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Abstract 27 

The irreversible trend for global warming underscores the necessity for accurate 28 

monitoring and analysis of atmospheric carbon dynamics on a global scale. Carbon 29 

satellites hold significant potential for atmospheric CO2 monitoring. However, existing 30 

studies on global CO2 are constrained by coarse resolution (ranging from 0.25° to 2°) 31 

and limited spatial coverage. In this study, we developed a new global dataset of 32 

column-averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full 33 

coverage using carbon satellite observations, multi-source satellite products, and an 34 

improved deep learning model. We then investigated changes in global atmospheric 35 

CO2 and anomalies from 2015 to 2021. The reconstructed XCO2 products show a better 36 

agreement with Total Carbon Column Observing Network (TCCON) measurements, 37 

with R2 of 0.92 and RSME of 1.54 ppm. The products also provide more accurate 38 

information on the global and regional spatial patterns of XCO2 compared to origin 39 

carbon satellite monitoring and previous XCO2 products. The global pattern of XCO2 40 

exhibited a distinct increasing trend with a growth rate of 2.32 ppm/year, reaching 41 

414.00 ppm in 2021. Globally, XCO2 showed obvious spatial variability across 42 

different latitudes and continents. Higher XCO2 concentrations were primarily 43 

observed in the Northern Hemisphere, particularly in regions with intensive 44 

anthropogenic activity, such as East Asia and North America. We also validated the 45 

effectiveness of our XCO2 products in detecting intensive CO2 emission sources. The 46 

XCO2 dataset is publicly accessible on the Zenodo platform at 47 

https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024). Our findings represent a 48 

promising advancement in monitoring carbon emission across various countries and 49 

enhancing the understanding of global carbon dynamics. 50 

 51 

Keywords: Atmospheric carbon dioxide; Satellite carbon monitoring; Deep learning; 52 

OCO-2/3 53 

 54 

1. Introduction  55 

Carbon dioxide (CO2) is a primary greenhouse gas (GHG). Anthropogenic 56 

activities and land use change since the industrial revolution have led to a marked 57 

increase in atmospheric CO2, which is widely considered to be a major contributor to 58 
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climate change, reaching a record-high of 414.71 parts per million (ppm) in 2021 59 

(Friedlingstein et al., 2022). The damaging global climate change caused by 60 

atmospheric increases in CO2 is severe and irreversible (IPCC, 2023; Kemp et al., 2022; 61 

Solomon et al., 2009). Consequently, the Paris Agreement announced to hold “the 62 

increase in the global average temperature to well below 2°C above pre-industrial levels” 63 

and pursue efforts “to limit the temperature increase to 1.5°C above pre-industrial 64 

levels.” It was also determined that the joined parties should submit their nationally 65 

determined contributions (NDCs) to reduce CO2 emissions. 66 

Accurate monitoring of atmospheric CO2 concentrations is crucial for measuring 67 

global CO2 emissions mitigation as well as characterizing terrestrial carbon change. 68 

Currently, ground-based and airborne platform-based atmospheric CO2 observation 69 

networks, such as the Total Carbon Column Observing Network (TCCON, 70 

https://tccondata.org/), are capable of providing CO2 measurements with high accuracy 71 

(Petzold et al., 2016; Wunch et al., 2011, 2010). However, these observation networks 72 

are insufficient to fully explore the spatiotemporal patterns of atmospheric CO2 at a 73 

global scale. The launch of a series of carbon observation satellites in recent years has 74 

provided favorable opportunities for continuous and large-scale atmospheric CO2 75 

observation (Buchwitz et al., 2015; Hammerling et al., 2012). The Scanning Imaging 76 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard 77 

EnviSat was one of the first instruments to monitor the atmospheric column-averaged 78 

dry-air mole fraction of CO2 (XCO2) (Bovensmann et al., 1999). The Greenhouse Gases 79 

Observing Satellite (GOSAT) launched by Japan utilized the Thermal And Near-80 

Infrared Sensor for carbon Observation (TANSO) instrument to monitor XCO2 globally, 81 

providing products with a spatial resolution of 10 km every three days (Butz et al., 82 

2011). The Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 launched by NASA 83 

provide XCO2 measurements at a finer spatial resolution (Crisp et al., 2017; Eldering 84 

et al., 2017). These sensors are considered among the best for XCO2 observation, 85 

featuring larger overlapping swaths that cover areas of ~20×80 km² and exhibiting the 86 

least retrieval absolute bias, measuring less than 0.4 ppm (Eldering et al., 2019; Taylor 87 

et al., 2020). However, the narrow swath of the sensor can only cover limited spatial 88 

areas, and caused by the cloud and aerosol contaminations, the data from OCO-2/3 89 

always contain large amount of missing values (Taylor et al., 2016; Crisp et al., 2017). 90 

These limitations obstacle the better understanding of the atmosphere-land carbon cycle 91 

over large spatial scale based on satellite observation. 92 
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Consequently, several studies have concentrated on generating spatially 93 

continuous XCO2 products based on satellite observations (He et al., 2022; Siabi et al., 94 

2019; Zhang and Liu, 2023). One potential solution is the application of diverse 95 

interpolation methods (He et al., 2020; Zeng et al., 2014). Hammerling et al. (2012) 96 

mapped the global distribution of CO2 based on OCO-2 and the geostatistical method. 97 

Zeng et al. (2014) developed a gap-filling model based on the space-time kriging to 98 

obtain gap-filled GOAST XCO2 data in China. However, their results encounter large 99 

uncertainty in regions with sparse data coverage, due to algorithmic constraints and the 100 

coarse spatial resolution of the original data. Recently, data fusion techniques have 101 

gained recognition as an effective method for obtaining full-coverage XCO2 data 102 

(Sheng et al., 2023; He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). These 103 

techniques can be broadly categorized into two groups based on their underlying 104 

principles. The first category leverages the spatiotemporal correlation inherent in multi-105 

source XCO2 data, fusing them based on this spatiotemporal information (Wang et al., 106 

2023; Sheng et al., 2023). For instance, Wang et al. (2023) introduced a spatiotemporal 107 

self-supervised fusion model and generate seamless global XCO2 data at a spatial 108 

resolution of 0.25°. The second category is regression-based methods, which aim to fill 109 

the gap in XCO2 data by capturing the nonlinear relationship between multi-source 110 

XCO2 measurements and related covariates (He et al., 2022; Siabi et al., 2019; Zhang 111 

and Liu, 2023). This category includes a range of specific methodologies, from 112 

traditional statistical and geostatistical models to advanced machine learning models. 113 

Siabi et al (2019) employed the Artificial Neural Network (ANN) to establish 114 

correlation between XCO2 and eight environmental variables. Zhang and Liu (2023) 115 

utilized the convolution neural networks (CNN) coupled with attention mechanisms to 116 

produce full-coverage XCO2 data across China. 117 

Despite significant efforts to generate seamless XCO2 products using satellite 118 

observations, several challenges and limitations persist. Firstly, due to the sparse 119 

distribution of satellite XCO2 data, previous studies have relied on assimilation and 120 

reanalysis XCO2 data as covariates. This reliance often results in final products that 121 

closely mirror the assimilation and reanalysis results, leading to an oversmoothed 122 

distribution that undermines the high-resolution advantages of satellite data. 123 

Furthermore, most studies that employ regression models to estimate full-coverage 124 

XCO2 are limited to regional or national scales due to the weak transferability of these 125 
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models. Consequently, there is a scarcity of research investigating global patterns of 126 

XCO2 based on statistical models. Additionally, the current generation of XCO2 127 

products typically features a coarse spatial resolution, ranging from approximately 0.25° 128 

to 2°. In conclusion, there is an urgent need to develop global full-coverage XCO2 129 

products with a fine spatial resolution. This development should leverage satellite 130 

carbon monitoring and advanced methods that exhibit spatiotemporal transferability to 131 

overcome the aforementioned limitations. 132 

In this study, we leveraged time-series OCO-2/3 XCO2 data and various related 133 

environmental variables retrieved from multi-source satellites to generate global full-134 

coverage XCO2 products. The advanced deep learning method was adopted to model 135 

time-series XCO2 and incorporate terrestrial flux, anthropogenic flux and climatic 136 

impacts into the parameterization process. Our XCO2 products achieved full global 137 

coverage with a spatial resolution of 0.05° and a monthly temporal resolution from 2015 138 

to 2021. We also validated our XCO2 products against in-situ XCO2 data and other 139 

XCO2 products. Based on our high-resolution products, we explored the spatial and 140 

temporal pattern of atmospheric CO2 globally and identified regions with intense CO2 141 

emission. Our findings aim to enhance the understanding of carbon dynamics on a 142 

global scale through data reconstruction and analysis. 143 

2. Materials and methods 144 

In this study, we utilized Google Earth Engine (GEE) to integrate OCO-2/3 XCO2 145 

data and multiple environmental variables as data inputs. In addition, the attention-146 

based Bidirectional Long Short-Term Memory (At-BiLSTM) model was trained for 147 

building the relationship between OCO-2/3 XCO2 and the related environmental 148 

variables. Then, we reconstructed the global monthly XCO2 and validated the accuracy 149 

of the products against TCCON XCO2 data and the original OCO-2/3 XCO2 data. We 150 

also analyzed the spatial and temporal variation of XCO2 over the globe and detect the 151 

intense CO2 emission regions. The methodology framework is shown in Fig.1. 152 
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 153 

Figure 1. The workflow for mapping and exploring global XCO2 dynamics and drivers. 154 

2.1 Datasets 155 

2.1.1 OCO XCO2 data 156 

In this study, we utilized the satellite-based XCO2 data from OCO-2 and OCO-3, 157 

covering the period from December 2014 to December 2021. The OCO-2/3 measure at 158 

three near-infrared wavelength bands, that are 0.76 μm Oxygen A-band, 1.61 μm weak 159 

CO2, and 2.06 μm strong CO2 bands (Crisp et al., 2004). The full physics retrieval 160 

algorithm was used to retrieve the XCO2 based on the observation of the two satellites 161 

(Crisp et al., 2021). Previous studies (Taylor et al., 2023) suggested that the OCO-2 and 162 

OCO-3 XCO2 measurements are in broad consistency and can therefore be used 163 

together in scientific analyses. The OCO-3 Level 2 XCO2 Lite version 10.4r data 164 

(OCO3_L2_Lite_FP V10.4r) from 2020 to 2021 and the OCO-2 Level 2 XCO2 Lite 165 
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version 11r (OCO2_L2_Lite_FP V11r) from 2015 to 2019 were downloaded from 166 

Goddard Earth Sciences Data and Information Services Center (GES DISC, 167 

https://disc.gsfc.nasa.gov/). The products were aggregated as a daily file (Fig. 2) with a 168 

spatial resolution of 2.25 km × 1.29 km (O’Dell et al., 2018). The XCO2 data were 169 

quality filtered, and only good-quality data (i.e., xco2_quality_flag=0) were considered. 170 

To generate the monthly products with a spatial resolution of 0.05° × 0.05°, we 171 

converted the daily data to monthly data by averaging the sparse XCO2 data within a 172 

range of 0.05° × 0.05° over one month. 173 

 174 

Figure 2. Footprints of OCO-2 and OCO-3 XCO2 data on 20th January 2018 and 4th 175 

December 2021 (with quality filtering) as examples. 176 

 177 

2.1.2 TCCON XCO2 data 178 

The Total Carbon Column Observing Network (TCCON) is a global network for 179 

measuring atmospheric CO2, methane (CH4), carbon monoxide (CO) and other trace 180 

gases in the atmosphere. The XCO2 data from TCCON were demonstrated to have high 181 

accuracy with ~0.2% of XCO2 (Wunch et al., 2011). Consequently, the data have been 182 

used widely for the validation of satellite observations such as OCO-2, OCO-3 and 183 

GOSAT (Deng et al., 2016; Wunch et al., 2017). In this research, we used the GGG2014 184 

and GGG2020 datasets from 23 sites (Fig. 3 and Table 1) around the world to validate 185 

the reconstructed XCO2 products. 186 
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 187 

Figure 3. The locations of the TCCON sites. 188 

 189 

Table 1. The information on the TCCON in situ stations. 190 

ID Site name Longitude Latitude Start date End date 

1 saga01 (JP) 130.29 33.24 2011-07-28 2021-06-30 

2 xianghe01 (PRC) 116.96 39.80 2018-06-14 2022-04-09 

3 burgos01 (PH) 120.65 18.53 2017-03-03 2021-08-20 

4 harwell01 (UK) -1.32 51.57 2021-05-30 2022-05-22 

5 bremen01 (DE) 8.85 53.10 2009-01-06 2021-06-24 

6 tsukuba02 (JP) 140.12 36.05 2014-03-28 2021-03-31 

7 lauder03 (NZ) -97.49 36.60 2018-10-02 2022-11-14 

8 edwards01 (US) -117.88 34.96 2013-07-20 2022-12-25 

9 nicosia01 (CY) 33.38 35.14 2019-09-06 2021-06-01 

10 izana01 (ES) -16.5 28.31 2014-01-02 2022-10-31 

11 orleans01 (FR) 2.11 47.96 2009-09-06 2022-04-24 

12 hefei01 (PRC) 119.17 31.90 2015-11-02 2020-12-31 

13 easttroutlake01 (CA) -104.99 54.35 2016-10-03 2022-08-13 

14 karlsruhe01 (DE) 8.44 49.10 2014-01-15 2023-01-20 

15 paris01 (FR) 2.36 48.85 2014-09-23 2022-03-28 

16 garmisch01 (DE) 11.06 47.48 2007-07-18 2021-10-18 

17 rikubetsu01 (JP) 143.77 43.46 2014-06-24 2021-06-30 

18 lamont01 (US) 169.68 -45.04 2011-04-16 2022-12-19 

19 reunion01 (RE) 55.48 -20.90 2015-03-01 2020-07-18 

20 darwin01 (AU) 130.93 -12.46 2005-08-28 2020-04-30 

21 Wollongong (AU) 150.88 -34.41 2008-06-26 2020-06-30 

22 Manaus01(BR) -60.60 -3.21 2014-09-30 2015-07-27 

23 parkfalls01 (US) -90.27 45.94 2004-06-02 2020-12-29 
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JP: Japan, DE: Germany, FI: Finland, FR: French, RE: Réunion Island, AU: Australia, 191 

BR: Brazil; US: United States, PRC: People's Republic of China, NO: Norway, CY: 192 

Cyprus, NZ: New Zealand, PH: Philippines, UK: United Kingdom, CA: Canada. 193 

 194 

2.1.3 Environmental variables 195 

In the selection of environmental variables, our primary focus was on processes 196 

within the terrestrial carbon cycle. The carbon cycle on land can be conceptualized as 197 

two flux exchange processes influenced by the climatic conditions (Fig. 4). The CO2 in 198 

the atmosphere is fixed by vegetation photosynthesis and the carbon is released back 199 

into the atmosphere by respiration and disturbance processes (Beer et al., 2010; Pan et 200 

al., 2011). The carbon fluxes through these processes we considered as the land flux. 201 

Since Industrial Era, anthropogenic carbon from land use change (e.g., deforestation) 202 

and fossil fuels and cement become important parts of atmospheric CO2 (Friedlingstein 203 

et al., 2010), which we considered as the anthropogenic flux. Meanwhile, the two 204 

processes are directly or indirectly driven by the climatic features (Sitch et al., 2015; 205 

Chen et al., 2021). Consequently, we explored the potential drivers of XCO2 from the 206 

perspective of the carbon cycle at atmosphere-land interface. Multiple satellite products 207 

and reanalysis data from three aspects (i.e., land flux, anthropogenic flux and climatic 208 

impacts) were selected to consider their various effects on the XCO2. 209 
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   210 

Figure 4. Simplified illustration of the global carbon cycle on land (referring to IPCC 211 

2023). Noting that the carbon cycle in the ocean was not considered in our study and 212 

we only focused on the fast exchange fluxes. The slow carbon exchanges (e.g., chemical 213 

weathering, volcanic emissions) which are generally assumed as relatively constant 214 

over the last few centuries (Sundquist, 1986), were not included here. 215 

 216 

The key factors selected related to the land flux included gross primary 217 

productivity (GPP), enhanced vegetation index (EVI), land surface temperature (LST), 218 

vegetation continuous fields (VCF), and normalized difference snow index (NDSI). 219 

These products are all obtained from the Moderate Resolution Imaging 220 

Spectroradiometer (MODIS), which has been operated for over 20 years and produced 221 

various satellite products with fine spatial resolution and accuracy. The EVI and NDSI 222 

were converted to monthly data using the maximum value composite (MVC) method. 223 

The GPP and LST were converted to monthly data by the averaging method.  224 

The rising anthropogenic activities have greatly influenced atmospheric CO2 225 

(Friedlingstein et al., 2022). In this study, five anthropogenic factors, including land 226 

use/cover change (LUCC), nighttime lights (NTL), and three trace gases (i.e., sulfur 227 

dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO)) were selected. The 228 

LUCC was obtained from MODIS MCD12Q1 with a spatial resolution of 500 m. The 229 

monthly Suomi National Polar-orbiting Partnership-Visible Infrared Imaging 230 
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Radiometer Suite (NPP-VIIRS) day/night band (DNB) NTL products (spatial 231 

resolution of 15 arc-second, ~500 m) were obtained from the Earth Observation Group 232 

(EOG) of the Colorado School of Mines. We also used the SO2, NO2 and CO products 233 

from the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 234 

Precursor (S5P), a global air monitoring satellite for the Copernicus mission. The data 235 

were also converted to the same temporal resolution (i.e., monthly).  236 

The selected climatic factors affecting XCO2 were surface pressure (SP), 10 m 237 

wind speed (WS), precipitation flux (PRE), 2 m air temperature (Temp), and total 238 

evaporation (E). These data are from the reanalysis products (Hersbach et al., 2020) 239 

developed at the European Center for Medium Weather Forecasting (ECMWF, 240 

https://www.ecmwf.int/). The WS is calculated using the products of 10 m wind 241 

components of U and V. All data were converted to monthly time-series. The bilinear 242 

interpolation approach was used to convert the data at different spatial resolutions to 1 243 

km resolution. The data preprocessing was conducted on GEE, R and ArcGIS 10.3. 244 

Details of these products are listed in Table 2. 245 

Table 2. Ancillary variables selected in this study. 246 

Variables Spatial resolution 
Temporal 

resolution 
Product names Category 

GPP 500 m 8-day MOD17A2H 

Land flux-

related 

EVI 1 km 16-day MOD13A2 

LST 1 km daily MOD11A1 

VCF 250 m annual MOD44B 

NDSI 500 m daily MOD10A1 

LUCC 500 m annual MCD12Q1 

Anthropogenic 

flux-related  

NTL 15 arc-second monthly VNP46A2 

SO2 

~1 km daily 

OFFL/L3_SO2 

NO2 OFFL/L3_NO2 

CO OFFL/L3_CO 

SP 

~10 km monthly ERA5-Land Climatic impacts 

E 

Wind-v 

Wind-u 

Pre 

Temp 
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2.2 Deep learning-based XCO2 reconstruction 247 

Given the complexity temporal dependence and nonlinear relationship between 248 

XCO2 and the environmental variables, we selected the At-BiLSTM model to relate the 249 

XCO2 data with the 16 response variables affecting atmospheric CO2, and further 250 

reconstruct the XCO2 data at a fine spatial resolution. The equation to reconstruct XCO2 251 

data in this research can be denoted as: 252 

𝑋𝐶𝑂2(𝑖) = 𝑓𝑏𝑖𝑙𝑠𝑡𝑚([LF𝑖,𝑗], [AF𝑖,𝑗], [CI𝑖,𝑗]) 
(1) 

     = 𝑓𝑏𝑖𝑙𝑠𝑡𝑚([GPP𝑖, EVI𝑖, LST𝑖, VCF𝑖, NDSI𝑖], [LUCC𝑖, NTL𝑖, 

                   SO2𝑖, NO2𝑖, CO𝑖], [SP𝑖, 𝐸𝑖, WU𝑖, WV𝑖, PRE𝑖, TEMP𝑖]) 
(2) 

where 𝑋𝐶𝑂2(𝑖) denotes the aggregated monthly atmospheric CO2 concentration at grid 253 

cell i, [LF𝑖,𝑗], [AF𝑖,𝑗], and [CI𝑖,𝑗] denote the variables from land flux, anthropogenic flux, 254 

and climatic impacts, respectively. And j denotes the number of variables in each 255 

category. The 𝑓𝑏𝑖𝑙𝑠𝑡𝑚  represents the estimation model of each grid cell at the spatial 256 

resolution of 0.05°. 257 

The LSTM model is a variant of RNN that excels in processing time-series data 258 

(Hochreiter and Schmidhuber, 1997; Graves et al., 2005). It has been utilized 259 

extensively for prediction of remote sensing data. Each LSTM cell includes an input 260 

gate, a forget gate and an output gate. The forget gate 𝑓𝑡 determines which information 261 

from the previous time step to forget, the input gate 𝑖𝑡 governs the selective storage of 262 

the data in current time step, and the output from forget gate 𝑓𝑡 and input gate 𝑖𝑡 are 263 

combined in the cell state 𝐶𝑡 . Lastly, the output gate 𝑜𝑡  controls the flow of 264 

information from the cell state to the next time step. These gate structures effectively 265 

manage the flow of information within the LSTM, enabling it to capture the temporal 266 

dependencies present in the data (Yuan et al., 2020; Su et al., 2021). Bidirectional 267 

LSTM consists of two directional LSTM, in which the data flows forward and 268 

backward. Then we defined a multi-dimensional attention layer behind the BiLSTM to 269 

focus on more critical variables and give them higher weights (Bahdanau et al., 2016). 270 

In the attention layer, we adopted the full connection layer and softmax activation 271 

function to calculate the attention weight of each time step. 272 

The At-BiLSTM consists of one input layer, three Bidirectional LSTM layers, one 273 

attention layer, one dropout layer to prevent overfitting, and one fully connected layer 274 

(i.e., dense layer) for the final output. The mean square error is used as the loss function. 275 

The number of network units, batch size, learning rate and activation function 276 
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hyperparameters were all tuned in model fitting. All data were normalized using the 277 

mean and standard deviation of the dataset. The model was built using the deep learning 278 

API Keras in Python. 279 

In this study, we adopted the sample-based cross-validation (CV) method to 280 

evaluate the model performance and the in-situ validation to assess the accuracy of 281 

reconstructed XCO2 products. We also compared the reconstructed XCO2 products with 282 

the original OCO XCO2 products and the CAMS-EGG4 GHGs data. Four metrics, 283 

including coefficient of determination (R2), root mean squared error (RMSE), mean 284 

absolute error (MAE) and mean bias, were calculated as follow, to assess the model 285 

performance.  286 

where n is the total number of data samples, and 𝑓𝑖, 𝑦𝑖 are the observed results and 287 

model-estimated results, respectively. 288 

3. Results 289 

3.1 Validation of the reconstructed XCO2 product 290 

3.1.1 Model validation results 291 

Given the distinct seasonal variation in XCO2 concentrations, we conducted the 292 

sample-based CV to evaluate the model performance during different seasons (Fig. 5). 293 

The model demonstrated high accuracy across all seasons, with R2 values exceeding 294 

0.81, MAE less than 0.73 ppm, and RMSE less than 1.09 ppm. The model performed 295 

better in spring and summer, as indicated by the densest cluster of points being closest 296 

to the 1:1 line. Conversely, the model performed worst in winter, when photosynthesis 297 

is weakest, leading to greater estimation deviation. These variations are likely 298 

influenced by the ecosystem CO2 exchange during different seasons. Overall, the model 299 

effectively captured the seasonal variation of XCO2 and provided unbiased XCO2 300 

estimations. 301 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)𝑛

𝑖=1
2

∑ (𝑦𝑖 − �̅�)𝑛
𝑖=1

2  (3) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑓𝑖)

𝑛
𝑖=1

2

𝑛
 (4) 

 
𝑀𝐴𝐸 =

∑ |(𝑓𝑖 − 𝑦𝑖)|𝑛
𝑖=1

𝑛
 (5) 
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 302 

Figure 5. (a) Density scatterplots of sample-based CV results during different seasons. 303 

The proportion of the number of points is represented as the color of the points. The 304 

black dashed lines and grey solid lines denote the linear regression fitted lines and the 305 

1:1 line, respectively. The R2, RMSE (ppm), MAE (ppm), and mean bias (ppm) are 306 

provided. 307 

We further validated the model performance across different continents. Table 3 308 

presents the validation results for six continents. The model performance varied across 309 

continents. Notably, the model achieved the highest accuracy in Africa and Europe, 310 

with R2 of 0.80 and 0.81, and RMSE values of 1.02 and 1.14 ppm, respectively. In 311 

contrast, the model demonstrated relatively low accuracy in Oceania and South 312 

America, both located in the southern hemisphere. Despite this, the RMSE of the model 313 

in these continents were 1.21 and 0.66 ppm, respectively, indicating that the model 314 

maintained acceptable estimation accuracy in these regions. 315 

  316 
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Table 3. Model performance in different continents. 317 

 R2 RMSE (ppm) MAE (ppm) Mean bias (ppm) 

Africa 0.80 1.02 0.70 -0.009 

Asia 0.73 1.27 0.85 0.002 

Europe 0.81 1.14 0.77 -0.030 

North America 0.73 1.26 0.83 -0.020 

South America 0.59 1.22 0.86 -0.012 

Oceania 0.67 0.66 0.4 0.051 

3.1.2 In situ validation results 318 

The TCCON in situ XCO2 data were adopted for validating the accuracy of the 319 

reconstructed XCO2 over the globe. The validation results for our reconstructed XCO2 320 

and the origin OCO-2/3 XCO2 are displayed in Fig. 6. The two XCO2 data showed 321 

similar precision with the R2 value of 0.91 and 0.92, respectively (Fig. 6c-d). While the 322 

reconstructed XCO2 greatly increases the data coverage with the validation sample 323 

increasing from 578 to 1432. Meanwhile, the reconstructed XCO2 has a smaller RMSE 324 

and MAE with values of 1.72 and 1.3 ppm, respectively, compared with the OCO XCO2. 325 

These results indicate that the reconstructed XCO2 had a closer agreement with TCCON 326 

XCO2. We also displayed the mean bias of OCO and reconstructed XCO2 in each 327 

TCCON site (Fig. 6a-b). As shown in Fig. 6a, the OCO-2/3 observation tend to 328 

overestimate the XCO2, while the reconstructed XCO2 could amend the underestimation 329 

of OCO XCO2. Over 68% of the validation sites of reconstructed XCO2 had a mean 330 

bias less between ± 0.4 ppm. Given the orbital constraints of the ISS (Eldering et al., 331 

2019), OCO-3 measurements were restricted to latitudes below ± 52°. Consequently, 332 

substantial missing values of OCO XCO2 data were shown around 50°N, introducing a 333 

potential bias. In contrast, the reconstructed XCO2 effectively solves this problem and 334 

demonstrates markedly enhanced performance.  335 
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 336 

Figure 6. The mean bias of the (a) OCO observed XCO2, and (b) reconstructed XCO2 337 

against global TCCON XCO2; (c) density scatterplots of the validation results for OCO 338 

observed XCO2, and (d) reconstructed XCO2 against the TCCON XCO2. The 339 

proportion of the number of points is represented as the color of the points. The number 340 

of samples n, linear regression relation, R2, RMSE (ppm), MAE (ppm), and mean bias 341 

are provided.  342 

 343 

Fig. 7 shows the individual in situ validation results of the reconstructed XCO2 344 

against TCCON site in different continents (except Antarctica). The sample numbers 345 

are varying in different sites due to the observation constraints, while the validation 346 

results from all sites showed satisfying performance. The R2 for all sites are over 0.88 347 

and the MAE are less than 1.46 ppm. The reconstructed XCO2 data performs the best 348 

in sites lauder03 and karlsruhe01, which located in North America and Europe, 349 

respectively. While the reconstructed XCO2 performed worst in saga01 which located 350 

in Asia, potentially due to the high CO2 concentrations in these regions. Overall, the 351 

reconstructed XCO2 showed high consistency with the in situ XCO2 observation in 352 

different regions over the globe. 353 
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 354 

Figure 7. Scatterplots of the TCCON in situ validation results of the reconstructed 355 

XCO2 on different TCCON sites over the globe. 356 

 357 

To assess the performance of our reconstructed XCO2 in temporal analysis, we 358 

compared the time series for monthly OCO-2/3, reconstructed and TCCON XCO2 data 359 

from December 2014 to December 2021. As depicted in Fig. 8, the reconstructed XCO2 360 

exhibits similar temporal patterns compared to the TCCON data, with the mean RMSE 361 

and MAE of 1.47 and 1.07 ppm. While the OCO-2/3 XCO2 exhibits some 362 

overestimation for high values and underestimation for low values compared with 363 

TCCON data. In contrast, the reconstructed XCO2 provided more stable estimate results. 364 

 365 

Figure 8. Comparison of the temporal variation of XCO2 data from OCO-2/3 (blue 366 

dots), TCCON (green dots), and the reconstructed products (yellow dots). 367 

 368 
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3.1.3 Product assessment with previous XCO2 products 369 

Fig. 9 shows the comparison between different XCO2 products (i.e., original OCO 370 

XCO2, CAMS-EGG4 GHGs data, and our reconstructed XCO2) in four specific regions. 371 

The original OCO XCO2 data were aggregated into 2°×2° latitude/longitude bins 372 

following Taylor et al. (2020). The CAMS-EGG4 GHGs data are a global reanalysis 373 

dataset at a spatial resolution of 0.75° released by the European Centre for Medium-374 

range Weather Forecasts (Agustí-Panareda et al., 2023). The North America, Europe 375 

and part of north Africa, Asia and Oceania were chosen as examples. As shown in Fig. 376 

9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO2 is 377 

significantly increased compared to the original OCO XCO2 data. However, the 378 

CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed 379 

information on XCO2 change. In comparison, our reconstructed seamless XCO2 380 

product can provide much more information on the global and regional spatial patterns 381 

of XCO2. Due to the limited coverage, the original OCO XCO2 data failed to capture 382 

the variation of XCO2 in the Midwestern United States, northern part of the United 383 

Kingdom, and central China. In contrast, these regions are well represented in the 384 

reconstructed XCO2 product. Furthermore, the reconstructed XCO2 with a fine spatial 385 

resolution can offer a more accurate spatial distribution of carbon sources and sinks. 386 

For example, lower XCO2 concentrations are clearly observed in the forests in eastern 387 

Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink 388 

of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to 389 

their coarse spatial resolutions. In general, reconstructed XCO2 products with complete 390 

coverage and finer resolution provide valuable support for analyzing atmospheric CO2 391 

variation and accurate monitoring of carbon sources and sinks.  392 
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 393 

Figure 9. Comparison between the OCO observed XCO2 data aggregated into 2°×2° 394 

latitude/longitude bins, the CAMS-EGG4 GHGs data, and our reconstructed XCO2 data 395 

in four regions, using the products of December of 2020 as an example. 396 

3.2 Spatiotemporal pattern of global XCO2 397 

The average XCO2 concentration from 2015 to 2021 was 406.90 ± 0.80 ppm across 398 

the globe. The atmospheric CO2 exhibited an apparent spatial variation, with higher 399 

concentrations typically observed in the Northern Hemisphere and lower 400 

concentrations in the Southern Hemisphere (Fig. 10a). The highest concentration of 401 

XCO2 mainly occurs in the northern low-to-mid-latitudes (10°N-45°N), such as East 402 

Asia, southern Northern America, and the Middle East. More frequent human activities 403 

and carbon emissions contributed to higher atmospheric CO2 concentrations in the 404 

Northern Hemisphere. In contrast, the lowest XCO2 concentration was 404.02 ppm, 405 

occurring in the Southern Hemisphere where 81% of the area is ocean. The oceans act 406 

as a vital carbon sink and absorb most atmospheric CO2. For the continent scale, the 407 
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XCO2 concentrations showed a slight variation (±1 ppm) between different continents. 408 

The largest XCO2 were mainly occurred in Asia and North America over years, while 409 

the lowest XCO2 concentration all presented in Oceania (Table 4). 410 

Fig. 10b presents the spatial distribution of the 7-year (2015-2021) XCO2 trend 411 

over the globe. In terms of temporal trend, the atmospheric CO2 exhibited a distinct 412 

increasing trend over time, with the mean growth rate of 2.32 ppm yr-1. The large 413 

growth rate meanly occurs in the northern low latitudes (0°N-30°N), especially the 414 

Middle East and North Africa (growth rate over 2.5 ppm yr-1). Globally, the XCO2 415 

increased by 14.16 ppm over seven years (Table 4), especially in 2021, with increased 416 

values of up to 3 ppm. This result is consistent with the Global Carbon Budget 2022 417 

(Friedlingstein et al., 2022), which reported that the global average atmospheric CO2 418 

increased sharply in 2021 and reached 414.71 ppm. 419 

 420 

Figure 10. The global spatial distribution of (a) reconstructed annual mean XCO2 421 

concentration, and (b) its trend from 2015 to 2021 (ppm yr-1 denotes parts per million 422 

per year). 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 
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 431 

Table 4. The reconstructed XCO2 concentrations at different continents from 2015 to 432 

2021. 433 

Continents XCO2 concentrations (ppm)  

2015 2016 2017 2018 2019 2020 2021 Increase 

Africa 399.26 402.66 404.98 406.71 409.26 411.13 414.11 14.85 

Asia 399.57 403.03 405.80 407.37 409.68 411.39 414.38 14.81 

Europe 399.55 402.88 405.77 406.96 409.48 411.30 414.17 14.62 

North America 399.60 402.95 405.76 407.32 409.70 411.61 414.28 14.68 

South America 398.94 401.96 404.27 406.17 408.78 410.47 413.57 14.63 

Oceania 398.03 401.04 403.31 405.53 408.13 409.82 412.55 14.52 

Global 399.84 401.56 405.16 407.50 409.21 411.07 414.00 14.16 

 434 

3.3 The distribution of XCO2 anomaly 435 

To better explore the dynamics of global carbon change, we further calculated the 436 

XCO2 anomalies based on the full-coverage XCO2 products and presented their global 437 

distributions from 2015 to 2021 (Fig. 11). The XCO2 anomalies were calculated by the 438 

statistical filtering method, that is, subtracting the global median XCO2 value from the 439 

global XCO2 distribution (Hakkarainen et al., 2016). The spatial pattern of XCO2 440 

anomalies were relatively consistent over seven years with no significant variations. 441 

From the global perspective, high XCO2 anomalies mainly occurred in the Northern 442 

Hemisphere. East Asia has the largest XCO2 anomalies with values ranging from 2 to 443 

3 ppm, such as the east part of China. The Middle East, North Africa and the southern 444 

part of Northern America also experienced high XCO2 anomalies. Nevertheless, 445 

negative XCO2 anomalies were also identified in the Northern Hemisphere, specifically 446 

in regions such as Tibet in China, eastern Canada, and southern Russia. Most negative 447 

XCO2 anomalies were observed in the Southern Hemisphere, which behaves as a 448 

carbon sink. However, some positive XCO2 anomalies are also observed in the tropical 449 

regions (e.g., Amazonia), which indicates the Amazonia has changed into a carbon 450 

source due to the deforestation and fire occurrence in recent years (Hubau et al., 2020; 451 

Gatti et al., 2021). 452 

 453 
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 454 
Figure 11. The global spatial distribution of annual XCO2 anomaly from 2015 to 2021. 455 

 456 

Fig. 12 illustrates the detailed spatial distribution of XCO2 concentrations and 457 

anomalies over six regions with high XCO2 retrievals in 2020. High concentrations of 458 

XCO2 were typically associated with energy-intensive heavy industrial activities, such 459 

as Toa Oil Keihin Refinery Factory located in Kawasaki City, Japan (Fig. 12f), and the 460 

Shippingport Industrial Park in Pennsylvania, United States (Fig. 12a). Moreover, 461 

certain metropolitan transport hubs also exhibited elevated CO2 anomalies attributable 462 

to dense populations and intensive activities. Examples included Shanghai Station in 463 

China (Fig.12e) and John F. Kennedy International Airport in New York, USA (Fig. 464 

12b). Attention has also been drawn to natural sources of emissions. Driven by the 465 

significant impact of agricultural mechanization and agro-industrial activities on 466 

cropland (Lin and Xu, 2018), the XCO2 anomalies also occurred in the agricultural 467 

areas northwestern Jiangsu, China (Fig. 12d). Additionally, we also observed the high 468 

XCO2 anomalies in Amazonia forest in Colombia, which have been suffered from 469 

deforestation (Gatti et al., 2023). In conclusion, our products could successfully capture 470 

the XCO2 anomalies from different sources over the globe. 471 

 472 

 473 

 474 
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 475 
Figure 12. Examples of XCO2 hotspots in six regions for 2020 detected using the 476 

4. Discussion 481 

In this study, we utilized deep learning and multi-source satellite data (i.e., 482 

OCO2/3, MODIS, VIIRS and TROPOMI) to reconstruct global XCO2 products at a 483 

spatial resolution of 0.05°×0.05°. Though our products achieved full spatial coverage 484 

and high accuracy, there are still several limitations need further improvement. In terms 485 

of sensors, OCO-2 and OCO-3 data provide different spatiotemporal coverages. 486 

Analyzing OCO-2 and OCO-3 data simultaneously may introduce several uncertainties 487 

due to these differences. However, OCO-3 has a similar sensor and inherits the retrieval 488 

algorithms of OCO-2. According to Taylor et al. (2023), the mean differences between 489 

OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we suppose that the 490 

discrepancies between their datasets are minimal, and the combined analysis of data 491 

from these two satellites will have a negligible impact on our results. 492 

Moreover, despite OCO is considered to be one of the most accurate carbon 493 

satellite datasets to date, it still encounters some retrieval errors due to the influence of 494 

retrieval methods and meteorology conditions, which may be introduced by using the 495 

data as a target for XCO2 reconstruction. However, the validation results against 496 

TCCON suggested that the RMSEs of the two OCO XCO2 datasets are both less than 497 

477 reconstructed products. The subplots present the spatial distribution of XCO2 

478 concentrations, anomalies (the red panels), and the emission sources (the true color 

479 images from © Google Earth), respectively. The global map in the middle presents the 

480 land use and land cover types over the globe. 
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1 ppm, which is sufficient for monitoring changes in atmospheric CO2 (Taylor et al., 498 

2023). 499 

Additionally, prediction uncertainty may also arise from the model and covariates 500 

used (Chen et al., 2022). While our deep learning model achieved high accuracy in 501 

general, its performance in the Southern Hemisphere could be further improved. This 502 

is attributed to the distribution of data features and the complex non-linear relationship 503 

between XCO₂ and the environmental covariates. Selecting more relevant 504 

environmental factors may help mitigate these issues and enhance model performance 505 

in this region. 506 

5. Data availability 507 

The XCO2 dataset produced in this paper is available at 508 

https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024). It includes monthly 509 

global XCO2 data at 0.05° resolution, covering the period from December 2014 to 510 

December 2021. The dataset is archived in netCDF4 format, with units in parts per 511 

million (ppm). 512 

6. Conclusion 513 

The launch of carbon satellites offers a significant advancement for CO2 514 

monitoring. However, their limited spatial coverage restricts the effectiveness of XCO2 515 

data. To address this issue, we reconstructed a global full-coverage XCO2 product at a 516 

fine spatial resolution using multi-component satellite data. The advanced deep learning 517 

method was adopted to model time-series XCO2 and incorporate terrestrial flux, 518 

anthropogenic flux and climatic impacts into the parameterization process. Our 519 

reconstructed XCO2 products showed a strong agreement with TCCON XCO2, with R2, 520 

RMSE, and MAE values of 0.92, 1.54 ppm, and 1.09 ppm, respectively. The products 521 

provided accurate information on the global and regional spatial pattern of XCO2. The 522 

global XCO2 exhibited a distinct increasing trend over time, reaching 414.00 ppm in 523 

2021. Higher XCO2 concentrations were primarily observed in the northern low-to-524 

mid-latitudes (10°N-45°N) such as Asia and North America. Utilizing the reconstructed 525 

products, we further detected XCO2 anomalies globally and identified intensive carbon 526 

emission sources across different land use types. Our study presents a viable method 527 

for global-scale, high-resolution XCO2 mapping based on carbon satellites and 528 
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demonstrates the feasibility of applying this methodology to explore global and 529 

regional carbon dynamics. 530 
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