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Abstract. Terrestrial isoprene, a biogenic volatile organic compound emitted by many plants, influences atmospheric 

chemistry and the Earth’s radiative balance. Elucidating its historical changes is therefore important for predicting climate 

change and air quality. Isoprene emissions can respond to climate (e.g., temperature, shortwave radiation, precipitation), land 

use and land cover change (LULCC), and atmospheric CO2 concentrations. However, historical trends of isoprene emissions 20 

and the relative influences of the respective drivers of those trends remain highly uncertain. This study addresses uncertainty 

in historical isoprene emission trends and their influential factors, particularly the roles of climate, LULCC, and atmospheric 

CO2 (via fertilization and inhibition effects). The findings are expected to reconcile discrepancies among different modelling 

approaches and to improve predictions of isoprene emissions and their climate change effects. 

To investigate isoprene emission trends, controlling factors, and discrepancies among models, we analyzed long-25 

term (1850–2014) global isoprene emissions from online simulations of CMIP6 Earth System Models and offline 

simulations using the VISIT dynamic vegetation model driven by climate reanalysis data. 

Mean annual global present-day isoprene emissions agree well among models (434–510 TgC yr⁻¹) with a 5% inter-

model spread (24 TgC yr⁻¹), but regional emissions differ greatly (9–212% spread). All models show an increasing trend in 

global isoprene emissions in recent decades (1980–2014), but their magnitudes vary (+1.27 ± 0.49 TgC yr⁻², 0.28 ± 0.11% 30 

yr⁻¹). Long-term trends of 1850–2014 show high uncertainty among models (–0.92 to +0.31 TgC yr⁻²). 

Results of emulated sensitivity experiments indicate meteorological variations as the main factor of year-to-year 

fluctuations, but the main drivers of long-term isoprene emission trends differ among models. Models without CO2 effects 

implicate climate change as the driver, but other models with CO2 effects (fertilization only/and inhibition) indicate CO2 and 
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LULCC as the primary drivers. The discrepancies arise from how models account for CO2 and LULCC alongside climate 35 

effects on isoprene emissions. Aside from LULCC-induced reductions, differences in CO2 inhibition representation (strength 

and presence or absence of thresholds) were able to mitigate or reverse increasing trends because of rising temperatures or in 

combination with CO2 fertilization. Net CO2 effects on global isoprene emissions show the highest inter-model variation (σ 

= 0.43 TgC yr⁻²), followed by LULCC effects (σ = 0.17 TgC yr⁻²), with climate change effects exhibiting more or less 

variation (σ = 0.06 TgC yr⁻²). 40 

The critical drivers of isoprene emission trends depend on a model’s emission scheme complexity. This dependence 

emphasizes the need for models with accurate representation of CO2 and LULCC effects alongside climate change 

influences for robust long-term predictions. Important uncertainties remain in understanding the interplay between CO2, 

LULCC, and climate effects on isoprene emissions, mainly for CO2. More long-term observations of isoprene emissions 

across various biomes are necessary, along with improved models with varied CO2 responses. Moreover, instead of reliance 45 

on the current models, additional emission schemes can better capture isoprene emissions complexities and their effects on 

climate. 
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1 Introduction 

Isoprene (2-methyl-1,3-butadiene, C5H8), a biogenic volatile organic compound (BVOC) emitted by terrestrial vegetation, 50 

strongly shapes our planet’s atmospheric chemistry and climate (Fiore et al., 2012). This molecule, accounting for roughly 

half of global BVOC emissions (Guenther et al., 2012), interacts with atmospheric oxidants, influencing processes such as 

ozone formation (Arneth et al., 2010; Squire et al., 2014; Wiedinmyer et al., 2006), methane lifetime (Kaplan et al., 2006; 

Achakulwisut et al., 2015; Hopcroft et al., 2017), and aerosol production (Claeys et al., 2004; Henze and Seinfeld, 2006; Lin 

et al., 2016; Thornhill et al., 2021; Tsigaridis and Kanakidou, 2018). These processes in turn affect the atmospheric radiative 55 

balance. For instance, historical anthropogenic land use and land cover changes (LULCC) that decreased BVOC emissions 

can be expected to have reduced the global formation of secondary organic aerosols (SOA) by 13% (Scott et al., 2017), and 

they have reduced the SOA tropospheric burden by 13% (Heald and Geddes, 2016), while causing positive radiative forcing 

(warming effect) of 0.017–0.09 W m⁻² during 1850–2000 through the direct aerosol effect (Heald and Geddes, 2016; Scott et 

al., 2017; Unger, 2014), with additional positive forcing of 0.008 W m⁻² from the indirect aerosol effect (Scott et al., 2017). 60 

Moreover, isoprene emissions influence the oxidizing capacity of the troposphere by affecting the abundance of hydroxyl 

radical (OH) (Karl et al., 2007, 2013). They contribute to cloud formation and precipitation patterns (Boy et al., 2019; Fang 

et al., 2015; Steiner, 2020). Biogenic isoprene emissions depend strongly on climate (e.g., temperature, shortwave radiation, 

precipitation), land cover, and atmospheric chemistry (e.g., ambient ozone, and CO2 concentrations) (Pacifico et al., 2012), 

leading to climate feedback (Szopa et al., 2021; Thornhill et al., 2021). Rising temperatures are likely to increase future 65 

global BVOC emissions by 30–45% (Peñuelas and Llusià, 2003), potentially leading to a cooling effect through aerosol 

formation (–0.06 to –0.01 W m⁻² K⁻¹) (Paasonen et al., 2013; Scott et al., 2018). Nevertheless, the exact response of isoprene 

emissions to future changes in climate and CO2 levels remains uncertain (Szopa et al., 2021). Therefore, accurately 

modelling isoprene emissions and elucidating their response to climate change are crucially important for predicting their 

roles in air quality and climate. 70 

Sophisticated emission parameterizations including empirical approaches known as Guenther schemes (Guenther, 

1997; Guenther et al., 1995), also designated as MEGAN (Guenther et al., 2006, 2012) and photosynthesis-based approaches 

such as the Interactive BVOC Emission Scheme (iBVOC) (Pacifico et al., 2011), are used to estimate isoprene emissions 

either offline, using external ground-based or satellite data, or online within regional and global climate-chemistry models. 

These schemes, which have been developed based on laboratory and field measurements, calculate emissions in each grid 75 

cell by incorporating environmental factors (e.g., temperature and photosynthetically active radiation (PAR): a sub-range of 

shortwave radiation, precipitation, and atmospheric CO2 concentration), alongside vegetation distribution and plant-specific 

emission factors. Regarding CO2 effects, many studies show that higher CO2 concentrations can inhibit isoprene emissions 

directly, contrary to the expectation of increased emissions from rising temperatures and CO2 fertilization acting on plant 

growth (Morfopoulos et al., 2014; Naik et al., 2004; Possell et al., 2005; Possell and Hewitt, 2011; Young et al., 2009). 80 

However, the responses of isoprene emissions to CO2 concentration vary across plant species (Lantz et al., 2019; Niinemets 
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et al., 2021). Additionally, the CO2 conditions to which the plants were exposed during their growth or acclimation can 

influence the response (Possell and Hewitt, 2011; Sun et al., 2013; Wilkinson et al., 2009). Furthermore, leaf temperature 

plays an important role, with higher temperatures generally dampening the sensitivity of isoprene emissions to elevated CO2 

(Monson et al., 2016; Potosnak et al., 2014; Sun et al., 2013). Future warming, which is expected to include increasing CO2 85 

and temperatures, can primarily affect isoprene emissions. Rising temperatures are expected to boost emission rates, but 

increasing CO2 concentrations might lower them. These effects were likely reversed under preindustrial conditions, where 

lower CO2 concentrations potentially favoured higher emissions (Pacifico et al., 2012; Possell and Hewitt, 2011), although 

lower temperatures would have led to decreased isoprene emissions (Monson et al., 1992). Additionally, vegetation 

distribution, influenced by both anthropogenic LULCC and climate change, might further reshape global isoprene emissions 90 

(Pacifico et al., 2012). During the twentieth century, human activities, particularly changes in land use, have played a larger 

role in affecting vegetation than natural dynamics have (Hurtt et al., 2006; Unger, 2013). In fact, land cover change has 

altered one-third to one-half of Earth’s land surface, with large areas of forests converted to cropland (Hurtt et al., 2006; Ma 

et al., 2020; Vitousek et al., 1997). Despite effectively capturing the short-term response of isoprene emissions to typical 

environmental fluctuations (Muller et al., 2008; Pacifico et al., 2011; Sindelarova et al., 2014; Weber et al., 2023) and 95 

isoprene emissions changes under extreme weather events such as drought (characterized by low soil moisture and often 

accompanied by high temperature and low precipitation) (Klovenski et al., 2022; Wang et al., 2022), models are challenged 

when representing longer-term trends accurately. This difficulty raises important questions about their adequacy for 

predicting the long-term responses of isoprene emissions to CO2, LULCC, and climate variation. Furthermore, the scarcity of 

long-term direct flux measurements makes comprehensive model validation difficult. Under future climate scenarios with 100 

potentially doubled CO2 concentrations and with heavy reliance on mitigation efforts particularly addressing land use 

change, it is extremely important to examine historical trends in isoprene emissions and to elucidate uncertainties in current 

models before making predictions about future isoprene emissions. 

Few earlier studies have specifically examined historical trends of isoprene emissions and the primary factors 

driving them. Photosynthesis-based models suggest an increase of 12–22% in emissions because of climate change alone or 105 

in combination with CO2 fertilization during the preindustrial era (1901) to recent times (2000) (Arneth et al., 2007a; 

Hantson et al., 2017; Pacifico et al., 2012; Unger, 2013). However, including CO2 inhibition effect alone (Arneth et al., 

2007a) and in combination with LULCC reverses this trend, leading to a decrease, and indicating higher isoprene emissions 

in the preindustrial era than in recent times (Hantson et al., 2017; Pacifico et al., 2012; Unger, 2013). These earlier reports of 

the relevant literature describe marked decreases in isoprene emissions from the preindustrial era (1901) to recent times 110 

(2000), ranging from –9% (Arneth et al., 2007a) to –20% or more (Hantson et al., 2017; Pacifico et al., 2012; Unger, 2013). 

This trend reversal underscores the importance of including CO2 inhibition (Arneth et al., 2007a; Pacifico et al., 2012) along 

with LULCC effects (Hantson et al., 2017; Unger, 2013). In contrast, empirical models present a picture that is less clear. A 

report of an earlier study based on a comparison between CO2 inhibition and temperature factors (Heald et al., 2009) 

described that CO2 inhibition merely offsets the rising temperature effect on future isoprene emissions, but the enhancement 115 
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of isoprene emissions caused by low ambient CO2 concentrations does not compensate for the effects of cooler temperatures, 

implying no trend in isoprene emissions over the last 400 thousand years. By contrast, a nearly contemporaneous study 

(Lathière et al., 2010) using a different CO2 inhibition equation showed a decrease of –16% with CO2 inhibition, becoming 

even steeper (–24%) when LULCC was incorporated. This finding contrasts with the +7% increase estimated for 1901–2000 

when only climate and CO2 fertilization were included. Results reported by Lathière et al. (2010) align with some earlier 120 

studies conducted using photosynthesis-based models. However, Tanaka et al. (2012) reported that isoprene emissions were 

reduced by only –2% during 1850–2000 because of radiation, suggesting that rising temperature effects compensated the 

LULCC effects when both CO2 effects were not considered. Therefore, the larger picture of changes in isoprene emission 

remains unclear, with reports describing decreases ranging from a modest –2% (Tanaka et al., 2012) to a remarkable –20% 

or more (Arneth et al., 2007a; Hantson et al., 2017; Lathière et al., 2010; Pacifico et al., 2012; Unger, 2013), or even 125 

increases of 7–12% (Arneth et al., 2007a; Lathière et al., 2010). These discrepancies likely arise from differences in research 

methods, including emission model approaches (photosynthesis-based vs. empirical), climate models, and the representation 

of CO2 effects (fertilization vs. inhibition) and LULCC. Additionally, during historic periods, the dominant drivers of 

changes in isoprene emission remain unclear. Whereas Heald et al. (2009) implied temperature as the primary controlling 

factor throughout the historical period, Unger (2013) and Hantson et al. (2017) argued that LULCC stands as the primary 130 

driver. Other studies (Lathière et al., 2010; Pacifico et al., 2012) have proposed that CO2 inhibition, in addition to LULCC, 

can play an important role in isoprene emission changes. Although CO2, LULCC, and climate are recognized as key drivers, 

their effects on long-term isoprene emission trends demand further investigation. 

From just a single Earth System Model (GISS-ModelE2) (Tsigaridis and Kanakidou, 2018) in phase 5 of the 

Coupled Model Intercomparison Project (CMIP5), the latest CMIP6 now includes multiple coupled climate-chemistry 135 

models and Earth System Models (ESMs) that provide online simulations of isoprene emissions, thereby enabling the first 

comparison of simulations within a consistent framework. Building upon an earlier study specifically addressing future 

simulations (Cao et al., 2021), the present study examines historical trends, comprehensively analyzing isoprene emission 

patterns during 1850–2014, corresponding to the CMIP6 historical period. The goals of this study are to the following: (1) 

investigate long-term global isoprene emission trends; (2) identify the dominant drivers of these respective trends, including 140 

CO2, LULCC, and physical climate factors; and (3) analyze the causes of uncertainties in current model simulations. We 

applied random forest regression to emulate sensitivity experiments of isoprene emissions to ascertain the critical drivers of 

isoprene emission trends in the online CMIP6 models. We subsequently compared the results of this analysis to those 

obtained from sensitivity experiments using the Vegetation Integrative SImulator for Trace gases (VISIT) offline land 

surface model (Inatomi et al., 2010; Ito, 2019a). Our inclusion of VISIT provides two key benefits: computational efficiency 145 

and model assessment. Running numerous sensitivity experiments within complex CMIP6 models can be resource-intensive, 

but VISIT, a simpler offline model emphasizing land-surface processes, facilitates efficient exploration of isoprene 

emissions sensitivity to various factors. By comparing the key drivers identified in CMIP6 models with the results obtained 

from a well-understood model such as VISIT, we can gain a more comprehensive understanding and can support findings 
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obtained from the complex CMIP6 models. By addressing these fundamental questions, this study can elucidate the role of 150 

isoprene in a changing climate and can contribute to the development of more accurate and reliable ESMs. The following 

section presents a description of the VISIT simulations, CMIP6 datasets and statistical methods used for this study. A 

comparison of isoprene emissions trends and their attributions is explored in Sect. 3. Then uncertainties in isoprene 

emissions trends and suggestions for future development are discussed in Sect. 4. Finally, the main conclusions inferred from 

the results are summarized in Sect. 5. 155 

2 Data and Methods 

2.1 VISIT data 

2.1.1 VISIT model overview 

VISIT is a process-based terrestrial ecosystem model simulating carbon, nitrogen, and water cycles (Inatomi et al., 2010; Ito, 

2010). Its hydrology submodule uses forcing meteorological data (incoming radiation, precipitation, temperature, humidity, 160 

vapour pressure, and cloudiness) and biophysical properties (vegetation cover, albedo, and soil water-storage capacity) to 

simulate land-surface radiation and water budgets (Ito, 2019a). The model comprises plant and soil components in an 

ecosystem, allowing for integrated simulation of land–atmosphere biogeochemical interactions. 

The carbon cycle within VISIT inherits the foundation laid by the Sim-CYCLE model (Ito and Oikawa, 2002) and 

encompasses key processes parameterized by CO2 concentration, temperature, radiation and water. Photosynthesis, which is 165 

responsible for most plant gross primary productivity (GPP), is simulated based on Monsi–Saeki theory (Monsi and Saeki, 

1953), allowing for scaling leaf-level photosynthesis to estimate canopy-level primary production (Hajima et al., 2020). Leaf 

phenology for deciduous forests and grasslands is estimated using an empirical procedure based on the threshold cumulative 

temperature (Ito, 2019a), leading to improved GPP estimation (Ito and Ichii, 2021). The leaf area index (LAI) and mass are 

then updated in response to phenological stages and net carbon assimilation. The VISIT model has further expanded 170 

capabilities because it incorporates the nitrogen cycle (e.g., N2O emissions from the soil surface) and trace gas-related 

processes (e.g., CH4 emissions from wetland and BVOC emissions). The VISIT model has undergone extensive evaluation 

of its carbon cycle simulations across various scales from point (Hirata et al., 2014; Inatomi et al., 2010; Ito and Oikawa, 

2002) to regional scales (Ito and Ichii, 2021). Moreover, the model has been examined through model comparison projects 

(e.g., Tian et al., 2015; Huntzinger et al., 2017). The VISIT model is also coupled with the MIROC-CHASER atmosphere 175 

and chemistry model (Ha et al., 2021; He et al., 2022; Sekiya et al., 2018; Sudo et al., 2002) and the COCO ocean model 

(Hasumi, 2006) to build the Earth System Model (Hajima et al., 2020), but it can be run alternatively as a stand-alone model. 

The VISIT model incorporates the Guenther scheme (Guenther, 1997) (G1997), designated as VISIT(G1997), to 

estimate BVOC emissions including those of isoprene. This scheme calculates the emission rate 𝐸𝑖  (µgC m–2 month⁻¹) based 

on the following Eq. 1. 180 
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𝐸𝑖 =  𝐸𝐹𝑖 × 𝐸𝐴 = 𝐸𝐹𝑖 × 𝐹𝑀(𝐶𝑂2_𝑓𝑒𝑟𝑡) × 𝛾𝑇𝑀𝑃 × 𝛾𝑃𝑃𝐹𝐷 × 𝛾𝐴  × 𝛾𝐶𝐸     (1) 

In that equation, EFi (µgC gmass⁻² h⁻¹) is the emission factor of isoprene applied for each PFT at standard temperature 

conditions (303.15 K). These values were derived from an earlier study by Lathière et al. (2006). The emission activity factor 

EA accounts for variations in emissions attributable to environmental and phenological factors. The foliar mass FM (gmass C) 

is calculated by multiplying the average foliar density for C3 and C4 plants (gmassC m⁻²) by the day length per month (hour) 185 

within VISIT(G1997). In addition, 𝛾𝑇𝑀𝑃,  𝛾𝑃𝑃𝐹𝐷 ,  𝛾𝐴, 𝛾𝐶𝐸  are activity factors respectively representing the dependence of 

isoprene emissions on temperature, light (photosynthetic photon flux density), leaf age, and the canopy environment. The 

effects of leaf age on isoprene emissions differ between evergreen and deciduous vegetation types. To account for this 

difference, the model incorporates a modified leaf age distribution based on its simulations. This approach assigns values 

between 0.05 for immature leaves (less than 1 month old) and 1.2 for mature leaves (2–10 months for deciduous and 3–24 190 

months for evergreen plants). Consequently, the model captures emissions reduction caused by leaf senescence by 

decreasing the 𝛾𝐴 value (Ito, 2019a). It is noteworthy that the current version of VISIT(G1997) includes the fertilization 

effect on photosynthesis only: simulated BVOC emissions respond to CO2 indirectly through the change in leaf mass or LAI. 

It does not account for the direct inhibition effect of CO2 on isoprene emissions. Precipitation also indirectly affects isoprene 

emissions via its effects on photosynthesis, which subsequently changes LAI. 195 

2.1.2 VISIT(G1997) simulations 

This study used the stand-alone version of VISIT(G1997) to simulate global isoprene emissions during 1700–2021 at a 

spatial resolution of 0.5° × 0.5° at monthly intervals. We incorporated historical CO2 concentrations derived from ice cores 

and NOAA observations prepared for the TRENDY/Global Carbon Project (Friedlingstein et al., 2022), as well as a land 

cover dataset with 16 plant types (Ramankutty and Foley, 1999). Details of both datasets are described elsewhere (Ito, 2023). 200 

Land-use change data from LUH2 data (Hurtt et al., 2020) were also used. Meteorological data for 1901–2021 (temperature, 

precipitation, vapour pressure, and cloudiness) were referred from CRU TS 4.06 (Harris et al., 2020). 

To assess the degree to which different factors influence isoprene emission trends, we conducted the seven 

sensitivity simulations (S0–S6) presented in Table 1. Each simulation involved a spin-up phase lasting 300–3000 years, 

depending on the biome type for each grid cell, initialized with 1700 CO2, 1901 climate, and constant 1700 land use data 205 

were followed by two transient periods: 

• 1700–1900: varied CO2 concentration and fixed climate (as in spin-up) in S1 and S2, and additionally varied 

LULCC in S3. 

• 1901–2021: varied CO2 concentration and fixed climate in S1, varied CO2 concentration and climate in S2, and 

included additional varied LULCC in S3. 210 

In S0, all forcing data are held constant with the CO2 concentration and LULCC fixed in 1850 and climate fixed in 

1901 for two periods. Three additional experiments (S4, S5, S6) isolated the effects of individual climate drivers 
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(temperature, radiation, and precipitation) by holding them constant at 1901 levels while allowing other factors to vary. The 

VISIT(G1997) model outputs for 1850–2014 were then extracted for comparison with those from CMIP6 models. 

Table 1. Summary of VISIT(G1997) simulations for the studied period (1850–2014) 215 

Simulation No. CO2 conc. LULCC 
Climate 

Temperature Shortwave radiation Precipitation 

S0 Fixed in 1850 Fixed in 1850 
Climate fixed in 1901 

S1 - Fixed in 1850 

S2 - Fixed in 1850 - 

S3 - - - 

S4 - - Fixed in 1901 - - 

S5 - - - Fixed in 1901 - 

S6 - - - - Fixed in 1901 

“-” denotes a variable that varied annually during the simulation period. 

2.2 CMIP6 data 

2.2.1 Model description 

We analyzed data obtained from the historical experiment in which all forcings (e.g., greenhouse gases (GHGs), aerosols, 

land use, solar, volcanic aerosols) evolved during 1850–2014 (Eyring et al., 2016). Relevant to this work, the external 220 

forcings for those simulations included land-use change data originating from LUH2 (Hurtt et al., 2020), anthropogenic 

emissions from CEDS (Hoesly et al., 2018), and biomass burning emissions from BB4CMIP (Van Marle et al., 2017). Five 

ESMs from CMIP6 were selected for their online BVOC emission schemes, including isoprene, but other ESMs use 

prescribed (interannually fixed) BVOC emissions (Gomez et al., 2023). Among the five selected ESMs, four used the 

empirical-based Guenther scheme for isoprene estimation, albeit using different versions: CESM2-WACCM and NorESM2-225 

LM share the same land component (CLM5), employing the latest MEGANv2.1 (G2012) (Guenther et al., 2012), whereas 

GFDL-ESM4 and GISS-E2.1-G relied on earlier versions (G2006 and G1995, respectively) (Guenther et al., 1995, 2006). It 

is noteworthy that UKESM1-0-LL adopted the distinct photosynthesis-based iBVOC scheme (P2011) (Pacifico et al., 2011) 

to estimate isoprene emissions based on temperature, CO2 concentration, and GPP. Actually, iBVOC in UKESM1-0-LL is 

derived from the Arneth et al. (2007b) and Niinemets et al. (1999) models, linking photosynthesis-derived electrons to the 230 

isoprene production rate, which is light-dependent. Because UKESM1-0-LL does not simulate electron transport directly, 

GPP is used as an approximation. Temperature and CO2 inhibition effects are included empirically, accounting for 

differences in temperature optima and CO2 responses between photosynthesis and isoprene synthesis. Table 2 presents a 

simplified equation of isoprene emission schemes. Table S1 presents descriptions of symbols and parameters. Detailed 
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model descriptions of other related processes are available elsewhere in the literature (Bauer et al., 2020; Emmons et al., 235 

2020; Horowitz et al., 2020; Seland et al., 2020; Sellar et al., 2019). 

Generally speaking, temperature and shortwave radiation enhance isoprene emissions in all models despite their 

differing component structures (Cao et al., 2021). Precipitation effects are represented either by the soil moisture factor in the 

MEGAN (e.g., NorESM2-LM(G2012)) or indirectly through photosynthesis (GPP) in the UKESM1-0-LL(P2011) model 

(Clark et al., 2011). The influence of CO2 on isoprene emissions varies across models. GFDL-ESM4(G2006) and GISS-240 

E2.1-G(G1995) neglect both direct CO2 inhibition and indirect fertilization effects because of prescribed satellite LAI 

(Horowitz et al., 2020; Ito et al., 2020). Also, CESM2-WACCM(G2012) and NorESM2-LM(G2012) use direct CO2 

inhibition effect parameterization from Heald et al. (2009), whereas UKESM1-0-LL(P2011) uses the scheme from Arneth et 

al. (2007b). The latter three models also incorporate indirect CO2 fertilization effects through vegetation growth and 

terrestrial carbon processes, influencing LAI or GPP. 245 

Table 2. Summary of CMIP6 models and their simplified isoprene emission schemes 

Model 

(Variant) 

Institute 

(Country) 

Resolution 

(Lat, Lon) 

Scheme Simplified equation 

CESM2-

WACCM 

(r1i1p1f1) 

NCAR 

(USA) 
0.9° × 1.25° G2012 𝐸𝑖  = 𝐸𝐹𝑖 × 𝐿𝐴𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝐶𝑂2_𝑓𝑒𝑟𝑡) ×  𝛾𝐶𝑂2_𝑖𝑛ℎ𝑖 × 𝛾𝑇𝑀𝑃 × 𝛾𝑃𝑃𝐹𝐷 × 𝛾𝐴 × 𝛾𝐶𝐸 

NorESM2-LM 

(r1i1p1f1) 

NCC 

(Norway) 
1.9° × 2.5◦ G2012 𝐸𝑖  = 𝐸𝐹𝑖 × 𝐿𝐴𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝐶𝑂2_𝑓𝑒𝑟𝑡) ×  𝛾𝐶𝑂2_𝑖𝑛ℎ𝑖 × 𝛾𝑇𝑀𝑃 × 𝛾𝑃𝑃𝐹𝐷 × 𝛾𝑆𝑀 × 𝛾𝐴 × 𝛾𝐶𝐸 

GFDL-ESM4 

(r1i1p1f1) 

NOAA 

(USA) 
1° × 1.25° G2006 𝐸𝑖  = 𝐸𝐹𝑖 × 𝐿𝐴𝐼𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 (𝑛𝑜𝐶𝑂2_𝑓𝑒𝑟𝑡) × 𝛾𝑇𝑀𝑃 × 𝛾𝑃𝑃𝐹𝐷 × 𝛾𝐴 × 𝛾𝐶𝐸 

GISS-E2.1-G 

(r1i1p3f1) 

NASA 

(USA) 
2° × 2.5° G1995 𝐸𝑖  = 𝐸𝐹𝑖 × 𝐿𝐴𝐼𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 (𝑛𝑜𝐶𝑂2_𝑓𝑒𝑟𝑡) × 𝛾𝑇𝑀𝑃 × 𝛾𝑃𝑃𝐹𝐷 

UKESM1-0-LL 

(r1i1p1f2) 

MOHC 

(UK) 
1.25° × 1.88° P2011 𝐸𝑖  = 𝐸𝐹𝑖 × 𝐺𝑃𝑃(𝐶𝑂2_𝑓𝑒𝑟𝑡,   𝑃𝑃𝐹𝐷,   𝑆𝑀) /𝐺𝑃𝑃𝑠𝑡 × 𝛾𝐶𝑂2_𝑖𝑛ℎ𝑖 × 𝛾𝑇𝑀𝑃  

Note: 

• Ei is the isoprene emission rate. 

• EFi is the isoprene emission factor applied for each PFT under standard conditions. 

• 𝐿𝐴𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝐶𝑂2_𝑓𝑒𝑟𝑡)  is the leaf area index updated in response to increasing CO2 concentration via photosynthesis (CO2 250 

fertilization effect). 

• 𝐿𝐴𝐼𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 (𝑛𝑜𝐶𝑂2_𝑓𝑒𝑟𝑡) is the prescribed satellite leaf area index, which does not consider CO2 fertilization effect. 

• GPP denotes gross primary productivity, updated in response to increasing CO2 concentration via photosynthesis (CO2 

fertilization effect), light and soil moisture. “st” represents standard conditions. 

• 𝛾
𝐶𝑂2_𝑖𝑛ℎ𝑖

, 𝛾𝑇𝑀𝑃, 𝛾𝑃𝑃𝐹𝐷 , 𝛾𝑆𝑀, 𝛾𝐴, 𝛾𝐶𝐸  respectively stand for activity factors representing the CO2 inhibition effect and 255 

dependence of isoprene emissions caused by temperature, light (photosynthetic photon flux density), soil moisture, leaf age, and 

the canopy environment. 

Detailed descriptions of symbols and parameters in the isoprene emission equations are presented in Table S1. 
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2.2.2 Emulation of isoprene emissions 

Understanding the complex influences on isoprene emissions requires analyses of various factors. The initial step is to 260 

reproduce isoprene emissions for each ESM accurately based on key input factors including atmospheric CO2 concentration, 

LULCC, and climate variables. To accomplish this step, we developed a data-driven regression model using a machine 

learning approach to estimate annual isoprene emissions based on critical drivers within ESMs. For each ESM, the input 

features to the regression model include the same drivers for isoprene emission simulation used in the CMIP6 project. For 

models that are sensitive to CO2 (CESM2-WACCM(G2012), NorESM2-LM(G2012), UKESM1-0-LL(P2011)), the features 265 

comprise CO2, LULCC (represented by the tree fraction), and climate variables (temperature, shortwave radiation, and 

precipitation). For those models which are not sensitive to CO2 (GFDL-ESM4(G2006) and GISS-E2.1-G(G1995)), the 

features only include LULCC and climate variables. We chose random forest as the machine learning algorithm to build 

regression models because of its ability to handle complex, nonlinear relations among variables without requiring 

assumptions (Guo et al., 2015; Zhang et al., 2017). 270 

To assess the regression model performance, we used a three-fold cross-validation approach. The dataset was 

divided into three periods: 1850–1904 (fold 1), 1905–1959 (fold 2), and 1960–2014 (fold 3). During each iteration, one fold 

was designated as the test set, whereas the remaining two folds were used for training the model. The evaluation metrics 

included the coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The results 

of the three-fold cross-validation for each ESM are presented in Fig. S1, in which the models exhibited high R2 values (> 275 

0.9) and low errors across all ESMs during cross-validation. Furthermore, the estimated historical trend of global annual 

isoprene emission using random forest showed strong correlation (r > 0.9) and consistency with the CMIP6 simulation for all 

ESMs (Fig. S2). These results demonstrate that the random forest models perform well in reproducing isoprene emissions for 

all CMIP6 models based on the selected variables. 

For further identification of the individual effects of each driver on isoprene emissions, we used random forest 280 

regression as an emulator to replicate sensitivity experiments for each CMIP6 model. This method involved generation of 

isoprene emissions using the trained random forest regressor with varied settings for the input drivers for each CMIP6 ESM, 

as outlined in Table S2 and S3. First, to investigate the effects of CO2, LULCC, and climate on isoprene emissions, we 

emulated sensitivity experiments (S0–S3) similar to those conducted using the VISIT(G1997) model for CO2-sensitive 

models including CESM2-WACCM(G2012), NorESM2-LM(G2012), and UKESM1-0-LL(P2011). For the other two 285 

models, GFDL-ESM4(G2006) and GISS-E2.1-G(G1995), we modified the experiments (S1′–S3′) to compare the LULCC 

and climate effects. Subsequently, to identify the main climate drivers (temperature, shortwave radiation, and precipitation) 

of isoprene emissions, we conducted three additional simulations similar to S4–S6 of VISIT(G1997). Detailed descriptions 

of these experiments are presented in Tables S2 and S3. 
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All historical simulation data (including isoprene emissions and other relevant variables described above) for each 290 

model were downloaded via the Earth System Grid Federation portal (ESGF, 2023). To facilitate comparison, we resampled 

spatial resolutions of different models to a consistent 1° × 1.25° grid and calculated annual values before analysis. 

2.3 Analysis methods 

2.3.1 Attributions of isoprene emission changes 

To isolate the effects of CO2, LULCC, and climate on isoprene emissions, four simulations (S0, S1, S2, and S3) were 295 

conducted for VISIT(G1997) and CMIP6 models to consider the CO2 effects (CESM2-WACCM(G2012), NorESM2-

LM(G2012), and UKESM1-0-LL(P2011)). Although VISIT only incorporates CO2 fertilization effect (increase) via 

LAI/GPP, these CMIP6 models also account for direct CO2 inhibition effect (decrease) on isoprene emissions. Consequently, 

in VISIT, the CO2 effects on isoprene emissions are attributable to fertilization only. By contrast, in these CMIP6 models, it 

is the net effect of both fertilization and inhibition effects. The effects were calculated by comparing isoprene emission 300 

simulations with fixed and varied states for each driver: CO2 effect (difference in isoprene emissions between S1 and S0, 

S1–S0), LULCC effect (S3–S2), climate effect (S2–S1), and three combined drivers (S3–S0). For models without the CO2 

effects, GFDL-ESM4(G2006) and GISS-E2.1-G(G1995), three simulations (S1′, S2′, and S3′) were used, with effects 

calculated as the LULCC effect (S3′–S2′), climate effect (S2′–S1′) and two combined drivers (S3′–S1′). 

Finally, to identify individual climate driver effects (temperature, shortwave radiation, and precipitation), we 305 

compared S3 (all varied) with three additional fixed-case simulations (S4, S5, and S6): the temperature effect (S3–S4), the 

radiation effect (S3–S5), and the precipitation effect (S3–S6). 

2.3.2 Significance test for long-term trends of isoprene emissions 

We performed the Mann–Kendall trends test (Kendall, 1975; Mann, 1945) and the Theil–Sen estimator (Sen, 1968; Theil, 

1950) to detect robust trends in annual isoprene emissions and their attributing factors (i.e., the effects of CO2, LULCC, and 310 

climate (temperature, radiation, and precipitation)) for each model at global and grid scales. The Mann–Kendall test, a 

nonparametric method for trend analysis, has been employed widely for analyzing hydrometeorological and biogeochemical 

time series (Kondo et al., 2018; Pan et al., 2020; Yue and Wang, 2004). The Theil–Sen method was used to calculate the 

magnitude of the trend. The Mann–Kendall test was used to determine the significance level (p < 0.05) of the trends in 

isoprene emissions. 315 

 At a global scale, trend tests were conducted for 1850–2014, 1850–1979, and 1980–2014, applied to global annual 

totals of isoprene emission and global means of climate variables from historical simulation of CMIP6 models and VISIT-

S3(G1997) over land-area (Table 3). At the grid scale, similar trend tests were applied for 1850–2014 to annual totals of 

isoprene emissions (Fig. 5) and to annual means of climate variables from historical simulation of CMIP6 models and 

VISIT-S3(G1997) (Fig. S7). 320 
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To identify trends in contributing factors to global isoprene emissions (1850–2014), we used the effects of CO2, 

LULCC, climate, and individual climate drivers (as presented in Sect. 2.3.1) from CMIP6 and VISIT(G1997) model 

simulations. Trend tests were then applied to individual model outputs (Figs. 7 and 9). For grid-scale trends (1850–2014), we 

applied trend tests to annual isoprene emissions from the effects of each driver (CO2, LULCC, and climate) (Fig. 10). The 

driver with the absolute most prominent isoprene emission trend was identified as the dominant driver (Fig. 11). Similarly, to 325 

identify the main climate driver for grid-scale trends (1850–2014), we applied the trend test to annual isoprene emissions 

induced by each climate driver (Fig. 12). The climate factor with the absolute most prominent isoprene emission trend was 

then identified as the dominant climate driver (Fig. 13). 

3 Results 

3.1 Global and regional isoprene emissions in the present day 330 

The mean annual global isoprene emissions during 2000–2014 agreed well with results obtained using VISIT-S3(G1997) 

simulation and CMIP6 models, of 434–510 TgC yr⁻¹ (Fig. 1a). GFDL-ESM4(G2006) stands at the lower end with 434 TgC 

yr⁻¹, whereas VISIT-S3(G1997) offers the highest estimate at 510 TgC yr⁻¹. These values fall within the broader range of 

308–705 TgC yr⁻¹ (equivalent to 350–800 Tg yr⁻¹) described in reports of earlier studies using stand-alone MEGAN models 

with diverse weather and land cover data for 2000 (Guenther et al., 2012). Recent studies using an empirical approach with 335 

MEGANv2.1(G2012) further support this range, estimating the mean annual global isoprene emissions for the present day as 

370–524 TgC yr⁻¹. Examples include 370 TgC yr⁻¹ for MEGAN-MOHYCAN covering 2000–2016 (Opacka et al., 2021), 

388 TgC yr⁻¹ for CAMS-GLOB-BIOv3.1 over 2000–2019 (Sindelarova et al., 2022) and 524 TgC yr⁻¹ for MEGAN-MACC 

during 1980–2010 (Sindelarova et al., 2014). It is noteworthy that all these datasets except MEGAN-MACC neglected the 

effects of CO2 inhibition and soil moisture, which MEGAN-MACC does account for (Sindelarova et al., 2014). Earlier 340 

studies using a photosynthesis-based approach also reported diverse estimates, with earlier studies (Pacifico et al., 2011) 

reporting global annual emissions of 516–522 TgC yr⁻¹ for 1990–1999 and 463 TgC yr⁻¹ for the 1981–2002 (Arneth et al., 

2011). In this study’s present day (2000–2014), the UKESM1-0-LL(P2011) isoprene emission of 478 TgC yr⁻¹ aligns with 

the range of these earlier studies. 
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    345 
(a) (b) 

Figure 1. Mean annual (a) global and (b) regional isoprene emissions in the present day (2000–2014). Error bars in panel (a) 

represent the standard deviation for each model. The top of panel (b) portrays the absolute contributions of 26 regions to global 

totals. These regions correspond to the 26 SREX regions defined by the IPCC Special Report on Managing the Risks of Extreme 

Events and Disasters to Advance Climate Change Adaptation (Seneviratne et al., 2012), as shown in Fig. S3. The colour bar on the 

right shows the colours assigned to the respective regions. 350 

Although CMIP6 models and VISIT-S3(G1997) simulation agreed well in terms of the mean annual global isoprene 

emissions over 2000–2014, pronounced differences were found for regional emissions, as presented in Fig. 1b and in Table 

S4. The tropics dominate isoprene emissions across all models, but the contribution varies considerably. The mean annual 

emissions for tropical regions including the Amazon (AMZ), West Africa (WAF), East Africa (EAF), and Southeast Asia 

(SEA), are 207–377 TgC yr⁻¹, respectively representing 43% to 73% of global isoprene emissions for GISS-E2.1-G(G1995) 355 

and CESM2-WACCM(G2012)/NorESM2-LM(G2012). Other models estimate a similar tropical dominance, exceeding 50% 

of global totals. 

Considerable uncertainties were found for tropical isoprene emissions, particularly in the Amazon. Model-derived 

estimates vary from 98 TgC yr⁻¹ in GISS-E2.1-G(G1995) to 175 TgC yr⁻¹ in CESM2-WACCM(G2012) and NorESM2-

LM(G2012). Similarly, Southeast Asia displays wide variation, with GISS-E2.1-G(G1995) and NorESM2-LM(G2012) 360 

estimated as 14.7–87.8 TgC yr⁻¹. However, Western Africa (WAF) shows less variation, with model estimates ranging from 

45.5–68.6 TgC yr⁻¹, with GFDL-ESM4(G2006) offering the lowest. 

Arid and semiarid regions display the highest variability in isoprene emission estimates. For instance, GISS-E2.1-

G(G1995) attributes considerably higher emissions to the Sahara (SAH) (24.9 TgC yr⁻¹) than other models do (0.1–4.3 TgC 

yr⁻¹). Similarly, in northern Australia (NAU), GISS-E2.1-G(G1995) estimate emissions of 49.8 TgC yr⁻¹, which is 365 
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approximately 2–7 times higher than those of other models (6.4–27.5 TgC yr⁻¹). Furthermore, isoprene emissions remain 

consistent across models in eastern North America (ENA) (5.1–6.7 TgC yr⁻¹) and East Asia (EAS) (15.2–21.6 TgC yr⁻¹). For 

north-eastern Brazil (NEB), VISIT-S3(G1997) calculates an emission of 30.9 TgC yr⁻¹, which is closely aligned with 

UKESM1-0-LL(P2011)’s estimate of 27.67 TgC yr⁻¹, but which exceeds those in other models (8.7–13.2 TgC yr⁻¹). 

Across all models, isoprene emissions exhibit an apparent decline from warm and humid tropical forests towards 370 

colder and drier biomes such as tundra and deserts, as presented in Fig. 2. However, large discrepancies are apparent 

between model estimates in tropical regions (Amazon, Equatorial Africa, and Southeast Asia). The Amazon consistently 

stands out as the region with the highest isoprene emissions across all models, but the magnitude of this emission varies 

considerably. CESM2-WACCM(G2012) and NorESM2-LM(G2012) models simulate intense emissions, with the Central 

Amazon showing the highest values. Similarly, VISIT-S3(G1997) and UKESM1-0-LL(P2011) also identify the Central 375 

Amazon as the emission hotspot, although with a smaller magnitude. However, GFDL-ESM4(G2006) and GISS-E2.1-

G(G1995) models respectively implicate the southern Amazon and northern Amazon as emission hot spots. Equatorial 

Africa, including West Africa (WAF) and East Africa (EAF), presents a contrasting scenario. Actually, GISS-E2.1-

G(G1995) suggests a broader area of high emission, but other models concentrate this peak around 20°E. The spatial 

emission pattern in Southeast Asia remains consistent across models, but CESM2-WACCM(G2012) and NorESM2-380 

LM(G2012) show higher values. Low emission estimates consistently characterize high northern latitudes (e.g., Alaska 

(ALA), Canada/Greenland/Iceland (CGI)) and arid/semiarid regions such as Central Asia (CAS), Western North America 

(WNA), and the Sahara (SAH). Northern Australia (NAU) is a notable exception, with GISS-E2.1-G(G1995) estimating 

much higher emissions than other models offering consistently low values. 
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 385 

Figure 2. Spatial distributions of mean annual isoprene emissions in the present day (2000–2014). 

As presented in Fig. 3, the latitudinal profiles of isoprene emissions reveal general agreement among models, with a 

single peak around the equator. The exception is GISS-E2.1-G(G1995), which exhibits a second peak around –25°S, 

coinciding with high emissions in Australia. Two models, CESM2-WACCM(G2012) and NorESM2-LM(G2012) stand out 

for their steeper spatial gradient, particularly between the tropics and other regions, showing lower emissions at high 390 

latitudes and higher emissions in the tropics than other models do. A considerable degree of uncertainty prevails within the 

tropics, with the highest and lowest estimates differing nearly two-fold. CESM2-WACCM(G2012) and NorESM2-

LM(G2012) estimate the highest emissions, exceeding 4 gC m⁻² yr⁻¹, whereas GISS-E2.1-G(G1995) estimates much lower 

values below 2.5 gC m⁻² yr⁻¹. VISIT-S3(G1997) and UKESM1-0-LL(P2011) occupy the middle range, with estimates of 
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approximately 3 gC m⁻² yr⁻¹. The primary reason underlying variation in the regional distribution of isoprene emissions 395 

among models likely stems from discrepancies in vegetation distribution and emission factors, as elaborated in Sect. 4.1.1. 

 

Figure 3. Latitudinal profiles of mean annual isoprene emissions in the present day (2000–2014). 

3.2 Long-term trends of global isoprene emissions 

Considerable uncertainty surrounds global isoprene emission trends throughout 1850–2014 (Table 3 and Fig. 4). While three 400 

models (VISIT-S3(G1997), GFDL-ESM4(G2006), and GISS-E2.1-G(G1995)) show an upward trend (+0.13 to +0.31 TgC 

yr⁻²), CESM2-WACCM(G2012) and NorESM2-LM(G2012) find no significant trend. In contrast, UKESM1-0-LL(P2011) 

exhibits a decline in global isoprene emissions at a rate of –0.92 TgC yr⁻². Despite these differences in isoprene emission 

trends, all models show that temperature increases consistently: +0.002 to +0.005°C yr⁻¹. 

Table 3. Global isoprene emission and temperature trends over three periods (1850–2014), (1850–1979) and (1980–2014). Bold 405 
values represent that a trend is significant, with p < 0.05. 

Model 

1850–2014 1850–1979 1980–2014 

Isoprene emission 

(TgC yr⁻²) 
Temperature  

(°C yr⁻¹) 
Isoprene emissions 

(TgC yr⁻²) 
Temperature  

(°C yr⁻¹) 
Isoprene emissions 

(TgC yr⁻²) 
Temperature  

(°C yr⁻¹) 

VISIT-S3(G1997) +0.31 +0.005 +0.13 +0.002 +1.79 +0.024 

CESM2-WACCM(G2012) +0.02 +0.005 -0.11 +0.002 +1.54 +0.041 

NorESM2-LM(G2012) +0.06 +0.002 -0.10 0.000 +1.71 +0.037 

GFDL-ESM4(G2006) +0.13 +0.003 +0.09 +0.002 +1.02 +0.031 

GISS-E2.1-G(G1995) +0.15 +0.005 +0.07 +0.002 +1.03 +0.026 

UKESM1-0-LL(P2011) -0.92 +0.002 -0.92 0.000 +0.52 +0.034 
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Figure 4. Interannual variations in global isoprene emissions during 1850–2014. 

Pre-industrial times to 1980 include a period of considerable uncertainty in isoprene emissions, despite most models 410 

using similar algorithms except UKESM1-0-LL(P2011) (Table 2). Three models (CESM2-WACCM(G2012), NorESM2-

LM(G2012), and UKESM1-0-LL(P2011)) show a significant decrease (p < 0.05), with UKESM1-0-LL(P2011) experiencing 

the largest decline of –0.92 TgC yr⁻² compared to –0.11 TgC yr⁻² decrease in the other two models. Conversely, GFDL-

ESM4(G2006), GISS-E2.1-G(G1995), and VISIT-S3(G1997) show significant increases (+0.07 to +0.13 TgC yr⁻²). For 

temperature, except for NorESM2-LM(G2012) and UKESM1-0-LL(P2011), which revealed no significant trend, the other 415 

models exhibited a significant and moderate trend of +0.002 °C yr⁻¹ for this period (1850–1979). 

From 1980–2014, all models show significantly increasing trends in global isoprene emissions, but their magnitudes 

vary (1.27 ± 0.49 TgC yr⁻², 0.28 ± 0.11% yr⁻¹). Specifically, VISIT-S3(G1997) projects the largest increase (+1.79 TgC 

yr⁻²), followed by the NorESM2-LM(G2012) and CESM2-WACCM(G2012) (+1.71 and +1.54 TgC yr⁻², respectively). 

GFDL-ESM4(G2006) and GISS-E2.1-G(G1995) show moderate increases (+1.02 and +1.03 TgC yr⁻², respectively), 420 

whereas UKESM1-0-LL(P2011) shows the smallest increase (+0.52 TgC yr⁻²). In contrast, this period (1980–2014) showed 

a similar increase in global temperature for all models, of +0.024 to +0.041°C yr⁻¹ (p < 0.05) among all models. The 

remarkable rise in temperature during this period can likely be attributed to the surge in GHGs concentrations, particularly 

CO2, and the decline in aerosol levels relative to the preceding period (1850–1979). It is particularly interesting that among 

models using the Guenther scheme, those with both CO2 effects (CESM2-WACCM(G2012), NorESM2-LM(G2012)), and 425 

CO2 fertilization only (VISIT-S3(G1997)) exhibit more positive trends in isoprene emissions than in models without CO2 

effects. This predominance of positive trends implies that, in addition to increasing temperature, CO2 fertilization might be 
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the second most important factor contributing to the marked increases in isoprene emission simulated in these models. For 

UKESM1-0-LL(P2011), even though its temperature trend is similar to other models, the smaller increase in isoprene 

emissions compared to those found using other Guenther-based models might be explained by its different scheme, which 430 

we investigate and discuss as presented hereinafter. 

 

Figure 5. Spatial distribution of isoprene emission trends during 1850–2014. Only significant trends (with p < 0.05) are presented. 

Figure 5 reveals remarkable similarities in the spatial distribution of isoprene emissions trends during 1850–2014 

between CESM2-WACCM(G2012) and NorESM2-LM(G2012). These similarities are likely attributable to their shared land 435 

model (Community Land Model – CLM5), which incorporates the same version of isoprene emissions scheme G2012, as 

well as a shared atmosphere model (CAM6), albeit with somewhat different parameterizations and tuning. This pattern 

diverges from those of other models. Notably, all models employing the Guenther scheme agree on marked increases in 
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specific regions such as the Amazon and Central Africa, although these trends differ in terms of magnitude. Discrepancies 

emerge primarily in other regions. In South America and Southern Africa, GISS-E2.1-G(G1995), VISIT-S3(G1997), and 440 

GFDL-ESM4(G2006) project a wider area of rising isoprene emission, whereas CESM2-WACCM(G2012), NorESM2-

LM(G2012), and UKESM1-0-LL(P2011) suggest a larger area of decline. UKESM1-0-LL(P2011) exhibits a decrease in 

most regions, except in parts of Western North America (WNA) and Central Europe (CEU). Furthermore, high-latitude 

regions (north of 60°N) were found to have no significant trends in isoprene emissions in CESM2-WACCM(G2012), 

NorESM2-LM(G2012), GFDL-ESM4(G2006), and GISS-E2.1-G(G1995). By contrast, UKESM1-0-LL(P2011) projects a 445 

considerable decrease, whereas VISIT-S3(G1997) shows an increase in these regions. 

3.3 Contribution of drivers to global isoprene emission changes 

Elevated CO2, LULCC, and climate effects on annual global isoprene emission changes in individual models during 1850–

2014 are shown in Fig. 6. Figure 7 presents a comparison of these trends during 1850–2014. The models including CO2 

effects indicated that most of the long-term trends in isoprene emissions can be attributed to CO2 and LULCC. Four models 450 

consistently project a gradual decrease in emissions because of LULCC from 1850, although the magnitudes vary. CESM2-

WACCM(G2012) shows the largest decrease (–0.42 TgC yr⁻²), followed closely by NorESM2-LM(G2012), UKESM1-0-

LL(P2011), and VISIT(G1997) (–0.27, –0.24 and –0.23 TgC yr⁻², respectively). However, the CO2 effect here, representing 

the net total effects of fertilization (increase) and inhibition (decrease), remains highly uncertain. While VISIT(G1997), 

CESM2-WACCM(G2012), and NorESM2-LM(G2012) show positive effects (+0.42, +0.36 and +0.26 TgC yr⁻², 455 

respectively), UKESM1-0-LL(P2011) exhibits a negative effect of CO2 on the isoprene long-term emissions trend (–0.61 

TgC yr⁻²). The underlying source of uncertainty related to these divergent trends among the models is discussed in Sect. 

4.1.3. Although climate exerts a slight effect on long-term trends in isoprene emissions, it influences interannual variation 

within this model group. In contrast, GFDL-ESM4(G2006) and GISS-E2.1-G(G1995), excluding the CO2 effects, attribute 

long-term emission trends primarily to climate (+0.12 and +0.15 TgC yr⁻², respectively), with LULCC playing a negligible 460 

role (–0.0005 TgC yr⁻²). 
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Figure 6. Effects of drivers on global isoprene emissions during 1850–2014: CO2 (co2f, CO2 fertilization only; co2fi, combined CO2 

fertilization and inhibition), land use and land cover change (lulcc), climate (clim), and the combination of three drivers (all). 

These effects were calculated as the difference in isoprene emissions simulations between fixed and varied states for each driver, 465 
details of which are described in Sect. 2.3.1. 

 

Figure 7. Attribution of global isoprene emission trends during 1850–2014 attributable to each driver (co2f/co2fi, lulcc and clim) 

and the combination of three drivers (all). Asterisks denote that the trend is significant, with p < 0.05. 

https://doi.org/10.5194/egusphere-2024-2313
Preprint. Discussion started: 9 October 2024
c© Author(s) 2024. CC BY 4.0 License.



21 

 

 470 

Figure 8. Effects of climate factors on global isoprene emissions during 1850–2014: temperature (tas), shortwave radiation (rsds), 

precipitation (pr), and total climate factors (clim). 

 

Figure 9. Attribution of global isoprene emission trends during 1850–2014 attributable to each climate factor (tas, rsds, pr) and 

total climate effects (clim). Asterisks denote that the trend is significant, with p < 0.05. 475 
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Figure 8 and Fig. 9 respectively present individual climate factors influencing the isoprene emission trends. Climate 

is a strong driver of year-to-year variation of isoprene emissions in all models, with the most decisive influence in GFDL-

ESM4(G2006) and GISS-E2.1-G(G1995). VISIT(G1997) notably exhibits lower interannual variation than the CMIP6 

models. Whereas empirical-based models agree that temperature is the primary driver of interannual variation, the 

photosynthesis-based model (UKESM1-0-LL(P2011)) identifies radiation and precipitation as more important factors. 480 

Regarding long-term trends, climate factors exert a stronger influence on emission trends in GFDL-ESM4(G2006) and 

GISS-E2.1-G(G1995) compared to the other models. All models show agreement on temperature-increasing isoprene 

emission, but the specific effects vary: +0.04 to +0.18 TgC yr⁻². However, the VISIT(G1997) model reveals that radiation 

causes only a minor increase (+0.005 TgC yr⁻², p > 0.05). In contrast, CMIP6 models indicate that decreased radiation 

contributes to a minor reduction in isoprene emission, ranging from –0.02 to –0.04 TgC yr⁻² (p < 0.05). The effects of 485 

precipitation further highlight discrepancies among models: VISIT(G1997) shows an increase in emissions (+0.02 TgC yr⁻²), 

whereas UKESM1-0-LL(P2011) projects a decrease (–0.04 TgC yr⁻²); other models show non-significant trends (+0.003–

+0.006 TgC yr⁻²) attributed to precipitation. 

3.4 Spatial contribution of drivers when estimating isoprene emissions 

Figure 10 shows that CO2 and LULCC influence isoprene emission changes more than climate in the models including the 490 

CO2 effect. CO2 primarily drives increased emissions, especially in tropical regions for VISIT(G1997), CESM2-

WACCM(G2012), and NorESM2-LM(G2012), whereas UKESM1-0-LL(P2011) exhibits a decreasing trend. However, these 

models show agreement in that LULCC engenders decreasing emissions, particularly in regions such as Central Africa and 

Southern Africa, as well as South Asia and Southeast Asia. However, parts of Europe and eastern North America show 

increases. In south-eastern South America (SSA), CESM2-WACCM(G2012), NorESM2-LM(G2012), and UKESM1-0-495 

LL(P2011) (excluding VISIT(G1997)) identify LULCC (deforestation) as the main driver of emission changes. However, 

GFDL-ESM4(G2006) and GISS-E2.1-G(G1995), without CO2 effects, show the LULCC effect on isoprene emission 

changes to be minimal compared to the other models. Regarding climate effects on isoprene emission, differences in climate 

variability explain the discrepancies in model contributions. 

 500 
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Figure 10. Spatial distributions of the contributions of (a) CO2, (b) LULCC, and (c) climate to the isoprene emission trends in the 

respective models. Only significant trends (with p < 0.05) are presented. It is noteworthy that GFDL-ESM4(G2006) and GISS-

E2.1-G(G1995) do not include the CO2 effects. 
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A spatial distribution of the most dominant variables influencing isoprene emission trends across CO2, LULCC, and climate 505 

is portrayed in Fig. 11. Overall, CO2 emerges as the dominant driver for 34–63% of global land area in VISIT(G1997), 

CESM2-WACCM(G2012), NorESM2-LM(G2012), and UKESM1-0-LL(P2011). Here, LULCC plays a minor role, 

accounting for 14–25% of the global land area in all models, but its spatial distribution of dominance varies between them. 

Effects of climate further add to inter-model variation. While UKESM1-0-LL(P2011), CESM2-WACCM(G2012), and 

NorESM2-LM(G2012) show climate affecting 23–32% of global land area, VISIT(G1997) presents a much more extensive 510 

effect, with climate dominating 46% land. By contrast, GFDL-ESM4(G2006) and GISS-E2.1-G(G1995), without CO2 effect, 

reveal climate-related factors as the most dominant drivers, respectively affecting 82% and 75% of the global land area. 

 

Figure 11. Dominant driver of isoprene emission trends between 1850 and 2014. For each grid, the factor generating the absolute 

largest trend is selected as the dominant driver. “nan” denotes no significant trend in isoprene emissions because of any factor. It 515 
is noteworthy that GFDL-ESM4(G2006) and GISS-E2.1-G(G1995) do not include the CO2 effects. 
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Regionally, VISIT(G1997), CESM2-WACCM(G2012), NorESM2-LM(G2012), and UKESM1-0-LL(P2011) 

identify CO2 effects as the primary driver of isoprene emissions in tropical regions such as the Amazon and Central Africa 

(Fig. 11). Whereas CO2 increases emissions in the first three models, it engenders a decrease in UKESM1-0-LL(P2011). 520 

LULCC emerges as the dominant driver across all models despite variations in emission schemes and climate factors in 

Southeast Asia and Europe. West Africa and East Africa show a more complex picture: VISIT(G1997), CESM2-

WACCM(G2012), and NorESM2-LM(G2012) identify LULCC in addition to CO2 as the primary drivers there, while 

UKESM1-0-LL(P2011) points to CO2, and GFDL-ESM4(G2006) and GISS-E2.1-G(G1995) point to climate. South-eastern 

South America also presents discrepancies: CESM-WACCM(G2012), NorESM2-LM(G2012), and UKESM1-0-LL(P2011) 525 

indicate LULCC as the main driver, while VISIT(G1997) and the other two models indicate climate factors. 

Figure 12 highlights the distinct contributions of individual climate factors to long-term trends in isoprene 

emissions across models between 1850 and 2014. These differences reflect the varying spatial distributions of the climate 

variables themselves. Temperature and radiation stand out for their large contributions, while precipitation plays a minor role 

in most CMIP6 models. Temperature’s effects reach a peak in tropical regions, while radiation’s influence is greatest in the 530 

tropics and some middle and high northern latitudes in these models. VISIT(G1997) stands alone, with both temperature and 

precipitation exerting stronger effects than radiation. This finding might be attributable to VISIT’s big-leaf canopy model, 

which is less responsive than other models to changes in radiation. The effect of precipitation is particularly pronounced in 

the tropics, whereas temperature plays a leading role in south-eastern South America and East Africa. Unsurprisingly, one 

key point of agreement across models is that temperature increases generally engender higher isoprene emissions across 535 

most regions, reflecting the well-established relation captured by most models. Conversely, surface radiation typically 

engenders decreases in most models, with VISIT(G1997) again being the exception. Precipitation-driven changes remain 

highly uncertain, both in magnitude and sign of the trends. For example, VISIT(G1997) shows marked increases in 

Amazonia emissions because of increased precipitation, whereas UKESM1-0-LL(P2011) projects a decrease in the same 

region because of reduced precipitation. 540 

Figure 13 paints a contrasting picture of dominant climate drivers for isoprene emissions across models. 

Temperature reigns supreme across most regions for models using the Guenther scheme, affecting emission changes in 59%, 

69%, and 73% of the global area, respectively, in GFDL-ESM4(G2006), VISIT(G1997), and GISS-E2.1-G(G1995). This 

figure greatly exceeds the 40–46% influence observed for other CMIP6 models. By contrast, UKESM1-0-LL(P2011) stands 

out, with radiation leading in nearly half of the global land area (45%), compared to the 24–38% range for other CMIP6 545 

models. VISIT(G1997) stands apart from CMIP6 models by demonstrating a limited effect of radiation on emission changes, 

affecting only 7% of the global land area. Precipitation’s effects on isoprene emission trends vary markedly among models. 

GISS-E2-1-G(G1995) and GFDL-ESM4(G2006) show minimal effects, with precipitation dominating only 3.5% and 8% of 

global land area, respectively. Other models exhibit moderate effects, with precipitation affecting 20–25% of global land 

area. 550 
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Figure 12. Spatial distribution of the contribution of each climate factor: (a) temperature; (b) shortwave radiation, and (c) 

precipitation to the isoprene emission trends in each model. Only significant trends (with p < 0.05) are presented. 
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On a regional scale, the dominant meteorological driver of isoprene emission changes differed substantially among 555 

models. In the Amazon, VISIT(G1997) identifies precipitation as the primary driver, whereas the other models point to 

temperature. Central Africa and Southeast Asia show similar patterns, with temperature dominating in all models except 

UKESM1-0-LL(P2011), in which radiation and precipitation jointly exert influences. In mid-latitude and high-latitude 

northern regions, radiation leads across models, although VISIT(G1997) shows a weaker effect. All models show agreement 

on the considerable influence of precipitation in specific arid and semi-arid regions such as the Sahara and South Asia. In 560 

Australia, temperature dominates in GFDL-ESM4(G2006) and GISS-E2.1-G(G1995), while VISIT(G1997) identifies 

precipitation as the dominant factor. However, UKESM1-0-LL(P2011) shows no significant trend in isoprene emissions 

attributable to any meteorological factor in this region. 

 

Figure 13. Dominant meteorological drivers of isoprene emission trends during 1850–2014. For each grid, the factor generating the 565 
absolute largest trend is selected as the dominant driver. “nan” denotes no significant trend in isoprene emissions attributable to 

any factor. 
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4 Discussion and Perspective 

4.1 Sources of uncertainty 

4.1.1 Variability in regional isoprene emissions 570 

Models show remarkable consistency in estimation of the global amounts of isoprene emissions for recent times, but 

considerable regional discrepancies exist (Fig. 1b). Tropical regions, notably the Amazon (98–175 TgC yr⁻¹) and Southeast 

Asia (14.7–87.8 TgC yr⁻¹), exhibit the greatest variability. Arid regions such as the Sahara also displayed wide ranges (0.1–

24.9 TgC yr⁻¹) (Table S4). The main reason underlying these regional discrepancies appears to be differences in how models 

represent plant functional types (PFTs) and emission factors assigned to each PFT across the models (Tables S5 and S6). For 575 

instance, the latest Guenther scheme (G2012) used in CESM2-WACCM(G2012) and NorESM2-LM(G2012) incorporated 

16 PFTs, compared to 7 or 11 PFTs in the older versions used by GFDL-ESM4(G2006) or GISS-E2.1-G(G1995), and 16 

PFTs for VISIT(G1997). For the P2011 scheme, 13 PFTs were used for UKESM1-0-LL(P2011). Moreover, the definitions 

of these PFTs vary among models, influencing their emission factors (Table S6). For instance, in the G2012 scheme, 

emission factors for broadleaf trees (evergreen vs. deciduous) across tropical, temperate, and boreal regions range from 20.6 580 

to 52.4 µgC gmass⁻¹ h⁻¹, with the highest emissions from broadleaf deciduous boreal trees. Also, VISIT(G1997) assigned 

emission factors of 8–45 µgC gmass⁻¹ h⁻¹ to five broadleaf trees, but the highest emission factor was assigned to broadleaf 

deciduous temperate trees. The emission factor for a single broadleaf tree type in the G2006 scheme is only 24 µgC gmass⁻¹ 

h⁻¹, whereas the G1995 scheme assigns 24 µgC gmass⁻¹ h⁻¹ for broadleaf evergreen trees and 24/45 µgC gmass⁻¹ h⁻¹ for two 

broadleaf deciduous trees depending on whether they are cold or drought-tolerant. The P2011 scheme uses emission factors 585 

ranging from 16–35 µgC gmass⁻¹ h⁻¹ assigned for three broadleaf tree types, with the highest emission for broadleaf deciduous 

trees across all regions. 

These variations in PFT representation and emission factors strongly influence the spatial distributions of isoprene 

emissions among models. For instance, in the Amazon, G2012 assigned a tree fraction of roughly 74 ± 0.13% between 2000 

and 2014, while G2006/G1995 allocated only 34 ± 0.23%. By contrast, G2006 estimated a larger grass fraction (36 ± 2.50%) 590 

compared to G2012 (21 ± 0.14%) (Fig. S4). Although these models did not provide specific information related to tree types, 

broadleaf evergreen trees are generally predominant in this region, emitting more isoprene than grasses (Table S6). This 

greater emission explains why the higher tree fraction of G2012 caused markedly higher total isoprene emissions for the 

Amazon (175 TgC yr⁻¹) than the average isoprene emissions in G2006/G1995 (103 TgC yr⁻¹). Also, VISIT(G1997) and 

P2011, with similar emission factors for broadleaf evergreen trees/C4 grass (24 µgC gmass⁻¹ h⁻¹), exhibited comparable 595 

emissions in this region (133 vs. 117 TgC yr⁻¹). P2011 allocated a tree fraction of approximately 75 ± 0.20%, similarly to 

that of G2012, and a grass fraction of 11.7 ± 0.13%, half that of G2012. The emission factor for broadleaf evergreen trees in 

G2012 (20.6 µgC gmass⁻¹ h⁻¹) is slightly lower than that in P2011 (24 µgC gmass⁻¹ h⁻¹), but the emission factor for C4 grass in 

P2011 (24 µgC gmass⁻¹ h⁻¹) is notably 20 times higher than in G2012 (1.2 µgC gmass⁻¹ h⁻¹), which was identified as a bug in 

P2011 (Weber et al., 2023) and which was corrected in current development strands of UKESM1-0-LL. However, 600 
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compensation effects between the two plant types cannot fully explain the lower isoprene emissions in UKESM1-0-

LL(P2011) than CESM2-WACCM(G2012) over the Amazon. Another reason might be the difference in the isoprene 

emissions scheme between these models, such as the scaling factor to adjust for variations in standard temperature (297 K in 

the Guenther scheme vs. 303.15 K in P2011) for setting basal emission factors. This hypothesis, suggesting that emission 

factors strongly influence the spatial distribution of isoprene emissions and regional amounts of isoprene emissions, is 605 

further supported by reductions observed when using different emission factors in VISIT(G1997) (Ito, 2019b). Applying the 

standard high emission factor (24 µgC gmass⁻¹ h⁻¹) yielded global isoprene emissions of 510 TgC yr⁻¹, while the lower 

emission factor (9 µC µgC gmass⁻¹ h⁻¹), based on Malaysian observations for broadleaf evergreen forests (Saito et al., 2008), 

reduced mean global emissions to 342 TgC yr⁻¹ (33%) during 2000–2014, with Amazonia emissions dropping from 133 to 

62 TgC yr⁻¹ (54%). Similarly, the stronger isoprene emissions simulated by the GISS-E2.1-G(G1995) in northern Australia 610 

and the Sahara likely arise from a higher proportion of shrubs with higher emission factors in its vegetation representation 

compared to other models, which grasses might dominate (Figs. S4 and S8). However, changes in PFTs and their associated 

emission factors primarily influence the spatial distribution of isoprene emission, not the seasonality, in VISIT(G1997) and 

other models employing MEGAN or P2011 schemes (Henrot et al., 2017; Weber et al., 2023). Unfortunately, assessing 

details of the uncertainty arising from PFTs and their differences in emission factors is beyond the scope of this study 615 

because of the lack of necessary output data available from the CMIP6 models. However, future efforts to establish a 

standardized global PFT map with corresponding PFT-specific emission factors hold great promise for reducing these 

uncertainties and for improving the consistency of simulations across different models. 

4.1.2 Variability in attribution to isoprene emissions 

All the models detected an overall increasing trend in global isoprene emissions in recent decades (1980–2014), which 620 

agrees with findings from earlier studies using satellite data with MEGAN (Opacka et al., 2021). However, the main drivers 

of this trend differed among the models (VISIT and the CMIP6 models) (Fig. 6) depending on the assumptions considered in 

the parameterization (Table S1). In the models including CO2 effects (VISIT(G1997), CESM2-WACCM(G2012), 

NorESM2-LM(G2012), and UKESM1-0-LL(P2011)), CO2 was the dominant driver, contributing 0.338–1.506 TgC yr⁻² (71–

94%) of the total. VISIT(G1997), which only considers the CO2 fertilization effect, showed an isoprene emissions increase of 625 

1.461 TgC yr⁻² (81%) attributed to CO2. This increase is comparable to the 1.506 TgC yr⁻² (94%) average of CESM2-

WACCM(G2012) and NorESM2-LM(G2012). The different isoprene emissions scheme in UKESM1-0-LL(P2011) 

exhibited a smaller increase (0.338 TgC yr⁻², 71%). In recent decades (1980–2014), these models agree that the CO2 

fertilization effect is more dominant over the CO2 inhibition effect in MEGAN-based models. Alternatively, there are 

compensating effects between CO2 inhibition and temperature in P2011 (Pacifico et al., 2012). This finding in MEGAN-630 

based models in our study aligns with those reported by Heald et al. (2009), who claimed that while CO2 inhibition partially 

offsets the effect of rising temperatures on isoprene emissions, it does not fully compensate for the total effects of rising 

temperature and vegetation productivity. This inadequate compensation underscores the important role of CO2 fertilization in 
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future isoprene emission changes, as well as trends observed for recent decades (1980–2014) in our study, which are 

partially reflected in the future snapshot simulation (2100) in the earlier study (Heald et al., 2009). Further investigation into 635 

isoprene emission trends and their controlling factors in future simulations (2015–2100) under CMIP6 ScenarioMIP (SSP) is 

necessary to validate the robustness of these findings. The magnitude of the net CO2 effect remains highly uncertain, 

depending on the model scheme and how it accounts for CO2 inhibition, if at all. Additionally, LULCC had a moderate effect 

in these models, contributing from –0.162 to –0.592 TgC yr⁻² (20–32%). By contrast, models without CO2 effects (GFDL-

ESM4(G2006) and GISS-E2.1-G(G1995)) showed a minimal influence of LULCC on the emission trend (0.063 TgC yr⁻², 640 

7%), whereas climate effects dominated, contributing 0.889 TgC yr⁻² (94%).  

Regarding long-term trends (1850–2014), CESM2-WACCM(G2012) and NorESM2-LM(G2012) showed minimal 

changes in isoprene emissions (Figs. 6 and 7) because the CO2 effects balanced out the LULCC effects. VISIT(G1997) 

exhibited trends that were more positive than those of either CESM2-WACCM(G2012) or NorESM2-LM(G2012) because 

of its inclusion of CO2 fertilization but exclusion of CO2 inhibition. Even with CO2 inhibition included, CESM2-645 

WACCM(G2012) and NorESM2-LM(G2012) showed similar long-term trends for isoprene emissions driven by CO2 to 

those of VISIT(G1997) (Fig. 6). This similarity of trends suggests that CO2 fertilization predominates over CO2 inhibition, 

which might only become active when CO2 concentrations exceed a threshold (e.g., 365 ppm in these models). The average 

isoprene emissions attributed to CO2 in CESM2-WACCM(G2012) and NorESM2-LM(G2012) during 2000–2014 (1.259 

TgC yr⁻²) were lower than that the average in VISIT(G1997) (1.714 TgC yr⁻²). UKESM1-0-LL(P2011) exhibited a 650 

significant and negative trend in isoprene emissions because of the combined effects of CO2 and LULCC. This singularity of 

UKESM1-0-LL(P2011) might be attributable to its different isoprene emissions scheme (P2011), particularly its 

methodology to treat CO2 effects (direct inhibition and indirect fertilization via photosynthesis (GPP) parameterization), 

compared to MEGAN-based models. Despite radiation-induced decreases, GFDL-ESM4(G2006) and GISS-E2.1-G(G1995) 

displayed increasing trends driven by rising temperatures. Among the three drivers (CO2, LULCC, and climate), the CO2 655 

effects on isoprene emissions have the highest inter-model variability (σ = 0.43 TgC yr⁻²), followed by LULCC (σ = 0.17 

TgC yr⁻²) and climate change (σ = 0.06 TgC yr⁻²). Therefore, the different mechanisms used for the respective models to 

account for CO2, LULCC, and climate effects contribute to the uncertainty in long-term global isoprene emission trends. 

Particularly addressing CO2 and LULCC effects, rather than meteorological factors alone, is crucially important for the use 

of long-term models. All the models show agreement in terms of a significant increase from 1980 to the present, but pre-660 

1980 trends remain uncertain, highlighting the need for improved historical data and refined model evaluation to capture past 

trends better and to enhance the accuracy of future predictions. 

Regarding spatial distribution, the models without CO2 effects (GFDL-ESM4(G2006) and GISS-E2.1-G(G1995)) 

generally predict a weaker gradient in isoprene emissions compared to other models (Fig. 5). This difference likely arises 

because isoprene emissions are not tied interactively to vegetation production in these two models. Higher CO2 can either 665 

directly reduce (inhibition) or indirectly increase isoprene emissions because of enhanced vegetation production (represented 

by LAI in MEGAN or GPP in P2011). It is true that CESM2-WACCM(G2012), NorESM2-LM(G2012), UKESM1-0-
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LL(P2011), and VISIT(G1997) captured the indirect CO2 effects, but VISIT(G1997) neglected the direct inhibition effect. 

Nevertheless, both effects were considered in CESM2-WACCM(G2012), NorESM2-LM(G2012), and UKESM1-0-

LL(P2011). 670 

 

Figure 14. Inter-model spreads of isoprene emission trends attributable to the following: (a) CO2; (b) LULCC; (c) combined effects 

of three climate factors; and (d–f) the respective climate factors of temperature, shortwave radiation, and precipitation. 

As the dominant driver in tropical regions (Fig. 11), CO2 effects strongly influence the global isoprene emission 

trends. These regions are high emitters because of sustained warm temperatures, intense radiation, and high biomass density, 675 

coupled with high emission factors to tropical vegetation types (Henrot et al., 2017). The spatial pattern of the contribution 

of each driver (CO2, LULCC, and climate) to isoprene emission trends among the models (Fig. 10) and the inter-model 

spreads are located primarily in tropical areas and the Southern Hemisphere (Fig. 14). Inter-model spread refers to the 

standard deviation of isoprene emission trends attributable to each driver, calculated for each grid cell among all models. The 
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CO2 effect consistently shows a positive influence on isoprene emissions in the tropics in VISIT(G1997), CESM2-680 

WACCM(G2012), and NorESM2-LM(G2012), but it has a negative effect in UKESM1-0-LL(P2011) (Fig. 10a). This 

inconsistency engenders the highest uncertainty in the contribution of CO2 to isoprene emission trends in these regions (Fig. 

14a). Also, uncertainties in LULCC effects on isoprene trends are most concentrated in south-eastern South America and 

Southeast Asia (Fig. 14b). The reason underlying uncertainties in LULCC effects might arise from variations in original land 

cover maps, land use scheme, and emission factors across models. For instance, in south-eastern South America, CESM2-685 

WACCM(G2012) and UKESM1-0-LL(P2011) simulate a stronger effect from LULCC because of that region’s conversion 

of forest to cropland compared to GFDL-ESM4(G2006), which shows more minor changes in isoprene emissions, mainly 

because of its conversion of grassland to cropland, as shown in Fig. S4. In contrast, inter-model differences driven by climate 

factors are more minor than those for CO2 and LULCC (Fig. 14c). This is true because the inhomogeneous effects of 

different climate elements on isoprene emissions tend to offset each other to a large degree (Fig. 10c and Fig. 12). Among 690 

the climate variables, uncertainties of the effects of temperature on isoprene trends are concentrated in the tropics, whereas 

those for radiation are concentrated in middle northern latitudes (e.g., Central North America and East Asia) and for 

precipitation in parts of the Amazon, Madagascar, and northern Australia. 

4.1.3 Uncertainty in modelling CO2 effects on isoprene emissions 

Changes in atmospheric CO2 levels are expected to greatly alter biogenic isoprene emissions. With CO2 levels predicted to 695 

be doubled under the SSP370 scenario (and even higher increases under SSP585, or smaller increases under 

SSP245/SSP126) by the end of this century, producing accurate models of the CO2 effects on isoprene emissions is 

fundamentally important. In fact, CO2 effects, including the fertilization effect, increase vegetation productivity (LAI/GPP), 

which is a key driver of photosynthesis and isoprene emission. However, considerable inter-model differences were found 

for simulation of this effect within the C4MIP project (Friedlingstein et al., 2006; Hajima et al., 2014; K. Arora et al., 2020). 700 

Models overestimating the LAI/GPP response to rising CO2 are likely to overestimate CO2 fertilization effects on ecosystem 

productivity and ensuing isoprene emission uncertainties. Direct CO2 inhibition effects also lack clear consensus among 

models. Understanding the physiological response of isoprene emissions to the combined effects of rising CO2 and 

temperature is vital for projecting future emissions under climate change. Yet, the mechanisms controlling isoprene 

emissions remain uncertain, yielding to conflicting hypotheses. Some results of studies suggest that future high CO2 levels 705 

might suppress isoprene emission, potentially counteracting the stimulating effects of rising temperatures or the combined 

effects of temperature increase and enhanced vegetation productivity, which might result in minimal change compared to the 

present day (Arneth et al., 2007b; Pacifico et al., 2012), an overall increase (Heald et al., 2009), or even a decrease in global 

isoprene emissions (Hantson et al., 2017). Alternatively, others propose that CO2 inhibition might become less effective at 

high temperatures (above 30°C) (Lantz et al., 2019; Monson et al., 2016; Potosnak et al., 2014; Sun et al., 2013), potentially 710 

leading to a net increase in emissions driven by temperature (Lantz et al., 2019; Potosnak et al., 2014). In contrast, some 

studies imply stable emission under pre-industrial conditions with lower CO2 levels (Heald et al., 2009); others suggest 
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higher emissions than those of recent times (Arneth et al., 2007a; Hantson et al., 2017; Lathière et al., 2010; Pacifico et al., 

2012; Unger, 2013). Both modelling studies entail uncertainties; yet, in the absence of measurements or proxies, modelling 

serves as our sole resort for estimating preindustrial isoprene emission rates. 715 

From preindustrial times to the present day, some models have exhibited a decline in isoprene caused by strong CO2 

inhibition (Arneth et al., 2007a; Lathière et al., 2010; Pacifico et al., 2012), similarly to UKESM1-0-LL(P2011) in this study. 

Others imply no trend with weak inhibition (Heald et al., 2009), similarly to CESM2-WACCM(G2012) and NorESM2-

LM(G2012) in this study. However, CMIP6 and VISIT-S3(G1997) show consistency in key climate variables (temperature, 

radiation, and precipitation) on a global anomaly basis (Fig. S5). These models share the same photosynthesis schemes, 720 

explaining the identical upward trends found for GPP/LAI represented for the CO2 fertilization effect (Fig. S6). Therefore, 

the discrepancy in CO2-driven isoprene emission trends likely derives from differences in the implemented CO2 inhibition 

schemes. 

Both the MEGAN and P2011 models base their CO2 inhibition scheme on the same observational experiment of 

two mild temperate vascular plants (Possell et al., 2005). However, as presented in Fig. 1 of (Heald et al., 2009) and Fig. 8 of 725 

(Arneth et al., 2007b), the two models diverge considerably in their response curves. Specifically, the MEGAN-based 

scheme would only reduce isoprene emissions for CO2 levels above 365 ppm, and at a lower rate than the P2011-based 

scheme. Both models normalize emission rates based on the values for the year 2000 (Arneth et al., 2007b; Heald et al., 

2009; Possell et al., 2005), but there is a difference in CO2 inhibition factor for the preindustrial period. 

At 280 ppm of CO2 (preindustrial level), the MEGAN-based scheme maintains a CO2 inhibition factor of around 1, 730 

whereas the P2011-based scheme gives a CO2 inhibition factor of approximately 1.5 (Arneth et al., 2007b). This higher value 

found for the latter implies a 30% increase in isoprene emissions efficiency in the preindustrial period and a subsequent 

decrease to present-day levels. In fact, this difference likely explains the divergent long-term emission trends presented in 

Fig. 4. 

Additional uncertainty arises at lower CO2 concentrations (e.g., 185 ppm of the Last Glacial Maximum), for which 735 

MEGAN implies stability (Heald et al., 2009) and P2011 estimates much higher emissions than those of the present day 

(Hopcroft et al., 2017; Pacifico et al., 2012). This discrepancy might add further uncertainty to the interpretation of trends 

and their influence on atmospheric composition (i.e., methane lifetime) in past atmospheres (Achakulwisut et al., 2015; 

Hopcroft et al., 2017). Although several studies have consistently demonstrated that elevated CO2 levels inhibit isoprene 

emissions (Feng et al., 2019; Niinemets et al., 2021; Possell et al., 2005; Possell and Hewitt, 2011), only one study has 740 

demonstrated a marked increase at low CO2 levels (185 ppm) (Possell et al., 2005). Further research is necessary to refine 

CO2 inhibition/enhancement parameterizations and to enhance our understanding of this complex relation at low CO2 levels. 

Additionally, some results of short-term field studies show that high temperatures might weaken CO2 inhibition, 

necessitating its integration into models for accurate future predictions (Lantz et al., 2019). 

 Furthermore, a recent study (Niinemets et al., 2021) has highlighted the diversity in plant responses to CO2-induced 745 

isoprene emission changes. Some species such as poplar (common in temperate and boreal regions) are apparently more 
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sensitive than others, such as oak and mango (found in temperate to tropical regions). The variation in plant CO2 

responsiveness can be attributed to differences in substrate availability, implying that using a single CO2 inhibition function 

and threshold for all plants in emission models might overestimate or underestimate this effect. Additionally, the existing 

scheme relies primarily on temperate species, raising concerns about its accuracy for tropical species (Pacifico et al., 2012; 750 

Young et al., 2009). Because tropical plants are the major contributors to global isoprene emissions, better understanding of 

their long-term response to CO2 is valuable. Developing diverse CO2 inhibition functions for different species, especially 

those in tropical regions, is necessary for accurate prediction of the effects of rising CO2 on future isoprene emissions and 

their effects on Earth’s atmosphere and ecosystems. 

4.2 Suggestions for future development 755 

As explained above, the reliance on single-function CO2 inhibition schemes for all plant species hinders accurate predictions. 

Future models must incorporate diverse, PFT-specific inhibition functions, particularly for tropical species, which dominate 

global isoprene emissions. Furthermore, long-term studies across ecosystems must be conducted to confirm the weakening 

effects of high temperatures on CO2 inhibition for a diversity of plant species. Then this effect must be integrated into current 

models. Accurate representation of LAI and GPP in land models is extremely useful for simulating the effects of CO2 760 

fertilization on isoprene emissions. Validation against high-resolution satellite imagery, especially in tropical regions with 

complex vegetation cover, is necessary for this purpose. Current uncertainties related to LULCC effects might also arise 

from employment of constant emission factors for PFTs. For instance, deforestation might decrease emissions by replacing 

high-emitting broadleaf trees with crops, but oil palm, a higher emitter than broadleaf trees, can increase emissions in some 

cases (e.g., Malaysia) (Misztal et al., 2011; Opacka et al., 2021; Stavrakou et al., 2014; Tanaka et al., 2012). Additionally, 765 

neglecting grass and shrub fractions beyond tree cover can contribute further to LULCC effect uncertainty. 

Even though random forest regression can replicate global isoprene emissions from all CMIP6 models (Fig. S2), we 

advocate for additional multi-model intercomparison of Land Systems Models under the TRENDY project’s GPP estimation 

protocols (Friedlingstein et al., 2022; Sitch et al., 2015; TRENDY Portal, 2024), applying similar settings to isoprene 

emissions. Such multi-model intercomparison will help to pinpoint the important contributors to uncertainty in isoprene 770 

emission estimates. Furthermore, leveraging and expanding existing FLUXNET network (Baldocchi et al., 2001; FLUXNET 

Portal, 2024) ground-based isoprene emissions observation can provide valuable data for validating long-term isoprene 

emission models across various regions. We can also develop independent data-driven estimates using machine-learning 

methods based on this long-term data. These estimates can enhance our understanding of historical isoprene emission 

changes and can improve the reliability of future predictions. 775 

Current ESMs, including the latest CMIP6 experiments, rely primarily on only two schemes for estimating past, 

present, and future isoprene emissions: photosynthesis-based models (e.g., P2011) and empirical-based models (e.g., 

MEGAN). These approaches offer some benefits, but they entail some limitations. The photosynthesis-based models 

estimate isoprene emissions based on photosynthetic electron transport products, capturing light dependence. However, 
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evidence suggests it might not accurately reflect long-term responses to temperature and CO2 changes that are invaluable for 780 

decadal and millennial emission projections (Sharkey and Monson, 2014). Additionally, these models do not account for 

potential substrate effects under future climate conditions, which can strongly influence CO2 and temperature dependence of 

isoprene emissions. The empirical model estimates isoprene emissions based on two factors: the temperature dependence of 

enzyme–substrate interactions and empirical data of emission reductions observed for plants grown under different 

atmospheric CO2 concentrations. However, the adjustments to some driving parameters in MEGAN lack a clear mechanistic 785 

connection to underlying biochemical processes (Monson et al., 2007; Sharkey and Monson, 2014). The reliance on these 

two schemes with their inadequate representation of biochemical processes can engender inaccuracies and uncertainties in 

predicting long-term isoprene emissions under varying environmental conditions. To overcome this limitation, more 

intensive and comprehensive studies must be conducted to develop a broader range of isoprene and other BVOC emission 

schemes that better capture the complexity and diversity of biogenic emissions. By incorporating a broader array of emission 790 

models, researchers can augment the accuracy and reliability of BVOC emission predictions, especially in the context of 

evolving environmental conditions and climate scenarios. This diversity in BVOC emission schemes is extremely valuable 

for advancing our understanding of biogenic emissions and their effects on atmospheric chemistry and climate dynamics. 

Moreover, this diversity underscores the necessity for additional research to refine the representation of BVOC emissions in 

ESMs. 795 

5 Conclusions 

This study comprehensively analyzed trends in isoprene emissions and their controlling factors during 1850–2014 using 

long-term isoprene emissions datasets derived from offline simulations of the VISIT dynamic global vegetation model and 

online estimates from CMIP6 ESMs. The models, except for UKESM1-0-LL(P2011), incorporate empirical schemes such as 

MEGAN, categorized into four groups based on their isoprene emissions schemes: (1) MEGAN with CO2 fertilization only, 800 

which is VISIT(G1997); (2) MEGAN with CO2 effects (fertilization and inhibition), which are CESM2-WACCM(G2012) 

and NorESM2-LM(G2012); (3) MEGAN without CO2 effects, which are GFDL-ESM4(G2006) and GISS-E2.1-G(G1995); 

and (4) photosynthesis-based with CO2 effects, which is UKESM1-0-LL(P2011). 

In the present day (2000–2014), mean global isoprene emissions estimated from all models are consistent, with an 

inter-model spread of only 24 TgC yr⁻¹ (5%), ranging from 434 to 510 TgC yr⁻¹. However, regional emissions vary 805 

considerably, with an inter-model spread ranging between 0.53 and 30.77 TgC yr⁻¹ (9–212%), primarily because of 

differences in PFTs composition and emission factors. Standardizing global PFT maps with specific emission factors can 

reduce these uncertainties and can improve simulation consistency across models. 

Over the historical period examined for this study (1850–2014), isoprene emission trends vary widely across 

models. Empirical models without CO2 effects (GFDL-ESM4(G2006) and GISS-E2.1-G(G1995)) show slightly increasing 810 

trends, whereas the model considering only the CO2 fertilization effect, VISIT-S3(G1997), estimates a significant increasing 
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trend. Models including both CO2 effects (fertilization and inhibition) show no change (CESM2-WACCM(G2012) and 

NorESM2-LM(G2012)). The sole photosynthesis-based model, UKESM1-0-LL(P2011), exhibits a sharply decreasing trend. 

These variations in global long-term trends are attributable to differences in the main drivers among models. Similarly to 

VISIT(G1997) with only CO2 fertilization, MEGAN-based models with CO2 effects (CESM2-WACCM(G2012) and 815 

NorESM2-LM(G2012)) emphasize CO2 fertilization, potentially underestimating CO2 inhibition. Also, UKESM1-0-

LL(P2011) suggests that CO2 inhibition outweighs fertilization, possibly because of its distinct representation of CO2 

inhibition. MEGAN-based models without CO2 effects (GFDL-ESM4(G2006) and GISS-E2.1-G(G1995)) attribute the trend 

primarily to climate factors: chiefly rising temperatures. 

Globally, models vary widely in their estimates of CO2 effects on isoprene emissions, both in direction and 820 

magnitude, alongside moderate differences in LULCC-induced emission reductions and relative consensus on climate-driven 

emission increases. Divergence in CO2-driven emission trends likely stem from models’ different CO2 inhibition 

representations, which can counteract increasing isoprene emission trends attributable to rising temperatures or in 

combination with CO2 fertilization. At the grid cell level, the highest inter-model variability in simulated isoprene emission 

trends occurs in regions such as the Amazon, Southeast Asia, and south-eastern South America, influenced primarily by CO2 825 

and LULCC. 

The discrepancies among models highlight the importance of studying isoprene emission trends and the caution 

which is necessary for interpreting plant–climate interactions using long-term isoprene emissions estimates. Results of our 

study emphasize the need for deeper investigation of CO2 and LULCC effects on isoprene emissions because their influence 

on long-term trends far surpasses short-term variations induced by climate factors. Expanding long-term observation 830 

networks and refining models by considering diverse species-specific responses to changing CO2 levels in different 

ecosystems are necessary. Current-generation ESMs rely on empirical and photosynthesis-based approaches to estimate 

isoprene emissions, each with their idiosyncratic benefits and limitations. Developing more comprehensive emission 

schemes that better reflect the complexity of plant emissions would support more accurate and reliable predictions of how 

these emissions can be expected to change under different climate conditions, which is necessary for understanding plant–835 

climate interactions via emissions. 
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