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Abstract
Eruption source parameters (ESPs) are crucial for characterising volcanic eruptions and are essential inputs to numerical 
models used for hazard assessment. Key ESPs of explosive volcanic eruptions include plume height, mass eruption rate, 
eruption duration, and grain-size distribution. Some of these ESPs can be directly observed during an eruption, but others 
are difficult to measure in real-time, or indeed, accurately and precisely quantify afterwards. Estimates of ESPs for eruptions 
that cannot be observed, for example, due to the remote location of a volcano or poor weather conditions, are often defined 
using expert judgement and data from past eruptions, both from the volcano of interest and analogue volcanoes farther afield. 
Analysis of such information is time intensive and difficult, particularly during eruption response. These difficulties have 
resulted in the production of datasets to aid quick identification of ESPs prior to or during an eruption for use in operational 
response settings such as those at volcano observatories and Volcanic Ash Advisory Centres. These resources include the 
Mastin et al. (2009a) ESP dataset and the Catalogue of Icelandic Volcanoes and European Catalogue of Volcanoes aviation 
tables. Here, we review and compare these resources, which take different approaches to assigning ESPs. We identify future 
areas for development of these resources, highlighting the need for frequent updates as more knowledge of volcanic activity 
is gained and as modelling capabilities and requirements change.
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Introduction

Eruption source parameters (ESPs) are the key inputs in 
models used to simulate areas affected by ash during explo-
sive volcanic eruptions. When used during unrest or erup-
tions, their accuracy has a great influence on the accuracy 

of ash-hazard forecasts. During periods of quiescence, the 
values of ESPs anticipated during future events affect the 
accuracy of long-term assessments of the hazard. ESPs are 
broadly of two types: (1) those that can be directly observed 
during an eruption, such as plume height or eruption 
start time, and (2) those that must be constrained through 
detailed analysis or numerical relationships. The second type 
includes, for example, the grain-size distribution of erupted 
material, which is typically constrained through studies of 
deposits and some assessment of the likelihood that a future 
eruption will resemble past eruptions. Another example is 
the mass eruption rate, which is typically constrained from 
plume height, either by empirical correlations (e.g. Mastin 
et al. 2009b, eq. 1), analytical equations (e.g. Degruyter and 
Bonadonna 2012; Wilson and Walker 1987; Woodhouse et al. 
2013), or one-dimensional (1D) plume modelling (e.g. Costa 
et al. 2016b; Degruyter and Bonadonna 2012). Thus, ESPs 
are assigned using insights from past eruptive behaviour and 
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observations of current behaviour, whether at the volcano of 
interest or by drawing on observations from analogue vol-
canoes (e.g. Del Negro et al. 2013; Biass et al. 2014; Tierz 
et al. 2019; Hayes et al. 2020; Tadini et al. 2022). ESPs vary 
in type (ranges versus a discrete value), the time scales over 
which they apply (e.g. hours to years), and spatial cover-
age (e.g. volcano- versus region-specific) with the selected 
parameters dependent on the user and their needs.

There are several types of modelling studies that use these 
ESPs. One is numerical model comparison and validation 
studies (e.g. Bonadonna et al. 2012; Mastin et al. 2013; 
Costa et al. 2016b). Several numerical models for simulating 
volcanic plumes and ash dispersal exist, each using slightly 
different numerical methods and assumptions and therefore 
input parameters (Bonadonna et al. 2012). These studies 
require well-constrained and independently estimated input 
parameters from well-characterised events to validate model 
outputs against observations, and specific datasets have been 
produced to address these needs (e.g. IVESPA; Aubry et al. 
2021; Table 1). It is through this critical application of ESP 
input data and models that the global modelling community 
aims to produce reliable models. Such approaches enable 
conceptual models of physical process to be tested and 
ultimately improved. Validation studies require data from 
well-documented eruptions in which as many parameters 
as possible are well-constrained: for example, eruption start 
time, duration, plume height, and grain-size distribution. 
The number of events with these data are limited.

A second type of modelling study involves probabilis-
tic assessments to quantify the potential hazards associated 
with a future event at a volcano or location (e.g. Houghton 
et al. 1987; Bonadonna et al. 2005; Marzocchi et al. 2010; 
Sandri et al. 2014; Becerril et al. 2014; Alatorre-Ibargüen-
goitia et al. 2021; Titos et al. 2021). Such analysis requires 
an understanding of the range of potential activity, which 
is typically informed from analysis of deposits and obser-
vations from past eruptions. Limitations in the geological 
and historical record of eruptions are well-known. Smaller 
events are generally underreported, and the quality of the 
record for larger events also diminishes going back through 
time (Deligne et al. 2010). Therefore, expert judgement is 
often required to inform parameter selection and fill data 
gaps. Probabilistic hazard analysis involves the initiation of 
numerous simulations using an array of input parameters 
representing the range and relative frequency of different 
types of eruptive activity to quantify probabilities of param-
eters such as tephra concentration, mass, or thickness at a 
given location (e.g. Macedonio et al. 2016; Barsotti et al. 
2018; Dioguardi et al. 2020). National and regional probabil-
istic hazard assessments, such as those for tephra fall, require 
ESPs for all volcanoes in the area of interest (e.g. Jenkins 
et al. 2012; Bonadonna et al. 2021). However, knowledge 
regarding eruptive activity for different volcanoes, even 

those in close proximity, is often highly variable in amount 
and quality meaning that one set of ESPs may be applied to 
all volcanoes in a region (Jenkins et al. 2012).

A third type of modelling study, generally run by volcano 
observatories or meteorological organizations, involves daily 
simulations of an eruption under current wind conditions 
for a volcano that is in a state of unrest and threatening to 
erupt (Hurst and Davis 2017, Coombs et al. 2019, Scollo 
et al. 2019, Barsotti et al. this issue). In this case, a small 
number of scenarios are defined, which cover the range of 
potential activity at a volcano, given past eruptive activity, 
scale of unrest and, where appropriate, information from 
other similar volcanoes. The scenarios use different values 
for parameters such as plume height, eruptive volume, and 
duration; but it is common for multiple scenarios to share 
particle characteristics such as grain-size distribution due to 
limited amounts of available data.

Both volcano observatories and Volcanic Ash Advisory 
Centres (VAACs) also conduct near-real-time hazard assess-
ments immediately prior to and during an eruption. The 
simulations that inform these hazard assessments require 
information specific to the volcano and event of interest in 
as close to real-time as possible. While the ideal situation 
involves ESP information, such as plume height, to be avail-
able in real-time, the reality is that operational response usu-
ally involves working with information that is hours to days 
old and commonly with information from previous events. 
Several factors affect the speed at which observations can be 
obtained and used to inform inputs for numerical modelling. 
These include the ability to make observations either in the 
field or via remote sensing, which may be limited due to 
poor weather, or the remote nature of a volcano. Additional 
delays may arise due to communication challenges between 
those conducting observations and those initiating numeri-
cal models.

In this contribution, we detail some of the issues involved 
with defining ESPs specific to tephra dispersion. We briefly 
discuss those parameters most frequently required for initiat-
ing simulations, difficulties in defining these parameters, and 
available resources designed to inform them when observa-
tions are not available. While we focus on tephra dispersion, 
many of the approaches, difficulties, and uncertainties dis-
cussed are applicable to simulating other hazards, including 
those not related to volcanic eruptions.

Eruption source parameters for simulating 
tephra dispersion

Tephra poses a significant risk to aviation (e.g. Guffanti and 
Tupper 2015; Prata and Rose 2015, Mastin et al. 2022). The 
abrasive nature of tephra means that it can damage aircraft, for 
example, by abrading windows resulting in reduced visibility, 
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Table 1  Available resources containing eruption source parameter 
information. Asterisks highlight those resources used in this study. 
iC refers to dominant eruption composition, H to plume height, D to 
eruption duration, M to eruptive mass, V to eruptive volume, MER to 
mass eruption rate, Dd to deposit density, GSD to grain-size infor-
mation, Pd to particle density, Vd to vent diameter, Ev to exit veloc-
ity, Mt to magmatic temperature, and Atm to atmospheric conditions. 

+Value refers to all volcanoes in the dataset, some of which do not 
have recent eruptions or comprehensive source parameter informa-
tion. Datasets accessed on 01 Nov 2023. Many additional studies 
have collated data for defining empirical relationships between MER 
and plume height. These are reviewed in Table  1 of Aubry et  al. 
(2021) and are therefore not discussed further here.

Name of Dataset/ Reference Published Intended Application Number of  
Volcanoes

Geographical 
extent

Datai Uncertainty 
information

IAVCEI Eruption Source Parameter 
Dataset

https:// thm. iavce ivolc ano. org/ datas ets/

2004 Testing and validation 
of tephra dispersal 
models

8 Global C, H, D, V, Dd, 
GSD, Pd, Atm

No

Eruptions of Alaskan Volcanoes
Cameron et al. 2022
https:// avo. alaska. edu/ explo re/ erupt ions/

2005 Record of eruptive 
activity at Alaskan 
volcanoes

80+ Alaska, US C, H, V No

*Eruption Source Parameter Dataset 
(M-ESP)

Mastin et al. 2009a
https:// webap ps. bgs. ac. uk/ resea rch/ volca 

noes/ esp/

2009 Provides parameters 
for tephra dispersal 
modelling

1535 Global H, D, MER, V, 
GSD

No

Large Magnitude Explosive Volcanic  
Eruptions (LaMEVE)

Crosweller at al. 2012
https:// www2. bgs. ac. uk/ vogri pa/

2012 Provides information 
on characteristics 
of large explosive 
eruptions within the 
Quaternary Period

480 Global C, H, V, M Error and Qual-
ity flags

Eruption data for ash-cloud model  
validation

Mastin et al. 2013
https:// thegh ub. org/ resou rces/ 2431

2013 Testing and validation 
of tephra dispersal 
models

4 Global C, H, D, M, Pd, 
GSD

Ranges for 
some param-
eters provided 
in text

*Catalogue of Icelandic Volcanoes (CIV)
Aviation Table https:// icela ndicv olcan os. is/

2016 Provides information 
on past Icelandic 
volcanic activity, in  
addition to parameters  
for tephra dispersion  
modelling

34 Iceland H, D Ranges pro-
vided for H 
and D

Total Grain Size Distribution in Selected 
Icelandic Eruptions

 Hoskuldsoon et al. 2018

2018 Provide grainsize infor- 
mation for several 
Icelandic eruption 
for tephra dispersion  
modelling

6 Iceland C, H, V, GSD Ranges pro-
vided for H 
and V

Independent Volcanic Eruption Source 
Parameter Archive (IVESPA)

Aubry et al. 2021
https:// ivespa. co. uk/

2021 Testing and validation 
of eruption column 
models

45 Global H(s), D, M, 
MER, Vd, 
GSD, Ev, Mt, 
Atm

Provided for 
key param-
eters

Mass Eruption Rate, Column Height and 
Duration dataset for Volcanic Eruptions

Deligne et al. 2021

2021 Informs probabilistic 
tephra fall modelling  
inputs

37 New Zealand 
& Global

C, H, D, MER Quality 
information 
provided

*European Catalogue of Volcanoes (ECV) 
Aviation Table

https:// volca noes. eurov olc. eu/

2021 Provides information 
on past European 
volcanic activity, in  
addition to parameters  
for tephra dispersion  
modelling

51 Europe H,D Ranges pro-
vided for H 
and D

https://thm.iavceivolcano.org/datasets/
https://avo.alaska.edu/explore/eruptions/
https://webapps.bgs.ac.uk/research/volcanoes/esp/
https://webapps.bgs.ac.uk/research/volcanoes/esp/
https://www2.bgs.ac.uk/vogripa/
https://theghub.org/resources/2431
https://icelandicvolcanos.is/
https://ivespa.co.uk/
https://volcanoes.eurovolc.eu/
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while ash ingested into aircraft engines can soften and coat 
or obstruct moving parts, in the worst cases leading to engine 
failure (Clarkson et al. 2016). On the ground, tephra can dam-
age and disrupt infrastructure, affect agriculture, and impact 
human and animal health (e.g. Horwell and Baxter 2006; Wil-
son et al. 2012; Wilson et al. 2014; Jenkins et al. 2015; Bona-
donna et al. 2021). Therefore, identifying the areas potentially 
affected by tephra, both in the air and on the ground, is key 
for hazard mitigation.

Several models and workflows exist to simulate the trans-
portation of tephra through the atmosphere (e.g. Bonadonna 
et al. 2005; Macedonio et al. 2005; Barsotti et al. 2008; 
Scollo et al. 2008a; Folch et al. 2009; Schwaiger et al. 2012; 
Folch 2012; Beckett et al. 2020). While the approach and 
numerical models applied vary depending on the applica-
tion, there are several parameters used to describe volcanic 
activity that are common to most applications that simulate 
tephra dispersion in the atmosphere. These include plume 
height and mass eruption rate, eruption duration, erupted 
volume, grain-size distribution, and the vertical distribution 
of tephra above the volcanic source.

Methods used in the estimation of eruption 
source parameters for explosive eruptions

Evaluating eruption source parameters 
in nearreal‑time

In this contribution, we focus on the ESPs required for 
simulating dispersal of volcanic ash and therefore on those 
eruptions which have an explosive component. During an 
eruption, ESPs can be defined in near real-time through 
observation and analysis of an event (note that this near real-
time capability is absent for many volcanoes and eruptions). 
At a few exceptionally well-instrumented volcanoes such as 
Mount Etna, Italy, combined sensors (e.g. satellites, radar, 
lidar, visible and thermal cameras; Bonadonna et al. 2012; 
Bonadonna 2014) are available that can provide informa-
tion on plume height, eruptive mass, mass eruption rate, 
and grain-size. In such cases, multi-sensor strategies may 
provide a comprehensive characterisation of ESPs and allow 
for near real-time forecasting (e.g. Corradini et al. 2016; 
Scollo et al. 2019; Scollo et al. 2020; Freret-Lorgeril et al. 
2021). Below, we describe each key ESP used in tephra dis-
persion modelling in turn and provide information on how 
each parameter is measured.

Plume height is perhaps the most important ESP in 
the sense that it is required to initiate every cloud disper-
sal model; as such, it exerts a primary control on forecast 
results. At most volcanoes, plume height, reported in kilo-
meters or meters above sea level (a.s.l.) or above vent level 
(a.v.l.), is the only ESP that can be observed or measured 

in near real-time. It is typically determined from satellite 
retrievals, radar and lidar data, visible and thermal camera 
observations, and/or pilot reports (e.g. Holasek and Self 
1995; Prata and Turner 1997; Arason et al. 2011; Petersen 
et al. 2012; Marzano et al. 2013; Scollo et al. 2014; Bonac-
corso and Calvari 2017; Pailot-Bonnétat et al. 2020; Barnie 
et al. 2023). The accuracy of plume height obtained using 
ground-based radar generally depends on the spatial distri-
bution of the instruments in relation to the active vent, the 
temporal resolution of the data, the scanning strategy used, 
and the working frequencies that define the sensitivities to 
a given part of the grain-size distributions (e.g. Marzano 
et al. 2006, 2020). Limitations exist when using webcams 
in low light or poor weather conditions, and observations 
of volcanic plumes in satellite imagery are often obscured 
by meteorological clouds. As such, each sensor is charac-
terised by intrinsic uncertainties and observes the plume at 
different times. As a result, significant discrepancies have 
been reported between plume heights obtained from sat-
ellites and ground observations (Tupper and Wunderman 
2009; De Michele et al. 2016; Cahalan et al. 2023). These 
discrepancies reflect, in part, that plume heights estimated 
using these methods represent different parts of the plume, 
for example, the plume top versus spreading height of the 
plume (Aubry et al. 2021, 2023; Deligne 2021). In addi-
tion to measurement considerations, temporal and spatial 
variability in plume height means that a single plume height 
value might not be representative of volcanic plume behav-
iour during an eruption, especially if emissions are pulsatory 
or continue for several hours to weeks.

Duration describes the length of time over which vol-
canic products are emitted from the vent, typically during 
a given event. However, in the literature, duration can be 
used to describe an entire eruption, which may include mul-
tiple explosive events that occur over a period of weeks to 
months, to single explosive events with durations of sec-
onds to hours. This makes compilation of duration infor-
mation from the literature difficult, with estimates prone to 
large uncertainties. One reason for this is that it is often 
easier to identify the start than the end of an eruptive event, 
particularly for those that are fluctuating, long lived or end 
gradually (Aubry et al. 2023). Given this, eruption or emis-
sion start time is more commonly found in literature than 
eruption end time. Sources such as infrasound, lightning, 
thermal cameras, direct observations, and seismicity are 
used to identify the start of an event, or confirm that an 
event is ongoing, and therefore may inform eruption duration 
estimates. It is important to consider that an ash cloud can 
continue dispersing in the atmosphere long after the end of 
an event (i.e. when volcanic material is no longer emitted 
from the vent, Engwell et al. 2013).

Erupted volume and mass denote the amount of mate-
rial emitted during an eruption, and the mass eruption rate 
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profile that has been calibrated using inversion studies of 
specific eruptions (e.g. Kristiansen et al. 2012).

Given their variability and intrinsic uncertainty, the accu-
racy of ESPs can be improved during long-lasting explosive 
eruptions through data assimilation, whereby information from 
several sources is used (e.g. Pardini et al. 2020; Mingari et al. 
2022). However, knowledge of the value of most parameters 
is incomplete when initiating an operational forecast simula-
tion, such as those conducted by VAACs, particularly in the 
early stages of an eruption. Some parameters may not be accu-
rate or even available. Others, such as TGSD, eruption dura-
tion, or the vertical distribution of mass in the plume, must still 
be inferred from previous events, often using inversion model-
ling techniques. Some insights into the scale of an eruption and 
therefore appropriate ESPs can be gained through the monitor-
ing of volcanoes in conjunction with knowledge of previous 
activity at the volcano. However, a significant proportion of 
volcanoes worldwide are unmonitored (Loughlin et al. 2015), 
limiting potential insight from unrest. Many unmonitored vol-
canoes also have limited or no information on past eruptions, 
resulting in numerous geographical blind spots in terms of our 
ability to accurately assign ESPs.

Evaluating eruption source parameters 
from past eruptive activity

Despite advances in near real-time estimation of ESPs, there 
is often the need for easily accessible information on poten-
tial eruptive behaviour for operational response. The use of 
data from past eruptions to inform future activity relies on 
the fundamental yet standard assumption that the size and 
nature of hazards derived from a volcano during past erup-
tions, at analogue volcanoes, and/or at analogue eruptions 
are reflective of future hazards (e.g. Loughlin et al. 2015). 
This assumption also underpins the assignment of ESP 
values in datasets and modelling (e.g. Mastin et al. 2009a, 
2009b). Some eruptive sequences have produced strings of 
similar explosive events that would appear to justify this 
assumption. Examples include Crater Peak (Mount Spurr) 
in 1992 (Neal et  al. 1995) and Bogoslof in 2017–2018 
(Coombs et al. 2019). Others, such as Mount St. Helens 
(May through October 1980; Sarna-Wojcicki et al. 1981), 
have systematically varied in size; and still, others, such as 
Merapi 2010, were outliers in an otherwise consistent pat-
tern. Thus, this approach should be considered in light of 
other observations.

Information from the published record on past eruptive 
activity at a volcano is often used to supplement that from 
recent or unpublished observations. Like those uncertain-
ties associated with near-real-time measurements, signifi-
cant unknowns and biases are inherent in both historical 
and geological records and our use of these data to inform 
ESPs (e.g. Mastin et al. 2009a, 2009b; Aubry et al. 2021). 

(MER, sometimes also referred to as the mass discharge or 
mass flow rate (MDR and MFR, respectively)) is the rate at 
which this material is discharged. Mass and MER, reported 
in kilograms and kilogram per second, respectively, can be 
derived either from plume height, based on empirical and 
analytical/numerical expressions (e.g. Wilson and Walker 
1987; Mastin et al. 2009b; Degruyter and Bonadonna 2012; 
Woodhouse et al. 2013; De Michele et al. 2016; Dürig et al. 
2018; Aubry et al. 2023), or estimated from geophysical 
sensors such as satellites (Wen and Rose 1994; Prata and 
Grant 2001; Corradini et al. 2018), Doppler radar (Mar-
zano et al. 2006; Freret-Lorgeril et al. 2018; Marzano et al. 
2020), infrasound (e.g. Ripepe et al. 2013; Freret-Lorgeril 
et al. 2021), and seismic tremor (Bernard et al. 2016). A 
mean estimate of MER can also be calculated after an event 
from measurements of eruptive mass and duration (Aubry 
et al. 2021). In this way, uncertainties on plume height and 
duration often propagate through to estimates of MER and 
other parameters (e.g. Bonadonna et al. 2015; Dioguardi 
et al. 2020).

Numerical model results are sensitive to particle param-
eters such as grain-size distribution (GSD), particle density, 
and shape (e.g. Beckett et al. 2015; Saxby et al. 2018). It is 
very difficult to measure grain-size during an eruption in a 
timely manner, with no one remote method able to meas-
ure the complete size range of particles emitted. Particle 
shape and density are also difficult to measure in real-time, 
with methods often associated with large uncertainties. In 
the rare cases where GSD is determined by near-real-time 
measurements, the narrow size range detectable by different 
sensors requires multi-sensor strategies for the determination 
of total grain-size distribution (TGSD). For example, Dop-
pler radar used in volcano monitoring tends to be sensitive 
to coarse size fractions (>100 μm), while lidar and satel-
lite instruments are sensitive to fine size fractions (< 100 
and < 20 μm, respectively) (e.g. Scollo et al. 2012; Freret-
Lorgeril et al. 2021). A standard strategy does not yet exist, 
despite land disdrometers and the combination of satellite 
and radar data with complementary size detection limits pro-
viding promising results for near-real-time characterisation 
(Freret-Lorgeril et al. 2021, 2022). More commonly, real-
time simulations are initiated using a default GSD. Depend-
ing on the model and application, the full TGSD or a portion 
of the TGSD (e.g. Beckett et al. This issue) may be used as 
an input.

Vertical distribution of mass describes how tephra is dis-
tributed in the plume above the vent. In comparison to the 
other parameters, the vertical distribution of mass cannot be 
directly measured during an eruption. Instead, it is typically 
assigned based either on a plume model simulation (e.g. De 
Michele et al. 2016; Cao et al. 2021; Folch et al. 2020), an 
assumed uniform distribution (e.g. Beckett et al. 2020), or a 
Suzuki distribution (Suzuki 1983) with a tephra distribution 
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The estimation of plume height, erupted mass, and in many 
cases eruption duration often relies on the analysis, inter-
pretation, and numerical inversion of eruptive deposits (e.g. 
Connor and Connor 2006; Volentik et al. 2010; Connor et al. 
2019; Aubry et al. 2021). Deposits are commonly affected 
by erosion and remobilisation (Jarvis et al. 2020; Buckland 
et al. 2020), and uncertainties may arise in measurement 
(Engwell et al. 2013), analysis (Nathenson 2017), and inter-
pretation (Bonadonna et al. 2015). The scale of these uncer-
tainties varies according to the age of the eruption (older 
deposits tend to be less well-preserved and exposed) and 
the geographical location of the volcano: deposits in tropi-
cal regions are affected by remobilisation and erosion due to 
heavy rates of rainfall while those in high wind regions are 
frequently affected by wind remobilisation. These assump-
tions and data limitations contribute to uncertainty and 
potential errors in the determination of model inputs and, 
therefore, in the compilation and choice of hazard scenarios 
and the application of numerical models (e.g. Scollo et al. 
2008b; Macedonio et al. 2016; Harvey et al. 2018; Dioguardi 
et al. 2020).

Measurement uncertainties are compounded by incon-
sistent reporting of ESP data in the published record. 
Plume height commonly varies with time during an erup-
tion, and in published records, it is often not clear whether 
a measurement represents the average, initial, maximum, or 
another measure of eruption plume height, or what specific 
phase or event of an eruption an estimate relates to. Most 
ash dispersal models use input plume height as the height 
at which the plume is spreading laterally in the atmosphere, 
which may be several kilometres lower than the maximum 
plume height. Variability in characteristics during an 
eruption is not limited to plume height estimates, but also 
affects other parameters such as grain-size distribution. The 
grain-size of particles emitted during an eruption can vary 
depending on fragmentation process, or eruption style, for 
example, whether an eruption produces pyroclastic density 
currents that mill ash (Dartevelle et al. 2002) or involves 
interaction with snow or water. Collecting and process-
ing grain-size information are time intensive, and several 
studies have focused on the production of guidelines for 
accurate and comparable measurements (Bonadonna et al. 
2013; Wallace et al. 2022). Given the time and amount of 
data needed, TGSDs required to initiate tephra dispersal 
simulations are relatively sparse in the published record. 
There is therefore a reliance on distributions from a small 
number of studies to inform grain-size inputs for volca-
noes and eruptions worldwide (e.g. Costa et al. 2016a; Pioli 
et al. 2019).

On a more basic level, uncertainties in the use of infor-
mation from past eruptions arise due to a lack of supporting 
metadata. For example, it is often unclear whether published 
plume height values refer to height above sea level or above 

vent. Similarly, accounts of eruption duration frequently do 
not explain the observations used to define the start or end 
of an eruption (Jenkins et al. 2007; Deligne 2021). Some of 
these difficulties relate to how eruptions are defined, whether 
duration refers to the whole eruption or a single phase or 
event and the difficulty in assigning an end to an event that 
gradually diminishes with time. These considerations make 
the estimation of appropriate ESPS a time-intensive process, 
complicating the use of information for operational response 
purposes.

Given the range of studies and uses of plume and tephra 
dispersal modelling, from research to operational, several 
datasets have been produced, each with different intended 
applications and geographical coverage. These include the 
Large Magnitude Explosive Volcanic Eruptions (LaMEVE; 
Crossweller et al. 2012) database, which contains ESP infor-
mation for large eruptions within the Quaternary and the 
IVESPA dataset (Aubry et al. 2021), which includes a large 
range of ESPs and other information. An overview of these 
resources and other related resources is provided in Table 1. 
Both the LaMEVE and IVESPA datasets were developed 
primarily for research purposes, i.e. understanding global 
volcanic activity and validation of numerical models, respec-
tively. Here, we focus on resources developed specifically to 
inform operational response to volcanic eruptions, in par-
ticular those developed for simulating tephra dispersion to 
inform hazard to aviation. Below, a global and two regional 
datasets of ESPs specific to ash-aviation hazard assessment 
purposes are described in detail: the ESP dataset of Mastin 
et al. (2009a) (MESP; global dataset) and the Catalogue of 
Icelandic Volcanoes and the European Catalogue of Volca-
noes (CIV and ECV, respectively; regional datasets). We 
reflect on the background of these datasets, their contents, 
and limitations and look to future requirements of such 
resources.

Eruption source parameter datasets 
for operational applications

Global resources: the Mastin et al. (2009a) Eruption 
Source Parameter (MESP) dataset

During the first meeting of the International Civil Aviation 
Organization (ICAO) International Airways Volcano Watch 
Operations Group (IAVWOPSG) in 2004, ESP uncertainties 
were identified as a key factor limiting the accuracy of tephra 
dispersal forecasts (ICAO 2004, Conclusion 1/24). The issue 
was raised again during the second meeting in 2005, and 
it was decided that a dedicated effort would be made to 
improve the quality in ESPs used in VAAC forecast mod-
els (ICAO 2005, Conclusion 2/27). Several workshops and 
meetings on ESPs followed, resulting in the publication of 
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a special volume on volcanic plumes by the Journal of Vol-
canology and Geothermal Research (v. 259., 2009). A key 
paper in that volume (Mastin et al. 2009b), co-authored by 
representatives from the nine VAACs, described a multi-dis-
ciplinary effort to improve ESP estimates during eruptions.

Mastin et al. (2009b) identified 11 eruption types, char-
acterised by a specific magma type, eruption size, or pro-
cess (Table 2). Each eruption type was assigned a charac-
teristic plume height, duration, erupted volume, and mass 
fraction of fine ash in the erupted debris based on a well-
described eruption of this type (Table 2). For example, a 
‘medium silicic (S2)’ eruption, based on the 1992 Mount 
Spurr (Alaska) eruptions (Neal et al. 1995), was assigned 
a plume height of 11 km above the vent, a duration of 3 
h, a mass eruption rate of 4 ×  106 kg/s, a volume of 0.015 
 km3, and a grain-size distribution that contains 40% ash 
finer than 63 microns. The selected analogue eruptions were 

well-described and represent a wide range of eruptive behav-
iour. The sister publication (Mastin et al. 2009a) presented a 
spreadsheet that assigned eruption types to each of the 1535 
Holocene volcanoes listed at the time in the Smithsonian 
Institution’s Global Volcanism Program database (Global 
Volcanism Program 2023; Figure 1). The assignments were 
based on patterns of eruptive behaviour at each volcano, or, 
for volcanoes that had not erupted in historical time, on the 
type of volcano or magma type according to information 
in the Smithsonian Institution’s Global Volcanism Program 
database and in the published record. The use of categories 
meant that consistent information could be provided and 
negated decisions on the amount of information required to 
characterise eruptive activity at each volcano.

The MESP dataset was intended to provide ESPs for 
simulations in cases where no observations were available, 
including the following:

Table 2  Categories and ESPs assigned to Holocene volcanoes in 
the Mastin et  al. (2009b) Eruption Source Parameter (MESP) data-
set, where H refers to plume height, D eruption duration, MER mass 

eruption rate, V volume, and m63 the fraction of the grain-size distri-
bution less than 63 microns.

Type Magma type Historical eruption 
characteristics

Eruption type Example H_MESP: 
H km above 
vent

D (h) MER (kg/s) V  (km3) m63

M0 Basalt or other 
mafic

Insufficient his-
torical data to 
characterise

Mafic, standard Cerro Negro, Nica-
ragua, 9–13 April 
1992

7 60 1 ×  105 0.01 0.05

M1 H ≤ 5 km or VEI 
≤ 2

Mafic, small Mount Etna, Italy, 
19–24 July 2001

2 100 5 ×  103 0.001 0.02

M2 H = 5–8 km or VEI 
= 3

Mafic, Medium Cerro Negro, Nica-
ragua, 9–13 April 
1992

7 60 1 ×  105 0.01 0.05

M3 H > 8 km or VEI 
≥ 4

Mafic, Large Fuego, Guatemala, 
14 October 1974

10 5 1 ×  106 0.17 0.1

S0 Andesite, dacite, 
rhyolite, or other 
explosive compo-
sition

Insufficient his-
torical data to 
characterise

Silicic, Standard Mount Spurr, USA, 
18 August 1992

11 3 4 ×  106 0.015 0.4

S1 H ≤ 6 km or VEI 
≤ 2

Silicic, small Mount Ruapehu, 
New Zealand, 17 
June 1996

5 12 2 ×  105 0.003 0.1

S2 H = 6–12 km or 
VEI = 3

Silicic, medium Mount Spurr, USA, 
18 August 1992

11 3 4 ×  106 0.015 0.4

S3 H > 12 km or VEI 
≥ 4

Silicic, large Mount St. Helens, 
USA, 18 May 
1980

15 8 1 ×  107 0.15 0.5

S8 Major pyroclastic 
flows with an 
elutriated column 
rising above the 
flows

Co-ignimbrite 
cloud

Mount St. Helens, 
USA, 18 May 
1980 (pre-9 AM)

25 0.5 1 ×  108 0.05 0.5

S9 Active lava dome 
present

Brief Soufriere Hills, 
Montserrat (com-
posite)

10 0.01 3 ×  106 0.0003 0.6

U0 All magma types Submarine vent 
with a water depth 
≥ 50 m

Submarine None 0 - - - -
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 (i) Before an eruption, for volcanoes that are in a state of 
unrest, to anticipate where ash might go if an erup-
tion started

 (ii) In the first minutes of an eruption, when no direct 
observations are available (e.g. when seismicity or 
infrasound suggests an eruption but no satellite data 
are available)

 (iii) For source parameters, such as grain-size distribution 
or duration, that are not observable or unknown early 
in an eruption.

The MESP dataset provides an informed estimate of 
parameters for the world’s Holocene volcanoes in an easily 
accessible format. Parameters in the dataset are the plume 
height above vent, eruption duration, mass eruption rate, 
erupted volume, and the fraction of particles emitted that 
are less than 63 microns in size.

Limitations in the parameters exist because the data-
set covers such a large area: parameters are not unique 
to a specific volcano and only one set of parameters is 
provided, essentially defining one eruption scenario per 
volcano. A volcano may exhibit a range in activity during 
an eruption, but insufficient information exists to define 
specific activity at each volcano globally. This is particu-
larly true for those volcanoes that have not erupted in the 
period with written documentation, such as many volca-
noes across sub-Saharan Africa and East Asia (Fig. 1), 

where intermediate ESPs were assigned given the lack of 
available eruptive information.

Regional resources

Volcano specific data, including ESPs such as plume height 
and eruption duration, have been assembled for some spe-
cific regions. For example, plume heights and (where avail-
able) erupted volumes for Alaskan volcanoes are accessible 
on the Alaska Volcano Observatory website (https:// www. 
avo. alaska. edu/, accessed 1 March 2023, Cameron et al. 
2022), while source parameters for New Zealand volcanoes 
have been compiled by Deligne (2021) to aid in probabil-
istic hazard analysis. Here, the CIV, ECV, and, in particu-
lar, the associated aviation tables which were designed to 
provide input parameters for tephra dispersal modelling are 
discussed in detail.

Catalogue of Icelandic Volcanoes (CIV)

In the aftermath of the Eyjafjallajökull eruption in 2010 and 
its extended impact on air traffic, the ICAO funded a pro-
ject aimed at collecting and making accessible information 
on Icelandic volcanoes (Karlsdóttir et al. 2012). The CIV, 
which was initially designed in 2011, was further developed 
and finalized within the European project FUTUREVOLC 
thanks to a strong collaboration between the Icelandic 

Fig. 1  Map showing distribution of volcanoes for each category 
within the Mastin et  al. 2009a Eruption Source Parameter (MESP) 
dataset together with Volcanic Ash Advisory Centre (VAAC) areas of 
responsibility. S0 and M0 were assigned to volcanoes that have not 

erupted within historical times. Dashed lines represent the bounda-
ries of the VAAC areas of responsibility. The map projection is ITRF 
2014 and the base map is a modified version of the ESRI Light Gray 
Canvas Map

https://www.avo.alaska.edu/
https://www.avo.alaska.edu/
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Meteorological Office (IMO), the University of Iceland, 
and the Icelandic Department of Civil Protection. The CIV 
presents a portal to up-to-date knowledge on volcanoes and 
volcanic activity in Iceland. It is composed of several parts 
and it delivers information customized to a variety of users. 
Amongst other features, including the eruption search func-
tionality, the CIV hosts a table (labelled the ‘aviation table’), 
which summarizes key information of relevance for VAACs 
and those running ash dispersal codes. It includes data for 
33 Icelandic volcanoes and one Norwegian volcano (Beer-
enberg) and contains general volcano information such as 
coordinates (in a format directly usable by aviation users), 
elevation, last eruption date, and the volcano ICAO code. 
Instead of single values for parameters, the table contains 
two different estimates of plume height based on the cur-
rent knowledge of past eruptive activity: a reasonable worst 
and most likely vertical limit. A single value is provided for 
reasonable worst-case plume height, while a range of plume 
heights is provided for the most likely plume height. Several 
volcanoes are listed as having an unknown plume height due 
to a lack of data and eruptions in historical times. For all Ice-
landic volcanoes, notes are provided on predominant activity 
(effusive, explosive, effusive-explosive, explosive-effusive) 
and associated probable durations (weeks to months for 
effusive eruptions and hours or days to weeks for explosive 
eruptions). The CIV is frequently updated, and an edito-
rial board reviews the contained information. Further, the 
information contained in it are regularly used for designing 
eruption scenarios adopted to run the monthly exercises by 
IMO, London VAAC, and Icelandic Air Service Provider 
(ISAVIA; Beckett et al. this issue). In 2019, the Icelandic 
language version of the CIV was launched and facilitated 
a wider access by the local community and Icelandic users.

European Catalogue of Volcanoes (ECV)

The CIV was expanded to include information for volcanoes 
in other locations across Europe and associated territories 
(Fig. 2) as part of the Horizon 2020 EUROVOLC project 
resulting in the European Catalogue of Volcanoes (ECV, 
https:// volca noes. eurov olc. eu/, accessed 1 Dec 2022). The 
ECV was the result of a standardization in data provision 
across most volcano observatories in Europe, and the infor-
mation provided was collected and prepared by local experts 
from the different monitoring institutions. A total of 51 vol-
canoes (including 34 that are also in the CIV) are currently 
listed. The ECV aviation table contains all of those param-
eters in the CIV aviation table and additionally includes the 
responsible VAAC for each volcano. Both unrest and erup-
tive activity since 2018, alongside information from the geo-
logical record, have informed the ESPs provided in the avia-
tion tables. Given that the ECV also contains information 
for the volcanoes in the CIV, we use information from the 

ECV throughout the rest of this contribution. While the ECV 
aviation table provides volcano specific ESPs, these ESPs 
do not include information on parameters such as grain-size, 
eruption volume, or mass eruption rate.

Comparison and use of eruption source parameter 
resources

Comparison of the MESP dataset and the ECV aviation table 
highlights gaps in information and informs future develop-
ment of these and other related resources. While both the 
MESP and the ECV aviation tables were produced for the 
same purpose, there are significant differences. The MESP 
provides parameters for a much larger number of volcanoes. 
This is only possible through categorisation of volcanoes 
and use of analogue eruptions: there is not enough infor-
mation available to provide tailored parameters for each 
volcano worldwide. This use of categories and analogues 
means that other parameters for which there is less infor-
mation in the published record, e.g. grain-size, can also be 
assigned. In comparison, the ECV aviation tables contain 

Fig. 2  Map of volcanoes within the Catalogue of Icelandic Volcanoes 
(CIV) and European Catalogue of Volcanoes (ECV) where marker 
color represents the eruptive category and dashed lines represent the 
boundaries of the relevant Volcanic Ash Advisory Centre (VAAC) 
areas of responsibility. Inset shows an expanded view of Iceland. The 
projection of the main map is ITRF 2014 and the projection of the 
inset map is ISN2006 Lambert 2016 and the base map is a modified 
ESRI Light Gray Canvas Map

https://volcanoes.eurovolc.eu/
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volcano-specific information for a more limited number of 
volcanoes and parameters and only when sufficient informa-
tion is available to inform parameters.

The MESP and the ECV aviation tables can both directly 
inform parameters used in modelling and be used to initi-
ate and inform discussions around appropriate parameters. 
The MESP provides single values while the ECV aviation 
table contains ranges for many parameters. This range in 
parameters aids ensemble modelling but a decision on the 
most appropriate parameter(s) to use is needed where pro-
cedure or limits in time or application constrain the number 
of simulations that can be run to a small number. Such a 
decision could be made in collaboration with the relevant 
volcano observatory and other appropriate experts.

In addition to the type of parameters, the assigned param-
eters also vary between the MESP dataset and the ECV 
aviation table (Fig. 3, Table 3, Supplementary Information 
1). For comparison of the values assigned to the volcanoes 
within these databases, we focus on plume height. Plume 
height is common to both datasets and is the most commonly 
collated piece of eruption information, enabling comparison 
with eruption information from the published record and 
from recent operational reports of eruptive activity. For this 

comparison, plume height in the MESP was converted from 
height above vent level to above sea level using the vent 
elevation provided in the dataset (Mastin et al. 2009a; Sup-
plementary Information 1). We note that for all but two vol-
canoes for which there is information in both datasets, the 
vent elevations are comparable (within 100 m, Table 3), with 
the exception of Helgrindur (ECV 986 m asl, MESP dataset 
647 m asl) and Beerenberg volcanoes (ECV 2085 m asl, 
MESP dataset 2277 m asl). These discrepancies may be due 
to different sources of elevation information; for example, 
the MESP used elevation information from the Smithsonian 
Institution’s Global Volcanism Program database at the time 
of publication, while the ECV information was provided 
by local experts, who may use different measurements or 
references.

In general, the MESP dataset plume heights (H_MESP) 
lie between the minimum of the ECV most likely vertical 
limit and ECV reasonable worst vertical limit (H_LMIN < 
H_MESP > H_Worst; Figure 3A). However, there are sev-
eral exceptions. The MESP dataset plume height is smaller 
than the minimum plume height given in the ECV for Katla 
(H_LMIN > H_MESP) and larger than the ECV reason-
able worst case for several Icelandic volcanoes (H_MESP 

Fig. 3  Comparison of plume 
height assigned to volcanoes 
common to the Mastin Erup-
tion Source Parameter dataset 
(MESP; Mastin et al. 2009a) 
and the European Catalogue of 
Volcanoes (ECV). A The most 
likely range, middle of the most 
likely range (H_MLR), and 
reasonable worst plume height 
(H_Worst) per volcano from 
the ECV aviation table and 
historical plume height range 
and assigned plume height (H_
MESP) for each volcano accord-
ing to its category within the 
MESP dataset. Open triangles 
show the vent elevation for each 
volcano in the two datasets. B 
Calculated difference between 
the assigned plume height in 
the MESP dataset and both the 
mid likely range (H_MESP-
H_MLR, grey circles) and the 
reasonable worst vertical limit 
(H_MESP-H_Worst, black 
circles) in the ECV. Exam-
ples of the plume heights for 
selected volcanoes are provided 
in Table 3 and for all volcanoes 
common to the datasets in Sup-
plementary Information 1
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> H_Worst) (Brennisteinsfjoll, Fremrinamar, Grimsnes, 
Helgrindur, Hengill, Hromundartindur, and Krysuvik). 
These differences are highlighted in Fig. 3B, where the 
MESP dataset plume height is compared with the mid value 
(H_MLR) of the ECV likely range and the ECV reasonable 
worst (H_Worst) vertical limit for those volcanoes present in 
both datasets. In this example, zero means the heights are the 
same and positive values show examples where the MESP 
dataset plume height is greater than heights in the ECV and 
negative values where they are smaller. Figure 3B shows that 
the MESP dataset plume heights are closer to the middle of 
the range of likely plume heights (within 10 km), than to the 
ECV reasonable worst limit (approximately 20 km greater).

The difference in the two datasets relates to the infor-
mation and methods used to assign parameters (Fig. 3). 
Parameters within the ECV were assigned based on expert 
knowledge of a specific volcanic system and on current 
knowledge of previous activity, while the MESP dataset 
values are based primarily on volcano category. To further 
investigate differences in the assigned parameters and how 
they relate to observations, we compare plume heights from 
the two datasets with eruption information from Mount 
Etna volcano (Fig. 4). Mount Etna is one of the best moni-
tored and most frequently active volcanoes in the world and 
numerous datasets contain information about its eruptive 
activity. The large amount of available plume height data in 
the published record enables a comparison of information 
in the MESP and the ECV aviation table with observations 
and published data. We note that the MESP dataset used the 
19–24 July 2001 eruption of Mount Etna to set parameters 
of all volcanoes in the small mafic volcano (M1) category 
(Table 2). For our purpose, the plume height from the MESP 
dataset is converted from height above vent to height above 
sea level by adding the elevation of Mount Etna as reported 
in the MESP (3300 m). We show in Fig. 4 that for Mount 
Etna, the MESP dataset plume height (dotted line) falls at 
the upper end of the ECV most likely vertical limit range in 
the aviation table (hatched area), while the ECV aviation 
table reasonable worst vertical limit (thick dashed grey line) 
is considerably larger, at 20 km.

We compare the ESP Mount Etna designation with 
eruption data from two sources: a contemporary and a 
historical dataset. The contemporary dataset is composed 
of information extracted from volcanic ash advisories 
(VAAs) issued by the responsible VAAC, VAAC Toulouse, 
in the period between 2009 and 2021. VAAs contain infor-
mation on the timing of an eruptive event, the observed 
extent and plume height, and forecast plume extents. The 
VAA dataset contains information gathered from vari-
ous sources including the volcano observatory, webcam, 
and satellite images. This information is presented at 6-h 
intervals to inform civil aviation of the presence of ash 
in the atmosphere. Therefore, they provide high temporal 

resolution plume height information for events that do not 
necessarily produce significant deposits, capturing smaller 
events. However, the temporal requirement for issuing a 
VAA means that plume heights may not be validated and 
therefore certain. VAAs also report on any volcanic ash 
in the atmosphere and so the height reported may refer to 
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Fig. 4  Histograms of A Volcanic Ash Advisory (VAA) plume height 
information from eruptive events at Mount Etna in the period 2009–
2021. B Information from the historical record (Branca and Carlo 
2005), for Mount Etna since the 1600s. Elevations above sea level 
that are within the volcanic edifice are indicated with a dark grey bar 
(note that eruptions can occur on the flanks with plumes that remain 
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plume height interval and the thick dashed grey line the reasonable 
worst-case scenario according to the European Catalogue of Volca-
noes (ECV). The dark grey dotted vertical line is the assigned plume 
height in the Eruption Source Parameter (M-ESP) dataset (Mastin 
et al. 2009a) and the black dashed line is the median plume height for 
each dataset
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ash that has been transported far from the volcano; i.e. the 
plume height may not be that of the plume directly above 
the eruptive vent (Engwell et al. 2013).

Historical datasets such as that in Branca and Carlo 
(2005) and the ECV contain eruptive information dating 
back to the 1600s and are based on a combination of geo-
logical and historical information. Geological and historical 
records such as those collated in Branca and Carlo (2005) 
and the ECV tend to emphasise larger, or more scientifically 
interesting or societally relevant eruptions. In many cases, 
information may exist about the occurrence of an eruptive 
event, but details such as plume height and duration are not 
available. This data availability issue also affects contempo-
rary datasets. The limited time span covered by the VAAs 
and to a lesser extent the historical dataset of Branca and 
Carlo (2005) mean that much larger events are not captured. 
It is also important to note that the measurement techniques 
used and the eruptive vent location have changed during the 
time scales covered by each of these datasets with potential 
impact for uncertainty on volcanic plume height.

The VAA plume heights produce an incomplete distribu-
tion, with a peak at low plume heights and a tail to greater 
plume heights and a median plume height (black dashed 
line) of 4.6 km asl. The historical data show similarities to 
the VAA data, with a patchy distribution with a tail towards 
larger plume heights. However, this distribution is shifted to 
greater plume heights, with fewer observations of smaller 
plumes resulting in a median plume height of 6.3 km asl.

The most likely range of plume heights provided in the 
ECV aviation table capture most of the plume heights given 
in the VAAs, but only a small proportion of the heights 
within the historical record fall within this range. In compar-
ison, the worst-case vertical limit is much greater than any 
of the heights given in the VAAs and 5 km higher than the 
maximum plume height in the historical record. Given that 
the MESP dataset provides one plume height, we compare 
this with the median plume height of each of the datasets. 
The MESP dataset plume height is almost identical to the 
median plume height from the VAAs but is lower than the 
median plume height given by historical observations. These 
comparisons highlight the role of expert judgement in addi-
tion to information on previous eruptions to inform ESPs.

The comparison of plume height data and MESP dataset 
parameters for Mount Etna builds on previous analysis by 
Engwell et al. (2013), who compared parameters for all vol-
canoes that have been active between 2009 and 2019 with 
plume height information presented in VAAs. This analysis 
showed that for some categories, particularly those related 
to volcanoes with no historical information (S0 and M0; 
Figure 1 and Table 2), the MESP dataset lists greater plume 
heights than those based on observed activity within that 
10-year period. This is likely related to bias in the record, 
with VAAs recording very small plumes (< 2 km above 

vent) where observed, while the ESP dataset categories were 
informed using a range of information, including historical 
and geological data which encompasses larger events.

Comparison of the two datasets shows that there are some 
significant differences in the parameters assigned to certain 
volcanoes. The CIV and ECV use expert judgement, based 
on recent information to inform parameters within the avia-
tion tables. The differences in the datasets, therefore, show 
the value in detailed analysis of eruptive histories but also 
highlight the requirement to maintain datasets to ensure that 
parameters are aligned with current knowledge. For many 
volcanoes, however, where the eruption record is poorly 
known, it is not possible to assign tailored parameters and 
therefore, categorisation methods such as those used in the 
MESP dataset are required.

Eruption source parameter dataset 
maintenance and responsibilities

Estimation of ESPs is non-trivial, and as shown above, 
considerable time is required to gather and process data 
to produce datasets such as the global MESP dataset and 
the regional CIV and ECV datasets and aviation tables. 
However, there is the need to maintain and update these 
datasets, to reflect changes in understanding of potential 
activity as informed by recent activity, to reduce uncer-
tainty, and to ensure datasets remain fit for purpose. 
For example, Mayotte volcano is in the ECV and avia-
tion table but not in the MESP dataset; in 2009, Mayotte 
volcano was not listed in the Global Volcanism Program 
database and therefore, no ESPs were assigned. Another 
similar example is that of Fagradalsfjall, which has been 
recently added to the CIV following the eruption in 2021.

Hosting data on websites means that ESP data are easily 
accessible, can be more easily updated than information in 
the published record and insight from across the volcano 
community can be incorporated in the update process. For 
example, the MESP dataset has recently been transformed 
from a dataset to an SQL database and a searchable web-
site dedicated to the database now exists (https:// webap 
ps. bgs. ac. uk/ esp/). Efforts have been made to enable the 
volcanic community to contribute to updates to the MESP 
dataset through providing feedback options for each vol-
cano. This enables experts to assess the current data and 
provide values, which upon validation can be used to 
update the dataset. In this way, the dataset can evolve as 
more information and greater insight become available. 
This relies on engagement from volcano experts, dedicated 
efforts to version control, and communication of dataset 
updates. These maintenance efforts require continued 
funding and staff support. Maintaining regional catalogues 
also requires coordination and availability of funding. 

https://webapps.bgs.ac.uk/esp/
https://webapps.bgs.ac.uk/esp/
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While the CIV has an ICAO funded editorial board, this 
is not yet the case for the ECV. However, a long-term 
plan exists for the ECV to become a full service through 
the European Plate Observing System (EPOS) Volcano 
Observatory portal (Puglisi et al. 2022).

As computational efficiency improves, modelling is mov-
ing away from running a single or small number of simu-
lations towards probabilistic and ensemble modelling. The 
aviation tables provide a range of plume heights that can 
be sampled in probabilistic or ensemble modelling but lack 
probabilistic information such as that provided by Trancoso 
et al. (2022). Changes to operational procedures highlight 
the need to update ESPs, not only according to advances in 
understanding volcanic activity but also alongside users to 
ensure datasets suit changing needs.

A further key challenge to widespread implementation 
and use of ESP datasets is the development of user inter-
faces. Such interfaces make the setup and processing of 
model ensembles a routine task that can be done by non-
specialists, for example, by producing interfaces where 
ESP information can be automatically ingested into models. 
These interfaces are likely to be model specific but will aid 
accessibility of modelling approaches.

Future perspectives

Towards better eruption source parameter data

Regardless of the increasing number and capability of 
observations, a variety of challenges in the determination 
and comprehensive characterisation of ESPs remain. First, 
analysis of plume height data for Mount Etna shows that 
the combined eruption record (combining information from 
geological, historical, and instrumental eras) lacks plume 
height information for both small and large eruptions. This 
is non-unique to Mount Etna and the eruptive record is likely 
to be significantly poorer for many other volcanoes, in par-
ticular remote and poorly monitored volcanoes. Second, the 
2021 eruption of Cumbre Vieja volcano (La Palma, Canary 
Islands, Spain) highlighted the challenges of forecasting ash 
dispersal of small eruptions characterised by pulsatory activ-
ity at multiple vents with highly variable source and atmos-
pheric conditions (Bonadonna et al. 2022). In that case, daily 
reports of plume height were provided by Plan de Emer-
gencias Volcánicas de Canarias (PEVOLCA) reports, but 
models were initiated using plume heights from the Volcano 
Observatory Notice for Aviation (VONA), which considered 
observations over multiple days (Bonadonna et al. 2022) and 
could be out of date by the time they are used in model setup. 
Third, geological and historical records tend to favour those 
eruptions closer to geographical regions of interest (e.g. cit-
ies or flight routes) meaning that there is spatial variability 

in the completeness and quality of eruption information 
globally. These limitations mean that improving estimates 
of ESPs often requires information beyond analysis of erup-
tive activity at the volcano of interest. Trancoso et al. (2022) 
addressed this issue when considering ESPs for volcanoes in 
New Zealand through combining information from multiple 
different data sources and assessing eruptions at several dif-
ferent volcanoes to produce probability density functions 
(PDFs) for key ESPs (plume height, eruptive volume, dura-
tion). This highlights the significant amount of information 
required to inform more complex ESP estimates and difficul-
ties in producing such estimates for each volcano worldwide, 
particularly those that have not erupted in recent times. The 
development of new tools for identifying analogue volcanoes 
(e.g. VOLCANS, Tierz et al. 2019) may provide a quantita-
tive means for categorising volcanoes based on information 
in addition to that used in the ESP dataset (magma type and 
eruption size) allowing more targeted assignment of param-
eters and addressing some of these problems.

A key aspect of understanding potential future vol-
canic behaviour and estimating ESPs is the analysis of 
data describing past activity. Questions exist around how 
to ensure data are of a similar standard and the effect of 
uncertainties that may arise from the use of uncertain data 
from the published record (Deligne 2021). Data quantity and 
quality can vary significantly between different regions, i.e. 
those regions with good monitoring infrastructure versus 
those without or regions with frequent eruptions compared 
to those without eruptions in historical times, and also on 
procedures and training in place to capture eruptive data. 
Recent efforts have applied different methods to categorise 
unknowns and uncertainties in data. For example, Deligne 
(2021) presented guidelines for the use of uncertain ESP 
data from the published record, while Aubry et al. (2021) 
used flags to characterise the amount of interpretation of 
information from the published record required to inform 
parameters. Both studies relate to a relatively small num-
ber of eruptions and volcanoes, but similar methods could 
be used in datasets such as the MESP dataset to provide 
information on the amount and quality of available data and 
therefore uncertainty. This becomes increasingly important 
when there is a move away from assigning ESPs accord-
ing to categories and analogue eruptions, versus assigning 
volcano-specific ESPs.

Recent recommendations on recording ESP information 
(Aubry et al. 2021), the development of protocols to aid 
extraction of eruption information from published litera-
ture (Deligne 2021), and the development of eruption data-
sets (e.g. IAVCEI Commission on Tephra Hazard Model-
ling; https:// thm. iavce ivolc ano. org/ datas ets/) mark a move 
towards formal recognition of these issues, with the aim 
of improved data in the future. In the meantime, methods 
have been explored to limit the impact of uncertainties in 

https://thm.iavceivolcano.org/datasets/
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eruption data when defining ESP information. Trancoso 
et al. (2022) hoped that bringing together information from 
a range of sources and volcanoes would enable uncertainties 
in eruption ESP to be encapsulated within their resultant 
PDFs—i.e. the contribution of uncertainties in ESPs is small 
in comparison to the range of activity observed at different 
volcanoes.

Improvements in computational efficiency enable changes 
to the approach used, not only in modelling of volcanic 
ash dispersal but also in simulating hazards more gener-
ally (Mastin et al. 2022). The move towards probabilistic 
and ensemble modelling requires more complex ESPs, in 
the form of ranges or PDFs. Limited observations mean that 
for ash dispersion modelling, empirically based ranges can 
only be determined for certain parameters, such as plume 
height and, in some cases, duration. Determination of rep-
resentative PDFs for parameters for an individual volcano 
is challenging given currently available data, meaning that 
PDFs need to be produced from composite data (Trancoso 
et al. 2022).

There is a continued need for efforts to focus on accu-
rately and precisely recording volcanic eruptions and their 
behaviour to improve the determination of ESPs in the 
future. This includes the continued development of meth-
ods for measuring ESPs, particularly those for which there 
is limited information, such as grain-size, and procedures 
for clearly and accurately recording and communicating 
eruption information. For example, in published reports 
and papers, adding information regarding the time of an 
observation and how it was collected and other metadata (for 
example, height above sea level or vent for plume height) is 
imperative for improving estimates of ESPs for operational 
modelling, hazard assessment, and research purposes. Con-
versations need to continue between volcano observatories, 
researchers, and VAACs to ensure that ESPs are available in 
the required format, while acknowledging that format may 
differ depending on institution and use as highlighted by the 
different inputs describing grain-size used by the different 
VAACs (Hort and Witham 2018).

Emerging methods for estimating eruption source 
parameters

Currently available ESP resources commonly use past 
observations or geological insight to inform knowledge 
of potential future behaviour. Insight into future activity 
can also be gained from observation and analysis of unrest 
and an ongoing eruption. The availability of high tem-
poral resolution unrest information, such as deformation 
rate, seismicity, and gravity, provides a potential oppor-
tunity for informing parameters. The 2011 eruption of 
Grímsvötn, Iceland, provided an opportunity to relate an 
unrest parameter, surface deformation, with plume height 

(Hreinsdóttir et al. 2014). Post-eruption analysis showed 
that Global Positioning System (GPS) and tilt data dis-
played a correlation between rate of pressure change in the 
magma chamber and the eruptive plume height (Hreinsdót-
tir et al. 2014). These results highlight the gains still to be 
made through better understanding of volcanic processes 
and monitoring of volcanoes. Such approaches are still in 
their infancy and are not widely applied and their associ-
ated uncertainties not fully understood. Further work is 
required comparing unrest and eruption characteristics at 
different volcanoes before application of these techniques 
is possible in eruption response.

Eruption source parameters for  SO2 plumes

Current pre-eruption ESP resources relate specifically to 
ash plumes. The impact of  SO2 on aircraft and the health 
implications of  SO2 are the focus of much research (e.g. 
Kristiansen et al. in review). While published eruption and 
plume height data exist (e.g. Carn et al. 2017), understand-
ing of the relationship between  SO2 plume parameters, 
such as plume height,  SO2 mass released, and other erup-
tive conditions, is still relatively limited compared to that 
of ash plumes. Efforts are underway to better understand 
ESPs of  SO2 plumes, through collation of  SO2 plume 
height data and by relating characteristics such as  SO2 
plume height to MER (Aubry et al. 2023). Results may be 
used to inform  SO2-specific ESPs in the future.

Operational communication of eruption source 
parameters

An important aspect related to the correct and timely 
use of ESPs in near real-time is timely communication 
between observers and numerical modellers. To this end, 
the VONA was developed with the purpose of aiding and 
standardising communication between different volcano 
observatories and the responsible VAAC. Some institu-
tions have developed systems to enable easy completion 
and distribution of VONAs. For example, the US Geo-
logical Survey developed the Hazards Notification Sys-
tem for Volcanoes (HANS; https:// volca noes. usgs. gov/ 
hans2/), which provides a template to produce and format 
the VONA. Such systems are reliant on reliable internet 
and digital infrastructure and, as such, are not accessible 
to all observatories worldwide. In addition, there are large 
discrepancies in the capabilities of different observato-
ries worldwide in their ability to provide ESP information 
due to differences in monitoring infrastructure. Continued 
efforts need to be made to support volcano observatories 
in the collection and communication of timely ESP data.

https://volcanoes.usgs.gov/hans2/
https://volcanoes.usgs.gov/hans2/
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Updates to eruption source parameter datasets

Despite progress in near-real-time ESP estimates, there is 
still a need for datasets such as the MESP dataset and the 
CIV and ECV aviation tables. By providing information 
where direct observations are impossible, they aid not only 
decisions on appropriate ESPs for hazard modelling, but they 
also inform discussions between different groups (e.g. vol-
cano observatories, civil protection authorities, VAACs, and 
researchers). There are significant differences between these 
datasets, related to their development and scope. Through 
providing ESPs for all of the world’s volcanoes, it is not 
possible for the MESP dataset to have the same data resolu-
tion as in the ECV and CIV aviation tables, which cover 
smaller geographical areas containing volcanoes where 
eruptive information is relatively well-known. There is a role 
for both types of datasets in operational response with the 
potential to improve both datasets as our understanding of 
past eruptive activity worldwide continues to improve. The 
key to the continued use of these resources is to maintain 
and update ESPs as more eruptive information and insight 
become available. Specific strategies for improvement of the 
ESP datasets include the following:

(1) Designing a flexible dataset that allows for statistical 
approaches to be applied to inform ESPs and provide 
results in different formats, for example, single values 
versus probability density functions. There is increas-
ing recognition that different applications require dif-
ferent formats of ESPs. Techniques such as hierarchical 
Bayesian modelling could be applied to data-rich exam-
ples to aid definition of ESPs for data-sparse volcanoes, 
while still considering available data for that volcano 
(e.g. Ogburn et al. 2016).

(2) Improving entries within the MESP for specific volca-
noes using information from resources such as the CIV 
and ECV and others as volcanoes become active.

(3) Working with volcano experts, e.g. at volcano obser-
vatories, to define volcano-specific ESPs that can be 
modified over time as more information becomes avail-
able.

(4) Ensuring data provenance information is available for 
each entry for transparency.

(5) Ensure version control practices are in place and com-
municated.

(6) Application of emerging techniques, for example, artifi-
cial intelligence, to better identify analogue volcanoes, 
particularly for dormant volcanoes for which limited 
data are available.

Following such strategies will not only improve avail-
able ESP information but would also provide the information 
required to track eruption and volcano knowledge through 

time. Over time, as our understanding of volcanic activ-
ity and eruption histories improves, it is anticipated that 
resources such as the ECV aviation tables and the MESP 
dataset may converge on similar input values for many 
volcanoes.

Conclusions

Eruption source parameters (ESPs) are key for describing 
eruptive behaviour to enable the application of numerical 
models. A crucial aspect of response to volcanic eruptions is 
the simulation of tephra transport in the atmosphere. Numer-
ous techniques have been developed to estimate ESPs such 
as plume height, mass eruption rate, and grain-size dis-
tribution in near real-time. However, there are occasions 
when direct observation of an event is not possible. In such 
cases, operational tephra dispersal modelling, such as that 
conducted by Volcanic Ash Advisory Centres and volcano 
observatories, requires information from other sources. In 
response to this need, the Mastin et al. (2009a) ESP data-
set (a global dataset) and the Catalogue of Icelandic Volca-
noes and European Catalogue of Volcanoes aviation tables 
(regional datasets) were developed. The spatial coverage of 
these resources means that there are differences in the infor-
mation contained within the datasets. The aviation tables 
cover many active volcanoes in Europe, whose activity is 
relatively well-understood. In comparison, the Mastin et al. 
(2009a) dataset contains ESPs for all volcanoes active within 
the Holocene worldwide. Given this difference in spatial 
range, the way in which ESPs are assigned varies between 
the two resources. ESPs in the Mastin et al. (2009a) datasets 
are assigned using analogue volcanoes and eruptions while 
the aviation tables provide volcano-specific information. 
Despite differences in approach, the ESPs provided for vol-
canoes are largely consistent with the plume height within 
the Mastin et al. (2009a) dataset, falling within the range of 
heights provided in the aviation tables. Differences arise for 
volcanoes with recent eruptive activity, which is not cap-
tured by the Mastin et al. (2009a) dataset. This contribution 
highlights the need for continued maintenance and develop-
ment of ESP resources to meet changing user needs such as 
the increased use of probabilistic and ensemble modelling 
in forecasting volcanic hazards.
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