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Introduction

Seabirds are amongst the most threatened groups of birds 
and may have experienced declines of up to 70% globally 
between 1950 and 2010 (Paleczny et al. 2015). Populations 
are subject to a broad range of anthropogenic pressures 
including climate change, commercial fisheries, and infra-
structure developments (Burthe et al. 2014; O’Hanlon et al. 
2023). The rapid expansion of the offshore wind industry as 
part of efforts to reduce reliance of fossil fuels and mitigate 
the impacts of climate change (Rodrigues et al. 2015) repre-
sents another potential pressure on these populations (Fur-
ness et al. 2013), which may encounter multiple wind farms 
over the course of their annual cycles (Busch and Garthe 
2018; Thaxter et al. 2019).
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Abstract
Seabird collision risk is a key concern in relation to the environmental impacts associated with offshore wind farms 
(OWFs). Understanding how species respond both to the wind farm itself, and individual turbines within the wind farm, 
is key to enabling better quantification and management of collision risk. Collision risk is of particular concern for the 
black-legged kittiwake, Rissa tridactyla, where modelling predicts unsustainable population level impacts. In this study 
20 adult breeding kittiwakes, were tracked with GPS from Whinnyfold, Scotland (57°23′07″N, 001°52′11″W) during the 
breeding season in 2021. An Avoidance-Attraction Index (AAI) was estimated at several bands within macro- and meso-
scales (0–4 km from outer boundary and 0–400 m from turbines, respectively), and the Avoidance Rate (AR; used in 
environmental impact assessments) at macro-scale to estimate avoidance behaviour to three operational OWFs within their 
foraging range. One offshore wind farm and its buffer zone (0–4 km from outer boundary) was visited more frequently by 
the majority of tracked individuals (19/20 birds), despite being twice as far as the closest OWF (17.3 and 31.9 km respec-
tively), whilst 10 or less individuals used the remaining two OWFs. At the most frequented OWF we found macro-scale 
attraction to the closest band (0–1 km) trending towards avoidance in the furthest band (3–4 km). At the meso-scale we 
found avoidance of areas below the rotor height range (RHR, a.k.a. rotor swept area/zone) up to 120 m from individual 
turbines, which decreased to 60 m when within the RHR. Our results indicate that kittiwakes may be slightly attracted to 
the area around OWFs or aggregate here due to displacement but avoid individual turbines. Increased productivity in the 
OWF area may potentially be drawing birds into the general area, with aversion to individual turbines being responsible 
for meso-scale observations.
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Offshore Wind Farm (OWF) impacts can be grouped into 
lethal or sublethal. Collision events, occurring when a bird 
collides with a turbine or associated infrastructure, pose 
a lethal impact (Desholm and Kahlert 2005; Drewitt and 
Langston 2006). Sublethal impacts include displacement, 
attraction, and barrier effects (Masden et al. 2009; Furness 
et al. 2013; Vanermen et al. 2015b; Cook et al. 2018) which 
can affect individuals by altering how they interact with 
their environment. These may have energetic consequences 
which then impact survival or productivity by influencing 
body condition and provisioning rates (Masden et al. 2010; 
Horswill et al. 2017). Collision risk is often a key consent-
ing consideration for OWF projects due to the estimated 
cumulative impact on populations within protected areas 
(Brabant et al. 2015; Busch and Garthe 2018; Goodale et al. 
2019; Broadbent and Nixon 2019). Consequently, assess-
ing collision risk using a Collision Risk Model (CRM) is 
an important part of the Environmental Impact Assessments 
(EIAs) carried out in relation to new OWF developments 
(Masden and Cook 2016).

CRMs combine a range of parameters covering the prop-
erties of the OWF in question (e.g. number of turbines, 
turbine height, rotor width), the attributes of the species 
concerned (e.g. wingspan, flight height, flight speed) and 
the density of that species within a wind farm in order to 
estimate the flux of birds passing through an OWF and the 
probability of any individual colliding with a turbine (Mas-
den and Cook 2016). In the final step of a CRM an avoid-
ance rate (AR) is applied, which accounts for the proportion 
of birds which are likely to avoid collision. The final pre-
dicted collision rates are highly sensitive to these avoidance 
rates (Chamberlain et al. 2006; Masden and Cook 2016), 
which can be hard to quantify (Green et al. 2016) and are 
often based on extrapolations from studies at onshore wind 
farms and/or data from related species (Cook et al. 2018).

Avoidance rates, as used in CRMs, are obtained by 
combining the behavioural response of birds to the OWF 
and its turbines with elements of model error within those 
CRMs arising as a result of uncertainty surrounding input 
parameters and the simplified set of assumptions on which 
the models are based (Masden and Cook 2016). By collect-
ing data describing the distance at which birds detect and 
respond to wind turbines (May 2015), it will be possible 

to better understand the behavioural elements of avoidance 
rates, and therefore gain a better understanding of species 
collision risk.

Avoidance behaviour can be interpreted over three nested 
scales (May 2015; Cook et al. 2018): (i) macro-scale where 
OWF footprints are avoided entirely, often considered in 
km, (ii) meso-scale when single turbines or turbine arrays 
are avoided, where responses are quantified in metres, and 
(iii) micro-scale, comprising a last second escape response 
to avoid a moving rotor. At a macro-scale there is relatively 
good evidence, from post-construction monitoring (Dier-
schke et al. 2016), for species to show a propensity to either 
avoid (e.g., gannets Morus bassanus and divers Gavia spp.), 
or be attracted to OWFs (cormorants Phalacrocorax carbo, 
shags P. aristotelis, and some large gull Larus spp.). Though, 
recent studies highlight the potential for spatial, seasonal 
and individual differences in these responses which may be 
linked to factors such as turbine density, and prey availabil-
ity (Skov et al. 2018; Peschko et al. 2020, 2021; O’Hanlon 
et al. 2024; Thaxter et al. 2024). The relatively fine spatial 
scales associated with meso, and micro avoidance make 
investigating behaviour at these levels more challenging. 
However, technology such as high-resolution GPS tracking 
and combined camera-radar systems are offering promising 
solutions to these problems (Schaub et al. 2020; Johnston et 
al. 2022; Tjørnløv et al. 2023).

Black-legged kittiwakes Rissa tridactyla (hereafter, kit-
tiwake) are amongst the species most vulnerable to collision 
risk due to their flight heights overlapping with rotor swept 
zones (Furness et al. 2013), which range from 21 to 191 m in 
this study (Table 1). They also make relatively long foraging 
trips, averaging 24.8 ± 12.1 km (Thaxter et al. 2012), equat-
ing to a foraging range of 11.9 km (IQR 2.3–30.9, Wakefield 
et al. 2017), which could increase OWF encounters. This 
is an additional threat to a species already exposed to mul-
tiple, significant pressures such as climate change, commer-
cial fishing and highly-pathogenic avian influenza (HPAI), 
which likely contribute to ongoing substantial population 
declines (O’Hanlon et al. 2023). Evidence for macro-scale 
response is equivocal, with post-construction monitoring 
studies suggesting responses ranging from weak avoidance 
to strong attraction (Trinder and Furness 2023). For meso 
and macro-scale responses, much of our understanding is 

Table 1 Relevant parameters for the three offshore wind farms in the home range of kittiwakes tracked from Whinnyfold during the breeding 
season in 2021
Name Number of 

turbines
Area 
(km2)

Turbine density 
(turbine/km2)

Minimum 
distance between 
turbines (m)

Commenced 
operation

Rotor height range 
(metres above 
mean sea level)

Closest dis-
tance from 
colony 
(km)

Hywind 5 2.49 2.01 1385 2017 21–175 31.9
EOWDC (Aber-
deen Bay)

11 4.26 2.91 814 2018 27–191 17.3

Kincardine 5 5.29 1.60 1000 2021 27–191 40.9
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based on data from related species, including lesser-black 
backed Larus fuscus and herring gulls Larus argentatus 
(Cook et al. 2018). This is of significant concern given the 
projected cumulative impact of collisions on kittiwakes 
modelled in a North Sea colony imposed potential unsus-
tainable pressure on the population (Busch and Garthe 
2018). As a consequence, decision-makers are faced with 
a conservation dilemma. On the one hand, they may refuse 
consent for a project on the basis of negative impacts on a 
threatened and declining species, putting targets to develop 
renewable energy as a means to reducing reliance on fossil 
fuels at risk. Alternatively, they may consent that project, 
despite the projected impacts, but noting that climate change 
is a significant driver of population declines in that species 
(Davies et al. 2023). In this context, given the uncertain-
ties surrounding projected collision risk (Searle et al. 2023), 
data describing kittiwake interactions with OWFs will be 
of huge value by enabling decision-makers to better under-
stand these risks and balance the need to develop renewable 
energy with obligations to protect the environment.

We use GPS tracking to investigate the interactions of 
kittiwakes with OWFs, with data collected from a colony at 
which individuals may interact with at least three operational 
OWFs during the breeding season (O’Hanlon et al. 2024). 
We estimate the Avoidance Rate (AR), and an Avoidance-
Attraction Index (AAI) using the approach developed by 
(Schaub et al. 2020) and adapted by Johnston et al. (2022), 
at the macro-scale for each wind farm individually and col-
lectively. We then pool data from within the wind farms to 
estimate an AAI describing how birds respond to individual 
turbines at a meso-scale. We discuss our results in relation 
to kittiwake collision risk and the potential implications for 
the OWF industry.

Methods

Study area and tag deployment

Fieldwork was carried out at Whinnyfold, UK (57°23′07″N, 
001°52′11″W) located within the Buchan Ness to Colli-
eston Coast SPA, which holds c. 11,000 apparently occu-
pied nests of kittiwakes (Seabird Monitoring Programme 
database, 2021). A total of 21 breeding adults were tagged 
across two days in June/July 2021 during late incubation/
early chick-rearing with UvA-BiTS (University of Amster-
dam Bird Tracking System) GPS trackers (Bouten et al. 
2013). For further details see O’Hanlon et al. (2024). Track-
ers were set to collect a 3D position, speed, and direction 
every 10 min when birds were outside the colony and every 
30 min when inside the colony to conserve battery power. 
When birds entered a pre-defined area of interest around the 

OWFs (Figure S1), tags recorded data every 10 s. In addi-
tion, when the battery was full, and birds were outside the 
colony measurements were taken every 10 s.

The combined mass of the GPS device and attachment 
materials was 10.03 ± 0.06 g, which represented 2.25–
2.74% of the tagged kittiwakes’ body mass. We monitored 
the productivity of tagged individuals (N = 21), alongside 
marked control individuals that were caught but not tagged 
(N = 21), and control individuals that were not caught 
(N = 21) to check for potential adverse effects of device 
deployment. There were no significant differences in the 
rate of nest failures between tagged, control marked and 
control unmarked individuals (Pearson’s Chi-squared test: 
χ2 = 3.231, P = 0.199), nor in the minimum number of fledg-
lings (Kruskal-Wallis chi-squared test: χ2 = 1.66, P = 0.436). 
For a more detailed account of tagging and monitoring pro-
cedures, see O’Hanlon et al. (2024).

Wind farm parameters

There are three operational OWFs with a total of 21 tur-
bines in the typical foraging range of the kittiwake colony at 
Whinnyfold (Fig. 1); Hywind (57°29′12″N, 001°21′24″W), 
the European Offshore Wind Development Centre 
(EOWDC, also referred to as “Aberdeen Bay”; 57°13′24″N, 
001°59′41″W), and Kincardine (57°0′18″N, 001°51′50″W; 
Fig. 1; Table 1). The areas covered by these OWFs are rela-
tively small in comparison to some of the larger develop-
ments in the North Sea, and respectively small numbers 
of turbines are likely to lead to contrasting scenery effects. 
Therefore, we primarily address avoidance behaviour in the 
vicinity of the OWFs relating to collision risk as opposed 
to large-scale redistribution and habitat loss. The boundar-
ies of these wind farms were defined using the outer-most 
turbine locations (Fig. 1), as opposed to lease areas, to more 
accurately reflect how they would be perceived by birds.

Data processing

All data processing and analysis was conducted in R (ver-
sion 4.2.0, R Development Core Team 2022). Initially, we 
ascertained if fixes were located in the marine environment 
using a low-tide shapefile (Ordnance Survey 2023) and 
bathymetry contour of 2 m (GEBCO 2009. The GEBCO_08 
Grid, version 20091120, General Bathymetry Chart of the 
Oceans. https://www.gebco.net/). A perimeter of 1000 m 
was defined around the breeding colony to indicate the 
start and end of foraging ‘trips’ of consecutive GPS fixes to 
exclude preening and comfort behaviour.

Data processing diverged for subsequent macro- and 
meso-scale analyses. For macro-scale analysis data were 
interpolated to the lower fix rate of 10 min using the 
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any divergence in locations with respect to the location of 
several OWFs within the range of the colony. Initially, we 
simulated trips by taking each individual trip (c. 50 trips per 
bird) and rotated it around the colony (Johnston et al. 2022) 
by drawing a random angle from a normal distribution char-
acterised by the angle of all observed fixes from the colony, 
and then reprojecting this trip at that angle while retain-
ing its original shape (Fig. 2). This simulated trip was then 
overlayed on a polygon of UK land cover, obtained from R 
package ‘rnaturalearth’ (South 2017), and if less than 10% 
of locations intersected with land then this trip was added to 
the simulated dataset. If over 10% of locations intersected 
with land, this trip was discarded on the basis that kittiwake 

‘momentuHMM’ package (McClintock and Michelot 2018) 
in order to account for spatially uneven sampling introduced 
as result of the geofence boundaries not encompassing the 
4 km buffer for macro-scale analyses (Figure S1) and battery 
level. Data was not interpolated to retain the high-resolution 
data for the meso-scale analysis, but the data were filtered so 
any fixes which were over 11 min apart were excluded for 
further analysis, as such fixes are often much less accurate.

Analysis

To assess avoidance/attraction behaviour we simulated trips 
to compare against observed tracks to detect if there was 

Fig. 1 Map showing fixes interpolated to 10 min intervals (n = 28,104) 
from 20 kittiwakes breeding at Whinnyfold (orange triangle) on 
the east coast of Scotland. Numbers refer to offshore wind farms 
(1-Hywind, 2-EOWDC, 3-Kincardine) with all observed fixes in grey. 

Blue line shows the outline of the wind farm used for investigating 
macro-response, with the blue points representing individual turbines 
used to investigate meso-response
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AAI = (Propobs − Propexp) ÷ Propobs/Propexp

Where Propobs and Propexp are the observed and expected 
proportion of fixes within a distance band, respectively. 
Positive AAI values indicate attraction, and negative values 
indicate avoidance. At both macro- and meso-scale, values 
of AAI values were deemed statistically significant if 95% 
confidence intervals (CIs, based on quantiles of the simula-
tions) did not contain zero, as in previous applications of 
this method (Schaub et al. 2020; Johnston et al. 2022).

Macro-scale

Avoidance-attraction index (AAI) Macro-scale AAI was 
calculated in each of four, approximately one-kilometre-

foraging trips are overwhelmingly marine owing to their 
diet. This process was repeated until there were 150 simu-
lated trips for each observed trip. The described method was 
conducted separately on the interpolated and full datasets, 
with resulting simulated datasets used for macro- or meso-
scale analyses, respectively.

To assess avoidance and attraction, the avoidance/attrac-
tion index (AAI) (Schaub et al. 2020; Johnston et al. 2022) 
was calculated in defined distance bands from; (i) the wind-
farm boundary for macro-scale, and (ii) turbines for meso-
scale analysis. This was calculated for each distance band 
by scaling the difference in expected proportion of loca-
tion fixes (simulated tracks) from the observed proportion 
(original tracks), with the average between the observed and 
mean expected proportion of fixes:

Fig. 2 Schematic of simulating tracks: (a) An observed track, with 
black points indicating fixes interpolated to 10 min intervals and the 
grey dashed line linking consecutive fixes. Wind farms are shown as 
blue polygons and turbines are blue crosses. The colony is indicated by 
an orange triangle. To simulate a track a new angle is drawn from the 
observed angle from the colony distribution (b), which is then repro-
jected along this angle - simulated tracks are indicated by blue (c). If 

more than 10% of the track is on land it is rejected, as in panel d which 
has ~ 45% of its locations on land and is rejected due to not being 
biologically plausible. Panel e displays seven simulated tracks in blue. 
For subsequent AAI analysis each 1 km band in the 0–4 km buffer 
outside the wind farm was composed of 0.5 km2 grid cells, as seen in 
panel f which displays Hywind with distance bands in alternating red 
and orange
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distance bands by resampling observed fixes at Hywind 
100 times. Sensitivity was assessed by quantifying the per-
centage of times the resampled AR rates fell within the full 
sample’s confidence intervals. We conducted this for four 
sample resolutions (n = 5/10/25/50) which dictated how the 
observed data were resampled to a lower resolution for the 
smallest distance band, 0–1 km. As Avoidance Rate is cal-
culated for bands of increasing size, resampling for subse-
quent bands was scaled by the relative area of the different 
bands around Hywind (Table S1). The corresponding fixes 
removed from the observed data sets were removed from 
the simulated data set according to their original fix location 
(i.e., prior to reprojection) before recalculation of AR for 
each iteration.

Meso-scale

Meso-scale AAI was calculated in each of twenty 200 m 
distance bands extending away from individual turbines, as 
opposed to OWF boundary in the macro-scale analysis, and 
irrespective of which OWF the turbine was located in. Fol-
lowing previous studies on similar species only fixes with a 
flight speed (ground speed; calculated between fixes) greater 
than 4 km h−1 were classified as being in flight and included 
in analyses (Shamoun-Baranes et al. 2011; Thaxter et al. 
2018). Distance from the nearest turbine was determined 
for each fix and meso-response was investigated by group-
ing fixes by this distance into 20 m2 cells, thus extending to 
400 m distance from all investigated turbines (n = 21). This 
ensured we could maximise samples while excluding fixes 
overlapping into the radii of other turbines being investi-
gated within the same footprint as the minimum distance 
between any two turbines being considered was 814 m in 
EOWDC (Table 1). Given that most fixes were recorded 
in and around Hywind, in which the minimum distance 
between turbines is 1385 m, any influence of surrounding 
turbines should be minimal.

Observed and simulated fixes were pooled into two dif-
ferent height layers using GPS derived altitude above mean 
sea level: (i) below and (ii) within rotor height range (RHR), 
which is also known as the rotor swept area/zone. As there 
were no observed fixes with flight heights above the RHR 
within the considered sample, this height layer was not con-
sidered. Inaccurate flight height data obtained from GPS 
may be a result of atmospheric effects and satellite geometry 
(Karaim et al. 2018). Davies et al. (2024) investigated this 
in greater depth using a GPS altitude error model with the 
same dataset (Ross-Smith et al. 2016; Péron et al. 2020) and 
found an estimated altitude observation error SD between 
18.987 and 0.232 m depending on the number of satellites 
being used. It is possible that error is reflected in our data, 
with evidence seen in negative altitudes in Fig.4B, but due to 

wide distance bands (i.e., 0–1, 1–2, 2–3, 3–4 km) extending 
away from the boundary of each OWF. As OWFs were rela-
tively small, we did not investigate any attraction/avoidance 
responses within the OWF footprint itself. Each distance 
band was divided into 0.25 km2 cells (Fig. 2F). Simulated 
and observed GPS fixes were grouped into each 0.25 km2 
cell. For EOWDC which was within 4 km of the coast, we 
discarded any cells which had any intersection with land 
(Figure S1). AAI values were calculated by randomly select-
ing 48 (n) contiguous grid cells (equivalent to the area of the 
smallest distance band for a single wind farm) for each dis-
tance band by picking a grid cell at random in each distance 
band, and then selecting the 47 (n-1) nearest cells. This was 
carried out so that spatial structure was comparable for each 
distance band, ensuring that with increasing distance from 
the boundary, bands did not get a greater weighting owing 
to their greater number of grid cells (Johnston et al. 2022). 
This process was repeated 200 times for all OWFs com-
bined, and then each separately. When this process was car-
ried out for all OWFs combined, the random cell for each 
distance band could be chosen in any of the three OWFs, 
but the 47 contiguous cells would all be within that OWF’s 
distance band. When this was conducted for each separate 
OWF, the two remaining OWFs and surrounding boundar-
ies were effectively ignored. Therefore, we obtained mean 
AAI values for all OWFs analysed simultaneously, and for 
each OWF separately by running four sets of 200 iterations 
of random sampling of 48 grid cells.

Avoidance rate (AR) In addition to AAI, we calculated 
AR, due to it being the standard metric calculated for col-
lision risk models in the UK, at the macro-scale for dis-
tance bands between 1 and 4 km from boundaries of all 
wind farms together, and each separately, as for AAI above. 
Here the mean expected proportion of location fixes minus 
the observed proportion was divided by the mean of the 
expected proportion, in each of the respective bands:

AR = (Propexp − Propobs) ÷ Probexp

Interpretation of AR uses the opposite sign as that of AAI, 
i.e., positive values indicate avoidance, and negative val-
ues indicate attraction. As for AAI, significance of AR 
values was assessed using 95% CIs based on quantiles of 
the 150 simulations, where intervals not containing zero 
were deemed to be statistically significant. Given the low 
observation rates for some of these calculations, particu-
larly in EOWDC (Table 3), we conducted sensitivity test-
ing to assess the reliability of AR values obtained in such 
instances. We generated new AR values in each of the four 
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individuals moving within 400 m of EOWDC and Kincar-
dine’s turbines.

Macro-response

Avoidance rate (AR)

When all OWFs were analysed together there was signifi-
cant attraction in two narrower distance bands indicated by 
negative mean AR values (Table 3). When a distance band 
of up to 4 km from the OWF boundaries was analysed, 
mean AR values increased to zero, indicating no avoid-
ance or attraction with a similar pattern being observed for 
Hywind when analysed individually (Table 3). Mean AR 
values at Kincardine indicated significant attraction in the 
narrowest distance band (1 km, AR = -1.07, 95% CI: -2.59 
to -0.01), whereas results at the widest distance band indi-
cated significant avoidance (4 km, AR = 0.12, 95% CI: 0.05 
to 0.17). At EOWDC it was not possible to calculate AR 
for the 1 km band as there were no observed fixes after the 
data was interpolated. There was significant avoidance in 
the 2 km distance band (AR = 0.33, 95% CI: 0.03 to 0.52), 
however this result must be interpreted with caution given 
the low observation rates (n = 9; Table 3) around this OWF. 
Sensitivity testing indicated that an equivalent observa-
tion rate at Hywind in this distance band would have led 
to an AR that fell within the confidence intervals of the AR 
derived from the full dataset only 57% of the time (0–2 km, 
mean fixes resampled 11.3 ± 2.5, Table S1), with a roughly 
five-fold increase in sampling rate required to reach 90% 
(Table S1, Figure S2).

Avoidance-attraction index (AAI)

Patterns observed from AR values for different OWFs 
were similar to those shown by AAI (Table S2). For all 
OWFs there was a trend for increasing avoidance with dis-
tance from the OWFs, but it was not significant (Fig. 3). 
There was significant attraction to the 0–1 km band of both 
Hywind (AAI = 0.33, 95% CI: 0.22 to 0.33) and Kincardine 
(AAI = 0.61, 95% CI: 0.35 to 0.89). At Hywind, attraction 
decreased with distance (Fig. 3), with the furthest distance 
band analysed (3–4 km) indicating a significant avoidance 
response (AAI = -0.29, 95% CI: -0.48 to -0.04). As for AR, 
we could not calculate an AAI value for the 0–1 km distance 
band at EOWDC, and other distance bands did not indicate 
any significant attraction or avoidance response.

Meso-response

Meso-scale AAI figures (Table S3) indicate avoidance close 
to the turbines, with significant avoidance in the 20–40 m 

the majority of fixes having a high temporal resolution this 
should be minimised (Thaxter et al. 2018). Given the small 
sample which was imbalanced across OWFs (relatively few 
fixes for turbines in EOWDC and Kincardine) we calculated 
meso-scale AAI for the pooled sample of all OWFs and not 
for separate OWFs, where fixes were analysed according 
to the wind farm parameters of the turbine that they were 
closest to (Table 1). To ensure that the interpretation of the 
pattern at Hywind was not distorted by pooling with fixes 
from other OWFs, we also conducted meso-scale analysis 
on Hywind data alone.

Results

All but one of 21 tagged breeding adults returned viable 
data (n = 20), totalling 210,109 fixes after initial processing, 
with one tag being unsuccessful in transmitting data. Fur-
ther processing to interpolate to a resolution of fixes every 
10 min resulted in a dataset of 28,104 fixes (~ 13% of full 
dataset) to be used for macro-scale analysis. Interpolation 
wasn’t required for meso-scale analysis as the location of 
geofences (Figure S1) don’t intersect the spatial scale being 
investigated (up to 400 m away from individual turbines).

Each tagged individual flew within at least one of the 
OWF footprints and the buffer (0–4 km) used for investi-
gation of attraction/avoidance at the macro-scale with a 
total of 592 fixes (Table 2). Hywind and its buffer had a 
substantially higher proportion of fixes (83% of total OWF 
fixes, n = 492, Table 2) than Kincardine or EOWDC. This 
was reflected in the number of individuals recorded at each 
OWF, with Hywind and its buffer extending to 4 km having 
fixes from almost all individuals (n = 19), whereas EOWDC 
had half of the total individuals (n = 10), and Kincardine had 
less than a quarter (n = 4).

Regarding meso-scale analysis there were 294 fixes 
in total that were within 400 m distance from considered 
turbines. Of these fixes, 91% (n = 269) were for turbines 
within Hywind OWF, with 16 for EOWDC turbines and 9 
for Kincardine turbines (Fig. 4A). There was a total of 12 
individuals within 400 m of Hywind’s turbines, with two 

Table 2 Number of interpolated fixes within each offshore wind farm 
and their buffer zones used for assessing macro-scale response to 
respective offshore wind farms using AAI

Hywind Kincardine EOWDC All OWFs
Within OWF footprint 10 3 0 13
0–1 km 101 17 0 118
1–2 km 115 10 9 134
2–3 km 127 11 15 153
3–4 km 139 20 15 174
Total 492 61 39 592
Individuals 19 4 10 20
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Table 3 Avoidance rate (values) across increasing one km bands from offshore wind farm boundaries with 95% CIs derived from quantiles of 
simulations and bold CI values indicating a significant result. As in Schaub et al. (2019), negative values of AR indicate attraction, and positive 
values indicated avoidance
Wind farm Distance band (km) N observed Mean N expected AR sd 95% CI

Lower Upper
All 1 120 101.4 -0.36 0.19 -0.71 -0.10

2 254 242.5 -0.19 0.11 -0.39 -0.05
3 407 433 -0.06 0.05 -0.14 0.01
4 582 655.1 0.00 0.01 -0.02 0.02

Hywind 1 103 72.53 -0.44 0.22 -0.82 -0.14
2 218 175.9 -0.24 0.12 -0.45 -0.08
3 345 314.4 -0.09 0.06 -0.20 -0.01
4 484 474.4 -0.01 0.02 -0.04 0.02

Kincardine 1 17 17.2 -1.07 1.80 -2.59 -0.01
2 27 40.8 -0.19 0.30 -0.80 0.14
3 38 73 0.10 0.11 -0.11 0.25
4 58 111.6 0.12 0.04 0.05 0.17

EOWDC 1 0 11.2 −  −  −  −
2 9 25.8 0.33 0.16 0.03 0.52
3 24 45.6 0.04 0.11 -0.16 0.19
4 40 69.1 -0.04 0.05 -0.14 0.03

Fig. 3 Avoidance-attraction index (AAI) results for macro-response 
for all OWFs together (top-left) and each OWF separately. Grey shad-
ing indicates 95% CI. Positive values of AAI indicate attraction, and 

negative values indicate avoidance with the horizontal grey line inter-
cepting zero indicating the boundary between the two, which if not 
overlapped by CIs indicates a significant response
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collection, typically as part of year-round pre- and post-
construction monitoring. However, the statistical power 
to detect potential patterns from these data can be weak 
(Maclean et al. 2013; Vanermen et al. 2015a) which is 
likely to have contributed to the ambiguity in reports on 
kittiwake attraction/avoidance responses from such studies 
(Dierschke et al. 2016; Trinder et al. 2023). However, there 
are alternative methods to investigate species interactions 
with OWFs, such as GPS and the products of developing 
technology (Largey et al. 2021). In common with studies of 
lesser black-backed gulls using GPS tracking, we found evi-
dence indicating attraction to the edge of OWFs at a macro-
scale (Vanermen et al. 2020; Johnston et al. 2022). Similar 
results have also been reported using methods such as radar 
and visual observations (Krijgsveld et al. 2011; Skov et al. 
2018) which can make use of finer scale movement data, as 
opposed to the broad-scale distribution data available from 
standard survey methodologies. Hypotheses to explain this 
include an increase in productivity around the wind farms 
(Floeter et al. 2017) and an aggregation of fishing vessels 
on the edge of the wind farm (Krijgsveld et al. 2011). An 
alternative explanation could be that our results are detect-
ing an aggregation of birds immediately outside the OWF 
which have been displaced from inside the wind farm. A 
recent tracking study of Sandwich terns Thalasseus sandvi-
censis (Thaxter et al. 2024) found that birds enter the OWF 
when foraging but appear to avoid them when commuting. 
Similar behaviour could be exhibited by birds in our study, 
with birds congregating around the wind farm before/after 
foraging within the OWF footprint. Ideally, we would have 
extended macro-scale analysis to within the OWF footprint 
(Johnston et al. 2022), but the small size of the wind farms 
in this study prevented this. Thus, we recommend repeat-
ing similar analyses for kittiwakes interacting with larger 
OWFs and studies of individual-level responses, such as 
using individual step selection functions (e.g. van Bem-
melen et al. 2024) to aid understanding.

At rotor height, and at the meso-scale, our results showed 
similarities to those of Johnston et al. (2022) for lesser black-
backed gull, which found evidence of significant avoidance 
of the area around 60–80 m from the turbine rotor swept 
areas, but contrasted in that there was no evidence of attrac-
tion to the area around the turbine bases. Data were also 
consistent with a camera-radar study carried out at EOWDC 
concurrent with the GPS data collection, which found evi-
dence of kittiwake avoiding turbines to a distance of up to 
150 m (Tjørnløv et al. 2023). These studies suggest that 
there may be a consistent response to turbines at a species, 
and potentially family, level. This would align with previous 
analyses of avian collision rates with wind turbines, which 
suggested a strong phylogenetic component to risk (Thax-
ter et al. 2017). These findings may also have implications 

(AAI = -2.00, 95% CI: − 2.00 to -2.00), and 40–60 m (AAI 
= -2.00, 95% CI: − 2.00 to -2.00) distance bands within 
RHR (Fig. 4). Below RHR there was largely significant 
avoidance from the 0–20 m band up to the 120–140 m band 
(AAI range = -2.00 to -0.94, Table S3). In both height lay-
ers (within and below RHR) there is no significant avoid-
ance or attraction response beyond the 140–160 m band 
extending to 400 m distance from the turbines, bar some 
apparent attraction to the 360–380 m band below the RHR 
(Fig. 4, Table S3). Although there were some positive mean 
AAI values, indicating attraction, the majority of these were 
not significant (all CIs contained zero) throughout the entire 
0–400 m distance for both height layers. When considering 
only Hywind fixes, meso-scale AAI figures varied slightly 
(Figure S3), but the interpretation of the pattern remains the 
same.

Discussion

Our results highlight that the interactions of birds with 
OWFs are likely to be more complex than a binary avoid-
ance/attraction response. In common with previous studies 
which found inconsistent responses in kittiwakes (Dier-
schke et al. 2016), we also found evidence indicating attrac-
tion and avoidance. The fundamental difference being that 
these responses herein were determined by the spatial scale 
of investigation within the same sample. At the macro-scale 
we found attraction to the 1 km band around the boundary of 
OWFs. Upon closer inspection at the meso-scale, no attrac-
tion response was detected within 400 m of the respective 
turbines, with a strong avoidance detected at both height 
layers analysed (within and below RHR). We discuss these 
results and their potential implications for statutory impact 
assessments, which struggle to capture the complexity of 
such responses, as this study contributes to a growing list 
of bird species which exhibit nuanced spatial responses 
to OWFs in the marine environment (Peschko et al. 2021; 
Johnston et al. 2022; van Bemmelen et al. 2024).

At a population level, the effect sizes of macro-responses 
we detected were marginal and required a relatively high 
number of data points to elucidate, with sensitivity testing 
indicating that lower observation rates may result in unreli-
able avoidance rates. Consequently, to obtain sufficient data 
to quantify meso-responses we had to pool data across all 
three OWFs in our study area. Furthermore, as with John-
ston et al. (2022), broad confidence intervals, overlapping 
with zero, for both macro- and meso-responses suggest that 
responses at greater distances may have gone undetected 
due to low statistical power.

The majority of our understanding of species responses 
to OWFs is based on aerial and/or ship-based survey data 
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variance, from which population level impacts will emerge 
from upon scaling up (Warwick-Evans et al. 2018).

With the wealth of studies employing similar approaches 
and relevant data sets across a wide range of seabirds, 
there is the potential to employ a meta-analytic approach to 
overcome the previously mentioned issues associated with 
smaller data sets (Stewart et al. 2007). Alongside further 
insights into how different species respond to OWFs at dif-
ferent scales, this approach may allow us to investigate the 
drivers of such responses, which may include the properties 
of the OWFs themselves, as well as potential habitat-related 
effects. These include the potential for higher productiv-
ity and the concentration of fishing vessels on the edge to 
OWFs to attract birds (Floeter et al. 2017; Skov et al. 2018), 
and for higher densities of turbines to elicit a stronger avoid-
ance response as they offer a stronger visual deterrent. Of 
the three wind farms considered in our study, EOWDC was 
the least frequented, which could be related to the higher 
relative turbine density but could equally be a reflection of 
this colony’s standard foraging distribution. Avoidance rate 
of Sandwich terns increased with turbine density at OWFs 
in the UK and the Netherlands (van Bemmelen et al. 2024), 
and similar patterns have been suggested for a range of spe-
cies, including kittiwake (Leopold et al. 2012). However, 
disentangling these relationships from other potentially 
confounding factors (e.g., distance from coast, habitat) can 
be challenging. In addition, our study was conducted in the 
breeding season and may not represent avoidance responses 
throughout the annual cycle, when birds from this colony 
may encounter much larger OWFs. Pooling results using 
meta-analytic type approaches is likely to be valuable in 
addressing these factors.

Given that kittiwakes are of primary concern to the UKs 
offshore wind economy owing to predicted impacts on 
populations of prospective OWFs being above previously 
defined thresholds, our study into this species avoidance 
behaviour is timely. However, our results cannot be inter-
preted in a succinct manner to feed directly into to the way 
current impacts are assessed, due to their behaviours being 
more nuanced than such assessments allow for. Such com-
plexity has now been displayed across many seabird species 
which share their foraging ranges with an increasing num-
ber of OWF developments, and as such the tools used for 
impact assessment will not represent this adequately, and 
methods should be updated to take advantage of the wealth 
of data we now have available to us.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00227-
024-04542-y.
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for proposed mitigation measures. Painting blades has been 
suggested as a means to reduce collision rates by increas-
ing the visibility of the turbine rotor sweep by breaking up 
motion-smear but note that efficacy will likely vary across 
species (May et al. 2020). It has been suggested that paint-
ing blades to make them visible at distances of up to 1 km 
in the offshore environment may be an effective means to 
reducing seabird collision risk (Martin and Banks 2023). 
However, our results suggest that visibility may not be a key 
limiting factor as birds are safely approaching, and respond-
ing to, turbines at far shorter distances.

While the investigation of population-level responses, as 
in our study, is directly related to predicting the impacts of 
OWFs on seabird population through metrics such as the 
Avoidance Rate (AR), it is also necessary to understand 
responses at the level of the individual. A study conducted 
on the same kittiwake dataset highlighted that 15 out of 20 
individuals overlapped with one of the three OWFs at one 
point, and time spent in OWFs varied from between 10 min 
up to 4 h across all individuals (O’Hanlon et al. 2024), high-
lighting the discrepancy of potential impacts facing indi-
viduals across the population. Empirical studies into other 
seabird species interacting with OWFs within their foraging 
range displayed similar patterns between gannets and guil-
lemots, where a small proportion of the population inter-
acted with OWFs considerably, while the larger proportion 
avoided them entirely (Peschko et al. 2020, 2021). We must 
consider the potential consequences of varying responses of 
individuals to OWFs as those that are more attracted to the 
area around OWFs may experience any potential impacts, 
particularly collision mortality, at a greater magnitude. 
Although this doesn’t fit well into the current paradigm for 
environmental impact assessments, from which predictions 
are largely performed and withdrawn at the population-
level, the increasing use of individual-based models pro-
vide the opportunity to account for such between individual 

Fig. 4 (A) Histogram of observed fixes in each 20 m horizontal dis-
tance band from the turbine with bars split into colours to indicate 
different wind farms. (B) Observed GPS fixes within 400 m of turbines 
(i.e., meso-scale) plotted in relation to distance and altitude from near-
est turbine (m). Shapes of points indicate the height layer in relation to 
the rotor heigh range (RHR), indicating fixes that are either within the 
RHR, or below, which includes fixes defined as floating on the water. 
The colour of the hollow semi-circles display the different RHR for 
respective wind farms, according to the legend for panel A, noting that 
EOWDC and Kincardine are very similar and overlap considerably. 
Mean AAI values for 20 m distance bands from the nearest turbine for 
fixes within (panel C) and below (panel D) rotor height range, where 
breaks in the band indicate absence of observed fixes. Grey shading 
indicates 95% CI and the horizontal grey line intercepting zero indi-
cates the boundary between the two, which if not overlapped by CIs 
indicates a non-significant response. AAI values calculated for each of 
200 random iterations. Positive values of AAI indicate attraction, and 
negative values indicate avoidance
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