

- 1 A full-coverage satellite-based global atmospheric CO₂ dataset at 0.05°
- 2 resolution from 2015 to 2021 for exploring global carbon dynamics
- 3 Zhige Wang^{1,2}, Ce Zhang^{3,4}, Kejian Shi⁵, Yulin Shangguan¹, Bifeng Hu^{6,7}, Xueyao Chen¹, Danqing Wei^{1,8},
- 4 Songchao Chen^{1,9*}, Peter M. Atkinson^{10,11}, Qiang Zhang²
- 5 ¹College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- 6 ² Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
- 7 Tsinghua University, Beijing 100084, China
- 8 ³ School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- 9 ⁴ UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
- 10 ⁵ School of Geographical Sciences, Faculty of Science and Engineering, University of Nottingham
- 11 Ningbo China, Ningbo 315100, China
- 12 ⁶ Department of Land Resource Management, School of Public Finance and Public Administration,
- 13 Jiangxi University of Finance and Economics, Nanchang, 330013, China
- 14 ⁷ Key Laboratory of Data Science in Finance and Economics, Jiangxi University of Finance and
- 15 Economics, Nanchang, 330013, China
- 16 ⁸ Zhejiang Economic Information Center, Hangzhou, 310006, China
- 17 ⁹ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou
- 18 311215, China
- 19 ¹⁰ Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- 20 ¹¹ Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- 21
- 22
- 23 * Corresponding author: Songchao Chen (chensongchao@zju.edu.cn)
- 24
- 25
- 26

27 Abstract

28 The irreversible trend for global warming underscores the necessity for accurate 29 monitoring and analysis of atmospheric carbon dynamics on a global scale. Carbon 30 satellites hold significant potential for atmospheric CO2 monitoring. However, existing 31 studies on global CO₂ are constrained by coarse resolution (ranging from 0.25° to 2°) 32 and limited spatial coverage. In this study, we developed a new global dataset of 33 column-averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full 34 coverage using carbon satellite observations, multi-source satellite products, and an 35 improved deep learning model. We then investigated changes in global atmospheric 36 CO₂ and anomalies from 2015 to 2021. The reconstructed XCO₂ products show a better 37 agreement with Total Carbon Column Observing Network (TCCON) measurements, 38 with R^2 of 0.92 and RSME of 1.54 ppm. The products also provide more accurate 39 information on the global and regional spatial patterns of XCO₂ compared to origin carbon satellite monitoring and previous XCO₂ products. The global pattern of XCO₂ 40 41 exhibited a distinct increasing trend with a growth rate of 2.32 ppm/year, reaching 42 414.00 ppm in 2021. Globally, XCO₂ showed obvious spatial variability across 43 different latitudes and continents. Higher XCO₂ concentrations were primarily 44 observed in the Northern Hemisphere, particularly in regions with intensive anthropogenic activity, such as East Asia and North America. We also validated the 45 46 effectiveness of our XCO_2 products in detecting intensive CO_2 emission sources. The 47 dataset is publicly accessible on the XCO₂ Zenodo platform at 48 https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024). Our findings represent a 49 promising advancement in monitoring carbon emission across various countries and 50 enhancing the understanding of global carbon dynamics.

51

52 Keywords: Atmospheric carbon dioxide; Satellite carbon monitoring; Deep learning;
 53 OCO-2/3

54

55 1. Introduction

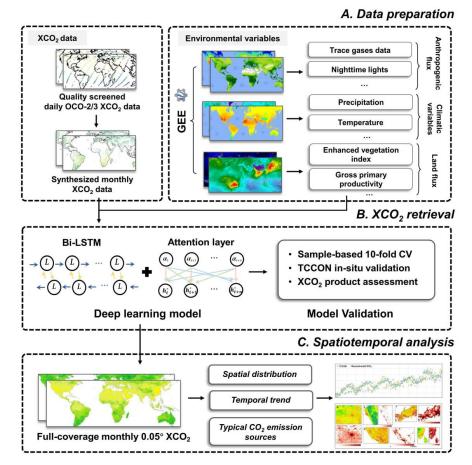
56 Carbon dioxide (CO₂) is a primary greenhouse gas (GHG). Anthropogenic 57 activities and land use change since the industrial revolution have led to a marked 58 increase in atmospheric CO₂, which is widely considered to be a major contributor to

59 climate change, reaching a record-high of 414.71 parts per million (ppm) in 2021 60 (Friedlingstein et al., 2022). The damaging global climate change caused by 61 atmospheric increases in CO_2 is severe and irreversible (IPCC, 2023; Kemp et al., 2022; 62 Solomon et al., 2009). Consequently, the Paris Agreement announced to hold "the 63 increase in the global average temperature to well below 2°C above pre-industrial levels" and pursue efforts "to limit the temperature increase to 1.5°C above pre-industrial 64 65 levels." It was also determined that the joined parties should submit their nationally 66 determined contributions (NDCs) to reduce CO₂ emissions. 67 Accurate monitoring of atmospheric CO₂ concentrations is crucial for measuring 68 global CO₂ emissions mitigation as well as characterizing terrestrial carbon change. Currently, ground-based and airborne platform-based atmospheric CO₂ observation 69 70 networks, such as the Total Carbon Column Observing Network (TCCON, 71 https://tccondata.org/), are capable of providing CO2 measurements with high accuracy 72 (Petzold et al., 2016; Wunch et al., 2011, 2010). However, these observation networks 73 are insufficient to fully explore the spatiotemporal patterns of atmospheric CO_2 at a 74 global scale. The launch of a series of carbon observation satellites in recent years has 75 provided favorable opportunities for continuous and large-scale atmospheric CO₂ 76 observation (Buchwitz et al., 2015; Hammerling et al., 2012). The Scanning Imaging 77 Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard 78 EnviSat was one of the first instruments to monitor the atmospheric column-averaged 79 dry-air mole fraction of CO₂ (XCO₂) (Bovensmann et al., 1999). The Greenhouse Gases 80 Observing Satellite (GOSAT) launched by Japan utilized the Thermal And Near-81 Infrared Sensor for carbon Observation (TANSO) instrument to monitor XCO₂ globally, 82 providing products with a spatial resolution of 10 km every three days (Butz et al., 2011). The Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 launched by NASA 83 84 provide XCO₂ measurements at a finer spatial resolution (Crisp et al., 2017; Eldering 85 et al., 2017). These sensors are considered among the best for XCO₂ observation, featuring larger overlapping swaths that cover areas of ~20×80 km² and exhibiting the 86 87 least retrieval absolute bias, measuring less than 0.4 ppm (Eldering et al., 2019; Taylor 88 et al., 2020). However, the narrow swath of the sensor can only cover limited spatial 89 areas, and caused by the cloud and aerosol contaminations, the data from OCO-2/3 90 always contain large amount of missing values (Taylor et al., 2016; Crisp et al., 2017). 91 These limitations obstacle the better understanding of the atmosphere-land carbon cycle 92 over large spatial scale based on satellite observation.

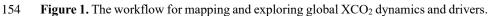
93 Consequently, several studies have concentrated on generating spatially continuous XCO₂ products based on satellite observations (He et al., 2022; Siabi et al., 94 95 2019; Zhang and Liu, 2023). One potential solution is the application of diverse interpolation methods (He et al., 2020; Zeng et al., 2014). Hammerling et al. (2012) 96 97 mapped the global distribution of CO₂ based on OCO-2 and the geostatistical method. 98 Zeng et al. (2014) developed a gap-filling model based on the space-time kriging to 99 obtain gap-filled GOAST XCO₂ data in China. However, their results encounter large 100 uncertainty in regions with sparse data coverage, due to algorithmic constraints and the 101 coarse spatial resolution of the original data. Recently, data fusion techniques have 102 gained recognition as an effective method for obtaining full-coverage XCO₂ data 103 (Sheng et al., 2023; He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). These 104 techniques can be broadly categorized into two groups based on their underlying 105 principles. The first category leverages the spatiotemporal correlation inherent in multi-106 source XCO₂ data, fusing them based on this spatiotemporal information (Wang et al., 107 2023; Sheng et al., 2023). For instance, Wang et al. (2023) introduced a spatiotemporal 108 self-supervised fusion model and generate seamless global XCO₂ data at a spatial 109 resolution of 0.25° . The second category is regression-based methods, which aim to fill 110 the gap in XCO₂ data by capturing the nonlinear relationship between multi-source 111 XCO₂ measurements and related covariates (He et al., 2022; Siabi et al., 2019; Zhang 112 and Liu, 2023). This category includes a range of specific methodologies, from traditional statistical and geostatistical models to advanced machine learning models. 113 114 Siabi et al (2019) employed the Artificial Neural Network (ANN) to establish 115 correlation between XCO₂ and eight environmental variables. Zhang and Liu (2023) 116 utilized the convolution neural networks (CNN) coupled with attention mechanisms to 117 produce full-coverage XCO₂ data across China. 118 Despite significant efforts to generate seamless XCO₂ products using satellite

Despite significant efforts to generate seamless XCO₂ products using satellite observations, several challenges and limitations persist. Firstly, due to the sparse distribution of satellite XCO₂ data, previous studies have relied on assimilation and reanalysis XCO₂ data as covariates. This reliance often results in final products that closely mirror the assimilation and reanalysis results, leading to an oversmoothed distribution that undermines the high-resolution advantages of satellite data. Furthermore, most studies that employ regression models to estimate full-coverage XCO₂ are limited to regional or national scales due to the weak transferability of these

models. Consequently, there is a scarcity of research investigating global patterns of
XCO₂ based on statistical models. Additionally, the current generation of XCO₂
products typically features a coarse spatial resolution, ranging from approximately 0.25°
to 2°. In conclusion, there is an urgent need to develop global full-coverage XCO2
products with a fine spatial resolution. This development should leverage satellite
carbon monitoring and advanced methods that exhibit spatiotemporal transferability to
overcome the aforementioned limitations.


In this study, we leveraged time-series OCO-2/3 XCO₂ data and various related 133 134 environmental variables retrieved from multi-source satellites to generate global full-135 coverage XCO₂ products. The advanced deep learning method was adopted to model time-series XCO₂ and incorporate terrestrial flux, anthropogenic flux and climatic 136 137 impacts into the parameterization process. Our XCO₂ products achieved full global coverage with a spatial resolution of 0.05° and a monthly temporal resolution from 2015 138 to 2021. We also validated our XCO₂ products against in-situ XCO₂ data and other 139 140 XCO₂ products. Based on our high-resolution products, we explored the spatial and 141 temporal pattern of atmospheric CO2 globally and identified regions with intense CO2 emission. Our findings aim to enhance the understanding of carbon dynamics on a 142 global scale through data reconstruction and analysis. 143

144 **2. Materials and methods**


145 In this study, we utilized Google Earth Engine (GEE) to integrate OCO-2/3 XCO₂ 146 data and multiple environmental variables as data inputs. In addition, the attention-147 based Bidirectional Long Short-Term Memory (At-BiLSTM) model was trained for building the relationship between OCO-2/3 XCO2 and the related environmental 148 149 variables. Then, we reconstructed the global monthly XCO₂ and validated the accuracy 150 of the products against TCCON XCO₂ data and the original OCO-2/3 XCO₂ data. We 151 also analyzed the spatial and temporal variation of XCO2 over the globe and detect the intense CO₂ emission regions. The methodology framework is shown in Fig.1. 152

153

^{155 2.1} Datasets

156 **2.1.1 OCO XCO2 data**

157 In this study, we utilized the satellite-based XCO₂ data from OCO-2 and OCO-3, covering the period from December 2014 to December 2021. The OCO-2/3 measure at 158 159 three near-infrared wavelength bands, that are 0.76 µm Oxygen A-band, 1.61 µm weak 160 CO₂, and 2.06 µm strong CO₂ bands (Crisp et al., 2004). The full physics retrieval 161 algorithm was used to retrieve the XCO2 based on the observation of the two satellites 162 (Crisp et al., 2021). Previous studies (Taylor et al., 2023) suggested that the OCO-2 and OCO-3 XCO₂ measurements are in broad consistency and can therefore be used 163 164 together in scientific analyses. The OCO-3 Level 2 XCO₂ Lite version 10.4r data (OCO3_L2_Lite_FP V10.4r) from 2020 to 2021 and the OCO-2 Level 2 XCO2 Lite 165

166 version 11r (OCO2_L2_Lite_FP V11r) from 2015 to 2019 were downloaded from 167 Goddard Earth Sciences Data and Information Services Center (GES DISC, 168 https://disc.gsfc.nasa.gov/). The products were aggregated as a daily file (Fig. 2) with a spatial resolution of 2.25 km × 1.29 km (O'Dell et al., 2018). The XCO₂ data were 169 quality filtered, and only good-quality data (i.e., xco2_quality_flag=0) were considered. 170 171 To generate the monthly products with a spatial resolution of $0.05^{\circ} \times 0.05^{\circ}$, we 172 converted the daily data to monthly data by averaging the sparse XCO₂ data within a 173 range of $0.05^{\circ} \times 0.05^{\circ}$ over one month.

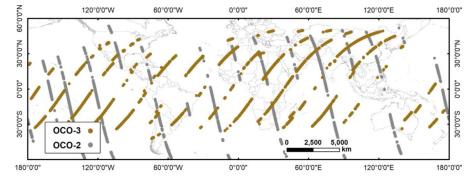
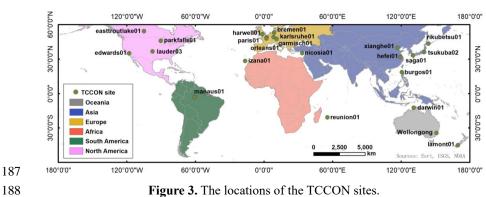


Figure 2. Footprints of OCO-2 and OCO-3 XCO₂ data on 20th January 2018 and 4th
December 2021 (with quality filtering) as examples.

177


174

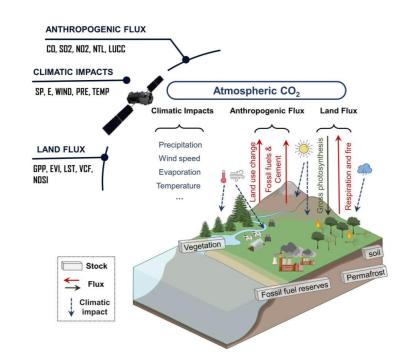
178 **2.1.2 TCCON XCO₂ data**

179 The Total Carbon Column Observing Network (TCCON) is a global network for 180 measuring atmospheric CO₂, methane (CH₄), carbon monoxide (CO) and other trace 181 gases in the atmosphere. The XCO₂ data from TCCON were demonstrated to have high accuracy with ~0.2% of XCO₂ (Wunch et al., 2011). Consequently, the data have been 182 183 used widely for the validation of satellite observations such as OCO-2, OCO-3 and GOSAT (Deng et al., 2016; Wunch et al., 2017). In this research, we used the GGG2014 184 and GGG2020 datasets from 23 sites (Fig. 3 and Table 1) around the world to validate 185 186 the reconstructed XCO₂ products.

189 190

ID	Site name	Longitude	Latitude	Start date	End date
1	saga01 (JP)	130.29	33.24	2011-07-28	2021-06-30
2	xianghe01 (PRC)	116.96	39.80	2018-06-14	2022-04-09
3	burgos01 (PH)	120.65	18.53	2017-03-03	2021-08-20
4	harwell01 (UK)	-1.32	51.57	2021-05-30	2022-05-22
5	bremen01 (DE)	8.85	53.10	2009-01-06	2021-06-24
6	tsukuba02 (JP)	140.12	36.05	2014-03-28	2021-03-31
7	lauder03 (NZ)	-97.49	36.60	2018-10-02	2022-11-14
8	edwards01 (US)	-117.88	34.96	2013-07-20	2022-12-25
9	nicosia01 (CY)	33.38	35.14	2019-09-06	2021-06-01
10	izana01 (ES)	-16.5	28.31	2014-01-02	2022-10-31
11	orleans01 (FR)	2.11	47.96	2009-09-06	2022-04-24
12	hefei01 (PRC)	119.17	31.90	2015-11-02	2020-12-31
13	easttroutlake01 (CA)	-104.99	54.35	2016-10-03	2022-08-13
14	karlsruhe01 (DE)	8.44	49.10	2014-01-15	2023-01-20
15	paris01 (FR)	2.36	48.85	2014-09-23	2022-03-28
16	garmisch01 (DE)	11.06	47.48	2007-07-18	2021-10-18
17	rikubetsu01 (JP)	143.77	43.46	2014-06-24	2021-06-30
18	lamont01 (US)	169.68	-45.04	2011-04-16	2022-12-19
19	reunion01 (RE)	55.48	-20.90	2015-03-01	2020-07-18
20	darwin01 (AU)	130.93	-12.46	2005-08-28	2020-04-30
21	Wollongong (AU)	150.88	-34.41	2008-06-26	2020-06-30
22	Manaus01(BR)	-60.60	-3.21	2014-09-30	2015-07-27
23	parkfalls01 (US)	-90.27	45.94	2004-06-02	2020-12-29

191 JP: Japan, DE: Germany, FI: Finland, FR: French, RE: Réunion Island, AU: Australia,


- 192 BR: Brazil; US: United States, PRC: People's Republic of China, NO: Norway, CY: Cyprus, NZ: New Zealand, PH: Philippines, UK: United Kingdom, CA: Canada.
- 193
- 194

195 2.1.3 Environmental variables

196 In the selection of environmental variables, our primary focus was on processes 197 within the terrestrial carbon cycle. The carbon cycle on land can be conceptualized as two flux exchange processes influenced by the climatic conditions (Fig. 4). The CO₂ in 198 199 the atmosphere is fixed by vegetation photosynthesis and the carbon is released back 200 into the atmosphere by respiration and disturbance processes (Beer et al., 2010; Pan et al., 2011). The carbon fluxes through these processes we considered as the land flux. 201 Since Industrial Era, anthropogenic carbon from land use change (e.g., deforestation) 202 203 and fossil fuels and cement become important parts of atmospheric CO₂ (Friedlingstein 204 et al., 2010), which we considered as the anthropogenic flux. Meanwhile, the two processes are directly or indirectly driven by the climatic features (Sitch et al., 2015; 205 Chen et al., 2021). Consequently, we explored the potential drivers of XCO₂ from the 206 207 perspective of the carbon cycle at atmosphere-land interface. Multiple satellite products and reanalysis data from three aspects (i.e., land flux, anthropogenic flux and climatic 208 209 impacts) were selected to consider their various effects on the XCO₂.

210

Figure 4. Simplified illustration of the global carbon cycle on land (referring to IPCC 2023). Noting that the carbon cycle in the ocean was not considered in our study and we only focused on the fast exchange fluxes. The slow carbon exchanges (e.g., chemical weathering, volcanic emissions) which are generally assumed as relatively constant over the last few centuries (Sundquist, 1986), were not included here.

217 The key factors selected related to the land flux included gross primary productivity (GPP), enhanced vegetation index (EVI), land surface temperature (LST), 218 219 vegetation continuous fields (VCF), and normalized difference snow index (NDSI). 220 These products are all obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), which has been operated for over 20 years and produced 221 222 various satellite products with fine spatial resolution and accuracy. The EVI and NDSI 223 were converted to monthly data using the maximum value composite (MVC) method. 224 The GPP and LST were converted to monthly data by the averaging method.

The rising anthropogenic activities have greatly influenced atmospheric CO₂ (Friedlingstein et al., 2022). In this study, five anthropogenic factors, including land use/cover change (LUCC), nighttime lights (NTL), and three trace gases (i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and carbon monoxide (CO)) were selected. The LUCC was obtained from MODIS MCD12Q1 with a spatial resolution of 500 m. The monthly Suomi National Polar-orbiting Partnership-Visible Infrared Imaging

Radiometer Suite (NPP-VIIRS) day/night band (DNB) NTL products (spatial resolution of 15 arc-second, ~500 m) were obtained from the Earth Observation Group
(EOG) of the Colorado School of Mines. We also used the SO₂, NO₂ and CO products
from the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5
Precursor (S5P), a global air monitoring satellite for the Copernicus mission. The data
were also converted to the same temporal resolution (i.e., monthly).

237 The selected climatic factors affecting XCO₂ were surface pressure (SP), 10 m wind speed (WS), precipitation flux (PRE), 2 m air temperature (Temp), and total 238 239 evaporation (E). These data are from the reanalysis products (Hersbach et al., 2020) 240 developed at the European Center for Medium Weather Forecasting (ECMWF, https://www.ecmwf.int/). The WS is calculated using the products of 10 m wind 241 242 components of U and V. All data were converted to monthly time-series. The bilinear interpolation approach was used to convert the data at different spatial resolutions to 1 243 km resolution. The data preprocessing was conducted on GEE, R and ArcGIS 10.3. 244 245 Details of these products are listed in Table 2.

-	• 4	-
· · ,	//I	6

 Table 2. Ancillary variables selected in this study.

Variables	Spatial resolution	Temporal resolution	Product names	Category	
GPP	500 m	8-day	MOD17A2H		
EVI	1 km	16-day	MOD13A2	I and Chara	
LST	1 km	daily	MOD11A1	Land flux- related	
VCF	250 m	annual	MOD44B	Telateu	
NDSI	500 m	daily	MOD10A1		
LUCC	500 m	annual	MCD12Q1		
NTL	15 arc-second	monthly	VNP46A2	A	
SO_2		daily	OFFL/L3_SO ₂	Anthropogenic	
NO_2	~1 km		OFFL/L3_NO2	flux-related	
CO			OFFL/L3_CO		
SP					
Е					
Wind-v	101				
Wind-u	~10 km	monthly	ERA5-Land	Climatic impacts	
Pre					
Temp					

247 2.2 Deep learning-based XCO₂ reconstruction

Given the complexity temporal dependence and nonlinear relationship between XCO₂ and the environmental variables, we selected the At-BiLSTM model to relate the XCO₂ data with the 16 response variables affecting atmospheric CO₂, and further reconstruct the XCO₂ data at a fine spatial resolution. The equation to reconstruct XCO_2 data in this research can be denoted as:

$$XCO_{2(i)} = f_{bilstm}([LF_{i,j}], [AF_{i,j}], [CI_{i,j}])$$

$$\tag{1}$$

$$= f_{bilstm}([GPP_i, EVI_i, LST_i, VCF_i, NDSI_i], [LUCC_i, NTL_i, SO_{2i}, NO_{2i}, CO_i], [SP_i, E_i, WU_i, WV_i, PRE_i, TEMP_i])$$
(2)

where $XCO_{2(i)}$ denotes the aggregated monthly atmospheric CO₂ concentration at grid cell *i*, $[LF_{i,j}]$, $[AF_{i,j}]$, and $[CI_{i,j}]$ denote the variables from land flux, anthropogenic flux, and climatic impacts, respectively. And *j* denotes the number of variables in each category. The f_{bilstm} represents the estimation model of each grid cell at the spatial resolution of 0.05°.

258 The LSTM model is a variant of RNN that excels in processing time-series data 259 (Hochreiter and Schmidhuber, 1997; Graves et al., 2005). It has been utilized extensively for prediction of remote sensing data. Each LSTM cell includes an input 260261 gate, a forget gate and an output gate. The forget gate f_t determines which information 262 from the previous time step to forget, the input gate i_t governs the selective storage of 263 the data in current time step, and the output from forget gate f_t and input gate i_t are 264 combined in the cell state C_t . Lastly, the output gate o_t controls the flow of information from the cell state to the next time step. These gate structures effectively 265 manage the flow of information within the LSTM, enabling it to capture the temporal 266 267 dependencies present in the data (Yuan et al., 2020; Su et al., 2021). Bidirectional 268 LSTM consists of two directional LSTM, in which the data flows forward and backward. Then we defined a multi-dimensional attention layer behind the BiLSTM to 269 270 focus on more critical variables and give them higher weights (Bahdanau et al., 2016). 271 In the attention layer, we adopted the full connection layer and softmax activation 272 function to calculate the attention weight of each time step. 273

The At-BiLSTM consists of one input layer, three Bidirectional LSTM layers, one
attention layer, one dropout layer to prevent overfitting, and one fully connected layer
(i.e., dense layer) for the final output. The mean square error is used as the loss function.
The number of network units, batch size, learning rate and activation function

hyperparameters were all tuned in model fitting. All data were normalized using the
mean and standard deviation of the dataset. The model was built using the deep learning
API Keras in Python.

In this study, we adopted the sample-based cross-validation (CV) method to evaluate the model performance and the in-situ validation to assess the accuracy of reconstructed XCO_2 products. We also compared the reconstructed XCO_2 products with the original OCO XCO_2 products and the CAMS-EGG4 GHGs data. Four metrics, including coefficient of determination (R²), root mean squared error (RMSE), mean absolute error (MAE) and mean bias, were calculated as follow, to assess the model performance.

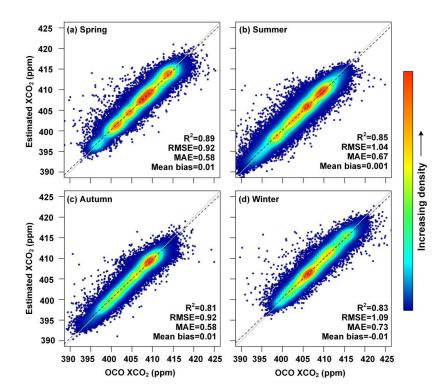
$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - f_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(3)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - f_i)^2}{n}}$$
(4)

$$MAE = \frac{\sum_{i=1}^{n} |(f_i - y_i)|}{n}$$
(5)

where *n* is the total number of data samples, and f_i , y_i are the observed results and model-estimated results, respectively.

289 3. Results


290 **3.1 Validation of the reconstructed XCO₂ product**

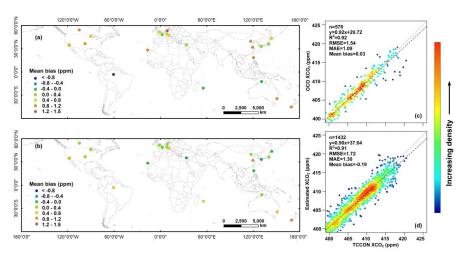
291 3.1.1 Model validation results

292 Given the distinct seasonal variation in XCO₂ concentrations, we conducted the 293 sample-based CV to evaluate the model performance during different seasons (Fig. 5). The model demonstrated high accuracy across all seasons, with R² values exceeding 294 0.81, MAE less than 0.73 ppm, and RMSE less than 1.09 ppm. The model performed 295 296 better in spring and summer, as indicated by the densest cluster of points being closest 297 to the 1:1 line. Conversely, the model performed worst in winter, when photosynthesis 298 is weakest, leading to greater estimation deviation. These variations are likely 299 influenced by the ecosystem CO2 exchange during different seasons. Overall, the model 300 effectively captured the seasonal variation of XCO2 and provided unbiased XCO2 301 estimations.

302

Figure 5. (a) Density scatterplots of sample-based CV results during different seasons. The proportion of the number of points is represented as the color of the points. The black dashed lines and grey solid lines denote the linear regression fitted lines and the 1:1 line, respectively. The R^2 , RMSE (ppm), MAE (ppm), and mean bias (ppm) are provided.

308 We further validated the model performance across different continents. Table 3 309 presents the validation results for six continents. The model performance varied across 310 continents. Notably, the model achieved the highest accuracy in Africa and Europe, 311 with R² of 0.80 and 0.81, and RMSE values of 1.02 and 1.14 ppm, respectively. In 312 contrast, the model demonstrated relatively low accuracy in Oceania and South 313 America, both located in the southern hemisphere. Despite this, the RMSE of the model 314 in these continents were 1.21 and 0.66 ppm, respectively, indicating that the model 315 maintained acceptable estimation accuracy in these regions. 316

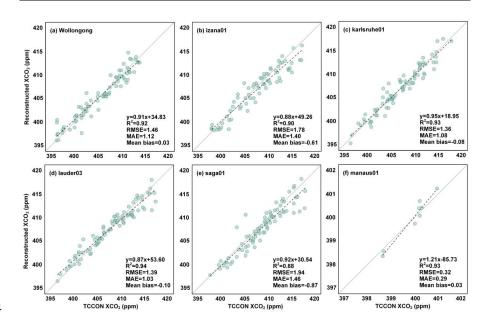
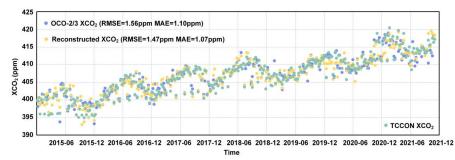

317	Table 3. Model performance in different continents.						
	R ² RMSE (ppm) MAE (ppm) Mean bias (ppm)						
	Africa	0.80	1.02	0.70	-0.009		
	Asia	0.73	1.27	0.85	0.002		
	Europe	0.81	1.14	0.77	-0.030		
	North America	0.73	1.26	0.83	-0.020		
	South America	0.59	1.22	0.86	-0.012		
	Oceania	0.67	0.66	0.4	0.051		

318 **3.1.2 In situ validation results**

319 The TCCON in situ XCO₂ data were adopted for validating the accuracy of the 320 reconstructed XCO₂ over the globe. The validation results for our reconstructed XCO₂ and the origin OCO-2/3 XCO₂ are displayed in Fig. 6. The two XCO₂ data showed 321 similar precision with the R² value of 0.91 and 0.92, respectively (Fig. 6c-d). While the 322 323 reconstructed XCO₂ greatly increases the data coverage with the validation sample increasing from 578 to 1432. Meanwhile, the reconstructed XCO₂ has a smaller RMSE 324 325 and MAE with values of 1.72 and 1.3 ppm, respectively, compared with the OCO XCO₂. 326 These results indicate that the reconstructed XCO₂ had a closer agreement with TCCON 327 XCO_2 . We also displayed the mean bias of OCO and reconstructed XCO_2 in each TCCON site (Fig. 6a-b). As shown in Fig. 6a, the OCO-2/3 observation tend to 328 329 overestimate the XCO₂, while the reconstructed XCO₂ could amend the underestimation 330 of OCO XCO_2 . Over 68% of the validation sites of reconstructed XCO_2 had a mean 331 bias less between \pm 0.4 ppm. Given the orbital constraints of the ISS (Eldering et al., 332 2019), OCO-3 measurements were restricted to latitudes below \pm 52°. Consequently, 333 substantial missing values of OCO XCO₂ data were shown around 50°N, introducing a 334 potential bias. In contrast, the reconstructed XCO₂ effectively solves this problem and 335 demonstrates markedly enhanced performance.

Figure 6. The mean bias of the (a) OCO observed XCO_2 , and (b) reconstructed XCO_2 against global TCCON XCO_2 ; (c) density scatterplots of the validation results for OCO observed XCO_2 , and (d) reconstructed XCO_2 against the TCCON XCO_2 . The proportion of the number of points is represented as the color of the points. The number of samples *n*, linear regression relation, R^2 , RMSE (ppm), MAE (ppm), and mean bias are provided.

344 Fig. 7 shows the individual in situ validation results of the reconstructed XCO₂ 345 against TCCON site in different continents (except Antarctica). The sample numbers 346 are varying in different sites due to the observation constraints, while the validation 347 results from all sites showed satisfying performance. The R² for all sites are over 0.88 and the MAE are less than 1.46 ppm. The reconstructed XCO₂ data performs the best 348 349 in sites lauder03 and karlsruhe01, which located in North America and Europe, respectively. While the reconstructed XCO2 performed worst in saga01 which located 350 351 in Asia, potentially due to the high CO₂ concentrations in these regions. Overall, the 352 reconstructed XCO₂ showed high consistency with the in situ XCO₂ observation in 353 different regions over the globe.

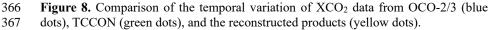
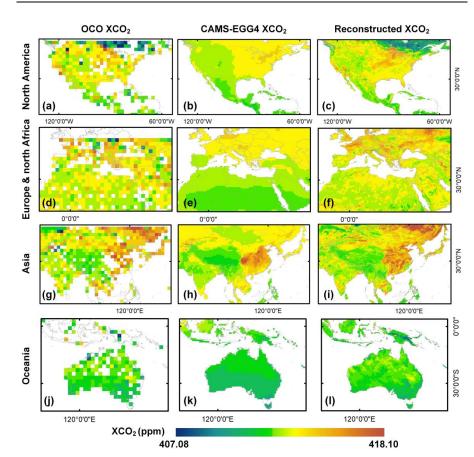


Figure 7. Scatterplots of the TCCON in situ validation results of the reconstructed
XCO₂ on different TCCON sites over the globe.

To assess the performance of our reconstructed XCO₂ in temporal analysis, we compared the time series for monthly OCO-2/3, reconstructed and TCCON XCO₂ data from December 2014 to December 2021. As depicted in Fig. 8, the reconstructed XCO₂ exhibits similar temporal patterns compared to the TCCON data, with the mean RMSE and MAE of 1.47 and 1.07 ppm. While the OCO-2/3 XCO₂ exhibits some overestimation for high values and underestimation for low values compared with TCCON data. In contrast, the reconstructed XCO₂ provided more stable estimate results.

368



369 3.1.3 Product assessment with previous XCO₂ products

371 XCO ₂ , CAMS-EGG4 GHGs data, and our reconstructed XCO ₂) in four specific regions. 372 The original OCO XCO ₂ data were aggregated into $2^{\circ} \times 2^{\circ}$ latitude/longitude bins 373 following Taylor et al. (2020). The CAMS-EGG4 GHGs data are a global reanalysis 374 dataset at a spatial resolution of 0.75° released by the European Centre for Medium- 375 range Weather Forecasts (Agusti-Panareda et al., 2023). The North America, Europe 376 and part of north Africa, Asia and Oceania were chosen as examples. As shown in Fig. 377 9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO ₂ is 378 significantly increased compared to the original OCO XCO ₂ data. However, the 379 CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed 380 information on XCO ₂ change. In comparison, our reconstructed seamless XCO ₂ 381 product can provide much more information on the global and regional spatial patterns 372 of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture 373 the variation of XCO ₂ in the Midwestern United States, northern part of the United 384 Kingdom, and central China. In contrast, these regions are well represented in the 385 reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial 386 resolution can offer a more accurate spatial distribution of carbon sources and sinks. 387 For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern 388 Canada and Papua New Guinea (Fig. c and I), indicating the great potential carbon sink 389 of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to 390 their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
following Taylor et al. (2020). The CAMS-EGG4 GHGs data are a global reanalysis dataset at a spatial resolution of 0.75° released by the European Centre for Medium- range Weather Forecasts (Agustí-Panareda et al., 2023). The North America, Europe and part of north Africa, Asia and Oceania were chosen as examples. As shown in Fig. 9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO ₂ is significantly increased compared to the original OCO XCO ₂ data. However, the CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO ₂ change. In comparison, our reconstructed seamless XCO ₂ product can provide much more information on the global and regional spatial patterns of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and I), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
dataset at a spatial resolution of 0.75° released by the European Centre for Medium- range Weather Forecasts (Agusti-Panareda et al., 2023). The North America, Europe and part of north Africa, Asia and Oceania were chosen as examples. As shown in Fig. 9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO ₂ is significantly increased compared to the original OCO XCO ₂ data. However, the CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO ₂ change. In comparison, our reconstructed seamless XCO ₂ product can provide much more information on the global and regional spatial patterns of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and I), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
 range Weather Forecasts (Agusti-Panareda et al., 2023). The North America, Europe and part of north Africa, Asia and Oceania were chosen as examples. As shown in Fig. 9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO₂ is significantly increased compared to the original OCO XCO₂ data. However, the CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO₂ change. In comparison, our reconstructed seamless XCO₂ product can provide much more information on the global and regional spatial patterns of XCO₂. Due to the limited coverage, the original OCO XCO₂ data failed to capture the variation of XCO₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and I), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
and part of north Africa, Asia and Oceania were chosen as examples. As shown in Fig. 9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO ₂ is significantly increased compared to the original OCO XCO ₂ data. However, the CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO ₂ change. In comparison, our reconstructed seamless XCO ₂ product can provide much more information on the global and regional spatial patterns of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and I), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
9, the spatial coverage of CAMS-EGG4 GHGs data and our reconstructed XCO ₂ is significantly increased compared to the original OCO XCO ₂ data. However, the CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO ₂ change. In comparison, our reconstructed seamless XCO ₂ product can provide much more information on the global and regional spatial patterns of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
 significantly increased compared to the original OCO XCO₂ data. However, the CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO₂ change. In comparison, our reconstructed seamless XCO₂ product can provide much more information on the global and regional spatial patterns of XCO₂. Due to the limited coverage, the original OCO XCO₂ data failed to capture the variation of XCO₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO₂ product. Furthermore, the reconstructed XCO₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
 CAMS-EGG4 GHGs data is at a coarse spatial resolution and miss much of the detailed information on XCO₂ change. In comparison, our reconstructed seamless XCO₂ product can provide much more information on the global and regional spatial patterns of XCO₂. Due to the limited coverage, the original OCO XCO₂ data failed to capture the variation of XCO₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO₂ product. Furthermore, the reconstructed XCO₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
 information on XCO₂ change. In comparison, our reconstructed seamless XCO₂ product can provide much more information on the global and regional spatial patterns of XCO₂. Due to the limited coverage, the original OCO XCO₂ data failed to capture the variation of XCO₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO₂ product. Furthermore, the reconstructed XCO₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
product can provide much more information on the global and regional spatial patterns of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
of XCO ₂ . Due to the limited coverage, the original OCO XCO ₂ data failed to capture the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
the variation of XCO ₂ in the Midwestern United States, northern part of the United Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO ₂ product. Furthermore, the reconstructed XCO ₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
 Kingdom, and central China. In contrast, these regions are well represented in the reconstructed XCO₂ product. Furthermore, the reconstructed XCO₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
 reconstructed XCO₂ product. Furthermore, the reconstructed XCO₂ with a fine spatial resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
 resolution can offer a more accurate spatial distribution of carbon sources and sinks. For example, lower XCO₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
For example, lower XCO ₂ concentrations are clearly observed in the forests in eastern Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO ₂ products with complete
 Canada and Papua New Guinea (Fig. c and l), indicating the great potential carbon sink of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
 of these areas. While the CAMS-EGG4 GHGs data cannot capture this change due to their coarse spatial resolutions. In general, reconstructed XCO₂ products with complete
390 their coarse spatial resolutions. In general, reconstructed XCO_2 products with complete
391 coverage and finer resolution provide valuable support for analyzing atmospheric CO ₂
392 variation and accurate monitoring of carbon sources and sinks.

393

Figure 9. Comparison between the OCO observed XCO₂ data aggregated into 2°×2°
latitude/longitude bins, the CAMS-EGG4 GHGs data, and our reconstructed XCO₂ data
in four regions, using the products of December of 2020 as an example.

397 **3.2 Spatiotemporal pattern of global XCO**₂

398 The average XCO₂ concentration from 2015 to 2021 was 406.90 ± 0.80 ppm across 399 the globe. The atmospheric CO2 exhibited an apparent spatial variation, with higher 400 concentrations typically observed in the Northern Hemisphere and lower concentrations in the Southern Hemisphere (Fig. 10a). The highest concentration of 401 402 XCO₂ mainly occurs in the northern low-to-mid-latitudes (10°N-45°N), such as East 403 Asia, southern Northern America, and the Middle East. More frequent human activities 404 and carbon emissions contributed to higher atmospheric CO₂ concentrations in the 405 Northern Hemisphere. In contrast, the lowest XCO₂ concentration was 404.02 ppm, 406 occurring in the Southern Hemisphere where 81% of the area is ocean. The oceans act 407 as a vital carbon sink and absorb most atmospheric CO₂. For the continent scale, the

- 408 XCO₂ concentrations showed a slight variation (±1 ppm) between different continents.
 409 The largest XCO₂ were mainly occurred in Asia and North America over years, while
 410 the lowest XCO₂ concentration all presented in Oceania (Table 4).
- Fig. 10b presents the spatial distribution of the 7-year (2015-2021) XCO₂ trend 411 over the globe. In terms of temporal trend, the atmospheric CO₂ exhibited a distinct 412 increasing trend over time, with the mean growth rate of 2.32 ppm yr⁻¹. The large 413 growth rate meanly occurs in the northern low latitudes (0°N-30°N), especially the 414 Middle East and North Africa (growth rate over 2.5 ppm yr⁻¹). Globally, the XCO₂ 415 increased by 14.16 ppm over seven years (Table 4), especially in 2021, with increased 416 values of up to 3 ppm. This result is consistent with the Global Carbon Budget 2022 417 418 (Friedlingstein et al., 2022), which reported that the global average atmospheric CO₂ 419 increased sharply in 2021 and reached 414.71 ppm.

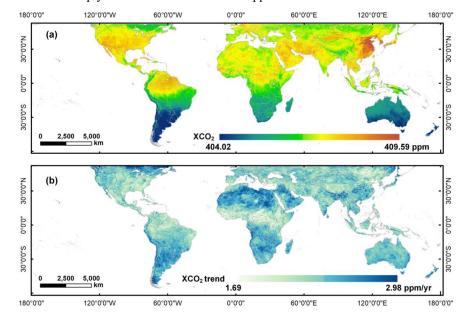


Figure 10. The global spatial distribution of (a) reconstructed annual mean XCO₂
concentration, and (b) its trend from 2015 to 2021 (ppm yr⁻¹ denotes parts per million per year).

424 425

420

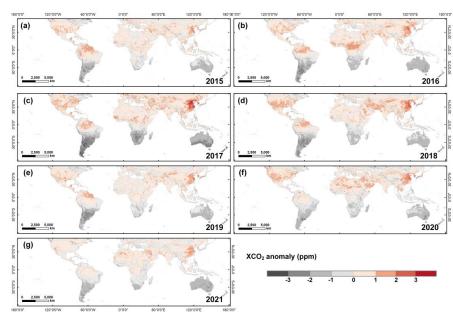
- 426
-
- 427
- 428
- 429
- 430

431

432 **Table 4.** The reconstructed XCO₂ concentrations at different continents from 2015 to 2021.

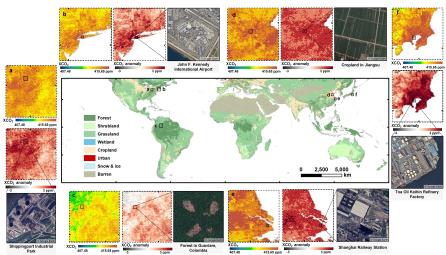
Continents		XCO ₂ concentrations (ppm)						
	2015	2016	2017	2018	2019	2020	2021	Increase
Africa	399.26	402.66	404.98	406.71	409.26	411.13	414.11	14.85
Asia	399.57	403.03	405.80	407.37	409.68	411.39	414.38	14.81
Europe	399.55	402.88	405.77	406.96	409.48	411.30	414.17	14.62
North America	399.60	402.95	405.76	407.32	409.70	411.61	414.28	14.68
South America	398.94	401.96	404.27	406.17	408.78	410.47	413.57	14.63
Oceania	398.03	401.04	403.31	405.53	408.13	409.82	412.55	14.52
Global	399.84	401.56	405.16	407.50	409.21	411.07	414.00	14.16

434


435 **3.3 The distribution of XCO2 anomaly**

436 To better explore the dynamics of global carbon change, we further calculated the 437 XCO₂ anomalies based on the full-coverage XCO₂ products and presented their global 438 distributions from 2015 to 2021 (Fig. 11). The XCO₂ anomalies were calculated by the statistical filtering method, that is, subtracting the global median XCO₂ value from the 439 440 global XCO₂ distribution (Hakkarainen et al., 2016). The spatial pattern of XCO₂ anomalies were relatively consistent over seven years with no significant variations. 441 442 From the global perspective, high XCO₂ anomalies mainly occurred in the Northern 443 Hemisphere. East Asia has the largest XCO₂ anomalies with values ranging from 2 to 444 3 ppm, such as the east part of China. The Middle East, North Africa and the southern 445 part of Northern America also experienced high XCO₂ anomalies. Nevertheless, 446 negative XCO₂ anomalies were also identified in the Northern Hemisphere, specifically 447 in regions such as Tibet in China, eastern Canada, and southern Russia. Most negative 448 XCO₂ anomalies were observed in the Southern Hemisphere, which behaves as a 449 carbon sink. However, some positive XCO₂ anomalies are also observed in the tropical 450 regions (e.g., Amazonia), which indicates the Amazonia has changed into a carbon 451 source due to the deforestation and fire occurrence in recent years (Hubau et al., 2020; 452 Gatti et al., 2021).

453


454
455
455
Figure 11. The global spatial distribution of annual XCO₂ anomaly from 2015 to 2021.
456

457 Fig. 12 illustrates the detailed spatial distribution of XCO₂ concentrations and 458 anomalies over six regions with high XCO2 retrievals in 2020. High concentrations of 459 XCO₂ were typically associated with energy-intensive heavy industrial activities, such 460 as Toa Oil Keihin Refinery Factory located in Kawasaki City, Japan (Fig. 12f), and the 461 Shippingport Industrial Park in Pennsylvania, United States (Fig. 12a). Moreover, certain metropolitan transport hubs also exhibited elevated CO2 anomalies attributable 462 to dense populations and intensive activities. Examples included Shanghai Station in 463 China (Fig.12e) and John F. Kennedy International Airport in New York, USA (Fig. 464 12b). Attention has also been drawn to natural sources of emissions. Driven by the 465 significant impact of agricultural mechanization and agro-industrial activities on 466 467 cropland (Lin and Xu, 2018), the XCO₂ anomalies also occurred in the agricultural areas northwestern Jiangsu, China (Fig. 12d). Additionally, we also observed the high 468 469 XCO₂ anomalies in Amazonia forest in Colombia, which have been suffered from 470 deforestation (Gatti et al., 2023). In conclusion, our products could successfully capture 471 the XCO₂ anomalies from different sources over the globe.

- 472
- 473
- 474

475 Singure 12. Examples of XCO₂ hotspots in six regions for 2020 detected using the reconstructed products. The subplots present the spatial distribution of XCO₂ concentrations, anomalies (the red panels), and the emission sources (the true color images from © Google Earth), respectively. The global map in the middle presents the 480 land use and land cover types over the globe.

481 4. Discussion

482 In this study, we utilized deep learning and multi-source satellite data (i.e., 483 OCO2/3, MODIS, VIIRS and TROPOMI) to reconstruct global XCO2 products at a spatial resolution of $0.05^{\circ} \times 0.05^{\circ}$. Though our products achieved full spatial coverage 484 485 and high accuracy, there are still several limitations need further improvement. In terms 486 of sensors, OCO-2 and OCO-3 data provide different spatiotemporal coverages. 487 Analyzing OCO-2 and OCO-3 data simultaneously may introduce several uncertainties 488 due to these differences. However, OCO-3 has a similar sensor and inherits the retrieval 489 algorithms of OCO-2. According to Taylor et al. (2023), the mean differences between 490 OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we suppose that the 491 discrepancies between their datasets are minimal, and the combined analysis of data 492 from these two satellites will have a negligible impact on our results. 493 Moreover, despite OCO is considered to be one of the most accurate carbon

494 satellite datasets to date, it still encounters some retrieval errors due to the influence of 495 retrieval methods and meteorology conditions, which may be introduced by using the 496 data as a target for XCO₂ reconstruction. However, the validation results against 497 TCCON suggested that the RMSEs of the two OCO XCO₂ datasets are both less than

498 1 ppm, which is sufficient for monitoring changes in atmospheric CO₂ (Taylor et al.,
499 2023).

Additionally, prediction uncertainty may also arise from the model and covariates used (Chen et al., 2022). While our deep learning model achieved high accuracy in general, its performance in the Southern Hemisphere could be further improved. This is attributed to the distribution of data features and the complex non-linear relationship between XCO_2 and the environmental covariates. Selecting more relevant environmental factors may help mitigate these issues and enhance model performance in this region.

507 5. Data availability

508 The XCO_2 dataset produced in this paper is available at 509 https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024). It includes monthly global XCO₂ data at 0.05° resolution, covering the period from December 2014 to 510 511 December 2021. The dataset is archived in netCDF4 format, with units in parts per 512 million (ppm).

513 6. Conclusion

514 The launch of carbon satellites offers a significant advancement for CO2 515 monitoring. However, their limited spatial coverage restricts the effectiveness of XCO₂ 516 data. To address this issue, we reconstructed a global full-coverage XCO₂ product at a 517 fine spatial resolution using multi-component satellite data. The advanced deep learning method was adopted to model time-series XCO₂ and incorporate terrestrial flux, 518 519 anthropogenic flux and climatic impacts into the parameterization process. Our 520 reconstructed XCO₂ products showed a strong agreement with TCCON XCO₂, with R², 521 RMSE, and MAE values of 0.92, 1.54 ppm, and 1.09 ppm, respectively. The products 522 provided accurate information on the global and regional spatial pattern of XCO₂. The 523 global XCO₂ exhibited a distinct increasing trend over time, reaching 414.00 ppm in 524 2021. Higher XCO₂ concentrations were primarily observed in the northern low-to-525 mid-latitudes (10°N-45°N) such as Asia and North America. Utilizing the reconstructed 526 products, we further detected XCO₂ anomalies globally and identified intensive carbon 527 emission sources across different land use types. Our study presents a viable method for global-scale, high-resolution XCO₂ mapping based on carbon satellites and 528

- 529 demonstrates the feasibility of applying this methodology to explore global and
- 530 regional carbon dynamics.

531 Acknowledgements

532 The authors would like to express their gratitude to the NASA Goddard Earth Science 533 Data and Information Services Center for providing the OCO-2/3 XCO₂ products 534 (https://disc.gsfc.nasa.gov/), the NASA Land Processes Distributed Active Archive 535 Center (LP DAAC) for providing MODIS data. Our gratitude also goes to the Earth 536 Observation Group (EOG) of the Colorado School of Mines for supplying the NPP-VIIRS NTL products, the European Space Agency (ESA) for providing the TROPOMI 537 data, the Copernicus Climate Data Store for providing the ERA5 reanalysis data and 538 539 CAMS-EGG4 XCO2 data, and the Total Carbon Column Observing Network for their 540 dedication in providing the in situ XCO₂ observations.

541 Author contributions

542 ZW developed the overall workflow, processed the data and wrote the manuscript. CZ
543 and BH revised the manuscript. KS, YS, and XC compiled the data. SC conceptualized
544 and revised the manuscript. PA and QZ supervised this study. All the authors
545 contributed to the study.

546 **Competing interests**

547 The contact author has declared that none of the authors has any competing interests.

548 Financial support

- 549 This work was supported by the Key R&D Program of Zhejiang (2022C03078) and
- 550 National Natural Science Foundation of China (NSFC) (32241036).

551 References

552 Agustí-Panareda, A., Barré, J., Massart, S., Inness, A., Aben, I., Ades, M., Baier, B.C., 553 Balsamo, G., Borsdorff, T., Bousserez, N., Boussetta, S., Buchwitz, M., Cantarello, L., Crevoisier, C., Engelen, R., Eskes, H., Flemming, J., Garrigues, S., Hasekamp, 554 O., Huijnen, V., Jones, L., Kipling, Z., Langerock, B., McNorton, J., Meilhac, N., 555 Noël, S., Parrington, M., Peuch, V.-H., Ramonet, M., Razinger, M., Reuter, M., 556 557 Ribas, R., Suttie, M., Sweeney, C., Tarniewicz, J., Wu, L., 2023. Technical note: 558 The CAMS greenhouse gas reanalysis from 2003 to 2020. Atmos. Chem. Phys. 23, 3829-3859. https://doi.org/10.5194/acp-23-3829-2023 559 Bacastow, R.B., Keeling, C.D., Whorf, T.P., 1985. Seasonal amplitude increase in 560 561 atmospheric CO₂ concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys.

562	Res. Atmos. 90, 10529-10540. https://doi.org/10.1029/JD090iD06p10529
563	Bahdanau, D., Cho, K., Bengio, Y., 2016. Neural Machine Translation by Jointly
564	Learning to Align and Translate. https://doi.org/10.48550/arXiv.1409.0473
565	Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck,
566	C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop,
567	G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard,
568	O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010.
569	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation
570	with Climate. Science 329, 834–838. https://doi.org/10.1126/science.1184984
571	Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V.,
572	Chance, K.V., Goede, A.P.H., 1999. SCIAMACHY: Mission Objectives and
573	Measurement Modes. J. Atmos. Sci. 56, 127–150. https://doi.org/10.1175/1520-
574	0469(1999)056<0127:SMOAMM>2.0.CO;2
575	Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., Aben, I.,
576	Armante, R., Bergamaschi, P., Blumenstock, T., Bovensmann, H., Brunner, D.,
577	Buchmann, B., Burrows, J.P., Butz, A., Chédin, A., Chevallier, F., Crevoisier, C.D.,
578	Deutscher, N.M., Frankenberg, C., Hase, F., Hasekamp, O.P., Heymann, J.,
579	Kaminski, T., Laeng, A., Lichtenberg, G., De Mazière, M., Noël, S., Notholt, J.,
580	Orphal, J., Popp, C., Parker, R., Scholze, M., Sussmann, R., Stiller, G.P., Warneke,
581	T., Zehner, C., Bril, A., Crisp, D., Griffith, D.W.T., Kuze, A., O'Dell, C.,
582	Oshchepkov, S., Sherlock, V., Suto, H., Wennberg, P., Wunch, D., Yokota, T.,
583	Yoshida, Y., 2015. The Greenhouse Gas Climate Change Initiative (GHG-CCI):
584	Comparison and quality assessment of near-surface-sensitive satellite-derived
585	CO2 and CH4 global data sets. Remote Sens. Environ. 162, 344–362.
586	https://doi.org/10.1016/j.rse.2013.04.024
587	Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C.,
588	Hartmann, JM., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D.,
589	Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J.,
590	Notholt, J., Warneke, T., 2011. Toward accurate CO2 and CH4 observations from
591	GOSAT. Geophys. Res. Lett. 38. https://doi.org/10.1029/2011GL047888
592	Canadell, J.G., Le Quéré, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P.,
593	Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G., 2007. Contributions to
594	accelerating atmospheric CO ₂ growth from economic activity, carbon intensity,
595	and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104, 18866-18870.
596	https://doi.org/10.1073/pnas.0702737104
597	Chen, Y., Feng, X., Tian, H., Wu, X., Gao, Z., Feng, Y., Piao, S., Lv, N., Pan, N., Fu, B.,
598	2021. Accelerated increase in vegetation carbon sequestration in China after 2010:
599	A turning point resulting from climate and human interaction. Global Change
600	Biology 27, 5848–5864. https://doi.org/10.1111/gcb.15854
601	Chen, Z., Huntzinger, D.N., Liu, J., Piao, S., Wang, X., Sitch, S., Friedlingstein, P.,
602	Anthoni, P., Arneth, A., Bastrikov, V., Goll, D.S., Haverd, V., Jain, A.K., Joetzjer,
603	E., Kato, E., Lienert, S., Lombardozzi, D.L., McGuire, P.C., Melton, J.R., Nabel,
604	J.E.M.S., Pongratz, J., Poulter, B., Tian, H., Wiltshire, A.J., Zaehle, S., Miller, S.M.,
605	2021. Five years of variability in the global carbon cycle: comparing an estimate
606	from the Orbiting Carbon Observatory-2 and process-based models. Environ. Res.
607	Lett. 16, 054041. https://doi.org/10.1088/1748-9326/abfac1
608	Chen, S., Arrouays, D., Mulder, V.L., Poggio, L., Minasny, B., Roudier, P., Libohova,
609	Z., Lagacherie, P., Shi, Z., Hannam, J. and Meersmans, J., 2022. Digital mapping
610	of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 409,
611	115567. https://doi.org/10.1016/j.geoderma.2021.115567

(10	
612	Chen, S., Wang, W., Xu, W., Wang, Yang, Wan, H., Chen, D., Tang, Z., Tang, X., Zhou,
613	G., Xie, Z., Zhou, D., Shangguan, Z., Huang, J., He, JS., Wang, Yanfen, Sheng,
614	J., Tang, L., Li, X., Dong, M., Wu, Y., Wang, Q., Wang, Z., Wu, J., Chapin, F.S.,
615	Bai, Y., 2018. Plant diversity enhances productivity and soil carbon storage. Proc.
616	Natl. Acad. Sci. 115, 4027-4032. https://doi.org/10.1073/pnas.1700298114
617	Connor, B.J., Boesch, H., Toon, G., Sen, B., Miller, C., Crisp, D., 2008. Orbiting Carbon
618	Observatory: Inverse method and prospective error analysis. J. Geophys. Res
619	Atmos. 113. https://doi.org/10.1029/2006JD008336
620	Crisp, D., Atlas, R.M., Breon, FM., Brown, L.R., Burrows, J.P., Ciais, P., Connor, B.J.,
621	Doney, S.C., Fung, I.Y., Jacob, D.J., Miller, C.E., O'Brien, D., Pawson, S.,
622	Randerson, J.T., Rayner, P., Salawitch, R.J., Sander, S.P., Sen, B., Stephens, G.L.,
623	Tans, P.P., Toon, G.C., Wennberg, P.O., Wofsy, S.C., Yung, Y.L., Kuang, Z.,
624	Chudasama, B., Sprague, G., Weiss, B., Pollock, R., Kenyon, D., Schroll, S., 2004.
625	The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res. 34, 700–709.
626	https://doi.org/10.1016/j.asr.2003.08.062
627	Crisp, D., Pollock, H.R., Rosenberg, R., Chapsky, L., Lee, R.A.M., Oyafuso, F.A.,
628	Frankenberg, C., O'Dell, C.W., Bruegge, C.J., Doran, G.B., Eldering, A., Fisher,
629	B.M., Fu, D., Gunson, M.R., Mandrake, L., Osterman, G.B., Schwandner, F.M.,
630	Sun, K., Taylor, T.E., Wennberg, P.O., Wunch, D., 2017. The on-orbit performance
631	of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically
632	calibrated products. Atmos. Meas. Tech. 10, 59–81. https://doi.org/10.5194/amt-
633	10-59-2017
634	Crisp, D., O'Dell, C., Eldering, A., Fisher, B., Oyafuso, F., Payne, V., Drouin, B., Toon,
635	G., Laughner, J., Somkuti, P., McGarragh, G., Merrelli, A., Nelson, R., Gunson,
636	M., Frankenberg, C., Osterman, G., Boesch, H., Brown, L., Castano, R., Christi,
637	M., Connor, B., McDuffie, J., Miller, C., Natraj, V., O'Brien, D., Polonsky, I.,
638	Smyth, M., Thompson, D., and Granat, R., 2020. Orbiting Carbon Observatory-2
639	& 3 Level 2 Full Physics Retrieval Algorithm Theoretical Basis, v10, Tech. rep.,
640	Jet Propulsion Laboratory,
641	https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO L2 ATBD.p
642	df (last access: 15 June 2023)
643	Deng, F., Jones, D.B.A., O'Dell, C.W., Nassar, R., Parazoo, N.C., 2016. Combining
644	GOSAT XCO ₂ observations over land and ocean to improve regional CO ₂ flux
645	estimates. J. Geophys. Res. Atmos. 121, 1896–1913.
646	
640 647	https://doi.org/10.1002/2015JD024157
	Duren, R.M., Miller, C.E., 2012. Measuring the carbon emissions of megacities. Nature
648	Clim. Change 2, 560–562. https://doi.org/10.1038/nclimate1629
649	Eldering, A., Taylor, T.E., O'Dell, C.W., Pavlick, R., 2019. The OCO-3 mission:
650	measurement objectives and expected performance based on 1 year of simulated
651	data. Atmos. Meas. Tech. 12, 2341–2370. https://doi.org/10.5194/amt-12-2341-
652	
653	Eldering, A., Wennberg, P.O., Crisp, D., Schimel, D.S., Gunson, M.R., Chatterjee, A.,
654	Liu, J., Schwandner, F.M., Sun, Y., O'Dell, C.W., Frankenberg, C., Taylor, T.,
655	Fisher, B., Osterman, G.B., Wunch, D., Hakkarainen, J., Tamminen, J., Weir, B.,
656	2017. The Orbiting Carbon Observatory-2 early science investigations of regional
657	carbon dioxide fluxes. Science 358, eaam5745.
658	https://doi.org/10.1126/science.aam5745
659	Feldman, A.F., Zhang, Z., Yoshida, Y., Chatterjee, A., Poulter, B., 2023. Using Orbiting
660	Carbon Observatory-2 (OCO-2) column CO ₂ retrievals to rapidly detect and
661	estimate biospheric surface carbon flux anomalies. Atmos. Chem. Phys. 23, 1545-

662	1563. https://doi.org/10.5194/acp-23-1545-2023
663	Fernández-Martínez, M., Peñuelas, J., Chevallier, F., Ciais, P., Obersteiner, M.,
664	Rödenbeck, C., Sardans, J., Vicca, S., Yang, H., Sitch, S., Friedlingstein, P., Arora,
665	V.K., Goll, D.S., Jain, A.K., Lombardozzi, D.L., McGuire, P.C., Janssens, I.A.,
666	2023. Diagnosing destabilization risk in global land carbon sinks. Nature 615,
667	848-853. https://doi.org/10.1038/s41586-023-05725-1
668	Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca,
669	S., Canadell, J.G., Bastos, A., Friedlingstein, P., Sitch, S., Piao, S.L., Janssens, I.A.,
670	Peñuelas, J., 2019. Global trends in carbon sinks and their relationships with CO2
671	and temperature. Nature Clim. Change 9, 73-79. https://doi.org/10.1038/s41558-
672	018-0367-7
673	Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K.,
674	Zaehle, S., Reichstein, M., 2016. Enhanced seasonal CO ₂ exchange caused by
675	amplified plant productivity in northern ecosystems. Science 351, 696-699.
676	https://doi.org/10.1126/science.aac4971
677	Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Gregor, L., Hauck, J.,
678	Le Quéré, C., Luijkx, I.T., Olsen, A., Peters, G.P., Peters, W., Pongratz, J.,
679	Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R.,
680	Alkama, R., Arneth, A., Arora, V.K., Bates, N.R., Becker, M., Bellouin, N., Bittig,
681	H.C., Bopp, L., Chevallier, F., Chini, L.P., Cronin, M., Evans, W., Falk, S., Feely,
682	R.A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N.,
683	Gürses, Ö., Harris, I., Hefner, M., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T.,
684	Jain, A.K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K.,
685	Knauer, J., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J.,
686	Liu, Z., Marland, G., Mayot, N., McGrath, M.J., Metzl, N., Monacci, N.M., Munro,
687	D.R., Nakaoka, SI., Niwa, Y., O'Brien, K., Ono, T., Palmer, P.I., Pan, N., Pierrot,
688	D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C.,
689	Rodriguez, C., Rosan, T.M., Schwinger, J., Séférian, R., Shutler, J.D., Skjelvan, I.,
690	Steinhoff, T., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tanhua, T., Tans, P.P., Tian, X., Tian, H., Tilbreak, P., Taviina, H., Tubialla, F., yan, dar, Waff, G.P.
691 692	Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G.R., Walker, A.P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R.,
692 693	Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., 2022. Global Carbon
693 694	Budget 2022. Earth Syst. Sci. Data 14, 4811–4900. https://doi.org/10.5194/essd-
695	14-4811-2022
696	Friedlingstein, P., Houghton, R.A., Marland, G., Hackler, J., Boden, T.A., Conway, T.J.,
697	Canadell, J.G., Raupach, M.R., Ciais, P., Le Quéré, C., 2010. Update on CO ₂
698	emissions. Nature Geosci 3, 811–812. https://doi.org/10.1038/ngeo1022
699	Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine.
700	The Annals of Statistics 29, 1189–1232.
701	Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L.G.,
702	Tejada, G., Aragão, L.E.O.C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches,
703	A.H., Corrêa, S.M., Anderson, L., Von Randow, C., Correia, C.S.C., Crispim, S.P.,
704	Neves, R.A.L., 2021. Amazonia as a carbon source linked to deforestation and
705	climate change. Nature 595, 388-393. https://doi.org/10.1038/s41586-021-03629-
706	6
707	Gatti, L.V., Cunha, C.L., Marani, L., Cassol, H.L.G., Messias, C.G., Arai, E., Denning,
708	A.S., Soler, L.S., Almeida, C., Setzer, A., Domingues, L.G., Basso, L.S., Miller,
709	J.B., Gloor, M., Correia, C.S.C., Tejada, G., Neves, R.A.L., Rajao, R., Nunes, F.,
710	Filho, B.S.S., Schmitt, J., Nobre, C., Corrêa, S.M., Sanches, A.H., Aragão,

L.E.O.C., Anderson, L., Von Randow, C., Crispim, S.P., Silva, F.M., Machado,

712	G.B.M., 2023. Increased Amazon carbon emissions mainly from decline in law
713	enforcement. Nature 621, 318-323. https://doi.org/10.1038/s41586-023-06390-0
714	Gentine, P., Green, J.K., Guérin, M., Humphrey, V., Seneviratne, S.I., Zhang, Y., Zhou,
715	S., 2019. Coupling between the terrestrial carbon and water cycles-a review.
716	Environ. Res. Lett. 14, 083003. https://doi.org/10.1088/1748-9326/ab22d6
717	Graven, H.D., Keeling, R.F., Piper, S.C., Patra, P.K., Stephens, B.B., Wofsy, S.C., Welp,
718	L.R., Sweeney, C., Tans, P.P., Kelley, J.J., Daube, B.C., Kort, E.A., Santoni, G.W.,
719	Bent, J.D., 2013. Enhanced Seasonal Exchange of CO ₂ by Northern Ecosystems
720	Since 1960. Science 341, 1085–1089. https://doi.org/10.1126/science.1239207
721	Graves, A., Fernández, S., & Schmidhuber, J. 2005. Bidirectional LSTM networks for
722	improved phoneme classification and recognition. In Artificial Neural Networks:
723	Formal Models and Their Applications-ICANN 2005: 15th International
724	Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15 (pp.
725	799-804). Springer Berlin Heidelberg.
726	Green, J.K., Seneviratne, S.I., Berg, A.M., Findell, K.L., Hagemann, S., Lawrence,
727	D.M., Gentine, P., 2019. Large influence of soil moisture on long-term terrestrial
728	carbon uptake. Nature 565, 476–479. https://doi.org/10.1038/s41586-018-0848-x
729	Hakkarainen, J., Ialongo, I., Tamminen, J., 2016. Direct space-based observations of
730	anthropogenic CO ₂ emission areas from OCO-2. Geophys. Res. Lett. 43, 11,400-
731	11,406. https://doi.org/10.1002/2016GL070885
732	Hammerling, D.M., Michalak, A.M., Kawa, S.R., 2012. Mapping of CO ₂ at high
733	spatiotemporal resolution using satellite observations: Global distributions from
734	OCO-2. J. Geophys. Res. Atmos. 117. https://doi.org/10.1029/2011JD017015
735	Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M.,
736	Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez,
737	D.R., Roman-Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A.,
738	Tyukavina, A., 2021. Global maps of twenty-first century forest carbon fluxes. Nat.
739	Clim. Chang. 11, 234-240. https://doi.org/10.1038/s41558-020-00976-6
740	He, C., Ji, M., Li, T., Liu, X., Tang, D., Zhang, S., Luo, Y., Grieneisen, M.L., Zhou, Z.,
741	Zhan, Y., 2022. Deriving Full-Coverage and Fine-Scale XCO ₂ Across China Based
742	on OCO-2 Satellite Retrievals and Carbon Tracker Output. Geophys. Res. Lett. 49,
743	e2022GL098435. https://doi.org/10.1029/2022GL098435
744	He, Z., Lei, L., Zhang, Y., Sheng, M., Wu, C., Li, L., Zeng, ZC., Welp, L.R., 2020.
745	Spatio-Temporal Mapping of Multi-Satellite Observed Column Atmospheric CO2
746	Using Precision-Weighted Kriging Method. Remote Sens. 12, 576.
747	https://doi.org/10.3390/rs12030576
748	Heinze, C., Meyer, S., Goris, N., Anderson, L., Steinfeldt, R., Chang, N., Le Quéré, C.,
749	Bakker, D.C.E., 2015. The ocean carbon sink - impacts, vulnerabilities and
750	challenges. Earth Syst. Dynam. 6, 327-358. https://doi.org/10.5194/esd-6-327-
751	2015
752	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
753	Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,
754	S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De
755	Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,
756	Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm,
757	E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de
758	Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, JN., 2020. The ERA5
759	global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049.
760	https://doi.org/10.1002/qj.3803
761	Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Comput. 9,

762	1735-1780. https://doi.org/10.2	1162/neco.1997.9.8.1735
101	1,55 1,60. https://doi.org/101	102/110001/01/01/00

763	Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez,
764	A., Daniels, A.K., Ewango, C.E.N., Fauset, S., Mukinzi, J.M., Sheil, D., Sonké,
765	B., Sullivan, M.J.P., Sunderland, T.C.H., Taedoumg, H., Thomas, S.C., White,
766	L.J.T., Abernethy, K.A., Adu-Bredu, S., Amani, C.A., Baker, T.R., Banin, L.F.,
767	Baya, F., Begne, S.K., Bennett, A.C., Benedet, F., Bitariho, R., Bocko, Y.E.,
768	Boeckx, P., Boundja, P., Brienen, R.J.W., Brncic, T., Chezeaux, E., Chuyong, G.B.,
769	Clark, C.J., Collins, M., Comiskey, J.A., Coomes, D.A., Dargie, G.C., de
770	Haulleville, T., Kamdem, M.N.D., Doucet, JL., Esquivel-Muelbert, A.,
771	Feldpausch, T.R., Fofanah, A., Foli, E.G., Gilpin, M., Gloor, E., Gonmadje, C.,
772	Gourlet-Fleury, S., Hall, J.S., Hamilton, A.C., Harris, D.J., Hart, T.B., Hockemba,
773	M.B.N., Hladik, A., Ifo, S.A., Jeffery, K.J., Jucker, T., Yakusu, E.K., Kearsley, E.,
774	Kenfack, D., Koch, A., Leal, M.E., Levesley, A., Lindsell, J.A., Lisingo, J., Lopez-
775	Gonzalez, G., Lovett, J.C., Makana, JR., Malhi, Y., Marshall, A.R., Martin, J.,
776	Martin, E.H., Mbayu, F.M., Medjibe, V.P., Mihindou, V., Mitchard, E.T.A., Moore,
777	S., Munishi, P.K.T., Bengone, N.N., Ojo, L., Ondo, F.E., Peh, K.SH., Pickavance,
778	G.C., Poulsen, A.D., Poulsen, J.R., Qie, L., Reitsma, J., Rovero, F., Swaine, M.D.,
779	Talbot, J., Taplin, J., Taylor, D.M., Thomas, D.W., Toirambe, B., Mukendi, J.T.,
780	Tuagben, D., Umunay, P.M., van der Heijden, G.M.F., Verbeeck, H., Vleminckx,
781	J., Willcock, S., Wöll, H., Woods, J.T., Zemagho, L., 2020. Asynchronous carbon
782	sink saturation in African and Amazonian tropical forests. Nature 579, 80-87.
783	https://doi.org/10.1038/s41586-020-2035-0
784	IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups
785	I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on
786	Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva,
787	Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647
788	Inoue, M., Morino, I., Uchino, O., Miyamoto, Y., Yoshida, Y., Yokota, T., Machida, T.,
789	Sawa, Y., Matsueda, H., Sweeney, C., Tans, P.P., Andrews, A.E., Biraud, S.C.,
790	Tanaka, T., Kawakami, S., Patra, P.K., 2013. Validation of XCO2 derived from
791	SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos.
792	Chem. Phys. 13, 9771–9788. https://doi.org/10.5194/acp-13-9771-2013
793	Janardanan, R., Maksyutov, S., Oda, T., Saito, M., Kaiser, J.W., Ganshin, A., Stohl, A.,
794	Matsunaga, T., Yoshida, Y., Yokota, T., 2016. Comparing GOSAT observations
795	of localized CO ₂ enhancements by large emitters with inventory-based estimates.
796	Geophys. Res. Lett. 43, 3486–3493. https://doi.org/10.1002/2016GL067843
797	Kaminski, T., Scholze, M., Vossbeck, M., Knorr, W., Buchwitz, M., Reuter, M., 2017.
798	Constraining a terrestrial biosphere model with remotely sensed atmospheric
799	carbon dioxide. Remote Sens. Environ. 203, 109–124.
800	https://doi.org/10.1016/j.rse.2017.08.017
801	Kemp, L., Xu, C., Depledge, J., Ebi, K.L., Gibbins, G., Kohler, T.A., Rockström, J.,
802	Scheffer, M., Schellnhuber, H.J., Steffen, W., Lenton, T.M., 2022. Climate
803 804	Endgame: Exploring catastrophic climate change scenarios. Proc. Natl. Acad. Sci. 119, e2108146119. https://doi.org/10.1073/pnas.2108146119
804 805	
805	Kiel, M., Eldering, A., Roten, D.D., Lin, J.C., Feng, S., Lei, R., Lauvaux, T., Oda, T., Roehl, C.M., Blavier, JF., Iraci, L.T., 2021. Urban-focused satellite CO ₂
800	observations from the Orbiting Carbon Observatory-3: A first look at the Los
808	Angeles megacity. Remote Sens. Environ. 258, 112314.
808 809	Angeles megacity. Remote Sens. Environ. 238, 112314. https://doi.org/10.1016/j.rse.2021.112314
810	Kiel, M., O'Dell, C.W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C.G.,
810	Wennberg, P.O., 2019. How bias correction goes wrong: measurement of X _{CO2}
011	tremoting, 1.0., 2017. How bias concerton goes wrong, measurement of A(02

812	affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 12, 2241-
813	2259. https://doi.org/10.5194/amt-12-2241-2019
814	Labzovskii, L.D., Jeong, SJ., Parazoo, N.C., 2019. Working towards confident
815	spaceborne monitoring of carbon emissions from cities using Orbiting Carbon
816	Observatory-2. Remote Sens. Environ. 233, 111359.
817	https://doi.org/10.1016/j.rse.2019.111359
818	Lei, R., Feng, S., Danjou, A., Broquet, G., Wu, D., Lin, J.C., O'Dell, C.W., Lauvaux,
819	T., 2021. Fossil fuel CO ₂ emissions over metropolitan areas from space: A multi-
820	model analysis of OCO-2 data over Lahore, Pakistan. Remote Sens. Environ. 264,
821	112625. https://doi.org/10.1016/j.rse.2021.112625
822	Lin, B., Xu, B., 2018. Factors affecting CO ₂ emissions in China's agriculture sector: A
823	quantile regression. Renewable and Sustainable Energy Reviews 94, 15–27.
823 824	
	https://doi.org/10.1016/j.rser.2018.05.065
825	Liu, J., Bowman, K.W., Schimel, D.S., Parazoo, N.C., Jiang, Z., Lee, M., Bloom, A.A.,
826	Wunch, D., Frankenberg, C., Sun, Y., O'Dell, C.W., Gurney, K.R., Menemenlis,
827	D., Gierach, M., Crisp, D., Eldering, A., 2017. Contrasting carbon cycle responses
828	of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690.
829	https://doi.org/10.1126/science.aam5690
830	Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R.,
831	Himmelfarb, J., Bansal, N., Lee, SI., 2020. From local explanations to global
832	understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67.
833	https://doi.org/10.1038/s42256-019-0138-9
834	Lundberg, S.M., Lee, SI., 2017. A unified approach to interpreting model predictions,
835	in: Proceedings of the 31st International Conference on Neural Information
836	Processing Systems, NIPS'17. Curran Associates Inc., Red Hook, NY, USA, pp.
837	4768–4777.
838	Luong, MT., Pham, H., Manning, C.D., 2015. Effective Approaches to Attention-
839	based Neural Machine Translation. CoRR abs/1508.04025.
840	Matthias Forkel et al., 2016. Enhanced seasonal CO ₂ exchange caused by amplified
841	plant productivity in northern ecosystems. Science 351, 696-699(2016).
842	DOI:10.1126/science.aac4971
843	Nassar, R., Mastrogiacomo, JP., Bateman-Hemphill, W., McCracken, C., MacDonald,
844	C.G., Hill, T., O'Dell, C.W., Kiel, M., Crisp, D., 2021. Advances in quantifying
845	power plant CO ₂ emissions with OCO-2. Remote Sens. Environ. 264, 112579.
846	https://doi.org/10.1016/j.rse.2021.112579
847	Oda, T., Maksyutov, S., Andres, R.J., 2018. The Open-source Data Inventory for
848	Anthropogenic CO ₂ , version 2016 (ODIAC2016): a global monthly fossil fuel
849	CO_2 gridded emissions data product for tracer transport simulations and surface
850	flux inversions. Earth Syst. Sci. Data 10, 87–107. https://doi.org/10.5194/essd-10-
851	
852	O'Dell, C.W., Eldering, A., Wennberg, P.O., Crisp, D., Gunson, M.R., Fisher, B.,
853	Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V.,
854	Nelson, R.R., Osterman, G.B., Payne, V.H., Taylor, T.E., Wunch, D., Drouin, B.J.,
855	Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D.F., Basu, S., Chevallier,
856	F., Crowell, S.M.R., Feng, L., Palmer, P.I., Dubey, M., García, O.E., Griffith,
857	D.W.T., Hase, F., Iraci, L.T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri,
858	C., Roehl, C.M., Sha, M.K., Strong, K., Sussmann, R., Te, Y., Uchino, O., Velazco,
859	V.A., 2018. Improved retrievals of carbon dioxide from Orbiting Carbon
860	Observatory-2 with the version 8 ACOS algorithm. Atmos. Meas. Tech. 11, 6539–
861	6576. https://doi.org/10.5194/amt-11-6539-2018

862	Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L.,
863	Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W.,
864	McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A Large and
865	Persistent Carbon Sink in the World's Forests. Science 333, 988-993.
866	https://doi.org/10.1126/science.1201609
867	Parazoo, N.C., Bowman, K., Frankenberg, C., Lee, JE., Fisher, J.B., Worden, J., Jones,
868	D.B.A., Berry, J., Collatz, G.J., Baker, I.T., Jung, M., Liu, J., Osterman, G., O'Dell,
869	C., Sparks, A., Butz, A., Guerlet, S., Yoshida, Y., Chen, H., Gerbig, C., 2013.
870	Interpreting seasonal changes in the carbon balance of southern Amazonia using
871	measurements of XCO ₂ and chlorophyll fluorescence from GOSAT. Geophys. Res.
872	Lett. 40, 2829–2833. https://doi.org/10.1002/grl.50452
873	Patra, P.K., Crisp, D., Kaiser, J.W., Wunch, D., Saeki, T., Ichii, K., Sekiya, T., Wennberg,
874	P.O., Feist, D.G., Pollard, D.F., Griffith, D.W.T., Velazco, V.A., De Maziere, M.,
875	Sha, M.K., Roehl, C., Chatterjee, A., Ishijima, K., 2017. The Orbiting Carbon
876	Observatory (OCO-2) tracks 2-3 peta-gram increase in carbon release to the
877	atmosphere during the 2014-2016 El Niño. Sci Rep 7, 13567.
878	https://doi.org/10.1038/s41598-017-13459-0
879	Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C.A.M., Gallagher, M.,
880	Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D., Marshall, J., Nédélec, P.,
881	Smit, H.G.J., Friess, U., Flaud, JM., Wahner, A., Cammas, JP., Volz-Thomas,
882	A., 2016. Global-scale atmosphere monitoring by in-service aircraft - current
883	achievements and future prospects of the European Research Infrastructure
884	IAGOS. Tellus Ser. B-Chem. Phys. Meteorol. 68, 28452.
885	https://doi.org/10.3402/tellusb.v67.28452
886	Schimel, D.S., 1995. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1,
887	77–91. https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
888	Schwandner, F.M., Gunson, M.R., Miller, C.E., Carn, S.A., Eldering, A., Krings, T.,
889	Verhulst, K.R., Schimel, D.S., Nguyen, H.M., Crisp, D., O'Dell, C.W., Osterman,
890	G.B., Iraci, L.T., Podolske, J.R., 2017. Spaceborne detection of localized carbon
891	dioxide sources. Science 358, eaam5782.
892	https://doi.org/10.1126/science.aam5782
893	Siabi, Z., Falahatkar, S., Alavi, S.J., 2019. Spatial distribution of XCO ₂ using OCO-2
894	data in growing seasons. J. Environ. Manage. 244, 110–118.
895	https://doi.org/10.1016/j.jenvman.2019.05.049
896	Silva, S.J., Arellano, A.F., Worden, H.M., 2013. Toward anthropogenic combustion
897	emission constraints from space-based analysis of urban CO ₂ /CO sensitivity.
898	Geophys. Res. Lett. 40, 4971–4976. https://doi.org/10.1002/grl.50954
899	Sitch, S., Friedlingstein, P., Gruber, N., Jones, S.D., Murray-Tortarolo, G., Ahlström,
900	A., Doney, S.C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P.E.,
901	Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G.,
902	Bopp, L., Canadell, J.G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P.,
903	Piao, S.L., Le Quéré, C., Smith, B., Zhu, Z., Myneni, R., 2015. Recent trends and
904	drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–
904	679. https://doi.org/10.5194/bg-12-653-2015
905	Solomon, S., Plattner, GK., Knutti, R., Friedlingstein, P., 2009. Irreversible climate
900 907	change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106, 1704–
907	1709. https://doi.org/10.1073/pnas.0812721106
908 909	
909 910	Sundquist, E. T., 1986: Geologic analogs: Their value and limitations in carbon dioxide research. In: The Changing Carbon Cycle [J. R. Trabalka and D. E. Reichle (eds.)],
910 911	Springer-Verlag, New York, pp. 371–402.
711	$spinger verag, iven ion, pp. J/1 = \tau 02.$

012	Taylor TE Eldering A. Marrolli A. Kiel M. Samlusti D. Chang C. Desemberg D.
912	Taylor, T.E., Eldering, A., Merrelli, A., Kiel, M., Somkuti, P., Cheng, C., Rosenberg, R.,
913	Fisher, B., Crisp, D., Basilio, R., Bennett, M., Cervantes, D., Chang, A., Dang, L.,
914 915	Frankenberg, C., Haemmerle, V.R., Keller, G.R., Kurosu, T., Laughner, J.L., Lee, P. Marabatti V. Nalcon, P. P. O'Dall, C.W. Octarman, G. Paylick, P. Pachl
915 916	R., Marchetti, Y., Nelson, R.R., O'Dell, C.W., Osterman, G., Pavlick, R., Roehl, C., Schneider, R., Spiers, G., To, C., Wells, C., Wennberg, P.O., Yelamanchili, A.,
910 917	
917 918	Yu, S., 2020. OCO-3 early mission operations and initial (vEarly) XCO ₂ and SIF retrievals. Remote Sens. Environ. 251, 112032.
918 919	https://doi.org/10.1016/j.rse.2020.112032
919 920	Taylor, T.E., O'Dell, C.W., Baker, D., Bruegge, C., Chang, A., Chapsky, L., Chatterjee,
920 921	A., Cheng, C., Chevallier, F., Crisp, D., Dang, L., Drouin, B., Eldering, A., Feng,
921 922	L., Fisher, B., Fu, D., Gunson, M., Haemmerle, V., Keller, G.R., Kiel, M., Kuai,
922 923	L., Kurosu, T., Lambert, A., Laughner, J., Lee, R., Liu, J., Mandrake, L., Marchetti,
	Y., McGarragh, G., Merrelli, A., Nelson, R.R., Osterman, G., Oyafuso, F., Palmer,
924 925	P.I., Payne, V.H., Rosenberg, R., Somkuti, P., Spiers, G., To, C., Weir, B.,
925 926	Wennberg, P.O., Yu, S., Zong, J., 2023. Evaluating the consistency between OCO-
920 927	2 and OCO-3 XCO ₂ estimates derived from the NASA ACOS version 10 retrieval
928 929	algorithm. Atmos. Meas. Tech. 16, 3173–3209. https://doi.org/10.5194/amt-16-3173-2023
929 930	
930 931	Taylor, T.E., O'Dell, C.W., Frankenberg, C., Partain, P.T., Cronk, H.Q., Savtchenko, A., Nelson, R.R., Rosenthal, E.J., Chang, A.Y., Fisher, B., Osterman, G.B., Pollock,
931 932	R.H., Crisp, D., Eldering, A., Gunson, M.R., 2016. Orbiting Carbon Observatory-
932 933	2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and
933 934	CALIOP data. Atmos. Meas. Tech. 9, 973–989. https://doi.org/10.5194/amt-9-
934 935	973-2016
935 936	Turnbull, J.C., Tans, P.P., Lehman, S.J., Baker, D., Conway, T.J., Chung, Y.S., Gregg,
930 937	J., Miller, J.B., Southon, J.R., Zhou, LX., 2011. Atmospheric observations of
937 938	carbon monoxide and fossil fuel CO ₂ emissions from East Asia. J. Geophys. Res.
939 939	Atmos. 116. https://doi.org/10.1029/2011JD016691
940	Wang, J., Zeng, N., Wang, M., Jiang, F., Chen, J., Friedlingstein, P., Jain, A.K., Jiang,
940 941	Z., Ju, W., Lienert, S., Nabel, J., Sitch, S., Viovy, N., Wang, H., Wiltshire, A.J.,
942	2018. Contrasting interannual atmospheric CO ₂ variabilities and their terrestrial
943	mechanisms for two types of El Niños. Atmos. Chem. Phys. 18, $10333-10345$.
944	https://doi.org/10.5194/acp-18-10333-2018
945	Wang, Y., Yuan, Q., Li, T., Yang, Y., Zhou, S., Zhang, L., 2023. Seamless mapping of
946	long-term (2010–2020) daily global XCO ₂ and XCH ₄ from the Greenhouse Gases
947	Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and
948	CAMS global greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporally
949	self-supervised fusion method. Earth Syst. Sci. Data 15, 3597–3622.
950	https://doi.org/10.5194/essd-15-3597-2023
951	Wang, S., Zhang, Y., Ju, W., Chen, J.M., Ciais, P., Cescatti, A., Sardans, J., Janssens,
952	I.A., Wu, M., Berry, J.A., Campbell, E., Fernández-Martínez, M., Alkama, R.,
953	Sitch, S., Friedlingstein, P., Smith, W.K., Yuan, W., He, W., Lombardozzi, D.,
954	Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T.G.M., Krüger, I.,
955	Wang, R., Zeng, N., Tian, H., Vuichard, N., Jain, A.K., Wiltshire, A., Haverd, V.,
956	Goll, D.S., Peñuelas, J., 2020. Recent global decline of CO2 fertilization effects
957	on vegetation photosynthesis. Science 370, 1295–1300.
958	https://doi.org/10.1126/science.abb7772
959	Wu, L., Hasekamp, O., Hu, H., Landgraf, J., Butz, A., aan de Brugh, J., Aben, I., Pollard,
960	D.F., Griffith, D.W.T., Feist, D.G., Koshelev, D., Hase, F., Toon, G.C., Ohyama,
961	H., Morino, I., Notholt, J., Shiomi, K., Iraci, L., Schneider, M., de Mazière, M.,

33

962	Sussmann, R., Kivi, R., Warneke, T., Goo, TY., Té, Y., 2018. Carbon dioxide
962 963	retrieval from OCO-2 satellite observations using the RemoTeC algorithm and
963 964	validation with TCCON measurements. Atmos. Meas. Tech. 11, 3111–3130.
965	https://doi.org/10.5194/amt-11-3111-2018
966	Wunch, D., Toon, G.C., Blavier, JF.L., Washenfelder, R.A., Notholt, J., Connor, B.J.,
967	Griffith, D.W.T., Sherlock, V., Wennberg, P.O., 2011. The Total Carbon Column
968	Observing Network. Philosophical Transactions of the Royal Society A:
969	Mathematical, Physical and Engineering Sciences 369, 2087–2112.
970	https://doi.org/10.1098/rsta.2010.0240
971	Wunch, D., Toon, G.C., Wennberg, P.O., Wofsy, S.C., Stephens, B.B., Fischer, M.L.,
972	Uchino, O., Abshire, J.B., Bernath, P., Biraud, S.C., Blavier, JF.L., Boone, C.,
973	Bowman, K.P., Browell, E.V., Campos, T., Connor, B.J., Daube, B.C., Deutscher,
974	N.M., Diao, M., Elkins, J.W., Gerbig, C., Gottlieb, E., Griffith, D.W.T., Hurst, D.F.,
975	Jiménez, R., Keppel-Aleks, G., Kort, E.A., Macatangay, R., Machida, T.,
976	Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C.M., Sawa, Y.,
977	Sherlock, V., Sweeney, C., Tanaka, T., Zondlo, M.A., 2010. Calibration of the Total
978	Carbon Column Observing Network using aircraft profile data. Atmos. Meas. Tech.
979	3, 1351–1362. https://doi.org/10.5194/amt-3-1351-2010
980	Wunch, D., Wennberg, P.O., Osterman, G., Fisher, B., Naylor, B., Roehl, C.M., O'Dell,
981	C., Mandrake, L., Viatte, C., Kiel, M., Griffith, D.W.T., Deutscher, N.M., Velazco,
982	V.A., Notholt, J., Warneke, T., Petri, C., De Maziere, M., Sha, M.K., Sussmann,
983	R., Rettinger, M., Pollard, D., Robinson, J., Morino, I., Uchino, O., Hase, F.,
984	Blumenstock, T., Feist, D.G., Arnold, S.G., Strong, K., Mendonca, J., Kivi, R.,
985	Heikkinen, P., Iraci, L., Podolske, J., Hillyard, P.W., Kawakami, S., Dubey, M.K.,
986	Parker, H.A., Sepulveda, E., García, O.E., Te, Y., Jeseck, P., Gunson, M.R., Crisp,
987	D., Eldering, A., 2017. Comparisons of the Orbiting Carbon Observatory-2 (OCO-
988	2) X_{CO2} measurements with TCCON. Atmos. Meas. Tech. 10, 2209–2238.
989	https://doi.org/10.5194/amt-10-2209-2017
990	Yang, H., Ciais, P., Frappart, F., Li, X., Brandt, M., Fensholt, R., Fan, L., Saatchi, S.,
991	Besnard, S., Deng, Z., Bowring, S., Wigneron, JP., 2023. Global increase in
992	biomass carbon stock dominated by growth of northern young forests over past
993	decade. Nat. Geosci. 16, 886-892. https://doi.org/10.1038/s41561-023-01274-4
994	Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T.,
995	Schutgens, N., Toon, G.C., Wunch, D., Roehl, C.M., Wennberg, P.O., Griffith,
996	D.W.T., Deutscher, N.M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V.,
997	Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., Heikkinen, P., Kyrö, E.,
998	Mendonca, J., Strong, K., Hase, F., Dohe, S., Yokota, T., 2013. Improvement of
999	the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation
1000	using TCCON data. Atmos. Meas. Tech. 6, 1533–1547.
1001	https://doi.org/10.5194/amt-6-1533-2013
1002	Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J.,
1003	Gao, J., Zhang, L., 2020. Deep learning in environmental remote sensing:
1004	Achievements and challenges. Remote Sens. Environ. 241, 111716.
1005	https://doi.org/10.1016/j.rse.2020.111716
1006	Zeng, N., Zhao, F., Collatz, G.J., Kalnay, E., Salawitch, R.J., West, T.O., Guanter, L.,
1007	2014. Agricultural Green Revolution as a driver of increasing atmospheric CO_2
1008	seasonal amplitude. Nature 515, 394–397. https://doi.org/10.1038/nature13893
1009	Zeng, Z., Lei, L., Hou, S., Ru, F., Guan, X., Zhang, B., 2014. A Regional Gap-Filling
1010	Method Based on Spatiotemporal Variogram Model of CO ₂ Columns. IEEE Trans.
1011	Geosci. Remote Sens. 52, 3594–3603.

1012	https://doi.org/10.1109/TGRS.2013.2273807
1013	Zhang, M., Liu, G., 2023. Mapping contiguous XCO ₂ by machine learning and
1014	analyzing the spatio-temporal variation in China from 2003 to 2019. Sci. Total
1015	Environ. 858, 159588. https://doi.org/10.1016/j.scitotenv.2022.159588
1016	Zheng, B., Chevallier, F., Ciais, P., Broquet, G., Wang, Y., Lian, J., Zhao, Y., 2020.
1017	Observing carbon dioxide emissions over China's cities and industrial areas with
1018	the Orbiting Carbon Observatory-2. Atmos. Chem. Phys. 20, 8501-8510.
1019	https://doi.org/10.5194/acp-20-8501-2020
1020	Zhou, M., Dils, B., Wang, P., Detmers, R., Yoshida, Y., O'Dell, C.W., Feist, D.G.,
1021	Velazco, V.A., Schneider, M., De Mazière, M., 2016. Validation of TANSO-
1022	FTS/GOSAT XCO2 and XCH4 glint mode retrievals using TCCON data from near-
1023	ocean sites. Atmos. Meas. Tech. 9, 1415-1430. https://doi.org/10.5194/amt-9-
1024	1415-2016
1025	
1026	

1026