LION) 1964-1985 NRA-N LINCOLNSHIRE LIMESTONE	TF 08853034	50.00	33.45	33.82

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment)* to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland, under the aegis of the Scottish Development Department, in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the seven River Purification Boards. In England and Wales responsibility passed, on the lst September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water quality data are, however, routinely collected and archived by the Environment Protection Division of the Department of the Environment (NI); data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional headquarters of the NRA and are open for inspection by the public - free of charge. Persons wishing

[^12]to consult the registers are advised to first contact the individual regional headquarters; a list of addresses is given on pages 196 to 198.

Data Retrieval

A range of retrieval options has been developed by Her Majesty's Inspectorate of Pollution to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on those data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
HMIP Room A4.26
Romney House
43 Marsham Street
London SW1P 3PY
Telephone: 0712768245

Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DOE (NI) - see page 197.

Figure 19. Water quality monitoring station location map.

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 19 (previous page). For each site 1989, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive, the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations, the Dept. of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 196 to 198 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (see page 46); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain, the reference number, name, catchment area and grid reference of the gauging station whose flow record is used to determine the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident some method of flow adjustment may have been employed to allow for the differing catchment areas.

For the Northern Ireland monitoring sites, reference details of the co-located gauging stations are given; the flow data for these stations are held on the Surface Water Archive at Wallingford.

1989 flow data for all but one of the relevant gauging stations may be found in the River Flow

Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1989 are, however, included at the head of the water quality listing.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at or below the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD(atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DOE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1989 Data

Samples

The number of samples taken for each determinand during 1989. Where a proportion of analytical results were below the limit of detection, the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than nine. Exclusion may also result from a very uneven sampling pattern through the year.

Mean

The average* of all the sample values for each determinand in 1989 . Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean

Maximum / Date

The maximum determinand value recorded during 1989 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Period of Record Data

For half of the featured sites, the pre-1989 summary statistics are presented for the fourteen-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1989 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-88, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the pre-1989 period.

Quarterly Averages

The mean quarterly average ${ }^{\star}$ for each of the threemonthly periods: January to March, April to June, July to September and October to December.

* In all cases this refers to the temporal mean rather than the flow-weighted average.

Mersey at Flixton
1989
$\begin{array}{lr}\text { Harmonised monitoring station number: } & 01001 \\ \text { Measuring authority: NRA-NW } & \text { NGR: } \\ \text { M } & \text { (S.J) } 742938\end{array}$

Determinand	Units	1989					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	48	11.8	22.5	19/07	5.0	27/12
pH	pH units	49	7.4	7.7	19/07	7.1	04/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	49	449	663	04/10	250	12/04
Suspended solids	mg / l	48	20.6	108.0	26/07	2.0	05/04
Dissolved oxygen	$\mathrm{mg} / 10$	48	6.81	11.17	27/12	2.65	30/08
BOD (inhibited)	$\mathrm{mg} / 10$	47	5.9	17.0	28/06	2.4	04/10
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	45	1.586	4.300	24/05	0.180	30/03
Nitrite	mg / N	45	0.321	1.100	24/05	0.040	30/03
Nitrate	mg / N	45	4.74	- 7.30	13/09	1.78	30/03
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	45	41.5	80.0	13/12	21.0	12/04
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	37	93.2	147.0	21/06	47.0	27/12
Orthophosphate	mg / P	45	1.753	3.400	04/10	0.300	30/03
. Silica	$\mathrm{mg} / \mathrm{SiO}$	40	8.12	10.14	04/10	2.30	17/05
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	47	32.6	40.0	10/05	23.0	27/12
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	47	7.3	9.1	04/10	4.6	28/06

Flow measurement station : 069007-Ashton Weir C.A. $\left(\mathrm{km}^{2}\right): 660.0 \quad$ NGR : 33 (SJ) 772936

Period of record: 1975-1988							
Mean	Percentiles			Quarterly averages			
	5\%	.50\%	95\%	J-M	A.J.	J.S	O-D
10.8	3.0	10.0	19.7	5.6	12.5	16.4	8.8
7.3	6.9	7.3	7.6	7.3	7.3	7.3	7.3
497	284	480	760	470	514	530	463
38.1	10.0	21.0	114.6	47.9	32.6	28.9	43.7
8.1	5.0	8.1	11.3	10.1	7.3	6.3	8.7
6.5	3.2	5.6	13.0	6.8	6.8	5.6	6.9
2.09	0.43	1.90	4.42	2.13	2.50	- 1.96	1.68
0.27	0.05	0.20	0.69	0.09	0.32	0.47	0.17
3.9	2.0	3.6	6.6	2.9	4.2	4.9	3.5
54.1	28.0	52.0	87.7	58.9	53.1	54.6	48.2
94.3	54.4	95.0	140.0	86.6	101.4	99.0	88.3
1.12	0.18	0.98	2.55	0.64	1.28	1.61	0.90
7.92	5.30	8.10	10.22	7.70	6.96	8.80	8.41
32.6	23.7	33.0	39.3	32.6	32.5	33.1	31.6
7.0	4.7	7.0	9.2	6.7	7.1	7.3	6.7

Ribble at Samlesbury

1989

Flow measurement station: 071001-Samlesbury
C.A. $\left(\mathrm{km}^{2}\right)$: 1145.0 NGR : 34 (SD) 589304

Period of record: 1974-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
9.4	1.0	9.8	17.0	3.9	11.6	15.0	7.7
7.7	7.0	7.7	8.6	7.5	7.9	7.9	7.6
418	234	410	640	418	454	434	363
19.7	3.0	9.0	68.5	20.4	15.3	17.3	26.7
10.3	7.7	10.3	12.9	11.8	9.9	8.9	10.8
2.9	1.1	2.5	6.4	2.8	3.3	2.7	2.9
0.27	0.05	0.15	0.85	0.53	0.18	0.14	0.23
0.08	0.02	0.06	0.20	0.06	0.12	0.09	0.06
4.1	1.3	3.5	9.7	3.4	5.3	4.7	3.0
33.3	14.0	30.0	. 58.7	39.3	36.0	32.6	- 25.6
113.8	65.0	117.0	151.7	108.5	120.3	117.6	107.6
0.40	0.10	0.30	1.05	0.24	0.50	0.54	0.26
3.26	0.20	3.60	5.80	4.26	1.88	2.75	4.65
51.0	34.0	52.0	65.0	51.1	52.8	51.4	50.1
5.2	2.7	5.0	7.9	5.0	5.7	5.3	4.7
3.8	2.0	3.6	6.6	3.4	4.4	4.3	3.3
29.7	9.5	25.0	64.3	29.6	35.3	33.2	+ 20.6

Eden at Temple Sowerby

1989

Harmonised monitoring station number: 01017
Measuring authority : NRA-NW NGR : 35 (NY) 604281

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	13	11.1	19.0	13/07	3.5	13/12
pH units	13	8.4	9.2	13/07	7.8	12/01
$\mu \mathrm{S} / \mathrm{cm}$	13	404	498	13/07	261	18/10
mg / l	12(1)	8.8	44.0	09/03	<1.0	13/07
$\mathrm{mg} / \mathrm{l} 0$	13	11.55	14.70	15/06	.10.10	09/03
$\mathrm{mg} / \mathrm{IO}$	13	1.6	2.6	15/06	0.9	13/12
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12(2)	0.054	0.100	13/12	<0.010	18/05
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.029	0.100	15/06	0.010	16/11
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	1.39	2.30	16/11	0.56	13/07
$\mathrm{mg} / \mathrm{Cl}$	12	19.7	28.0	13/07	14.0	18/10
$\mathrm{mg} / \mathrm{CaCO} 3$	12	150.6	190.0	15/06	21.0	09/02
$\mathrm{mg} / \mathrm{l} P$	12	0.126	0.300	13/12	0.020	09/03
$\mathrm{mg} / \mathrm{S} \mathrm{SO}$	12	2.82	4.00	09/02	0.18	18/05
$\mathrm{mg} / \mathrm{lla}$	12	60.8	69.8	13/12	38.3	18/10
$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	12	9.9	14.9	15/06	4.8	18/10
mg / K	12	3.3	4.9	10/08	1.9	18/10
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	11.7	19.6	13/07	6.5	09/03

Flow measurement station : 076005 - Temple Sowerby C.A. $\left(\mathrm{km}^{2}\right): 616.4 \quad$ NGR : 35 (NY) 605283

Period of record: 1975-1988							
Mean	Parcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
10.1	2.6	9.5	18.5	4.4	12.1	15.7	7.6
8.0	7.4	8.0	8.7	7.9	8.2	8.2	7.9
362	225	378	474	331	361	379	346
7.8	1.0	4.0	21.6	7.0	7.8	5.1	10.0
11.2	8.8	11.1	13.8	12.4	11.5	10.6	11.0
1.8	0.8	1.7	3.3	1.7	1.9	2.1	1.7
0.07	0.01	0.04	0.20	0.07	0.05	0.06	0.06
0.03	0.01	0.02	0.06	0.02	0.03	0.02	0.02
1.3	0.1	1.2	2.8	1.9	1.4	1.0	1.5
19.4	10.0	18.0	30.5	19.9	20.2	21.7	15.8
149.0	85.3	157.0	191.8	145.1	155.1	148.7	150.9
0.15	0.02	0.11	0.42	0.09	0.19	0.21	0.10
2.39	0.38	2.47	4.35	3.10	1.41	2.16	3.03
57.1	33.7	58.0	76.9	56.5	57.4	58.3	56.3
9.1	4.1	8.8	14.7	8.4	10.4	10.3	7.8
2.8	1.6	2.5	5.0	2.2	3.0	3.5	2.4
10.0	5.0	9.0	16.6	9.6	10.7	11.3	7.7

South Tyne at Warden Bridge

Harmonised monitoring station number:	02021
Measuring authority:	NRA-N

Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD \{inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride

Harmonised monitoring station number : 02058
Measuring authority: NRA-N NGR: 45 (NZ) 265131

Determinand	Units	1989					
		Samples	Mean	Max.	Oate	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$,	9.1	17.0	23/08	3.0	12/12
pH	pH units	11	7.5	8.3	09/05	7.0	14/02
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	11	158	257	10/10	75	$12 / 12$
Suspended solids	$\mathrm{mg} / 1$	11 (1)	34.4	212.0	11/07	<1.0	12/12
Dissolved oxygen	mg / O	11	10.34	12.70	12/12	7.10	10/10
BOD (intribited)	$\mathrm{mg} / 10$	11	2.1	2.8	14/02	1.3	23/08
Ammoniacal nutrogen	mg / N	11 (5)	0.109	0.300	12/09	<0.010	10/01
Nitrite	mg / l	11 (8)	0.015	0.030	12/12	<0.010	10/01
Nitrate	mg / N	11	1.47	6.30	16/11	0.06	12/:2
Chloride	$\mathrm{mg} / \mathrm{Cl}$	11	16.0	78.0	16/11	7.0	15/03
Total alkalinity	$\mathrm{mg}_{\mathrm{g}} \mathrm{CaCO}_{3}$	11	53.9	126.0	09/05	24.0	14/02
Orthophosphate	mg / P	10 (4)	0.021	0.038	10/10	<0.010	15/03

Flow measurement station: 025001-Broken Scar C. A. $\left(\mathrm{km}^{2}\right)$: 818.4

NGR : 45 (NZ) 259137
Period of record: 1975-1988

Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J		O-D
9.2	1.1	8.0	18.9	3.4	11.9	15.3	6.1
7.7	6.9	7.7	8.2	7.6	7.7	7.6	7.5
197	120	185	298	231	209	170	176
12.0	1.0	6.0	49.0	15.2	7.0	10.7	18.8
11.0	8.3	11.0	13.4	12.6	10.5	9.3	11.6
1.8	0.8	$i .7$	3.2	1.9	1.8	1.8	1.7
0.12	0.01	0.06	0.31	0.13	0.10	0.08	0.14
0.02	0.01	0.02	0.04	0.02	0.02	0.02	0.02
1.3	0.3	1.0	3.0	1.9	1.3	0.7	1.4
14.6	6.0	14.0	25.1	19.4	14.4	11.5	15.1
62.8	34.9	60.0	94.1	64.4	69.3	60.2	59.5
0.05	0.01	0.03	0.14	0.04	0.04	0.07	0.05

Trent at Nottingham

Harmonised monitoring station number:	03007
	NGR

Measuring authority : NRA-ST NGR 43 (SK) 581383

Flow measurement station : 028009 - Colwick C.A.(km²) : 7486.0 NGR:43 (SK) 620399

Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	0.0
13.2	6.0	13.0	21.8	7.8	15.3	19.1	11.3
7.7	7.3	7.7	8.2	7.6	7.8	7.8	7.6
886	607	898	1130	800	904	957	875
25.5	7.4	17.0	75.2	29.6	21.6	20.3	29.1
9.7	7.6	9.8	11.7	10.7	9.5	8.8	9.8
3.5	1.7	3.4	5.9	3.2	3.8	3.7	3.2
8.5	4.4	6.2	18.9	7.2	8.6	9.2	8.5
0.39	0.01	0.30	0.99	0.67	0.29	0.23	0.37
8.5	6.1	8.5	11.1	8.4	8.7	8.3	8.5
98.1	54.5	97.0	146.5	84.9	97.3	115.0	93.7
159.7	120.0	164.0	188.0	156.8	163.3	$162.1{ }^{\text {. }}$	155.5
1.49	0.51	1.46	2.70	0.92	1.55	2.00	1.47
6.98	2.66	7.30	11.08	8.40	4.59	6.55.	7.64
168.4	107.4	166.0	227.9	53.7	74.3	71.7.	62.6
97.1	70.4	100.0	115.4	95.2	111.4	89.4	92.4
21.0	13.8	21.2	28.0	21.1	21.8	20.3	18.9
9.5	6.5	9.2	14.0	7.4	9.4	11.2.	9.8
70.0	32.7	69.0	115.2	56.3	69.0	81.9	67.3

Derwent at Wilne

Harmonised monitoring station number
Measuring authority : NRA-ST NGR: 43 (SK) 452315

Determinand	Units	1989						Period of record: 1975-1988							
		Samples	Mean	Max.	Date	Min.	Date	Mean	Percentiles			Quarterly averages			
									5\%	50\%	95\%	J.M	A.J	J-S	O-D
Temperature	${ }^{\circ} \mathrm{C}$	35	13.4	23.0	25/07	4.0	19/12	11.9	3.5	11.0	21.0	6.2	14.0	17.7.*	9.4
pH	${ }^{\text {pH }}$ units	35	8.0	9.0	03/05	7.7	20/12	7.8	7.4	7.8	8.2	7.7	7.9	7.9	7.7
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	35	699	970	12/10	330	11/04	657	425	645	948	551	670	771	640
Suspended solids	mg / l	35 (6)	8.7	51.0	11/04	<2.0	03/05	16.3	4.0	9.0	54.9	23.8	10.3	11.4	19.6
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	35	9.72	13.60	03/05	4.70	25/07	10.1	7.2	10.2	12.8	11.7	10.0	8.6	10.3
BOD (inhibited)	$\mathrm{mg} / 10$	33	2.8	4.1	22/06	1.7	08/03	2.5	1.0	2.4	4.2	2.3	2.5	2.6	. 6
Dissolved organic carbon	$\mathrm{mg} / \mathrm{l} 0$	35	5.2	7.2	20/12	2.8	07/03	4.9	2.1	4.1	11.4	3.9	4.9	5.9	5.
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	35 (1)	0.278	0.700	16/02	<0.040	01/06	0.31	0.05	0.25	0.74	0.39	0.30	0.23	0.34
Nitrate	mg / N	35	5.02	11.90	13/09	3.10	11/04	4.3	3.0	4.3	5.4	4.2	4.2	4.3	4.2
Chloride	$\mathrm{mg} / \mathrm{Cl}$	35	72.2	110.0	08/12	22.0	11/04	-66.8	33.8	62.5	114.0	55.0	66.3	84.5	62.8
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	24	172.4	442.0	21/09	93.0	11/04	154.6	108.1	160.0	190.0	$137: 4$	161.2	169.8	149.7
Orthophosphate	mg / P	13	0.840	1.500	29/06	0.280	11/04	0.87	0.21	0.82	1.86	0.48	0.88	1.27	0.80
Silica	$\mathrm{mg} / \mathrm{ISiO} 2$	12	4.82	8.10	15/11	0.42	15/05	5.15	0.65	5.51	8.65	5.79	3.94	4.36	6.45
Sulphate	$\mathrm{mg} / \mathrm{ISO}$	12	110.7	175.0	12/10	62.0	08/03	102.7	59.2	97.3	170.0	79.3	9.8	24.8	92.6
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	12	73.7	80.0	12/10	61.0	21/02	72.7	54.6	75.0	87.1	67.6	76.7	78.0	67.6
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	12	19.9	32.0	12/10	9.8	08/03	15.5	8.4	15.2	23.0	13.1	17.0	18.3	13.3
Potassium	mg / K	12	5.9	9.0	12/10	3.4	08/03	5.1	3.0	5.0	6.7	4.6	5.1	5.8	4.8
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	57.8	100.0	12/10	30.0	08/03	46.9	20.1	44.8	76.6	34.2	51.5	63.3	40.3

Flow measurement station : 028067 - Church Wilne C.A. $\left(\mathrm{km}^{2}\right): 1177.5 \quad$ NGR : 43 (SK) 438316

1989

Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	25	12.6	23.0	24/05	6.0	18/03
pH	pH units	25	7.9	8.5	18/07	7.6	$11 / 11$
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	25	885	1140	11/12	520	11/04
Suspended solids	mg/l	26 (1)	28.0	165.0	15/12	<2.0	11/12
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	24	10.33	12.40	22/05	8.10	17/06
BOD \{inhibited)	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	25	4.1	10.0	15/12	2.5	$11 / 12$
Dissolved organic carbon	mg / O	24	7.2	9.5	11/17	5.4	$07 / 03$
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	25	0.361	1.500	03/04	0.040	$18 / 07$
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	25	8.99	11.50	11/12	5.90	$11 / 04$
Chloride	$\mathrm{mg} / \mathrm{Cl}$	26	104.0 ,	150.0	19/10	41.0	11/04
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	25	166.0	333.0	30/06	107.0	15/12
Orthophosphate	$\mathrm{mg} / \mathrm{l} P$	12	1.838	3.300	$30 / 06$	0.700	11/04
Silica	$\mathrm{mg} / \mathrm{/l} \mathrm{SiO} 2$	12	7.22	12.00	11/12	0.80	22/05
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	14	166.1	220.0	19/10	115.0	03/04
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	13	96.2	110.0	11/12	78.0	03/04
Magnesium	$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	13	23.3	27.5	17/06	17.0	11/11
Potassium	mg / K	12	12.4	19.5	18/09	6.7	18/03
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	83.3	135.0	19/10	40.0	18/03

Teme at Powick

Harmonised monitoring station number
Measuring authority : NRA-ST NGR : 32 (SO) 836525
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Dissolved organic carbon
Ammoniacal nitrogen
Nitrate
Chloride
Total alkalinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	29.	10.6	21.0	19/07	3.0	10/10
pH units	30	8.1	8.6	19/07	7.7	01/03
$\mu \mathrm{S} / \mathrm{cm}$	30	427	530	19/10	299	01/03
mg / l	$30(1)$	22.0	197.0	10/04	<2.0	17/11
$\mathrm{mg} / 10$	30	10.60	13.40	06/01	6.20	16/11
$\mathrm{mg} / 10$	30 (4)	1.6	4.5	14/12	<0.5	19/04
$\mathrm{mg} / 10$	25	3.7	9.6	15/06	1.8	27/11
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	30 (7)	0.102	0.400	29/09	0.020	18/05
mg / l	30	4.31	8.30	14/12	2.10	31/07
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	30	27.3	68.0	29/09	19.0	10/04
$\mathrm{mg} / 1 \mathrm{CaCO}_{3}$	29	154.9	204.0	$31 / 07$	82.0	16/11
$\mathrm{mg} / \mathrm{l} \mathrm{P}$	14	0.215	0.300	10/04	0.080	13/03
$\mathrm{mg} / \mathrm{SHO} \mathrm{S}_{2}$	13	5.23	8.80	$27 / 11$	0.20	05/05
$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	13	41.3	87.0	05/06	21.0	01/03
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	13	68.5	91.0	$31 / 07$	45.0	01/03
$\mathrm{mg} / \mathrm{Mg}$	13	12.1	17.1	05/06	6.8	01/03
$\mathrm{mg} / \mathrm{l} K$	13	3.5	5.8	29/09	1.5	10/04
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	13	16.7	23.5	10/10	8.0	10/04

Flow measurement station : 054029-Knightsford Br. C.A. $\left(\mathrm{km}^{2}\right): 1480.0$ NGR : 32 (SO) 735557

Period of record: 1975-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J.M	A-J	J-S	O-D
10.4	2.0	$10.0{ }^{1}$	19.5	5.0	12.6	16.5 .1	7.7
8.0	7.4	8.0	8.5	7.8	8.1	8.2	7.8
411	270	410	520	365	421	441	412
41.2	3.0	13.0	206.0	73.2	39.1	13.7	48.6
11.0	8.8	11.0	13.3	12.2	10.7	9.8	11.2
2.0	0.7	1.6	4.5	1.8	2.2	1.9	1.8
5.1	2.0	3.7	15.6	4.9	5.4	5.2	5.6
0.08	0.01	0.05	0.23	0.10	0.08	0.06	0.07
4.2	2.2	4.1	6.3	5.3	4.4	3.4	4.1
22.5	15.0	22.0	30.0	22.4	21.5	23.9	21.9
137.8	77.0	140.0	186.2	117.3	147.7	163.8	125.0
0.18	0.03	0.13	0.40	0.12	0.13	0.23	0.27
5.18	0.52	5.61	8.63	6.15	4.34	4.81	7.01
37.5	23.0	36.0	57.0	35.9	36.5	40.7	35.2
58.3	37.2	59.0	74.0	52.6	61.8	66.5	53.0
10.4	5.0	9.8	17.9	8.4	10.4	11.6	9.4
3.1	1.5	3.0	5.0	2.6	3.0	3.9	3.3
14.2	9.5	13.9	19.0	12.3	14.6	16.3	13.2

Harmonised monitor Measuring authority	station nu ZA-ST	ber : NGR	$2 \text { (SP) }$	$\begin{array}{r} 034 \\ 0344 \end{array}$				Flow C. A.	$\left.\mathrm{I}^{2}\right): 22$	$\begin{aligned} & \text { ment s } \\ & 210.0 \end{aligned}$	ation :	$\begin{aligned} & 54002 \\ & \text { JGR : } 4 \end{aligned}$	$\begin{aligned} & \text { - Eves } \\ & 2 \text { (SP) } \end{aligned}$	ham 04043	
				198						Period of	fecord:	777-1			
Determinand	Unite	Samples	Mean	Max.	Date	Min.	Data	Mean	5\%	Percent 50\%	$\begin{aligned} & \text { iles } \\ & \mathbf{9 5 \%} \\ & \hline \end{aligned}$	J-M	Quarte A-J	$\begin{aligned} & \text { avera } \\ & \text { J-S } \end{aligned}$	O-D
Temperature	${ }^{\circ} \mathrm{C}$	34	11.5	21.0	18/07	4.0	04/12	11.1	3.0	11.0	20.0	4.9		16.9	8.8
pH	pH units	32	7.9	8.6	18/05	7.6	20/12	8.0	7.6	7.9	8.7	7.9	8.2	8.0	7.8
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	32	970	1210	$31 / 07$	600	$20 / 12$	919	607	933	1157	827	894	1023	936
Suspended solids	mg / I	32	22.5	78.0	10/11	6.0	04/12	28.7	6.3	18.0	90.5	44.8	28.7	17.8	23.3
Dissolved oxygen	mg / f	34	10.55	12.90	24/11	7.20	07/07	10.5	7.8	10.4	13.2	11.8	10.6	9.0	10.6
BOD (inhibited)	$\mathrm{mg} / \mathrm{I} 0$	31	2.9	8.0	18/05	1.0	09/10	3.2	1.3	2.8	7.3	2.8	4.5	3.1	10.4
Dissolved organic carbon	mg / f	26.	7.6 0.230	10.8	$20 / 12$	4.3	04/05	9.2	5.2	7.3	19.9	2.8 9.3	4.6 9.6	9.5	2.4 9.4
Ammoniacal nitrogen Nitrate	mg / N mg / N	$32(1)$	0.230 10.93	0.900 16.50	$30 / 01$ $15 / 11$	0.010 710	$05 / 06$ $04 / 07$	0.27	0.01	0.19	0.77	0.51	0.16	0.13	0.28
Nitrate Chloride	$\mathrm{mg}_{\mathrm{mg} / \mathrm{/I} \mathrm{Cl}}$	32	10.93 88.0	16.50 138.0	$15 / 11$ $31 / 07$	7.10 43.0	04/07 $10 / 04$	10.3 73.2	7.4 37.4	10.2	13.5	11.1	9.6	9.8	10.8
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	29	201.3	248.0	24/11	120.0	20/12	73.2 197.2	37.4 150.0	200.0	106.0 231.1	64.5 192.0	64.9	86.7 198.3	76.1
Orthophosphate	mg / P	14	1.809	3.700	28/06	0.290	10/04	1.72	0.49	1.50	3.60	192.0	200.7	198.3	197.2
Silica	$\mathrm{mg} / \mathrm{SiO} \mathrm{Si}_{2}$	14	11.62	15.00	09/10	6.30	04/05	10.21	3.61	10.75	15.48	9.49	6.31	2.41	2.00
Sutphate	$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	14	182.5	265.0	05/06	91.0	20/12	191.0	95.1	195.0	267.3	9.49	6.61	10.91	12.91
Calciurn	$\mathrm{mg} / \mathrm{Ca}$	15	126.1	156.0	31/07	90.0	20/12	119.8	85.7	125.0	140.0	118.3	116.0	15.4	97.8
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	15	32.1	72.0	09/10	15.6	20/12	26.9	15.0	127.0	140.0 37.0	118.3	116.0	123.0	123.1
Potassium	mg / K	14	9.9	15.5	09/10	1.5	10/04	9.5	5.9	9.0	14.5	7.1	28.1	30.0	27.2
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$. 14	58.4	106.0	31/07	22.0	20/12	53.3	19.9	51.0	92.0	39.9	51.5	67.5	10.4 58.8

Aire at Fleet Weir

$\begin{array}{ll}\text { Harmonised monitoring station number : } \\ \text { Measuring authority : NRA-Y } & 04005\end{array}$
Determinand

Flow
Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chioride
Total alkalinity
Orthophosphate
Sitica
Sulphate
Caltcium
Magnesium

Units	1989					
	Samples	Mean	Max.	Date	Min.	Da
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	365	13.50	93.24	24/03	3.787	09/1
${ }^{\circ} \mathrm{C}$	39	14.2	21.0	21/07	7.7	15/12
pH units	44	7.6	8.0	20/02	6.9	27/07
$\mu \mathrm{S} / \mathrm{cm}$	44	737	1160	06/10	353	12/04
mg/l	45 (1)	17.8	69.0	12/04	<1.0	02/02
mg / O	42 (1)	6.02	13.13	15/12	<0.50	08/08
mg / O	43	7.7	16.8	10/11	2.8	28/12
mg / N	44 (3)	1.850	6.500	05/12	<0.040	06/04
mg / N	44 (3)	0.290	1.300	08/08	<0.010	06/10
mg / N	44	5.62	11.40	27/07	1.06	22/11
$\mathrm{mg} / \mathrm{Cl}$	44	77.3	135.0	06/10	31.8	27/07
$\mathrm{mg} / \mathrm{CaCO}_{3}$	26	138.5	212.0	27/07	82.0	28/12
mg / P	44 (2)	1.849	5.500	25/08	<0.100	28/04
$\mathrm{mg} / \mathrm{SiO}_{2}$	17	9.39	16.20	06/10	6.28	03/03
$\mathrm{mg} / \mathrm{SO}_{4}$	19	100.3	159.0	06/10	43.0	06/04
$\mathrm{mg} / \mathrm{Ca}$	37	61.1	77.7	25/08	46.0	06/0
$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	37	11.6	19.1	04/05	5.9	03/03

Flow measurement station : 027080-Fleet Weir
C.A. $\left(\mathrm{km}^{2}\right): 865.0$

NGR : 44 (SE) 381295

Period of record: 1975-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.4	4.6	12.0	21.0	6.9	14.4	17.7	10.3
7.5	7.2	7.5	7.8	7.5	7.4	7.4	7.5
676	387	650	1103	671	688	760	613
26.9	8.0	17.0	. 85.0	31.8	27.2	17.2	32.9
7.7	2.7	7.9	11.5	10.3	6.7	5.4	8.4
7.9	3.9	7.3	14.4	8.0	8.5	7.3	7.8
2.20	0.46	1.74	5.43	2.19	2.44	2.72	1.91
0.36	0.07	0.29	0.90	0.16	0.44	0.57	0.27
4.9	2.6	4.7	7.7	4.2	5.2	5.7	4.6
81.2	34.6	74.0	157.7	84.9	84.0	91.4	70.2
121.5	75.0	124.0	159.0	113.7	121.2	130.9	116.3
1.41	0.17	1.13	3.46	0.84	1.48	1.97	1.04
7.69	5.01	7.68	10.29	7.81	6.45	8.29	7.92
111.7	49.3	104.0	200.0	97.6	23.8	28.5	0.3
60.4	45.6	60.6	75.9	60.4	61.4	60.8	60.8
13.2	5.4	12.6	20.9	13.1	13.9	15.0	11.3

Derwent at Loftsome Bridge
Harmonised monitoring station number: 04014
Measuring authority : NRA-Y NGR: 44 (SE) 707302

Determinand	Units	1989					
		Samples	Mean	Max.	Date	Min.	Date
Tempersture	${ }^{\circ} \mathrm{C}$	17	12.3	20.0	21/07	4.0	03/03
pH	pH units	19	8.0	8.7	21/07	7.4	21/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	18	590	678	12/09	503	16/03
Suspended solids	mg / l	19	8.5	27.0	04/01	4.0	14/08
Dissolved oxygen	$\mathrm{mg} / 10$	17	9.68	12.85	03/03	7.43	06/10
BOD (inhibited)	$\mathrm{mg} / 10$	19	1.6	3.1	21/07	0.8	03/03
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	19 (4)	0.101	0.300	21/11	<0.040	06/06
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	18 (1)	0.039	0.100	31/10	<0.010	05/09
Nitrate	$\mathrm{mg} / \mathrm{IN}$	18	3.58	6.20	04/01	1.24	08/11
Chloride	$\mathrm{mg} / \mathrm{ll}$	19	32.8	39.0	06/10	23.0	21/11
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	18	153.1	171.0	06/06	124.0	08/11
Orthophosphate	mg / P	18 (4)	0.164	0.300	06/10	<0.030	16/03
Silica	$\mathrm{mg} / \mathrm{/} \mathrm{SiO}$	17 (2)	6.01	10.90	06/10	<0.10	21/07
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	18	87.1	158.0	06/10	27.3	31/10
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	16	98.0	i11.0	12/09	76.5	05/07
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	16	9.8	11.2	12/09	7.7	02/02

Flow measurement station : 027041 - Buttercrambe C.A. $\left(\mathrm{km}^{2}\right): 1586.0 \quad$ NGR : 44 (SE) 731587

Period of record: 1975-1988							
Mean	Percentiles			Querterly averages			
	5\%	50\%	95\%	J-M	A-J		O-D
10.6	3.0	10.0	19.6	5.0	12.5	16.7	7.9
7.9	7.5	7.9	8.3	7.8	8.0	7.9	7.8
513	361	525	605	515	504	518	514
24.9	3.5	13.4	90.0	38.2	20.6	11.5	32.7
10.7	8.8	10.8	12.6	11.8	10.8	9.5	10.7
1.6	0.7	$t .5$	2.9	1.9	1.8	1.3	1.6
0.11	0.01	0.09	0.25	0.14	0.09	0.09	0.11
0.04	0.02	0.04	0.08	0.04	0.05	0.05	0.05
4.4	2.6	4.1	7.0	- 5.4	4.7	3.4	4.3
30.4	22.0	30.0	40.6	34.2	29.6	29.6	31.5
147.9	104.4	153.0	174.0	146.0	153.1	349.9	144.5
0.10	0.01	0.09	0.21	0.07	0.08	0.13	0.10
6.54	3.60	6.64	9.19	7.34	5.81	6.61	7.01
78.0	48.4	79.9	97.0	79.8	75.1	78.3	79.8
92.1	65.8	91.2	103.0	101.0	90.4	86.1	88.8
10.1	4.6	8.8	19.5	12.4	9.7	8.0	.

Nene at Wansford

Harmonised monitoring station number
Measuring authority : NRA-A NGR : 52 (TL) 082996
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD finhibited)
Ammeniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Silica
Sufphate
Potassium
Sodium

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	35	12.9	23.9	24/07	2.5	14/12
pH units	36	8.1	8.9	15/05	7.5	25/10
$\mu \mathrm{S} / \mathrm{cm}$	23	1009	1280	04/12	808	27/04
mg / l	16	12.0	26.0	18/04	2.5	06/09
$\mathrm{mg} / 10$	36	9.88	13.00	09/05	7.90	01/08
$\mathrm{mg} / \mathrm{l} 0$	35	2.7	8.8	23/05	1.0	11/09
$\mathrm{mg} / \mathrm{IN}$	35 (6)	0.211	0.700	09/10	<0.030	23/05
mg / N	12	0.094	0.300	$10 / 07$	0.030	07/08
mg / N	36	8.84	15.70	27/12	4.80	01/08
$\mathrm{mg} / \mathrm{ll}$	36	80.1	121.0	25/10	43.2	27/04
$\mathrm{mg} / \mathrm{CaCO} 3$	16	212.5	235.0	11/12	154.0	13/11
$\mathrm{mg} / \mathrm{SiO}_{2}$	16(1)	7.94	41.60	15/05	<0.20	09/05
$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	15	179.6	215.0	16/10.	129.0	18/04
mg/l K	10	11.3	14.0	30/10	6.3	18/04
$\mathrm{mg} / \mathrm{Na}$	10	65.0	81.4	31/08	32.4	18/04

Flow measurement station : 032001-Orton
C.A. $\left(\mathrm{km}^{2}\right): 1634.3$ NGR : 52 (TL) 166972

Period of record: 1974-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J.S	$0 \cdot 0$
11.4	3.0	11.0	21.0	5.2	13.9	17.8	8.2
8.1	7.7	8.0	8.8	7.9	8.3	8.2	7.9
931	718	922	1200	907	919	974	965
21.8	4.0	13.6	67.6	29.4	22.9	14.7	20.2
10.6	8.0	10.7	13.9	12.0	10.8	9.3	10.9
- 3.7	1.3	3.0	8.9	3.2	6.0	3.4	2.6
0.36	0.05	0.19	1.19	0.73	0.18	0.12	0.56
0.11	0.03	0.10	0.20	0.09	0.12	0.08	0.13
9.8	5.5	9.3	15.3	12.1	9.3	6.9	10.2
72.8	- 41.0	71.0	109.2	64.6	68.7	82.8	75.0
208.2	170.0	210.0	235.0	206.9	206.8	209.1	206.7
5.58	0.14	6.06	9.21	6.95	2.65	4.47	7.89
167.4	104.8	166.0	229.9	55.7	63.0	92.8	77.2
10.6	5.3	9.7	21.0	7.8	10.6	12.8	10.9
52.9	22.1	47.6	100.8	41.9	49.6	62.5	57.2

Harmonised monitoring station number : 05722
Measuring authority : NRA-A NGR: 63 (TG) 267198
Doterminand

Temperature
pH
Conductivity
Suspended solds
BOO fintribited)
Ammoriacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

Units	Samplos	Mean	Max.	Date	Min.	Oa
${ }^{\circ}$	31	11.5	21.0	07/08	3.4	04/12
phl units	34	8.0	8.5	21/08	7.3	18/09
$\mu \mathrm{S} / \mathrm{cm}$	25	774	835	13/11	717	24/07
mg/l	25(1)	3.6	13.5	26/01	0.0	24/07
mg / O	34 (5)	1.5	3.4	22/05	<1.0	10/07
$\mathrm{mg} / 1 \mathrm{~N}$	33 (7)	0.116	1.000	20/11	<0.020	
$\mathrm{mg} \cap \mathrm{N}$	16	0.062	0.100	22/05	0.030	21/08
$\mathrm{mg} / 1 \mathrm{~N}$	33	5.47	7.50	26/01	3.30	24/07
$\mathrm{mg} / \mathrm{Cl}$	33	60.3	127.0	11/12	25.0	21/02
$\mathrm{mg} / \mathrm{CaCO} 3$	23	207.9	252.0	11/12	180.0	07/02
$\mathrm{mg} / \mathrm{S} \mathrm{SiO}_{2}$	20	7.19	11.83	23/10	1.66	24/07
$\mathrm{mg} / \mathrm{SO}_{4}$	23	84.4	111.0	20111	65.9	21/02
$\mathrm{mg} / \mathrm{Co}$	13	117.1	132.0	20111	106.0	$24 / 07$
$\mathrm{mg} / \mathrm{Mmg}$	13	8.5	11.6	$21 / 02$	6.9	24/04
mg / K	13	4.4	8.4	25/09	3.2	$24 / 07$
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	13	27.6	29.2	24/07	25.7	21/02

Flow measurement station : 034003 - Ingworth
C. A. $\left(\mathrm{km}^{2}\right)=164.7$

NGR: 63 (TG) 192296

Period of record: 1975-1988							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-d	J-S	O-D
10.8	3.0	10.0	19.2	5.6	12.3	16.7	8.2
7.8	7.3	7.8	8.2	7.7	7.8	7.9	7.7
728	610	730	828	742	702	725	744
8.3	1.2	5.2	23.9	25.8	6.4	4.2	6.2
1.8	0.5	1.7	3.2	1.8	2.2	1.8	1.3
0.15	0.01	0.10	0.51	0.25	0.10	0.09	0.14
0.07	0.01	0.06	0.20	0.07	0.06	0.10	0.08
5.9	3.5	5.8	9.0	7.7	5.9	4.6	5.9
57.9	47.5	56.0	74.7	60.3	55.6	56.1	60.1
220.7	177.6	218.0	258.8	223.6	208.2	219.9	240.7
8.07	3.40	8.30	13.06	8.76	5.01	6.85	10.04
80.0	54.9	79.0	112.0	83.9	82.9	71.8	85.4
118.0	90.7	117.0	143.0	119.3	117.2	114.5	121.2
7.3	4.8	7.5	9.3	7.5	7.7	7.1	7.2
4.0	2.4	4.0	5.6	4.2	3.7	3.9	4.5
30.0	20.0	27.7	48.0	30.3	29.5	29.6	29.9

Stour at Langham

Harmonised monitoring station number :
Measuring authority : NRA-A NGR • 62 (TM) 02810
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOO finhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chlaride
Total elkalinity
Sitica
Sulphate
Calcium
Magnesium
Potassium
Sodium

	1989					
Units	Samplea	Mean	Max.	Dato	Mis.	Date

Flow measurement station : 036006-Langham
C. A. $\left(\mathrm{km}^{2}\right): 578.0$ NGR : 62 (TM) 020344

Period of record: 1974-1988							
Mean	Percemtiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
11.2	3.0	11.0	20.0	4.9	13.5	16.9	8.
8.2	7.8	8.2	8.9	8.1	8.4	8.3	8.
906	730	910	1100	927	879	883	946
16.7	3.0	10.0	49.7	19.0	19.8	11.4	15.6
10.9	7.5	10.9	14.0	12.3	11.6	9.3	10.5
3.1	1.1	2.3	9.6	2.3	5.4	2.6	2.
0.13	0.02	0.08	0.38	0.21	0.08	0.08	0.14
0.08	0.02	0.07	0.16	0.08	0.09	0.04	0.09
8.3	2.1	7.6	16.0	12.5	7.9	4.4 .	8.8
65.6	38.2	64.0	96.8	55.7	61.2	72.8	70.2
243.3	198.5	250.0	280.0	243.8	242.4	249.4	250.3
7.47	0.20	7.95	13.00	7.51	3.40	8,39	-10.27
100.4	70.0	98.0	140.0	13.7	13.9	97.0	4.9
134.2	93.0	139.0	167.5	148.3	134.9	119.7	140.3
9.9	5.0	8.4	22.0	7.8	8.9	9.7	8.9
7.4	3.5	7.2	12.0	5.7	6.9	7.9	9.1
42.5	20.0	40.0	70.6	32.3	39.7	50.0	49.

Thames at Teddington Weir

Harmonised monitoring station number:	06010
Measuring authority: NRA-T	NGR: 51 (TQ) 171714

Measuring authority : NRA-T NGR : 51 (TQ) 171714
Determinand

Temperature
pH
Suspended solids
Dissolved oxygen
BOD finhibited
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Orthophosphate
Silice

	1989					
Units	Samples	Mean	Max.	Date	Min.	Date
		67	18.1	26.0	$24 / 07$	5.0

Flow measurement station : 039001-Kingston C.A. $\left(\mathrm{km}^{2}\right): 9948.0 \quad$ NGR: 51 (Ta) 177698

Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
11.6	4.0	11.5	20.0	5.8	13.8	18.1	9.7
8.1	7.6	8.0	8.8	8.0	8.3	8.0	7.8
22.1	5.0	14.3	76.9	29.2	22.2	13.4	24.4
10.2	7.1	10.2	13.2	11.3	10.8	8.6	10.0
2.9	1.1	2.4	6.7	2.2	4.3	3.0	2.1
0.32	0.01	0.23	0.89	0.34	0.19	0.38	0.36
0.11	0.06	0.10	0.20	0.10	0.10	0.11	0.13
7.4	5.4	7.1	10.3	8.2	6.6	6.6	7.6
41.2	30.0	40.0	57.0	39.7	38.4	45.0	42.4
1.30	0.39	1.08	2.72	0.78	1.06	1.99	1.41
10.49	2.90	11.50	14.60	11.03	6.77	11.16	13.23

Lee at Waterhall

Harmonised monitoring station number
Measuring authority : NRA-T
NGR : 52 (TL) 299099

Determinand	Units	1989					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	24	11.9	21.5	20/08	4.0	28/02
pH	pH units	24	7.9	8.3	01/09	7.3	02/08
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	10	800	974	11/10	545	15/08
Suspended solids	mg / l	11	21.0	78.0	25/04	3.0	10/12
BOD (inhibited)	$\mathrm{mg} / 10$	24	2.9	5.2	15/08	1.4	04/01
Dissolved organic carbon	$\mathrm{mg} / \mathrm{l} 0$	10	16.0	21.3	25/04	3.5	31/01
Arnmoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	24 (4)	0.349	3.900	07/11	<0.050	30/03
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	11	0.191	0.900	07/11	0.068	30/03
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	24	11.96	17.50	10/12	6.03	15/08
Chloride	$\mathrm{mg} / \mathrm{Cl}$	24	88.3	132.0	24/05	54.0	15/08
Total alkalinity	$\mathrm{mg} / \mathrm{l} \mathrm{CaCO} 3$:0	199.3	241.0	04/01	124.0	15/08
Orthophosphate	mg / P P	11	3.546	4.800	04/01	1.820	28/02
Sulphate	$\mathrm{mg} / \mathrm{SO}_{4}$	9	77.4	104.0	11/10	52.0	15/08
Catcium	$\mathrm{mg} / \mathrm{Ca}$	10	108.0	138.0	04/01	72.0	15/08
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	10	3.9	5.0	25/04	2.4	15/08
Potassium	mg / K	10	10.5	15.5	11/10	7.5	28/02
Sodium	$\mathrm{mg} / / \mathrm{Na}$	10	74.2	108.2	07/11	42.1	15/08

Flow measurement station : 038018-Water Hall C.A. $\left(\mathrm{km}^{2}\right): 150.0$ NGR : 52 (TL) 299099

Mean	Percentiles			Ouarterly averages			
	5\%	50\%	95\%	J.M	A.J	J.S	O.0
12.0	4.5	12.0	19.9	6.9	13.6	16.7	9.3
8.0	7.6	8.0	8.4	8.0	8.1	8.1	7.8
808	623	779	1066	885	775	784	814
15.1	3.0	11.0	42.7	15.9	12.3	13.6	14.9
2.7	1.3	2.4	4.6	2.7	3.1	2.2	2.4
13.0	2.6	7.2	55.4	16.0	17.4	6.4	17.1
0.23	0.05	0.11	0.78	0.37	0.09	0.09	0.32
0.14	0.05	0.11	0.29	0.11	0.12	0.34	0.18
11.6	7.7	11.4	16.3	12.7	12.2	12.3	13.7
69.4	44.4	67.0	105.0	86.5	65.1	75.6	74.9
211.0	129.1	223.0	253.9	203.4	217.6	217.5	200.3
2.33	1.10	2.34	3.50	2.10	2.24	2.51	2.47
79.6	54.3	77.5	112.7	77.8	79.6	77.6	81.5
118.8	93.1	118.0	143.0	119.4	120.4	118.1	-115.9
4.0	3.1	3.9	4.9	4.2	3.9	3.9	3.9
8.4	5.6	8.0	14.2	7.7	7.1	8.9	9.8
63.9	35.0	60.7	112.4	63.9	63.5	67.4	58.7

Great Stour at Bretts Bailey Briage

1989

Fow measurement station: 040011-Horton
C. A. $\left(\mathrm{km}^{2}\right): 345.0$

Period of record: 1974-1988

Itchen at Gatersmill

Flow measurement station : 042010 - Highbridge
C. A. $\left(\mathrm{km}^{2}\right)$: 360.0

NGR : 41 (SU) 467213

Period of record: 1980-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M			O.D
10.9	4.4	10.0	18.0	7.3	12.8	15.9	10.1
8.1	7.8	8.1	8.4	8.1	8.1	8.2	8.1
12.5	2.4	8.0	33.7	29.9	10.0	5.1	11.2
10.5	8.2	10.6	12.8	10.9	11.0	9.7	10.4
2.0	1.0	2.0	3.5	2.2	2.3	1.6	2.0
6.6	4.0	6.2	11.5	6.3	6.2	6.3	7.6
0.11	0.01	0.09	0.28	0.16	0.08	0.06	0.12
0.05	0.03	0.04	0.10	0.04	0.05	0.05	0.06
5.2	4.0	5.2	6.1	5.4	5.2	4.7	5.1
21.3	17.4	20.8	26.4	21.6	20.5	20.7	22.2
0.38	0.14	0.37	0.71	0.33	0.33	0.42	0.49
10.27	5.41	10.80	12.45	10.48	7.71	11.15	11.79

Stour at Hurn Court School

Harmonised moni Measuring author	station RA-W	NGR :	(SZ)	$\begin{array}{r} 0829 \\ 1229! \end{array}$			
				198			
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	24	11.0	22.5	21/07	3.0	11/12
	pH units	24	7.9	8.5	06/07	7.2	17/03
Suspended solids	$\mathrm{mg} / 1$	24	12.0	34.0	17/03	4.0	18/08
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	23	11.01	14.00	08/05	6.40	18/09
800 (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	24	3.2	8.6	20/06	1.1	30/0;
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	20	0.121	0.500	21/02	0.020	08/05
Nitrite	mg / N	24	0.078	0.200	11/12	0.040	07/09
Nitrate	mg / N	24	6.70	12.00	07/11	4.36	18/08
Chloride	$\mathrm{mg} / \mathrm{lCl}$	24	33.5	47.0	07/11	25.0	03/04
Orthophosphate	$\mathrm{mg} / \mathrm{/P}$	24	0.595	1.300	07/09	0.200	08/05
Silica	$\mathrm{mg} / \mathrm{SiO}$	15	2.72	4.40	17/01	0.40	22/05
Calcium	$\mathrm{mg} / \mathrm{Ca}$	16	93.0	105.2	08/05	72.0	17/03
Magnesium	$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	17	4.1	17.1	30/01	2.4	22/05
Potassium	$\mathrm{mg} / \mathrm{K} \mathrm{K}$	17	5.2	9.1	21/02	3.3	22/05
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	17	19.6	30.0	18/08	13.0	31/03

Flow measurement station : 043007 - Throop Mill.
C. A. $\left(\mathrm{km}^{2}\right): 1073.0 \quad$ NGR : 40 (SZ) 113958

Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O.D
11.2	4.5	10.7	19.0	6.5	12.6	16.9	8.
8.0	7.4	8.0	8.5	7.9	8.1.	8.0	7.8
15.9	3.0	8.0	57.1	18.2	9.6	10.3	23.0
10.3	8.0	10.0	13.2	10.1	11.3	9.5	10.4
2.6	1.1	2.1	6.1	2.3	3.6	2.0	2.8
0.19	0.02	0.16	0.42	0.23	0.17	0.10	0.22
0.10	0.03	0.09	0.20	0.06	0.11	0.12	0.09
5.3	2.6	5.3	8.0	6.2	5.1	4.3	5.8
27.2	20.0	27.0	35.0	24.7	25.3	27.4	28.1
0.42	0.10	0.34	0.93	0.25	0.30	0.63	0.48
3.24	0.75	3.26	5.09	3.31	2.46	2.89	4.15
97.3	78.4	98.2	112.6	96.2	99.2	94.5	94.0
4.0	2.7	3.8	6.3	3.5	4.5	3.6	4.5
5.1	2.6	5.0	8.5	4.2	4.4	5.2	7.0
17.1	12.0	16.0	24.3	14.5	16.3	19.5	17.7

Axe at Whitford Road Bridge

Harmonised monitoring station number :
Measuring authority : NRA-SW NGR: 30 (SY) 262953

Determinand

Temperature

pH

Conductivity
Suspended solids
BOD (inhibited)
Dissolved organic carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkatinity
Oritiophosphate
Sulphat
Sulphate
Calcium
Magnesium
Magnesium
Potassium
Sodium

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	28	12.0	21.0	25/07	2.0	30/11
pH units	28	8.1	8.6	17/05	7.3	03/17
$\mu \mathrm{S} / \mathrm{cm}$	28	400	454	18/10	301	08/08
mg / l	25	11.1	92.0	10/04	2.0	08/12
$\mathrm{mg} / \mathrm{l} 0$	27	10.66	13.70	17/05	7.40	15/09
$\mathrm{mg} / \mathrm{l} 0$	28	1.8	6.8	10/04	0.5	08/12
$\mathrm{mg} / \mathrm{l} 0$	25	11.9	29.3	23/10	5.6	08/08
mg / l	28 (2)	0.084	0.600	10/04	<0.010	17/05
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	25	0.044	0.100	23/10	0.012	03/10
mg / N	28	4.61	8.80	31/10	2.10	08/08
$\mathrm{mg} / \mathrm{ll} \mathrm{Cl}$	28	26.4	36.6	23/10	17.8	08/08
$\mathrm{mg} / \mathrm{CaCO}_{3}$	25	136.5	169.0	25/07	85.0	20/11
mg / P	28	0.329	0.600	25/07	0.110	20/11
$\mathrm{mg} / \mathrm{SSO}$	25	10.10	16.00	20/11	1.20	17/05
$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	25	38.4	49.8	23/10	27.3	08/08
mg/l Ca	25	65.4	80.7	02/06	43.8	20/11
$\mathrm{mg} / \mathrm{IMg}$	25	6.4	7.8	21/04	5.3	30/11
mg / K	25	4.0	6.6	31/10	2.0	08/08
$\mathrm{mg} / \mathrm{/} \mathrm{Na}$	25	14.2	20.4	18/10	10.7	08/08

Flow measurement station : 045004-Whitford C.A. (km²) : 288.5 NGR : 30 (SY) 262953

Mean	Parcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J.S	0.0
10.9	3.7	10.2	18.3	5.7	12.2	15.9	8.8
7.9	7.4	7.9	8.5	7.8	8.1	8.0	7.8
385	299	390	451	371	388	412	370
13.2	2.0	6.0	45.3	17.7	9.5	6.0	24.6
10.9	8.4	10.9	13.5	12.1	17.3	9.9	10.7
2.1	0.9	1.7	4.5	2.2	2.3	1.7	2.2
13.6	7.5	11.7	26.0	11.9	13.2	12.1	16.7
0.11	0.01	0.06	0.35	0.17	0.08	0.06	0.13
0.05	0.02	0.04	0.10	0.04	0.06	0.03	0.06
3.6	2.1	3.3	5.6	4.2	3.3	3.0	4.5
23.2	19.0	22.3	29.0	23.8	21.1	23.0	23.8
135.9	87.7	139.0	167.3	119.4	142.7	154.1	126.0
0.24	0.12	0.23	0.41	0.20	0.24	0.31	0.22
9.36	4.58	9.80	12.70	9.07	7.40	10.11	10.74
32.7	21.5	33.9	39.2	31.8	31.6	35.0	32.8
62.5	42.2	63.0	76.0	57.2	63.0	70.0	58.3
6.0	4.5	6.0	7.5	6.1	6.0	6.1	6.1
4.2	3.1	3.9	6.7	4.1	3.8	4.3	4.7
12.9	10.2	12.7	16.3	13.1	12.6	13.3	12.6

$\begin{array}{lr}\text { Harmonised monitoring station number : } & 09017 \\ \text { Measuring authority : NRA-SW NGR: } & 20 \text { (SX) } 433722\end{array}$

Determinand	Units	1989					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	21	11.2	27.2	21/08	3.2	06/12
pH	pH units	22	7.4	8.9	20/06	6.6	31/01
Conductivity	${ }_{\mu} \mathrm{S} / \mathrm{cm}$	22	194	276	04/08	152	31/01
Suspended solids	mg/l	22	21.1	176.0	14/12	: 6	21/08
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	22	10.69	12.70	31/01	8.00	$04 / 08$
BOD (intubrited)	$\mathrm{mg} / 10$	21	2.3	8.5	14/12	0.6	21/11
Dissolved organic carton	$\mathrm{mg} / \mathrm{l} 0$	22	10.0	27.2	14/12	5.6	06/04
Ammoniacal nitrogen	mg / N	22 (1)	0.074	0.400	14/12	<0.010	20/06
Nitrite	mg / N	22 (1)	0.030	0.100	14/12	<0.010	05/10
Nitrate	mg / N	22	2.62	4.20	06/11	<0.10	06/12
ChJoride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	22	23.7	32.0	14/12	21.0	19/04
Total alkalinity	$\mathrm{mg} / 1 \mathrm{CaCO}_{3}$	22	40.5	59.0	04/08	22.0	06/11
Orthophosphate	$\mathrm{mg} / \mathrm{l} P$	22	0.094	0.200	14/12	0.060	21/11
Silica	$\mathrm{mg} / \mathrm{SiO}{ }_{2}$	22	4.59	6.70	06/12	0.50	20/06
Sutphate	$\mathrm{mg} / \mathrm{SO}_{4}$	22	17.2	26.5	21108	12.1	20/03
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	22	18.1	22.2	04/08	16.1	$20 / 03$
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	22	5.3	6.9	21/08	4.1	23/02
Potassium	mg / l K	22	3.3	6.0	21/08	1.7	06/12
Sodium	$\mathrm{mg} / \mathrm{Na}$	22	13.8	16.2	20/10	11.7	10/03

Exe at Thorverton Road Bridge

Harmonised monitoring station number
Measuring authority : NRA.SW NGR . 21 (SS)
Determinand

Temp pi

Conductivity
Suspended solids
Dissolved oxyge
BOD (inhibited)
Dissolved organic carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	27	10.8	21.0	24/07	3.0	01/12
pH units	27	7.5	8.1	15/08	7.1	10/11
$\mu \mathrm{S} / \mathrm{cm}$	27	194	247	24/07	128	27/10
mg / l	27	14.2	126.0	14/12	2.0	08/12
mg / O	27	10.43	12.80	24/11	6.60	24/07
mg / O	27	1.9	6.1	14/12	0.7	08/12
$\mathrm{mg} / \mathrm{l} 0$	27	7.4	19.5	14/12	3.5	01/12
mg / N	27	0.070	0.300	13/12	0.010	09/10
mg / N	27	0.024	0.047	14/12	0.011	03/10
mg / N	27	2.52	4.60	14/12	1.40	27/10
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	27	19.6	28.4	12/12	14.6	27/04
$\mathrm{mg} / \mathrm{CaCO} 3$	27	43.1	64.0	26/06	21.0	10/11
mg / P	27	0.146	0.300	24/07	0.040	10/11
$\mathrm{mg} / \mathrm{SiO}$	27	3.85	5.40	14/12	1.20	03/08
$\mathrm{mg} / \mathrm{l} \mathrm{SO}_{4}$	27	19.6	33.4	03/10	11.0	27/04
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	27	17.8	23.2	26/06	11.3	27/10
$\mathrm{mg} / \mathrm{Mg}$	27	4.2	5.4	26/06	2.9	10/11
mg / K	27	2.3	4.3	14/12	1.4	27/10
mg/l Na	27	14.3	25.1	03/10	8.1	10/11

Flow measurement station : 045001-Thorverton C.A. $\left(\mathrm{km}^{2}\right): 600.9 \quad$ NGR : 21 (SS) 936016

Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
11.2	4.0	10.5	19.0	6.0	12.4	16.3	9
7.5	6.9	7.5	8.2	7.3	7.7	7.5	7.
170	121	161	244	158	181	186	15
11.8	2.0	6.0	42.0	15.9	8.8	6.8	12.2
11.1	8.8	11.3	13.3	. 12.4	11.1	9.8	11.4
1.7	0.8	1.6	3.4	1.7	2.1	1.5	1.5
7.7	4.0	7.2	13.7	6.1	8.0	8.3	7.
0.07	0.01	0.05	0.17	0.08	0.07	0.05	0.05
0.03	0.01	0.02	0.06	0.02	0.04	0.03	0.02
2.4	1.4	2.3	3.5	2.8	2.5	2.0	
17.8	13.0	17.0	27.0	17.3	17.6	19.0	16.
40.6	24.0	38.0	66.0	33.6	45.6	47.3	36.0
0.12	0.03	0.08	0.31	0.06	0.12	0.18	0.08
3.99	1.60	4.20	5.30	4.46	3.09	3.65	4.6
12.9	9.2	12.2	18.8	12.3	13.5	13.9	12.
16.8	11.7	16.0	24.9	15.8	18.3	.17.7	14.
4.1	2.9	4.0	5.5	3.8	4.5	4.4	3.
2.1	1.3	1.9	3.6	1.8	2.1	2.4	1.
10.4	7.1	9.3	18.2	9.3	10.8	12.7	

Dee at Overton
Harmonised monitoring station number: 10002
Measuring authority : NRA-WEL NGR: 33 (SJ) 354427

Determinand

Temperature pH
Conductivity
Suspended solids
Dissolved oxygen
Ammoniacal nitrogen Nitrite
Chloride
Orthophosphate

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	12	10.6	17.6	11/07	4.4	05/12
pH units	12	7.4	7.9	09/05	6.7	13/01
$\mu \mathrm{S} / \mathrm{cm}$	12.	184	267	05/12 ${ }^{\text {. }}$	101	12/04
mg / l	12 (1)	10.8	57.0	12/04	<1.0	06/10
mg / O	12	10.62	13.20	05/12	9.25	11/07
$\mathrm{mg} / 10$	12	1.1	1.8	12/04	0.6	13/01
$\mathrm{mg} / \mathrm{IN}$	12 (3)	0.071	0.300	06/10	0.010	06/09
$\mathrm{mg} / \mathrm{IN}$	12 (1)	0.021	0.037	11/07	0.008	02/11
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	12	271	46.6	05/12	14.4	12/04
mg / P	12 (5)	0.062	0.100	05/12	0.030	02/11

Flow measurement station : 047001-Gunnistake C. A. $\left(\mathrm{km}^{2}\right): 916.9$

NGR : 20 (SX) 426725

Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
11.4	4.9	11.0	19.0	6.8	12.6	16.0	9.5
7.4	6.8	7.4	8.2	7.2	7.5	7.5	7.2
180	140	179	233	167	183	194	174
24.9	2.0	6.8	112.4	30.0	12.4	13.7	37.3
10.7	8.7	10.7	12.5	11.8	10.5	9.6	10.9
2.3	0.8	2.0	5.0	2.2	2.2	2.0	2.4
11.9	5.1	9.9	25.7	9.5	11.7	11.4	13.3
0.08	0.01	0.05	0.25	0.10	0.06	0.06	0.09
0.02	0.01	0.02	0.06	0.03	0.02	0.02	0.03
2.6	1.5	2.5	4.2	3.2	2.6	2.1	2.9
22.2	18.0	22.0	28.0	23.2	21.4	22.4	22.8
36.1	23.0	34.0	52.0	30.1	39.3	41.9	33.4
0.08	0.03	0.07	0.15	0.06	0.08	0.11	0.08
4.86	1.70	5.10	6.80	5.09	3.96	4.69	5.60
15.8	10.9	15.3	21.0	15.0	16.4	16.5	14.9
17.6	13.9	17.4	22.0	16.6	17.3	18.3	16.8
4.8	3.4	4.7	6.5	4.2	4.9	5.4	4.5
3.2	1.9	3.0	5.3	2.7	2.9	3.9	3.4
12.1	9.4	12.0	15.0	12.1	12.1	12.9	12.0

Carron at A890 Road Bridge

Harmonised monitoring station number
NGR : 18 (NG) 938425
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Arnmoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Ortophosphate
Sulphate
Calcium
Magnesium
Potassium
Sodium
$\xrightarrow{\substack{\text { m } \\ \text { m } \\ \hline}}$

1989					
Samples	Mean	Max.	Date	Min.	Date
12	8.1	15.9	$07 / 07$	2.7	$11 / 12$
12	6.6	7.3	$07 / 07$	6.1	$03 / 03$
12	46	67	$03 / 03$	31	$17 / 10$
$12(1)$	1.3	2.9	$11 / 01$	0.5	$03 / 03$
12	11.27	13.21	$11 / 12$	9.65	$04 / 08$
12	1.1	2.4	$03 / 03$	0.4	$06 / 06$
$12(1)$	0.005	0.009	$07 / 07$	0.002	$04 / 08$
$12(2)$	0.001	0.002	$06 / 06$	<0.001	$02 / 05$
12	0.05	0.10	$11 / 12$	0.03	$08 / 11$
12	11.0	19.7	$03 / 03$	6.6	$17 / 10$
12	3.0	5.7	$07 / 107$	0.4	$11 / 01$
$12(8)$	0.004	0.005	$02 / 05$	0.002	$06 / 06$
11	1.1	2.8	$20 / 02$	0.3	$07 / 07$
11	2.0	2.7	$11 / 12$	1.3	$11 / 01$
11	1.0	1.5	$03 / / 03$	0.6	$04 / 08$
11	0.4	0.5	$03 / 03$	0.3	$26 / 09$
11	5.5	8.5	$03 / 03$	3.9	$17 / 10$

Flow measurement station : 093001-New Kelso C.A. $\left(\mathrm{km}^{2}\right): 137.8 \quad$ NGR : 18 (NG) 942429

Period of record: 1979-1988							
Mean	Porcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
8.5	2.3	8.5	15.2	3.6	11.7	12.9	7.
6.7	5.8	6.7	7.4	6.6	6.7	6.7	6.5
44	27	42	65	49	47	41	38
1.5	0.3	1.0	4.6	1.8	1.2	1.3	1.6
11.3	9.8	11.3	13.0	12.6	10.9	10.2	11.4
0.8	0.3	0.8	1.4	0.8	0.7	0.8	1.0
0.0%	0.00	0.01	0.03	0.01	0.01	0.01	0.01
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
10.4	5.5	9.5	18.3	13.7	10.4	8.1	9.2
-6.3	1.8	5.0	15.0	5.9	7.0	6.5	5.9
0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00
2.5	0.3	2.5	5.8	2.8	2.4	2.1	2.6
1.8	0.6	1.5	4.2	1.4	2.8	1.9	1.4
1.5	0.4	0.9	3.5	1.4	1.0	2.5	1.0
0.3	0.2	0.3	0.6	0.3	0.4	0.3	0.3
4.4	2.9	4.2	8.4	4.6	5.4	4.0	4.0

Spey at Fochabers
Harmonised monitoring station number: 12002
Measuring authority: NERPB NGR: 38 (NJ) 341596

Units	1989					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	10	8.3	114.5	17/08	3.0	21/02
pH units	10	7.3	7.7	17/08	6.8	18/01
$\mu \mathrm{S} / \mathrm{cm}$	10	79	96	29/11	44	18/01
mg / l	10	5.3	25.0	18/01	1.0	29/11
$\mathrm{mg} / \mathrm{l} 0$	10	12.35	13.92	29/11	19.20	04/09
mg / O	10	0.8	1.6	17/08	0.2	22/02
$\mathrm{mg} / / \mathrm{N}$.	10	0.025	0.100	22/02	0.003	04/04
$\mathrm{mg} / \mathrm{IN}$	10	- 0.004	0.009	18/01	0.001	22/03
mg/l N	10	0.25	0.30	29/11	0.13	08/06
$\mathrm{mg} / \mathrm{lCl}$	10	9.5	12.0	22/02	6.0	18/01
$\mathrm{mg} / \mathrm{CaCO} 3$	10	18.8	25.0	08/06	8.0	18/01
$\mathrm{mg} / \mathrm{l} \mathrm{P}$	10	. 0.011	0.036	18/01	0.001	08/06
$\mathrm{mg} / \mathrm{l} \mathrm{SiO}_{2}$	9	5.58	7.79	29/11	4.49	08/06

Flow measurement station : 008006-Boat o Brig C. A. $\left(\mathrm{km}^{2}\right): 2861.2$ NGR : 38 (NJ) 318518

Period of record: 1975-1988							
Mean	Porcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
9.9	2.0	10.0	18.0	3.3	10.0	15.0	6.2
7.2	6.4	7.2	7.8	6.9	7.2	7.4	7.0
75	50	75	105	81	70	84	70
4.0	0.1	2.0	18.0	2.7	4.0	3.7	4.1
. 11.2	9.2	11.2	13.5	12.7	11.0	9.8 *	11.7
0.9	0.4	0.9	1.4	0.9	1.0	0.9 .	0.9
0.04	0.00	0.03	0.12	0.02	0.04	0.04	0.03
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.3	0.2	0.3	0.7	0.5	0.3	0.3	0.3
10.3	6.0	10.0	15.4	12.3	10.0	10.7	9.2
25.9	15.0	25.0	40.0	24.5	24.6	29.9	26.9
0.03	0.00	0.01	0.09	0.02	0.02	0.04	0.02
5.64	3.45	5.86	7.23	5.47	4.60	5.67	5.98

Almond at Craigiehall

Harmonised monitoring station number: 14008
Measuring authority : FRPB - NGR : 36 (NT) 165752

Determinand

Temperature

 pHConductivity
Suspended solids
Ammoniacal nitrogen
Ammon
Nitrite
Nitrate
Total alkatinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

- 1989

Units Samples Mean Max. Date Min Date cH units
$\mu \mathrm{S} / \mathrm{cm}$
$\mathrm{mg} / / \mathrm{l}$
$\mathrm{mg} / / \mathrm{O}$
$\mathrm{mg} / / \mathrm{N}$
mg / N
$\mathrm{mg} / / \mathrm{N}$
$\mathrm{mg} / \mathrm{Cl}$
$\mathrm{mg} / / \mathrm{CaCO}_{3}$
$\mathrm{mg} / / \mathrm{P}$
$\mathrm{mg} / \mathrm{ISO}$
$\mathrm{mg} / \mathrm{Sin}$
$\mathrm{mg} / \mathrm{CO}$
$\mathrm{mg} / \mathrm{Ca}$
$\mathrm{mg} / \mathrm{Mg}$
$\mathrm{mg} / \mathrm{l} \mathrm{K}$
$\mathrm{mg} / \mathrm{Na}$
-12
12
12
12
12
11
11
$11(1)$
12
12
O_{3}
12
12
12
12
12
12
12
12

11.5	21.0	$05 / 07$	5.0	$10 / 01$
7.8	8.5	$15 / 05$	7.2	$14 / 02$
665	850	$12 / 06$	372	$14 / 02$
11.9	40.0	$14 / 02$	2.0	$05 / 07$
3.0	5.3	$12 / 09$	1.6	$07 / 04$
1.095	3.500	$08 / 12$	0.320	$01 / 08$
0.399	0.770	$05 / 07$	<0.010	$10 / 01$
4.25	6.40	$06 / 12$	2.00	$14 / 03$
68.1	103.0	$06 / 12$	45.0	$14 / 02$
11.8	152.0	$15 / 05$	76.0	$14 / 02$
1.147	2.100	$10 / 10$	0.140	$14 / 02$
5.48	8.70	$14 / 11$	0.10	$15 / 05$
131.5	176.0	$01 / 08$	60.0	$10 / 01$
60.7	95.0	$12 / 06$	34.1	$10 / 10$
19.7	28.0	$12 / 06$	9.6	$14 / 02$
6.5	9.9	$01 / 08$	3.6	$14 / 02$
52.8	85.0	$01 / 08$	28.0	$14 / 02$

Flow measurement station : 019001-Craigiehall
C. A. $\left(\mathrm{km}^{2}\right): \cdot 369.0 \quad$ NGR : 36 (NT) 165752

Period of record: 1975-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
9.6	2.0	9.5	17.5	4.0	11.8	14.6	7.3
7.5	7.0	7.6	8.0	7.4	7.7	7.5	7.5
596	307	580	880	522	693	649	509
23.2	2.4	11.0	79.0	35.4	10.5	14.8	29.0
3.3	1.6	2.8	6.8	3.3	3.8	3.0	3.1
1.20	0.22	0.94	3.00	1.29	1.57	1.16	0.83
0.26	0.04	0.14	0.86	0.14	0.31	0.43	0.14
3.7	2.1	3.6	5.5	3.6	4.1	3.7	3.6
62.9	25.7	60.0	103.3	64.0	70.4	68.5	48.3
120.9	53.4	120.0	190.0	102.0	141.6	133.1	103.0
0.72	0.10	0.45	2.05	0.26	0.93	1.23	0.37
6.12	0.80	6.70	9.68	7.75	4.08	4.39	8.13
130.8	51.6	130.5	206.1	14.3	36.3	43.0	14.5
68.6	38.6	61.9	151.3	68.2	76.6	63.8	63.4
25.6	11.3	24.5	43.4	22.4	29.4	29.1	22.6
6.9	3.6	5.9	12.5	5.1	8.5	8.9	5.7
49.5	20.1	46.6	87.8	44.0	56.7	63.3	39.8

Tweed at Norham

Harmonised monitoring station number:
Measuring authority: TWRPB NGR : 36 (NT) 898477

Determinand	Units	1989					
		Samples ,	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	$11: 4$	22.5	06/07	1.5	06/12
pH	pH units	12	8.3	9.5	03/08	7.4	09/03
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	226	273	28/06	155	14/02
Suspended solids	mg/l	12	6.3	29.0	14/02	1.0	06/12
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	12	12.46	17.20	03/08	9.00	17/10
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	12	2.2	3.3	03/08	0.9	17/10
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.063	0.100	20/04	0.020	16/11
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.016	0.030	03/08	0.010	06/12
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	1.29	1.70	16/01	0.70	07/09
Chloride	$\mathrm{mg} / \mathrm{Cl}$	12	13.9	19.0	11/05	10.0	16/01
Orthophosphate	mg / P	12	0.060	0.100	06/07	0.0:0	07/09

Dee at Glenlochar

1989
Harmonised monitoring stavion number:
16005
Measuring authority : SRPB

Deterrninand	Units	1989					
		Samples	Mean	Max.	Date	Min .	Date
Termperature	${ }^{\circ} \mathrm{C}$	12	10.2	19.0	03/07	1.0	01/12
pH	pH units	12	6.7	7.1	01/08	6.4	$01 / 11$
Conctuctivity	$1 \mathrm{~S} / \mathrm{cm}$	12	57.	67	02/10	46	03/04
Suspended solids	mg / I	12	1.7	4.0	01/08	1.0	01/11
Dissolved oxygen	mg / O	12	11.52	12.90	01/12	10.10	03/07
BOO (inhibited)	mg / O	12	1.9	3.0	02/05	1.1	03/04
Ammoriscal ritrogen	mg / N	12	0.046	0.100	01/06	0.010	01/11
Nitrate	mg / N	11	0.29	0.60	03/03	0.04	03/07
Chlorido	$\mathrm{mg} / \mathrm{Cl}$	12	10.4	13.3	03/03	7.8	04/01
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	12	5.5	8.9	01/12	3.3	03/03
Orthophosphate	mg / P	12	0.007	0.018	04/01	0.002	03/07
Silica	$\mathrm{mg} / 1 \mathrm{SiO}_{2}$	12	1.79	3.10	01/12	0.30	01/08
Sutphate	$\mathrm{mg} / \mathrm{l} \mathrm{SO}_{4}$	10	5.7	9.3	01/09	4.2	03/04
Calcium	$\mathrm{mg} / \mathrm{Ca}$	12	4.1	7.0	03/04	3.0	01/06
Magnesiom	$\mathrm{mg} / \mathrm{Mg}$	12	1.6	2.0	02/10	1.4	02/05
Potassium	mg / K	11	0.6	0.8	03/03	0.5	01/12
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	11	6.3	7.9	01/02	5.4	02/05

Flow measurement station : 080002 - Glenlochar C. A. $\left(\mathrm{km}^{2}\right): 809.0 \quad$ NGR : 25 (NX) 733641

Period of record: 1975-1988							
Mean	Percentiles			Ouarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.0	1.6	9.0	20.0	3.5	11.4	16.6	8.4
6.7	6.1	6.7	7.4	6.6	6.7	6.9	6.6
59	39	54	87	55	59	69	61
3.6	1.0	2.0	9.9	5.5	4.0	2.5	2.9
10.9	8.7	10.8	13.2	12.5	11.1	9.4	10.6
2.0	1.0	1.9	3.3	2.1	1.9	1.8	1.8
0.06	0.01	0.04	0.16	0.06	0.06	0.07	0.05
0.3	0.1	0.3	0.8	0.5	0.4	0.2	0.3
8.8	5.0	8.5	13.8	9.5	9.3	8.7	8.1
6.7	3.1	6.0	10.3	5.1	6.0	10.8	6.0
0.01	0.00	0.01	0.04	0.01	0.02	0.03	0.01
2.41	0.43	2.35	4.59	3.55	1.74	1.41	3.06
5.9	1.9	5.6	11.1	5.8	5.5	5.6	6.6
3.8	2.4	3.3	6.0	3.4	3.5	5.0	3.7
1.4	0.7	1.4	2.2	1.4	1.5	1.5	1.4
0.5	0.3	0.5	0.8	0.5	0.5	0.5	0.5
4.4	3.4	4.2	6.2	4.7	5.1	4.3	3.9

Leven at Renton Footbridge

Harmonised monitoring station number :
NGR : 26 (NS) 17005
Measuring authority : CRPB NGR: 26 (NS) 389783
Determinand

Temperature
pH
Suspended solids
Dissolved oxygen
BOD \{inhibited
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate

	1989					
Units	Samples	Moan	Max.	Date	Min.	Date
	C	10	11.5	22.0	$20 / 06$	6.0

Flow measurement station : 085001 - Linnbrane C.A. $\left(\mathrm{km}^{2}\right): 784.3$ NGR : 26 (NS) 394803

Period of record: 1975-1988							
Mean	Percentiles				Quarterty avarages		
	5%	50%	$\mathbf{9 5 \%}$	J-M	A.J	J-S	O-D
9.3	2.0	9.0	17.1		3.6	10.8	15.1
7.1	6.7	7.1	7.5	7.0	7.2	7.1	7.0
5.0	1.0	4.0	13.0	7.1	4.1	4.1	4.8
11.0	9.2	11.0	12.7	12.3	11.3	9.6	10.7
1.8	0.8	1.8	2.9	2.3	2.0	1.4	1.6
0.05	0.0	0.02	0.23	0.05	0.05	0.05	0.05
0.1	0.01	0.01	0.02	0.01	0.01	0.01	0.01
0.3	0.1	0.3	0.5	0.4	0.3	0.2	0.3
10.0	6.0	9.0	18.1	10.6	10.2	10.0	9.0
16.5	10.0	16.0	23.0	15.2	16.7	17.2	16.9
0.02	0.00	0.01	0.05	0.02	0.02	0.02	0.02

Ballinderry at Ballinderry Bridge

1989

DOE Northern Ireland station number : Measuring authority: DOEN
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD fintibited)
Ammoniacal nitrogen
Nitrite
Chloride
Orthophosphate

03/07/0001

NGR : 23 (IH) 927798

1989					
Samples	Mean	Max.	Dato	Min.	Date
21					
23	10.3	18.0	$01 / 08$	4.5	$28 / 02$
23	3.9	8.8	$02 / 06$	7.3	$10 / 11$
23	8.0	471	$30 / 08$	179	$28 / 02$
23	14.00	15.60	$13 / 01$	3.0	$03 / 07$
23	2.6	4.9	$16 / 06$	8.30	$30 / 08$
23	0.210	0.780	$30 / 01$	0.040	$04 / 12$
23	0.073	0.510	$26 / 10$	0.020	$28 / 02$
23	20.0	27.0	$12 / 10$	16.0	3001
23	0.260	0.560	$12 / 10$	0.070	$13 / 02$

Flow measurement station : 203012 - Ballinderry Br . C.A. $\left(\mathrm{km}^{2}\right): 419.5 \quad$ NGR : 23 (1 H) 926799

Period of record: 1974-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O.D
9.8	3.0	10.0	17.0	4.8	12.2	14.8	8.0
7.7	7.3	7.7	8.2	7.6	7.9	7.8	7.6
303	215	302	375	278	321	327	290
9.5	2.0	6.0	32.0	12.6	7.3	6.9	10.9
9.8	6.7	9.8	12.5	11.1	9.4	8.4	10.2
2.4	1.0	2.0	4.2	2.5	2.6	2.2	2.2
0.26	0.04	0.20	0.49	0.32	0.29	0.17	0.23
0.05	0.02	0.04	0.12	0.03	0.05	0.06	0.04
18.5	11.0	18.0	26.0	18.9	18.8	18.8	17.4
0.23	0.06	0.20	0.42	0.16	0.21	0.33	0.20

Lagan at Shaws Bridge

DOE Northern Ireland station number :
Measuring authority : DOEN NGR: 33 (IJ) 325690
Determinand :
\because
Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Aitrite.
Chloride
Orthophosphate

DIRECTORY OF MEASURING AUTHORITIES

The enactment of the Water Act 1989 facilitated the creation of ten Water Services PLCs to take over the former Water Authorities' responsibilities for water supply and sewerage and for the setting up of a new body, the National Rivers Authority, to operate their regulatory and river management functions. Responsibility for most hydrometric activities has passed to the NRA. As part of the necessary restructuring prior to this major water industry reorganisation, 'shadow' regional NRA Units were established in each Water Authority. The Units began operating as fully independent units within each Water Authority on the 1st April 1989 and, formally, became regional divisions of the National Rivers Authority on the 1st September 1989.

	Address	Code
National Rivers Authority	30-34 Albert Embankment, London SE1 7TL Tel: 071-820-0101	NRA

NRA Regional Headquarters

Anglian	Kingfisher House, Goldhay Way, Orton Goldhay, Peterborough PE2 0ZR	NRA-A
Northumbria	Eldon House, Regent Centre, Gosforth, Newcastle-upon-Tyne NE3 3UD	NRA-N
North West	Richard Fairclough House, PO Box 12, Knutsford, Rd, Latchford, Warrington WA4 1HG	NRA-NW
Severn-Trent	Sapphire East, 550 Streetsbrook Road, Solihull B91 1QT	NRA-ST
Southern	Guildbourne House, Chatsworth Road, Worthing, West Sussex BN11 1LD	NRA-S
South West	Manley House, Kestrel Way, Sowton Industrial Estate, Exeter EX2 7LQ	NRA-SW
Thames	Kings Meadow House, Kings Meadow Road, Reading RGl 8DQ	NRA-T
Welsh	Rivers House/Plas-yr-Afon, St Meilons Business Park, St Mellons, Cardiff CF3 0EG	NRA-WEL
Wessex	Rivers House, East Quay, Bridgwater, Somerset TA6 4YS	NRA-W
Yorkshire	21 Park Square South, Leeds LS1 2QG	NRA-Y

Water Services PLCs

Anglian Water	Ambury Road,	AW
Northumbrian Water	Huntingdon PE18 6NZ	NW
	PO Box 4, Regent Centre,	
	Gosforth, Newcastle-upon-Tyne	

North West Water	Dawson House, Liverpool Road, Great Sankey, Warrington WA5 3LW	NWW
SevernTrent Water	2297 Coventry Road, Birmingham B26 3PU	STW
Southern Water	Southern House, Yeoman Road, Durrington, Worthing, West Sussex BN13 3NX	SW
South West Water	Peninsula House, Rydon Lane, Exeter EX2 7HR	
Thames Water	Nugent House, Vastern Road, Reading RG1 8DB	SWW
Welsh Water	Plas-y-Ffynnon, Cambrian Way, Brecon, Powys LD3 7HP	TW
Wessex Water	Wessex House, Passage Street, Bristol BS2 0JQ	WELW
Yorkshire Water	West Riding House, 67 Albion Street, Leeds LS1 5AA	WW

River Purification Boards

Clyde River Purification Board

Forth River Purification Board

Highland River Purification Board

North East River
Purification Board
Solway River Purification Board

Tay River Purification Board

Tweed River Purification Board

Rivers House, Murray Road, East Kilbride, Glasgow G75 0LA	CRPB
Herriot Watt Research Park, Avenue North, Riccarton, Edinburgh EH14 4AP	FRPB
Strathpeffer Road, Dingwall IV15 9QY	HRPB
Greyhope House, Greyhope Road, Torry, Aberdeen ABl 3RD	NERPB
Rivers House, Irongray Road, Dumfries DG2 0JE	SRPB
1, South Street, Perth PH2 8NJ	TRPB
Burnbrae, Mossilee Road, Galashiels TD1 1NF	TWRP

Other measuring authorities

Borders Regional Council (Directorate of Water and Drainage Services)

Corby (Northants) and District Water Company

Department of the Environment for Northern Ireland

West Grove, Waverley Road, BRWD Melrose TD6 9SJ

Geddington Road, Corby,
CDWC
Northants NN18 8ES
Water Service, Northland House, DOEN

3 Frederick Street,
Belfast BT1 2NS
Environmental Protection Division, Calvert House, 23 Castle Place, Belfast BT1 1FY

Dumfries and Galloway Regional Council (Department of Water and Sewerage)	Marchmount House, Dumfries DG1 1PW	DGRW
Essex Water Company	Hall Street, Chelmsford, Essex CM2 OHH	EWC
Geological Survey of Northern Ireland	20 College Gardens, Belfast BT9 6BS	GSNI
Grampian Regional Council (Water Services Department)	Woodhill House, Westburn Road, Aberdeen AB9 2LU	GRWD
Highland Regional Council (Water Department)	Regional Buildings, Glenurquhart Road, Inverness IV3 5NX	HRCW
Institute of Hydrology	Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB	IH
Lothian Regional Council (Department of Water and Drainage)	6 Cockburn Street, Edinburgh EHI 1NZ	LRWD
Newcastle and Gateshead Water Company	PO Box 10, Allendale Road, Newcastle-upon-Tyne NE6 2SW	NGWC
Scottish Electric PLC	16 Rothesay Terrace, Edinburgh EH3 7SE	SE
Strathclyde Regional Council (Water Department)	419 Balmore Road, Glasgow G22 6NU	SRCW
Tayside Regional Council (Water Services Department)	Bullion House, Invergowrie, Dundee DD2 5BB	TRWS

PUBLICATIONS - in the Hydrological data UK series

Title	Published	Price (inclusive of second class postage within the UK)
Yearbooks:		Loose Leaf Bound
Yearbook 1981	1985	$£ 10 \quad £ 12$
Yearbook 1982	1985	$£ 10$ £ 12
Yearbook 1983	1986	out of print
Yearbook 1984	1986	out of print
Yearbook 1985	1987	$£ 12$ £ 15
Yearbook 1986	1988	$£ 12$ ¢ 15
Yearbook 1987	1989	$£ 12$ £ 15
Yearbook 1988	1989	$£ 12 ¢ 15$
Yearbook 1989	1990	$£ 15$ ¢ 18
Reports:		
Hydrometric Register and Statistics 1981-5 ${ }^{1}$	1988	$£ 12 £ 15$
The 1984 Drought ${ }^{2}$	1985	$¢ 12$

Concessionary rates apply to the purchase of two or more of the pre-1988 Yearbooks.

1. Hydrometric Register and Statistics 1981-5

This reference volume includes maps, tables and statistics for over 800 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1981-5, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

The Yearbooks are available as bound volumes or as sets of pre-punched sheets for insertion in a ring binder designed to hold the five yearbooks in each publication cycle together with the five-yearly catalogue of summary statistics. The ring binder to hold the Yearbooks for 1986-90 may be purchased for $£ 5$.

All the Hydrological data UK publications and the ring binder may be obtained from:-

Institute of Hydrology
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX10 8BB
Telephone: Wallingford (0491) 38800

Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the Surface Water Archive Office at the above address.

3. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity. Assessments are made of the likely frequency of occurrence of the drought and its magnitude is considered both in the perspective provided by historical records of rainfall and runoff, and in the context of the recent somewhat erratic climatic behaviour.

ABBREVIATIONS

Note: The following abbreviations do not purport to		Ntch	Notch .
		NW	North-West
developed for use in the Hydrological data UK series		O/f	Outfall or outflow
of publications only. Where space constraints hâve		ORS	Old Red Sandstone
required alternative forms of these conventional		Pk	Park
abbreviations to be used, the meaning should be evident from the context.		Pop	Population
		POR	Period of record
		PS	Pumping station
		Pt	Point
AOD	Above Ordnance Datum	PWS	Public water supply
Bk	Beck	Rb	Right hand river bank
Blk	Black		(looking downstream)
Br	Bridge	R/c'	Racecourse
Brk or B	Brook	RCS	Regional communications system
Brn	Burn	Rd	Road
Ch	Channel	Res	Reservoir
C / m	Current meter(ing)	Rh	Right hand
Com	${ }^{\text {chemmon }}$	S	South .
Dk	Dike	SAGS	Stour Augmentation Groundwater
Dr or ${ }^{\text {d }}$	Drain		Scheme
D/s	Downstream	Sch	School
DWF	Dry weather flow	S-D	Stage-discharge relation
E	East	SDD	Scottish Development Department
Frm	Farm	SE	South-East
G/s	Gauging station	Sl	Sluice
Gw	Groundwater	Sp	Spring
HEP	Hydro-electric power	St	Stream
Ho	House	STW	Sewage treatment works
Hosp	Hospital	SW	South-West
L	Loch or lake	TS	Transfer scheme.
Lb	Left hand river bank	US	Ultrasonic gauging station
	(looking downstream)	U/s	Upstream
Ln	Lane	W	West
Lst	Limestone	W'course	Watercourse
Ltl	Little	Wd	Wood
MAF	Mean annual flood	Wht	White
Mkt	Market	Wr	Weir
Ml / d	Megalitres per day	WRW	Water reclamation works
Mnr	. Manor	Wtr	Water
N	North	WTW.	Water treatment works

[^0]: I Acreman, M.C (1989). Extreme rainfall in Calderdale, 19 May 1989. Wieather, 44, pp 438-444.
 2. Collinge, 'I.K., Archibald, G.J., Brown, K.R. and L.ord, HG. (1990). Radar Observations of the Halifax storm, 19 May 1989. W'eather, 45, pp 354-365.

[^1]: - The use of logarithmic axes requires that caution is necessary when visually interpreting the varying flow ranges for the stations illustrated. The maximum flow on the Itchen, for instance, is greater than the least by a factor of five; for the T'aw the factor is closer to 2000

[^2]: ' Flood Siudies Refort 1975 Natural Environment Researeh Council (5 vols)

[^3]: Station and catchment description

[^4]: Factors affecting flow regime

 - Abstraction for public water supplies

[^5]: Factors affecting flow regime: \mathbf{N}

[^6]: Factors iffecting flow regime: E

[^7]: \qquad

[^8]: - To enable the suitability of individual How records for particular applecations to be assessed more effectively all retrievals are accompanied by the relevant gauging station and catchonent detals (where available).

[^9]: Institute of Hydrology (Surface Nater Archive Servica) Wallingford,

[^10]: * NERC Computer Services was responsible for developing the hydrograph plotting software.

[^11]: Sites marked '**' are indicator wells; well hydrographs are shown in Figure 18. Where the annual percentage recharge cannot be estimated, the entry '---' is substituted.

[^12]: *The transfer of this archive to the National Rivers Authority is currently under discussion.

