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SUMMARY 

A brief outline is glven of the relationships between 
temperature and t h e  rate of a react ion ox bio log ica l  
a c t i v i t y .  The use of t h e  QI0 r a t i o  1s c r i t i c i z e d  
and an a l t e r n a t i v e  method u s i n g  a computer-based 
cuxve-fitting technique is suggested. Using t h i s  
technique, t h e  tota l  respiration of ash ( F r a x i n ~  
excelsior L.) and hazel (Corylus avellana L.) litter 
over a period of n e a r l y  one year has been calculated 
and compaxed w i t h  t h e  observed d r y  weight and carbon 
loss. 

INTRODUCTION 

In vexy genexal terms, ,the rates at which the 
metabolic processes of organisms,  othex t han  homeotherms, 
proceed are predictably related to the  temperature of the 
envixonment, VanTt Hoff's Law and Axrheniusf equation 
are commonly quoted in t h i s  context, Van't Hoffts Lawwas 
originally applied to chemical reactions and states that 
the logarithm of the reaction rate Is proportional to 
t h e  temperatuxe ( O C )  , Arrhen ius  (1889 ) derived t h e  
fo l lowing  e q u a t i o n  to describe t h e  ef'fects of temperature 
on rates of chemical xeactions z 

d l n k  = A - 
d~ R T ~  

where k is t h e  react ion v e l o c i t y  c o n s t a n t ,  R is t h e  gas 
constant, T is the absolute temperature, and A is a 
constant which can be calculated from t h e  p lot  of log  k 
against 1/T  whexe the slope is equal  t o  A12.303R (e.g. 
see Fxutan and Sirnmonds, 1953, pp. 254-260). Arrhenius 
(1908) extended h i s  formula to ~nclude bio log ica l  processes 
and A w a s  replaced by p ,  t h e  temperatuxe chaxacterislic 
of the process. Arrhenius f equat l o n  assumed theoretical 
importance when it was realised t h a t  t h e  reaction rate 
might be the product of t h e  numbex of activated molecules 
and t h e i r  frequency of c o l l i s o n  (Lewls, 1918). A (or 
p )  is related to the  probability t h a t  molecules t h a t  
collide w i l l  have enough enexgy to react, and Arrhenius 1 

equation may be given in t h e  form: 

where k is t h e  number of molecules  reacting pex second 
per u n i t  volume, Z is an i n t e g r a t i o n  consrant modified 
to include t h e  c o l l i s i o n  number and a probability factor 
and represents t h e  number of molecules colliding per 
second per u n i t  volume. The exponential  term is a 
measure of t h e  f r ac t ion  of the molecules having excess 
energy A or more, and A 1s a constd::t w h i c h  is considered 
to be the minimum energy t h a t  react;ng molecules must 
possess before they react .  



Although this relationship has  been shown to hold for 
a wide range of chemical reactions, several  types of 
react i o n s  and processes are known not to give a s traight  
X ~ n e  w l t h  such a plot. Such cases include rnicxobial 
growrh and enzyme xeact ions  s tud ied  in vivo or in v i t x o ,  
and attempts have been made t o  explain their deviatons 
(Farrell andRose ,  1967; Brandts, 1967). It is thus  
s c a  ~ c e l y  surprising that larger organisms should f a i l  to 
conform strictly to e i t h e r  Van't Hoff's Law or Arxheniust 
e q u a t ~ o n  ( e , g ,  s e e  Krogh, 1916). 

For some time, b i o l o g i s t s  have been using a simple methad 
f o x  comparing rates of processes or act iv i t i e s  at 
dif ferenr  temperatures . This  involves the Q ~ Q  value, 
Q l ~  = rate at t + ~ O * C  . The Q I 0 v a l u e  f o r  microbial 

rate at t°C 
xesplnat i o n  approaches 2.0. This Qlo value was also 
obtarned by Macfadyen (1967) fqw carbon dioxide 
e v o l u t ~ a n  of i n t a c t  soil cores in temperature ranges 
between I O O C  and 2 5 O ~ .  However, Newell (1966) and 
Newell and Northcroft (1967) have shown t h a t  fox some 
animals t h e  Q1O is frequently  nearer 1.0 between 7 O  and 
22OC- On the other hand, B e r t h e t ( 1 9 6 4 )  obtainedQI0 
va l ues  around 4.0 for oribatid m i t e s ,  

The Qlo value is derived fxom Van't Hoffts Law (Krogh, 
1926, p. 97) and f xom the exceptions quoted above one 
would expect it to have limitations. It is well 
established t h a t  the QI0 value f o r  t h e  t o t a l  respiration 
of organisms varies w i t h  the  temperature range over 
whlch it is calculated, Krogh (1916, p . 9 8 )  found that 
tempex ature-metabolism (carbon dioxide evolution ) curves 
for  a v a r i e t y  of animals  showed t h i s  variation of Q10 
w i t h  lemperature .  Therefore, when Q10 values axe given 
~t is essent ia l  to s p e c i f y  the temperature range. Even 
so, a mathematician would question the value of the Q1O 
r a t i o  and would suggest other, mathematically better, 
w a y s  of handling data of t h i s  type.  

The two basic xequirement s f r o m  temperature/metaboli~m 
data are (a) a simple w a y  of comparing the  change in rate 
of a process or activity w i t h  temperature for  such 
puxposes as experiments in temperature adaptation, and 
( b )  a method for  predicting values  for t h e  rates a* 
var ious  temperatures from l imi ted  s e t s  of data, for such 
purposes as extrapolation to the  f i e l d  from laboratory 
experiments. I shall consider how these requirements 
might be met. 

The Qlo v a l u e  is a mathema t i ca l l y  unsat isfactoxy way of 
expressing v a r i a t i o n s  of a c t i v i t y  or r e a c t i o ~  rate w i t h  
temperatuxe, Its main use appeaxs to be in pxoviding 
a E irnple numbex for comparing t h e  responses of organisms, 
as in (aj above. Even fox t h i s  limited purpose it is 
not  rea l ly  satisfactory. Figure 1 shows plots of rate 
against  temperature obtained by taking arbitrary origins 



and slopes,  The lrnes have the same slope and therefore 
the s a m e  change of rate per degree change In temperature. 
However,  it can be seen  t h a t ,  f o r  each line, the QI0 value 
v a r l e s  w i t h  temperature, Furthermore, because t h e  l ines  
have drfferent ~nte r -cep t s  on the y a x x s  at OOC, the Q1O 
values f o r  t h e  t w o  p l o t s  over a grven temperature range 
are d ~ f f e r e n t ,  F l y u r e  2 shaws p1ot.s o b t a i n e d s i m i l a r l y  
-Ln w h ~ c h  t h e  Q l o  v a l u e s  are a l l  equal  ';a 2 .0  over the 
temperat uve rLinye of t h e  p lo l  s ,  A g a l n  t h i s  i l l u s t r a t e s  
t h e  effec-.t af the ~ntcrcept on t h e  y axls at OOC on t h e  
shape cf the c u r v e ,  I t  a l s o  .jhows t h a t ,  although the 
Q1O v a l ~ e  is constant t>v~?.r the temperat~xe range of t h e  
p l o t s ,  :he chdrige ln ra te  per degree change in tempexature 
var ies  w l t h  the temperatuxe,., 

Although the use  of the Qlo value 1 s  cumbersome and 
mathematically dublous, ~t is 50 f i r m l y  entrenched in 
cerraln  types of b l u l o g i c a l  work t h a t  one hesi ta tes  to 
suggest t h a t  ~t s h o u l d b e  dropped e n ~ l r e l y ,  T h e Q 1 O  
f i g u r e  c a n  j t ~ l l  be of some value  as l o n g  as i t s  
l u n l t a t l o n s  a re  recognised. Eowevex!  1 w i s h  to focus 
a t t e n t  1 on on another  way of hacdl i n g  t empexat ure/metabolism 
da ta  which desert-es the a t t e n t L o n  of b ~ o l o g i s t s ,  especially 
those h a t  lng acr ess to an  elect  ronlc cornpu~er .  This 
method 1 s  lllusr xated by results from a s tudy  of leaf 
3 itt er decomposlny under t h e  lnf luence of mixed microbial 
popcXas~ons In t h e  f i e l d  In the absence of a n i m a l s .  This 
work 1 5  part of a series of exyerlrnsnts on l i t t e r  
dec~mposltion which are being carried out at Meathop Wood 
J . B . P ,  s l t e  ~n North Lancashire* England ( N a t .  Grid R e f .  
SD 436795 ; , Full deta i l s  of t h e s e  experiments w i l l  be 
published l a t e r -  T n l s  paper p r e s e n t s  s o m e  of the  
p r e l i r n l n ~ r y  f l n d ~ n g s  whlch are relevant to t h e  above 
dlscusslon on temperatuxe.Imetabal ism relationships. 

EXPERTMENTAL METHODS 

Ihe method used f o r  s t u d y ~ n y  litter decomposition is 
s l m l I a n  to t h a t  descrrbed by Howard (19471, where weighed 
litter 1s piaced on f he s u r f d c e  of s o l 1  in glass tubes 
2.5  cm drametex a n d  15 crn l o n g  w i t h  a plug  of glass wool 
at the buttom, B e f o r e  u s e ,  the alx-dry l i t t e r  w a s  
subjected to a t o t a l  of 20 kR of X - ~ a y s  in three separate 
doses ,  This treatment k i l l s  l l t t e r  a n i m a l s  and t h e i x  
eggs w i t h  m l n i m u r n  effect on m i . c r  o- organlsrns and leaf 
ckerni c al c ornpss r t  i o n  and Frankland, in prep, ) . 
The s o i l  w a s  healed molsz to 50'Y f o r  t w o  periods of 24 
h c l ~ x s  ' E Z ~ A  th 24 hour,:, at r corn Tempera ture  between. This 
treatment kills 5011 a n ~ r n a l s  and t h ~ i r  eggs. The soil 
w a s  l e f t  t o  s t a n d  I n  the tubes  fox a week after  t h i s  
treatment. The l i t t e r  was t h e n  added and  the tubes 
were watered wlth a genexal inoculum of rnlcro-organisms 
pxepared by Incubati~g w a t e r  w i t h  s o i l  and l l t t e r  f r o m  
t h e  f i e l d .  Iubes of lrtter and s o d l  t reated in t h i s  
way kdn  be kept f xee of animals  fox cp to two  years in 
the f - , e l d  ~f I h e y  axe placed  i n  a large p l a s t i c  
c@r , ta :ner  w h l ~ h  mu:t be f weely dxained a n d  zs i tself  
sapported in a box h a ~ ~ l n g  t e r y l e n e  or cllon fine 
n e t t r n g  1 O 5 x  1 m m m e s h )  top a n d b o t t o m ,  The boxes 



used in our experiments are 90 cm long, 55 cm w i d e ,  a n d  
33 cm deep, and are supported on legs 42 cm l o n g  which 
is sufficiently h i g h  to avoid the carrying up of s m a l l  
animals  i n t o  t h e  boxes in rain splash. Sticky bands 
on t h e  legs of the boxes and a ccat of gxease on the  
outside of t h e  plas t i c  container complete the protection 
a g a i n s t  small animals.  Each box a l so  con ta ined  t w o  
t h e r m i s t o r  temperature probes l y i n g  on t h e  lower 
terylene netting and cannected to a Grant temperature 
recorder which xecorded h o u r l y ,  

Three tubes  of each l i t t e r  species were collected at 
each sampling and t h e  l i t t e x  was removed, weighed fresh 
and, a f t e r  respira t ion measurement, weighed oven-dry 
(105O~). Respiration w a s  measured as oxygen uptake in 
a G i l s o n  respirometer at as many different temperatures 
as t i m e  al lowed, u s i n g  successive runs .  Oxygenuptake 
w a s  corrected to NTP. Mean, m a x i m u m  and minimum values  
fo r  weight l o s s  aga ins t  time are shown in Figure 3 for  
haze l  (Corylus avellana L.) du r ing  the f i r s t  year of 
decomposition by mixed microbial  populat  i ons  in t h e  
absence of animals .  

The Gilson differential respi rorneter ( U m b r e i t  et al, 
1964, pp. 104-105) is one of several recent modifications 
of the Dixon respirometer (Dixon, 1952, p . 6 ) .  We have 
used both types of respirometer during the past  six years 
f o r  measuring the oxygen uptake of so i l s  and decomposing 
plant material.  These respirometers have a number of 
advantages in t h i s  type of work. 

MATHEMATICAL TREATMENT OF RESULTS 

A t  the s t a r t  of the  experiment, each tube con ta ined  
approximately 0.25 g of leaves. Because we have not 
yet explored t h e  s t a t i s t i c a l  consequences of expressing 
these resu l t s  on a "per gram" basis ,  ou r  initial 
c a l c u l a t i o n s  are on a lrpex 0.25 gtt or "pex samplef1 
basis.  Tempewature/respirationplots like those in 
Figure 4 wexe obtained for each of t h e  points in F i g u r e  
3. It was evident t h a t  mast of t h e  r e l a t i o n s h i p s  were 
l i n e a r ,  a l t hough  a f e w  were quadra t ic .  A computer 
program w a s  w r i t t e n  which t e s t e d  the data  fox goodness- 
of -f it of lineax and quadratic regressions and also 
gave the regression constants and coefficients so t h a t  
t h e  appropriate curve could be f i t t e d .  The results f o r  
hazel have been used to i l l u s t r a t e  t h e  computations, but 
resu l t s  f o r  ash (Fraxinug excelsior L.) and hawthorn 
(Crat  aeaus monosvna Jacq. ) are s imilax . Having obtained 
t h e  curve equa t ion  and f i t t e d  the curve ,  it is a simple 
matter to take t h e  resp i ra t ion  at any temperature  and 
calculate t h e  probable change in xesp ixa t ion  f o r  any 
change in t e m p e r a t u r e - & w i t h i n  the limits of the  p l o t .  If 
curves were  fitted f o r  t h e  maximum and minimum points, 
th ey  would g ive  a good estimate of t h e  limits within 
which  t h e  expected result might f a l l .  



I n  Figure 4 ,  t h e  d i f f e r e n t  gxaphs represent samples having 
different moisture contents which w i P  1 affect  the absolute 
values for  oxygen uptake but w i  11 not  have  much effect on 
the shape of the plo t  The data are being examined for 
poss ible  ternperatuxeimoistuxe/respiration relat ionships by 
multiple regress ion  ana lys i s .  In t h i s  p a p r ,  I will 
examine t h e  temperature/respixat i c n  relationships using 
a di f ferent  approach. 

A problem often encountered in s tud ie s  on decomposer 
organisms is t h e  c a l c u l a t i o n  of total metabolism of s o i l  
or l i t t e x  in t h e  f i e l d  fox a defined per iod  from 
r e l a t i v e l y  few f l e l d  observations and w i t h  the aid of 
laboratory data ,  As we have a number of plots l ike 
those in Figure 4 f o r  the first year of decomposition of 
l i t t e r  by microbial populations and w e  also  have almost 
a year of hourly tempexature readings ,  we calculated the 
total respiration of the  litter during t h i s  pexiad. To 
do this, we took the  values  f o r  oxygen uptake/smple/hour 
at t h e  d i f ferent  temperatures and f i t t e d  t h e  app~opxiate 
regxess ion.  We subdivided t h e  long period into s h o r t e x  
periods of a f e w  weeks each, each period being centered 
on one of t h e  xespiration/temperature curves.  F o x  each 
pexiod we calculated t h e  mean temperatuxe. Using t h i s  
mean temperature, the regression equation, and t h e  number 
of houxs i n  the period, we calculated the  t o t a l  oxygen 
uptake for each period, For present purposes we 
assumed tha t  t h e  RQ = 1.0 and ca lcu la ted  t h e  expected 
carbon dioxide evolution during the  pexiod. From t h i s  
w e  obtained t h e  weight of carbon l o s t  by respiration.  
This we compared w i t h  the  actual loss of carbon obtained 
from measuxoments of dry weight loss. The r e s u l t s  of 
these ca l cu la t ions  f a r  hazel and ash l i t t e r  are given 
in Table 1, The overall agreement between calculated 
loss of carbon as caxbon dioxide and t h e  actual loss of 
caxbon from weight loss measuxementa is good ovex the 
long  period and is general ly  q u i t e  good over the shortex  
peric3ds. The poor agreement f o r  hazel l i t t e x  in the 
period January 4th to Maxch 28th clearly needs further  
invest igat  ion, 

F i n a l l y ,  it must be emphasized t h a t  these are preliminary 
f indfngs . More d e t a i l e d  s t a t i s t  icaP calculat ions  are 
being done and f u l l  d e t a i l s  will be published later, 
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TABLE 1

Comparison
PoPul ations
period 28th

pe r iod

A .  haze l  / co rv lus

total oxygeil
uptake in
n6 r i  ^ , - l  t n l  \

4 .67

4 .  18

7  . 40

10 .71

45  .67

B. ash (Flaxinus

9 .83

73 .29

7  , 61

9 .29

13 .22

\2 .87

ave l lSnd L" )  l i t te r

ca lcu la ted  we igh t
of carbon in el 'olved

- (m9 )

4 "7

2 ,4

4 .O

actual carbon
loss  f t om

(ns )

o"5

2  "3

4 .9

3 .6

7 .2

24 .4

of
i n
to

respiration of l i t ter decomposed by mjxed diciobial
the absebce of aniDals with carbon loss over the
372r.d day of deconpos it i oii

Nov 2L -

Nov 21 -

Jan 4 -

NIar 29 -

May 3 -

Jtrne 14 -

Aug 9 -

Jan 3

l,ar 28

May 2

JUNE -LJ

Aug 8

@t 31

Oct 31

J N .J

Mar 28

NI^y 2

June 13

Aug I

Oct 31

Oct 31

24 ,6

exce ls io r  L - )  l  i t t  e r

Nov

Mar

May

June

Aug

Nov

6 .9

IO .2

4 "6

2 "4

7 .4

6 ,3

38 .3

21

29
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