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Foreword

This report is the published product of a study by the British Geological Survey (BGS)
funded by the Department of International Development under its Knowledge and
Research Programme (Project R7118 — Cost Effective Evaluation of Hazards from Mine
Wastes).
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Summary

This report provides some of the conceptual background to the MINDEC model, which
was developed as part of DFID research project R7118: Cost effective evaluation of
hazards from mine waste. The report is structured along the lines of the risk assessment
paradigm of source — pathway - receptor. Reference is made to examples of sources,
pathways and receptors studied during field visits to Chile and Zimbabwe and a risk
assessment methodology is demonstrated using a Korean case study of abandoned gold

mine tailings.
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1 Introduction

Environmental degradation due to abandoned mining activities is not just a developing
world phenomenon and one does not have to look very far in Europe to see that the
legacy of abandoned mining is also a major problem there. In the United Kingdom for
instance the legacy of metalliferous mining goes back to pre-Roman times and the mining
of metal ores and their processing has inevitably caused pollution of the environment.
Even now, there is no national inventory of waste products or national understanding of
possible environmental impacts. The main environmental health hazards deriving from
mines and mine tailings arise from the discharge of acid mine drainage (AMD) to surface
and groundwater, and the contamination of soils through associated industrial activity.
Discharges can contain very high concentrations of toxic heavy metals derived from
sulphide ores and associated gangue minerals; and the concentration of toxic heavy
metals in soils can also pose a serious health risk. Abandoned mines, tailings piles and
associated, untreated, acid mine drainage constitute an important source of heavy metal
contamination to the biosphere. Mine wastes are a threat to the quality of life of local
inhabitants, affecting their heaith, and inhibiting the development of affected areas.

It is only when major disasters occur that mining-related hazards are highlighted by the
media and brought to public attention. Perhaps the most recently publicised, high profile
event was the Aznacollar tailings dam failure in Spain which threatened the entire
ecosystem of the Dofiana National Park (EFE, 1998). According to Arenas et al. (2001)
the failure of the Aznacollar mine settling pond on April 25" 1998, was responsible for
releasing 6hm’ of sludge and acidic water with a pH of ~5.5 and high concentrations of
heavy metals. An area of approximately 4630ha was affected and 62km of river bank
was contaminated to an average width of 500m reaching the north-west limits of the
Doiiana National Park. This event constituted an environmental catastrophe on a scale

never before seen in Europe.

More recently in Romania the failure of the Baia Mare tailings dam on 30™ January,
1999, released 100,000 m® of tailings water containing heavy metals and cyanide. This
flowed into the Lipus River and the upper Tisa river system occasioning significant fish
kills. Hungarian authorities reported that 1240 tonnes of fish were killed as a result of the
spill. The Baia Mare incident was followed in March of the same year by a second dam
failure on the Ukranian border at Baia Borsa that released 20,000 tonnes of tailings into
the Novat River before flowing into Hungary. The medium term impacts of this spill are
of more concern because of the amount of heavy metals released, which have the

potential to bioaccumulate in aquatic organisms. The findings of an independent
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investigation (Garvey et al., 2000) were that tailings management facility designs were
not appropriate, that there was inadequate monitoring of construction and operation of the
dams, and that failure was triggered by severe, but not exceptional weather.

A compilation of contamination incidents associated with the discharge of mine tailings

into the environment through the collapse of tailings dams is given in Appendix B.

In developing countries, the hazards posed by both active mine wastes and residues at
abandoned mine sites are especially acute as regulatory controls and environmental
legislation may not be in place. The possibility of contaminant transport from mine
wastes to the local population via a number of different pathways forms the basis of the

work described in this report.

1.1 TECHNOLOGICAL HAZARDS AND THE SOURCE-PATHWAY-RECEPTOR
PARADIGM OF RISK ASSESSMENT

Within the context of mine waste contamination, risk assessment provides a formalised
framework that describes the relationship between the exposure / concentration of a given
substance and the adverse effects on a given receptor. Risk can be defined as the
likelihood that one or more adverse effects will occur in response to a hazardous

situation.

Figure 1.1 illustrates a generic risk assessment framework, which can be applied to

mining impact studies.

HAZARD

Figure 1.1 A Risk Assessment Framework
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The central element of the scheme is the risk assessment (RA) and the classical approach
for conducting this is to identify sources of hazard, the pathways of exposure and receptor
exposure factors in order to calculate a dose (exposure assessment). The risk assessment
usually involves a comparison of the calculated dose with a trigger value in the case of
contaminated soils, an environmental quality standard in the case of surface waters or
maximum allowable concentration or tolerable daily intake in the case of human
ingestion.

In order to assess mining related hazards it is normal practice to establish a conceptual
model of how a particular site is behaving in relation to potential receptors. Figure 1.2
illustrates the source-pathway-receptor model for a mine site. Table 1.1 categorises the
elements of the model, which constitute sources, pathways, and events, which might
occur as a result of exposure or which might lead to exposure. The site prioritisation
software MINDEC (Klinck et al., 2001) focuses specifically on tailings as the source of
contamination and water as the transport medium. From the simple model presented it is
evident that some features can be both sources and receptors. It is very important to
clearly establish the linkages between the features of the model (F), the events (E) that
Such a

structured FEP approach is used routinely in conceptualising the impact of radioactive

precipitate a hazard and the processes (P) involved in the resulting impact.

waste disposal.

Table 1.1 Source — Pathway — Receptor Analysis of Simple Conceptual Model

SOURCE PATHWAY RECEPTOR

Tailings

Airborne, deposition and

inhalation. (Anon, 1998)

Agricultural land, Surface
water, Livestock and humans

Acid Mine Drainage (AMD)

Surface and groundwater flow
[Seepage and dam collapse]

Groundwater, surface water,
agricultural produce through
irrigation and humans through
ingestion

Contaminated soils

Ingestion and leaching

Human, agricultural produce

Contaminated food

Ingestion

Humans and animals

Contaminated water

Irrigation and ingestion

Human and  agricultural

produce

In the following account the risk assessment paradigm is examined and relevant FEPs are

explored in the context of site specific studies which have been carried out in Chile,
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Korea and Zimbabwe. Where a particular feature is poorly represented, reference will be
made to the published literature to provide further examples. The final section of the

report illustrates the approach to assessing mining impact using a case study from Korea.
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2 Sources

The most common sources of contamination related to mining and mineral processing are
mine wastes in the form of waste rock, tailings or process water. Additionally some
mineral processing operations can give rise to gaseous and particulate emissions through,
for example, grinding and ore roasting. At abandoned mine sites, acid mine drainage and
acid rock drainage that develops as a consequence of the weathering of sulphide rich

wastes may represent the principal contaminant source.

2.1 TAILINGS AND TAILINGS DAMS

The first stage of mineral processing involves reducing the ore grain size so that mineral
grains are no longer locked in a rigid aggregate of gangue. The second stage involves the
separation of the mineral grains from the gangue, which may proceed via physical,
surface chemical or bulk chemical means. Physical and surface chemical treatments are
the most widely used processes as they are generally the least expensive to operate. The
waste products from these operations are piped to a tailings dam facility as a paste. At
the tailings dam gravity separation of the solid material leaves a supernatant liquid that
may either be recycled to the plant, allowed to evaporate or in some cases discharged to a

surface water body.

The erosion or catastrophic collapse of tailings dams may result in the rapid movement of
contaminated residues downstream and this may have both immediate and long-term
consequences for wildlife and any human population in the vicinity. For example, in
1995, 2.9 million cubic metres of cyanide-contaminated tailings escaped into the Omani
River in Guyana causing 346 fish deaths. Da Rosa (1997) on the other hand, suggests
that as many as 11,000 fish died. A public enquiry concluded that the incident occurred
as a result of dam core failure due to faulty construction (George et al., 1996).

Less catastrophic or smaller-scale events are often not reported. For example the collapse
of the Maiten tailings dam in Chile, which fell into the Rio Illapel (Figure 2.1), or the
case of the Puerto Cristal tailings dam which is being gradually eroded into Lago General
Carrera in Patagonia have apparently gone unnoticed. Table 2.1 provides an example of
the composition of the Puerto Cristal tailings that were derived as a by-product of

processing a polymetallic type deposit.

For comparison the composition of a tailings sample from the Rancagua area of central
Chile is provided. In this example the discharge was directly from the Minas del Prado
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processing plant to a settlement area with overflow into a nearby stream. In both cases
the mercury content is considered to be high, approaching the Dutch intervention value of
10mg/kg at Minas del Prado and in both cases is in excess of the 0.3 mg/kg target value.
In the Puerto Cristal example the lead and arsenic contents are both of concern, exceeding
relevant intervention limits significantly. One of the problems in taking account of total
heavy metal contents in assessing risk is that not all of the metal present may be

bioaccessible and this is explored further in the Korean case study.

An article in the magazine Induambiente (Anon, 1999a) titled ‘No basta decir Adios’ (It’s
not enough to say goodbye) mentions the fact that there are more than 800 abandoned
tailings facilities in Chile incorrectly closed down. Juanita Conzalez, Asesora Externa de
Conama is quoted as saying: "Alguien tiene que hacerse cargo de ellos y de determinar si
existe un riesgo real" (Someone has to take charge of them and determine if there is a real
risk).

Figure 2.1 Tailings dam collapse at El Maiten, Chile
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Table 2.1 Trace element content of two tailings samples discharging to surface water

(Concentrations in mg/kg)

ELEMENT PUERTO MINAS DEL
CRISTAL PRADO
Mn 2807 391
Fe 57066 34223
Co 22 6
Ni 16 <7
Cu 50530 68
Zn 301 14
Cr 21 <6
Cd 189 <2
Pb 10958 <400
As 2659 25
Hg 1.48 9.31
2.2 ACID ROCK DRAINAGE

One of the most common waste by-products of metalliferous mining is pyrite, a sulphide
of iron. Its presence in the wastes from ore treatment constitutes a major source of acid
rock drainage (ARD) and in flooded abandoned mine workings, acid mine drainage
(AMD). Large volumes of freshly broken and crushed sulphide-bearing rock are
discarded as waste at metalliferous mine sites, commonly giving rise to contamination of
surface and groundwater with high concentrations of metals and other harmful elements.
Oxidation is the process responsible for the release of AMD and occurs where mining
activities open voids in the rock mass, or expose waste rock and process tailings to the
atmosphere. The oxidation and dissolution of minerals also releases potentially toxic
heavy metals and metalloids (e.g. As, Cd, Zn, Cu and Pb), which are soluble in acidic
solutions. The acid and heavy metal load represents a serious hazard for communities
living downstream from a mine. Watercourses contaminated by mine water may be used

for irrigation or drinking water purposes possibly leading to community ill health.

Micro-organisms play a key role in the formation of AMD. The bacterium Thiobacillus
thiooxidans oxidises sulphide minerals, whilst Thiobacillus ferrooxidans oxidises ferrous

iron. It has been suggested that the action of bacteria increases the rate of AMD
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production by a factor of 1 million. Chemical oxidation of ferrous iron occurs rapidly at
near neutral pH. When pyrite is first exposed to oxygen and water, the reaction described
in Equation 1 proceeds via a chemical only pathway. The reaction produces acidic
conditions under which ferrous iron is kinetically stable. T.ferrooxidans then catalyses
the oxidation of ferrous to ferric iron. Ferric iron, which has a higher solubility in water
than oxygen, reacts with pyrite (as an oxidant) to produce more ferrous and sulphate ions.
This is known as the propagation cycle, equations 1-3 in Figure 2.2, and is the root cause
of acid mine drainage.

FeS,+3.50,+H,0 » Fe? + 280 - + 2H- (Initiator reaction) (N
Fe?+ +0.250 , + H+ > Fes+0.5H,0 )

\4 | 3)
FeS, + 14Fe3-+8H O » 15Fe?+ + 250 >+ 16H+

Figure 2.2 The oxidation of pyrite to form acid mine drainage

Processes can also occur that reduce acidity and the heavy metal loading of mine waters.
Buffering minerals such as calcite and dolomite may be present in the rock matrix. These
carbonates rapidly undergo dissolution in acidic solutions (Equations 4 and 5), consuming

protons and thereby raising the pH.

CaCOs + 2H" — Ca>* + H,CO; 4)

(Calcite dissolution)

CaMg(COs), + 4H" — Ca®* + Mg®* + 2H,CO; (5)

(Dolomite dissolution)

However, some carbonate minerals (e.g. siderite) have no buffering effect. Ferrous iron

released during siderite dissolution oxidises to ferric iron, and precipitates as iron oxy-
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hydroxide. The number of protons released during precipitation is equal to that consumed
by the initial dissolution of siderite.

FeCOj; + 2H* — Fe** + H,CO5 (6)
(Siderite dissolution, consumes 2 moles of protons)
Fe** +0.250, + H" — Fe** + 0.5H,0 (7

(Ferrous iron oxidation, consumes 1 mole of protons)

The precipitation of Fe(OH); (ochre) results in an orange deposit commonly seen coating
stream beds in mining-contaminated areas. The coating smothers and kills benthic life,
but does provide sites for sorption (see below), which can act to reduce the metal loading
of the water.

Aluminosilicate minerals can also act as buffers (though the kinetics of dissolution is
slower than for carbonate minerals). The acidic dissolution of albite releases 1 mole of
aluminium and removes 4 moles of protons (Equation 9). Subsequent dissolution of
gibbsite (often observed as a white precipitate in streams contaminated by AMD), re-
releases 3 moles of protons and hence 1 mole of protons is removed overall (Equation
10).

NaAlSizOg + 4H* + 4H,0 — Na* + A" + 3H,Si0, (8)
(Albite dissolution)
AP + 3H,0 — AI(OH); + 3H" 9)

(Gibbsite precipitation)

Figure 2.3 illustrates an example of acid rock drainage discharge from La Cocinera Mine,

Chile. The white gibbsite precipitate is clearly evident.

mn



Environmental impact of mining CR/02/190N

Figure 2.3 Acid rock drainage discharge from La Cocinera Mine, Chile

11
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2.2.1 Iron Duke Mine, Zimbabwe

Iron Duke Mine is an excellent example of the acute generation of AMD. The mine has
been in operation for over 80 years, initially as a gold mine and subsequently exploiting
strata-bound massive pyrite deposits. Figure 2.4 illustrates the setting of the mine, which
lies in the valley of the Yellow Jacket River.

N\ W - i T, I

Reproduced with the permission of the Surveyor General of Zimbabwe. Copyright reserved.

Figure 2.4 Location of Iron Duke Mine sampling points

1
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Williams and Smith (1994) described the dump to the east of the workings as showing
numerous surface seepages that united and flowed into the Yellow Jacket River with
resulting deposition of thick, yellow ochre. When the site was revisited in 2000 the mine
dumps had been remediated and surface drainage was controlled via a sump to the
Yellow Jacket River. A treatment plant at the mine site dealt with the AMD by liming
and the resultant sludges were disposed to settlement lagoons on the north side of the
river. Table 2.2 summarises the major element, surface water chemistry of the Yellow
Jacket River, observed seepages and pre-treatment AMD (full chemical analyses are
provided in Appendix A). The data are plotted as a Piper Diagram in Figure 2.5 which
clearly demonstrates the departure from background concentrations in Z12 through a
mixing line on which all the other samples plot, to Z20, the AMD at the mine site. Of
particular interest is the spring sample, Z14, which has a pH of 3.25 (well below anything
expected from a groundwater) and an arsenic content of 1.4 pg/l. The origin of the
groundwater acidity and arsenic is tentatively attributed to leakage to groundwater from
the treatment sludge lagoons, with final discharge to the Yellow Jacket River. If this
interpretation is correct it would suggest that the liming is not neutralising all of the
available acid. The interpretation is based on the groundwater data collected from around
the lagoons, Table 2.3. Four groundwater samples collected in March 2001 had pH
values of much less than 7 and very high arsenic values of between 0.9 and 1.92 mg/l
compared with 2.17 mg/l for the waste rock discharge (DW1). The earlier work of
Williams and Smith (1994) documents a pH<0.6 and As concentrations of 72mg/1 for a
February sampling round whereas 1.11 mg/l was the highest recorded value for the AMD
in March 2000. The data are quite variable and possibly reflect remediation works and
climatic influences on leaching rate and contaminant load concentrations. The impact of
the mine is still apparent in samples Z18 and Z19 with elevated sulphate and reduced pH
over Z12 background values. These sample localities are at a distance of approximately

four kilometres from the mine workings.

Table 2.2 Sampling points and water types at Iron Duke Mine

Sample | Description Water type
712 Road bridge at School Ca-Mg-HCO3
713 Seepage from mine site, Yellow Jacket River Ca-Mg-HCOs3
214 Spring Mg-Ca-Mn
Z15 Main stream of Yellow Jacket up stream from spring | Ca-Mg-SOq

12



Environmental impact of mining

CR/02/190N

7216 Drainage from old tailings pile at road side Fe-Mg

Z17 Road Bridge Fe-Mg-Ca-SOq4

Z18 Weir on River Ca-Mg-SOq4-
HCO3

Z19 Road Bridge Ca-Mg-SO4-
HCO;

Z20 Mine drainage before treatment plant Fe

Iron Duke

F32 3

23

e

goooOoonao

Ca 80 B0 40 0 Na+K HCO3+CO 3 20 @0 . 60
Calciurmn (Ca) Chloride (CI)
CATIONS S%meg ANIONS

Figure 2.5 Water chemistry at Iron Duke Mine
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Table 2.3 Groundwater chemistry in the vicinity of the sludge lagoons. TDS = Total

dissolved solids; EC = Electrical conductivity; all concentrations in mg/l.

GW 1 GW 2 GW3 GW 4 DW1
TDS 0.67 0.46 0.34 1.64 10.13
pH 3.07 2.31 3.48 2.52 1.44
EC (uS) 3820 3570 2650 8270 35000
Zn 4.15 4.43 0.99 4.58 11.20
Cd nd nd nd 0.07 0.39
Mn 68.60 49.80 17.00 205 46.00
Mg 219 159 307 816 1527
Na 8.67 95 98 112 620
K 6.40 1.92 4.19 17.00 18.00
Pb 0.14 0.16 0.07 0.17 0.91
Ni 1.20 1.05 0.58 5.02 3.65
Ca 323 241 309 395 381
Cr 1.76 2.26 1.67 1.79 6.32
Co 2.92 1.40 1.08 18.00 55.00
Ag 0.11 0.09 0.02 0.23 0.98
Bi 1.26 1.28 1.48 2.12 6.92
As 1.57 1.67 0.91 1.92 2.17
Cu 0.34 0.20 0.03 0.64 0.96
Fe 1.76 31.00 0.72 105.50 4108

2.3 PARTICULATES AND GASES

Many sulphides will burn spontaneously in air once ignited. The autogenous reaction
proceeds rapidly in the temperature range 900-1300K (with little or no fuel requirement).
Roasting is the partial or complete oxidation of metal sulphide minerals (MS) with
release of sulphur dioxide and is often used for the benefaction of metal sulphide flotation
products. The sulphur dioxide liberated (Equation 10) may be collected and used to

produce sulphuric acid for use in ore processing.

MS(s) + 1.50,(g) — MOC(s) + SOx(g) (10)
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In Chile there are a number of documented cases of workers becoming intoxicated from
smelter fumes. Mendoza (1993) measured urine arsenic in workers at a smelting plant at
Copiapo in northern Chile. He found an average concentration of 0.2mg/l. The workers
were removed from exposure and the As concentration dropped to 0.12mg/1 except for
two workers who ate shell fish and fish. These last two workers were asked not to eat
fish for 8 days and retested when the As concentration was found to be 0.03 to 0.05mg/1.
Normal urine arsenic levels are <10ug/1 over 24hrs, and diets high in seafood can result
in increased concentrations of urine arsenic due to the presence of non-toxic organo-
arsenic compounds (Adams et al., 1993; Farrow et al., 2000). According to the magazine
Mineria Chilena Volume 144 of 1993 p23, there are no set limits for As emissions from
smelters in Chile, but clearly, in this case, smelter emissions are an important source of

exposure.

2.4 PROCESS WATER

Cyanide is used in mineral processing as a conditioner in froth flotation and in larger
quantities in gold processing. According to Souren (2000) the US mining industry alone
used 70 million kilograms in 1989 and cyanidation is still the process method of choice
for many gold mining operations. Notwithstanding the large volumes of cyanide used and
with the exception of the disasters previously alluded to, there is little evidence for
widespread environmental impact from cyanide use and disposal. Data from the
Witwatersrand, South Africa (Smith et al., 1984) show a distinct lack of impact from goid
mine tailings seepage with regard to cyanide, whilst there is evidence of impact from
other mine related chemicals. Smith and Mudder (1991) also commented on numerous
mine tailings and heap leach facilities in Arizona, California, Nevada, South Dakota and
South Carolina where routine monitoring programmes showed no impact on groundwater
quality. This may reflect low source term concentrations (100 to 300 ppm CN) and low
mass loading (as facilities were lined). In many cases attenuation of cyanide in the

unsaturated zone may be an important process.

Cyanidation uses solutions of sodium and potassium cyanide (USEPA, 1994) as leaching
agents. The main stages of the process are leaching of the finely crushed ore followed by
treatment with activated carbon in carbon-in-leach or carbon-in-pulp tanks to sorb the
gold-cyanide complex. The carbon is removed from the tank for further treatment to

recover the gold.
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2.4.1 Cyanide Chemistry and Degradation

The CN™ anion contains one sigma and 2 pi bonds, and two empty bonding orbitals,

which gives the anion the following behavioural characteristics.
e Pseudo-halogen behaviour i.e. NaCN is similar to NaCl

e Back bonding utilising empty anti-bonding orbitals that enables stable complex

formation

e A triple bond, which can be easily broken, and accounts for cyanate / thiocyante

formation.

Cyanide compounds NaCN and KCN dissociate in water according to the following

equations:
NaCN — Na* + CN’ an
KCN — K" +CN (12)

Free cyanide refers to the concentration of CN™ and of the weak acid HCN in solution.
CN" + H,0 & HCN + OH (13)

The state of the above reversible reaction, (13), is critical in the gold-cyanide extraction
processes. At pH 10.3 (or greater), free cyanide in process slurry water or heap leach
interstitial fluid will be in the form CN". Should the pH fall to 8.5 or less then HCN is the
dominant species and because of its low boiling point and high vapour pressure liable to
be lost from solution through volatilisation. In order to maintain the required high pH
either lime or sodium hydroxide is added to the leach solution.

Volatilisation of HCN is the main process involved in removal of cyanide in discharge
lagoons. The necessary lowering of pH is through uptake of CO; from the atmosphere
and dilution by rainwater. A modelling and field study carried out by Simovic et al.
(1984) has also demonstrated that the main mechanisms for the natural degradation of
cyanide were volatilisation of free cyanide and metallo-cyanide decay. Temperature was
found to have the greatest effect on volatilisation rate and the process was complete
within 48 to 72 hours.

Cyanide degradation and attenuation mechanisms that operate in groundwater systems are

adsorption, chelation and precipitation, bacterial degradation, and hydrolysis to formate.
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The metal and oxygen content of the water, pH and aquifer mineral composition affects

these mechanisms.

Ford-Smith (1964) reported that 28 elements are capable of forming complexes with
cyanide, with 72 metal cyanide complexes possible. The toxicity of metal cyanide
complexes is generally due to the dissociation of the complex into free cyanide. At pH
4.5, zinc and copper cyanides (typically found in mineral processing waters and classed

as weak acid dissociable (wad) metal cyanide complexes) may dissociate to free cyanide.

Metal cyanide complexes may also form intermediate complexes on route to the
formation of more stable compounds that remove free cyanide from the environment as
precipitates. The ferrocyanide ion (Fe(CN)s") and ferricyanide ion (Fe(CN)63') form
insoluble salts with Fe, Cu, Ni, Mn, Pb, Zn, Cd, Sn and Ag. Tightly bound iron cyanide

complexes produce free cyanide very slowly, hence reducing toxicity.

Cyanide moves only a short distance through soil before being converted to nitrate or
fixed by trace metals through chelation. Initial anion complex formation with Fe,
followed by precipitation with a transition metal cation also stabilises cyanide in the soil
environment. Biodegradation under anaerobic conditions is not nearly as efficient as
under aerobic conditions. The limit for effective anaerobic degradation was found by
Coburn (1949) to be 3 mg/l cyanide, while at higher concentrations cyanide is toxic to
micro-organisms. In terms of adsorption, soils with a high anion exchange capacity
(AEC) are more likely to attenuate cyanide (Alessi and Fuller, 1976). Soil minerals with
a high AEC include kaolin, chlorite, gibbsite and iron oxides. Chatwin and Trepanowski
(1987) found that the magnitude of cyanide adsorption in soils was correlated with the
organic carbon content where it is bound or oxidised to cyanate. The oxidation process is

described by equation (14).
CN'+ 0.50; + enzyme— CNO’ (14)

Cyanide also reacts with sulphur to form thiocyanate, which is much less toxic than

cyanide.

S, 2+ CN = (Se1))” + SCN° (15)

McGill et al. (1985) found that chalcopyrite, chalcocite and pyrrohotite contributed a
significant proportion of their sulphur content to thiocyanate production. However, the

sulphur content of sphalerite and pyrite was relatively non-reactive.
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As the pH of the system falls, HCN can be hydrolysed by a different route to give formic

acid or ammonium formate, as follows:
HCN + 2H,0 — NH,COOH (ammonium formate) a7
HCN + 2H,0 — NH; + HCOOH (formic acid) (18)

A lower pH favours formic acid formation. The rate is slow, but the reaction may be
effective under a variety of conditions including those found in saturated relatively

anaerobic aquifers.

2.4.2 Arcturus Mine

For the purposes of the current study, the Arcturus Mine in Zimbabwe was selected as a
case study site. Arcturus Mine is located on the SE limb of the Harare Greenstone Belt
and is the main producer of the Arcturus goldfield (32.48t gold produced to 1992). The
gold is restricted to discrete shear zones and there are six major reefs characterised by a

gold-arsenopyrite-pyrrhotite mineral association.

At Arcturus Mine the tailings are removed to a tailings dam facility and the supernatant,
cyanide solution is either recycled into the process stream or decants into a lined
evaporation pond. Excess process water is discharged to a system of lagoons where the
retention time is sufficient to allow natural degradation of any cyanide present prior to

discharge to surface water, Figure 2.6.

At Arcturus Mine a total of sixteen samples were collected (Table 2.4) for analysis as

follows:

e Seven process water samples

e Three surface water samples

e Six groundwater samples including seepages from the old tailings piles.
Full chemical analyses are provided in Appendix A.

The process waters have been subdivided into two groups:

1. Those deriving from the tailings pond

2. Those deriving from the process water discharge lagoon

At the tailings pond, supernatant liquid is transferred to a lined evaporation pond, while
any excess water is collected in a second unlined pond and interceptor trench.
Groundwater quality is monitored at the interceptor trench by a shallow monitoring
borehole. Two surface water samples were taken one upstream from the tailings lagoon

and one downstream of the lagoon.



Environmental impact of mining CR/02/190N

No tailings facility impact was detected on the surface water quality and the slight
increase in alkalinity in the upstream sample is probably an unrelated feature. For the
purposes of looking at the major element chemistry, Stiff Plots (Tonjes et al., 1995) have

been used as they enable a very good visual appreciation of chemical trends.

Figure 2.7 is a Stiff plot for the surface water samples collected in the vicinity of the
tailings pond and in the case of Z39 the discharge from the process water lagoon. Sample
Z6 represents the supernatant liquid on the tailings; Z5 was collected from a lined
overflow pond, Z4 is from a second unlined pond, the sample Z3 was collected from a
sump. All of the samples are characteristically of Na-Ca-SO4 type. The size of the Stiff
polygons is proportional to the total dissolved solids content and the fact that the polygon
shapes are very much alike indicates that the main mechanism is dilution between the
tailings pond and the interceptor trench. At the same time there is a reduction in the pH
as determined in the field from 9.62 in the tailings pond down to 5.58 in the interceptor
trench. This is probably due in part to absorbed atmospheric CO,. At the measured pH
values cyanide would be unstable and HCN would be the dominant species, and given the
large surface area of the ponds its volatilisation would be rapid and complete.
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Figure 2.6 Location of sampling points at Arcturus Mine
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Table 2.4 Sample locations and water types at Arcturus Mine

CR/02/190N

Sample | Description Water type
Z1 Reservoir outfall below new slimes dam Mg-Ca-HCO3
72 Monitoring well. At foot of tailings dam collecting | Ca-Mg-SO4
seepage
73 Over-spill pond from second evaporation pond Mg-Ca-Na-SO4
74 Second overflow pond: unlined Na-Ca-S0O4
Z5 First overflow pond: lined Na-Ca-SO4
76 Sample of process water from tailings dam Na-Ca-SO4
Z7 Upstream of freshwater reservoir Mg-Ca-HCO3
Z8 Monitoring well below old tailings/ plant for | Ca-Mg-SO4
cyanidation
79 Monitoring well Mg-Ca-SO4
Z10 Pipe in drainage channel, upstream from cut off trench | Na-Ca-SO4
pump
711 Drainage from tailings mixes with stand pipe water, | Na-Ca-Mg-SO4
forms a blue precipitate
735 Bridge (mine sampling point 3) Ca-Mg-SO4
736 Seepage at road side Mg-Ca-SO4
737 Seepage Ca-Mg-S0O4
738 Drainage along road side Mg-Ca-SO4
7239 Outflow from final treatment plant. Na-Ca-SO4
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Figure 2.7 Stiff plot for tailings pond water and process water

discharge

2.5 ARSENIC

Arsenic is the twentieth most abundant element in the earth’s crust and is very commonly

associated with base metal deposits occurring as the sulphide minerals: arsenopyrite

FeAsS, orpiment As;S3, and realgar As;S;. Arsenic is also a component of some

complex copper sulphides such as enargite and tennantite (Read, 1962).

Arsenic is derived from mine wastes by a similar process to the generation of AMD

(equation 19):

Y5y,
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4FeAsS + 130, + 6H,O = 4Fe** + 4As0,> + 4S0,* + 12H* (19)

Under the range of Eh and pH conditions encountered in soils arsenic may be present as
As(II)-arsenite species or As(V)-arsenate species (Thornton and Farago, 1997).
Although the speciation of arsenic is redox-controlled it can also be affected by the action
of bacteria and fungi, e.g. forms of the bacterium Thiobacillus have been identified as
having a role in producing ferric arsenate-sulphate precipitates (Leblanc et al., 1996).
Temporal variations between arsenate and arsenite have been observed in the Waikato
River (New Zealand) (Cullen and Reimer, 1989). In this river system arsenate is usually
high, however, during spring and summer arsenite may predominate. The study
suggested that the algae A. oscillaroides may be responsible in part for the reduction of
As(V) to As(III).

Several mining-related cases of arsenic releases into the environment are documented in
the literature. Perhaps the most notorious releases of arsenic are from Richmond Mine,
situated at Iron Mountain, California. Here the mineralisation consists of massive
sulphide deposits in veins that have been mined since the 186(0’s. The portal effluent
(Alpers et al, 1992) has a mean pH of 0.8 and high concentrations of zinc (700-
2600mg/1) and copper (120-650 mg/l). Nordstrom et al. (2000) describe discharges and
seepages of AMD in the mine with negative pH values as low as —3.6 and dissolved metal
content as high as 200 g/l. Measured arsenic concentrations in the same discharges are as
high as 850 mg/1 (Nordstrom and Alpers, 1999).

The Summitville gold mine operation in Colorado was abandoned, due to bankruptcy, by
the operator in December 1992 (Pendleton et al., 1995). As well as the cyanide heap
leaching pads, large volumes of waste rock were left on the surface and AMD and
cyanide leach solutions were present. The sources of AMD include flows from adits,
seeps from waste rock piles and ponds which develop on the surface as a consequence of
rainfall. According to Plumlee et al. (1995) the waters draining the adits and waste
dumps have pH values ranging from 2.3 to 3.2 and arsenic concentrations ranging over an
order of magnitude from 100 to 4000 ppb. The same authors also recognised the role of
evaporation in producing soluble heavy metal salts as a secondary source of
contamination citing the formation of highly acidic metalliferous ponds and puddles after

summer thunderstorms as evidence of this process.

Bech et al. (1997) identified phytotoxic effects around the Mina Turmalina copper mine
located in the Peruvian Andes to the north-east of Chiclayo. Limited plant performance
was attributed to potentially toxic arsenic concentrations that were found in all soil
samples tested, the highest value recorded was 7670 mg/kg. Similar concentrations of As

are also reported for soils in the vicinity of abandoned mine dumps in Zimbabwe

772
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(Jonnalagadda and Nenzou, 1996). Armienta et al. (1997) attribute the arsenic-
contaminated groundwater of the Zimapan Valley in Mexico to its interaction with
mineralised As-bearing rocks. Arsenopyrite, scorodite and tennantite were identified as

probable source minerals.

In the Mother Lode District of Tuolumne County, California, Savage et al. (2000) have
determined that As is released into the environment as a result of the weathering of mine
wastes. The weathering products were found to be primarily goethite with arsenic
content up to 1260 ppm, while jarosite and gypsum may contain up to 1300 ppm arsenic.
These workers also identified that arsenic content increases with total iron reflecting the
efficiency of arsenic removal by sorption and coprecipitation with iron compounds. As
previously described (Williams and Smith, 1994), arsenic is recorded as a component of
the AMD at the Iron Duke Mine in Zimbabwe. Arsenic removal from the natural system
is postulated to be due to coprecipitation with iron oxyhydroxides (ochre) in the Yellow
Jacket River. Williams (2001) in reviewing data for 34 mining localities covering a range
of metallogenic types and climatic settings proposed that in most cases arsenopyrite is the
primary arsenic source. It was postulated that in-situ oxidation generally results in the
formation of scorodite (FeAsO4.2H,0) which has limited solubility under a range of
Eh/pH conditions, and hence constrains arsenic mobility. The exception was the Ron
Phibun tin mining district in Thailand where post-alluvial tin mining groundwater
rebound has been linked to increased arsenic in drinking water (Fordyce et al., 1994;
Williams et al., 1996). This is believed to be due to the solution of arsenopyrite oxidation
products formed during the mining phase of groundwater drawdown. It should be noted
that the role of scorodite as an appropriate candidate for arsenic immobilisation has been
questioned by Roussel et al. (2000) who point out that its solubility exceeds drinking
water standards irrespective of the pH.

Lee et al. (2000) describe mean concentrations of around 110 mg/kg arsenic in paddy
soils (range 13-642 mg/kg) and 104 mg/kg in farmland soils (range 16-444 mg/kg) in the
vicinity of Da Duk Mine, S. Korea. The arsenic dispersal from the mine site is attributed
to sediment transport and irrigation with contaminated surface water. Crops grown in the
Da Duk area contain elevated concentrations of arsenic especially rice (0.3 — 0.6 mg/kg
As) and Chinese cabbage (0.65 mg/kg As). A comparison with UK values quoted by
MAFF (1982) are useful in demonstrating that the arsenic concentrations at Da Duk are
elevated. The MAFF report indicates a range of <0.01-0.01 mg/kg for cabbage and 0.08-
0.28 mg/kg for rice.

A
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2.5.1 Fachinal Mine, Chile

Table 2.5 Some chemical parameters for Fachinal Mine waters (concentrations in mg/1)

LD. Type |Eh (mV) pH Total Fe Al As
C40 [Adit 487.3 6.83 0.018 0.083 0.028
drain

C41 |Run off 378.1 8.42 0.028 0.110 0.107
C42  |Run off 216.4 8.60 0.014 0.080 0.124
C43 |L. Nueva| 341.1 9.21 <0.006 | 0.032 0.134

C44 |Adit 419.2 8.37 0.027 <0.028 | <0.025
drain

C45 |L. Verde | 334.1 10.18 0.100 0.273 0.179
C46 |BH-S13 80.5 8.28 0.021 | <0.028 | 0.030
C47 |BH-SS5 104.9 7.41 0.414 0.153 0.043
C48 |BH-S11 166.8 7.56 0.012 0.033 | <0.025
C49 (BH-S4 312.2 7.10 0.034 0.033 | <0.025
C50 |Tailings | 389.6 8.28 0.341 0.256 0.060

Table 2.5 and Figure 2.8 provide some information on arsenic concentration at the
Fachinal Mine in Patagonia, S. Chile. In a 1999 interview with the Operations Manager
of the mine (Anon, 1999b), the ore processing was described as flotation to produce a
pyrite-rich concentrate from vein deposits containing gold and silver. The concentrate
was exported to Japan for refining. The tailings were disposed to a tailings dam in the
Laguna Los Juncos (also known locally as Laguna Verde) catchment, Figure 2.8. This
particular lake does not directly connect to Lago General Carrera, a major, inland, fresh
water body and at the time of visiting the water level in the smaller lake was falling due
to evaporation. Four monitoring boreholes have been constructed down hydraulic
gradient from the tailings dam, BH-S4 is designed to monitor a lined leachate collection
pit below the tailings dam and BH-S11 / BH-S5/ BH-S13 monitor the down gradient flow
to Laguna Verde. The results would seem to indicate that surface water runoff from the
mine site is the most contaminated with respect to arsenic. The surface water bodies, the
main receptors, show elevated arsenic concentrations in excess of 150 ug/l and
concentration due to evaporation may be an important concentrating mechanism.

1K
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Groundwater concentrations do not seem to indicate contamination arising from the
tailings lagoon nor any clearly defined trend. This is thought to be due to the nature of
the mineralisation, which occurs in veins, and might also explain the disparity in the

results from the two adit drainage samples, C40 and C44.

2.5.2 Andacollo, Chile

The town of Andacollo in north-central Chile is an ancient centre of gold and copper
mining. Gold is produced from strata-bound and manto deposits as well as vein and
placer-style mineralisation (Reyes 1991, Oyarzun et al., 1996). Old tailings piles are
found within the area of residential town housing and groundwater samples collected
from wells in the town indicate that the groundwater is contaminated with concentrations
of As, Pb, Cd and, to a lesser extent, Mo, which exceed the WHO guideline values
(Figure 2.9). Attempts to assess the level of groundwater contamination using MINDEC
have proved unsuccessful, however, due to the complex history and spatial distribution of
contamination sources within the town, and uncertainties regarding recharge rates and
probable groundwater gradients.

nNE
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3 Mining-related Arsenic Contamination in Korea

Lee et al. (2000) describe mean concentrations of around 110 mg/kg arsenic in paddy soils
(range 13-642 mg/kg) and 104 mg/kg in farmland soils (range 16-444 mg/kg) in the vicinity of
Da Duk Mine, S. Korea. The arsenic dispersal from the mine site is attributed to sediment
transport and irrigation with contaminated surface water.

Da Duk Mine is located about 200 km to the southeast of Seoul and was one of the largest Au-
Pb-Zn mines in Korea (Figure 3.1). During its period of operation, mainly in the 1950s, the mine
produced over 20 kg of Au, 50 kg of Ag and thousands of tons of Pb and Zn. The mineralisation
is a hydrothermal replacement type with galena (PbS), sphalerite (ZnS), chalcopyrite (CuFeS,),
pyrite (FeS) and arsenopyrite (FeAsS) in quartz veins. The host rock is a mixture of
Precambrian and Jurassic granitoid rocks. The mine was closed in 1984 and large amounts of
mine wastes including tailings have been left untreated. These materials have been dispersed
down slope by surface erosion and by rain and wind action into lower lying agricultural land.
Leachate discharged from the tailings flows into the Da-Duk creek, the main stream in the study
area. The impact of AMD waters is easily recognisable in the field by yellowish red (orange
ochre) precipitates along the entire stream channel.

Samples of tailings, soils and sediments were taken for chemical analysis. Stream sediment and
water samples were mainly collected downstream from the tailings. Random samples of crop
plants were also taken and included rice, red peppers, sesame leaves, bean leaves, radish leaves
and Chinese cabbage. Fingernail samples were taken from farm workers living in proximity to
the mine area.

A number of researchers have developed in vitro tests to measure the bioaccessible fraction of a
chemical taken up from a soil sample under simulated gastrointestinal conditions (Ruby et al.,
1993, 1996; Williams et al., 1998). Soil samples from agricultural land around the Da-Duk mine
were selected for human bioaccessibility testing and in this study, the SBET test, a simplified in
vitro method, was used to determine bioaccessibility of arsenic and heavy metals.

3.1 SOURCE TERM CHARACTERISATION

High mean concentrations of 8782 mg/kg As, 8.3 mg/kg Cd, 489 mg/kg Cu, 3638 mg/kg Pb and
919 mg/kg Zn were found in the tailings. Mean concentrations of As, Cd, Pb and Zn in soils are
significantly higher than for world average soil reported by Bowen (1979) while Cu
concentration is similar to the world average soil. In particular, high mean concentrations of As
(110 mg/kg in paddy, 104 mg/kg in farmland, and 156 mg/kg in mountain soils, respectively) are
present to the extent that crops produced on them would normally be considered unfit for human
consumption.

Crops containing elevated concentrations of arsenic are rice (0.3 — 0.6 mg/kg) and Chinese
cabbage (0.65 mg/kg). Ranges and means of element concentrations in crop plants around the
Da-Duk Mine are shown in Table 3.1. A comparison with UK values quoted by MAFF (1982)
are useful in demonstrating that the arsenic concentrations at Da Duk are elevated. The MAFF
report indicates a range of <0.01-0.01 mg/kg for cabbage and 0.08-0.28 mg/kg for rice.
Compared to normal concentrations in rice grains grown on a
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Table 3.1 Arsenic concentration (mg/kg) in a variety of food crops. (Where the number in the
brackets is >1 the value is a mean)

Sample type As
Rice grains (5) 0.39
Rice stalks (11) 8.35
Red pepper (2) 1.21
Sesame leaves (1) 0.58
Bean leaves (1) 0.32
Radish leaves (1) 0.49
Chinese cabbages (1) 0.65

128'49'30"

36°54'54"

T el

E———

..............

i -
- - -
< ™

36°54'12"

0 200 400m 128'50'48"
Pt N ® \\aters and stream sediments
® Soils and plants

Figure 3.1 Location of the Da-Duk mine and sample locations. Red dots are soils and tailings
and blue dots are water samples.

non-polluted area in Korea (Rhu et al., 1988), mean concentrations of 0.39 mg/kg As and 0.08
mg/kg Cd are elevated in rice grains from the mine area. High concentrations of 8.35 mg/kg As
and 0.52 mg/kg Cd in rice stalks were also found. Rice is generally grown under both reducing
and oxidising conditions and stalks sampled under oxidising conditions were found to contain
higher metal concentrations than those sampled under reducing conditions. This agrees with a
study by Jung and Thornton (1997) that demonstrated that the availability of metals decreases
under submerged, reducing conditions due to precipitation and sorption onto iron compounds.

High concentrations of 1578 mg/kg As were found in stream and sediment concentrations and
decreased with distance from the tailings probably as a consequence of dilution by mixing with
uncontaminated sediments. The impact is detectable for about 500 metres down stream from the
tailings. Iron and As concentration in stream waters decreases rapidly downstream with rising pH
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as a result of coprecipitation in Fe-oxyhydroxides onto the stream bed. This mechanism of As
removal is well documented elsewhere (e.g. Pierce and Moore, 1982; McClean and Bledsoe,
1992).

3.2 EXPOSURE PATHWAYS AND RECEPTORS

In order to define the pathways and receptors a conceptual model needs to be developed and in
the case of the receptors in the vicinity of Da-Duk mine this is best achieved with a cartoon as
illustrated in Figure 3.2. The pathways and receptors identified are as follows:

. Effluents and leachates entering groundwater and surface water.
. Contaminated sediment entering surface water bodies.

. Contaminated surface water used for irrigation and drinking.

Soil ingestion by farmers

1
2
3
4. Dispersal of particulate matter onto agricultural soils.
5
6. Plant uptake of contaminants

7

. Ingestion of contaminated plants.

In the following risk analysis only pathways (5) and (7) are assessed. In terms of soil data the
results of SBET tests have been used and results indicate that between 6 and 22% of As is
bioaccessible.

Arsenic is a documented human carcinogen as well as a toxic heavy metal (WHO, 1993). Toxic
risks are defined for non-carcinogenic exposures, and evaluated in terms of a Hazard Quotient
(HQ). The HQ is the ADD/RfD where RfD is the reference dose and ADD is the average daily
dose. A toxic risk exists for HQs>1. Compounds deriving from mine sites either constitute a
toxic hazard or a carcinogenic hazard. Toxic hazard estimates are expressed relative to a
reference dose concentration. The reference dose is an exposure that can occur over a prolonged
period without ill effect.

Carcinogenic risks are statements of probability. Individual excess risk is an estimate of the
probability that an individual will get cancer from an exposure, not the probability of dying from
it. It is calculated from Risk = 1-exp{-(SF x LADD)}. The LADD is the average daily dose
averaged over a lifetime and SF is the slope factor, i.e. the gradient of the laboratory determined
dose - response curve. Carcinogenic compounds differ from systemic toxic compounds in that
there is no lower limit for the existence of cancer risk.

The SF and RfD are compound specific and may be obtained from the U.S.EPA database IRIS
(Integrated Risk Information System — available on the Internet).

In the soil pathway exposure occurs through direct contact with soil and ingestion during normal
agricultural activities. To calculate the exposure duration a typical Korean farmer was
interviewed to determine the working/exposure pattern. The following data is relevant to the
calculations:

(1) Working period in the fields is about seven months (210 days) from mid-March to mid-
October.

(2) About 10 hours are spent working each day (includes a stop for lunch)
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Exposure pathways of Korean farmer

Figure 3.2 Conceptual model of exposure for a Korean farm worker

(3) In the cultivation of Chinese cabbage all the work of ploughing and weeding is carried out by
hand

(4) In the cultivation of rice most work is carried out by machine

(5) Average male life expectancy is 69 years for a male and 77 for a female. (Source: Korean
Statistics Administration)

(6) Average male body mass is 66kg and for a female is 55kg. (Source: Korean Ministry of
Health and Welfare)
It is assumed that a female Korean farm worker begins working in the fields at the age of 12

years. The concentration of As using the SBET test was found to vary from 1.5 to 17.9 mg/kg in
the soils from the Da-Duk mine. The highest concentrations were encountered in paddy soils.
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The following dose calculations are made assuming that the exposure derives from arable fields
only and the As mean value is 3.85 mg/kg. The soil ingestion rate has been taken from the
Exposure Factors Handbook (USEPA, 1999) to be 450 mg/d and is the upper bound estimate.

According to the Korean Ministry of Agriculture a Korean farm worker has an average rice
intake of 437.5 g/d of rice while unclassified plant food is said to comprise 1205 g/d. If it is
assumed that green vegetables comprise the difference between the total intake and the rice and
fruit intake then t a figure of 624 g/d greens is calculated. Furthermore if it is assumed that
Chinese cabbage constitutes 40% of this figure then a daily consumption of Chinese cabbage
amounts to 250 g/d.

The following table (Table 3.2) summarises the results of the risk calculations.

Table 3.2 Sources of risk from the food and soil pathways

RISK SOIL RICE CABBAGE
Toxic Risk (HQ) 0.02 10.62 9.84
Carcinogenic Risk 9.5e-3 Te-3 Se-3

It is evident that most of the toxic risk derives from contaminated food and not from
contaminated soils. The soil pathway, even when using a conservative estimate for soil ingestion
does not seem to be a hazard. However, the carcinogenic risk associated with both the soil and
food pathway is unacceptably high. The U.S. EPA consider that and increased risk of cancer of
le-6 to be the cut off for acceptable risk.

The analysis supports the view that a significant toxic risk exists in the vicinity of the Da-Duk
mine site due to the consumption of locally grown rice and Chinese cabbage and that an
unacceptable carcinogenic risk is associated with the soil ingestion and food intake pathways.
Unfortunately no epidemiological evidence was available for the Da-Duk area to validate these
risk assessment findings. However, samples of farm workers fingernails were collected in the
area and analysed for arsenic content. The results were compared with a test group from Seoul.

Arsenic concentrations in hair and nails are higher than in other organs because of the high
keratin content (Herber and Stoeppler, 1994). Arsenic in hair and nails reflects exposure to
inorganic arsenic only and is thus also a good indicator in cases of short-term exposure i.e. for
arsenic poisoning (Smith, 1964; Valentine et al., 1979). Arsenic is deposited in the nail roots
from the blood stream and then migrates distally as the nails grow. Arsenic concentrations in
fingernails of farm workers are higher than normal level of 0.30 mg/kg As (Liebscher and Smith,
1984), and a maximum value 1.5 mg/kg As was observed. In terms of gender, As was found to
be higher in male fingernails than female fingernails.

The Student’s T-test comparing the arsenic concentrations in fingernails of farm workers and the
control (non-farming) group indicated that there is a statistical difference in average
concentration of As between the two groups at the 99.5% confidence limit.

3.3 CONTAMINANT TRANSPORT IN GROUNDWATER: MINDEC ANALYSIS

The potential for the migration of contaminants from the tailings at Da-Duk mine has been
analysed using MINDEC.

The following parameters were used as input data to the program:
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Source term data

Annual precipitation 1000 mm/yr
Recharge through tailings  50%
Tailings surface area 20,000 m’
Age of mine 50 years

Leachate composition:

As 1003 mg/1
Pb 75 mg/l
Cu 1219 mg/1
Cd 112 mg/l
Zn 38.4 mg/l
Fe 44.7 mg/1

Groundwater pathway data

Hydraulic gradient 0.05/0.2

Alluvial aquifer Medium sand / Gravel

Receptor data (average S.Korean female)

Water consumption 1.5 litres/day
Body weight 55 kg
Exposure frequency 365 days

The input leachate composition corresponds to the maximum tailings effluent concentrations
recorded by Lee et al. (2000). For the purposes of the analysis it has been assumed that all of the
leached trace elements pass from the tailings to groundwater and the surface run-off of leachate
has therefore not been considered. It has also been assumed that background levels of arsenic
and trace metals in the groundwater are insignificant and can be ignored.

The results (Table 3.3) indicate that there is the potential at the Da-Duk site for the groundwater
migration of contaminants at potentially harmful concentrations over distances of at least 2 km
from the tailings over a time period which is less than the probable current age of the tailings. It
should be noted that increasing the hydraulic gradient (or increasing the permeability of the
aquifer medium) not only has the effect of reducing the time taken for the plume to reach any
given point (Table 3.3) but also of reducing peak plume concentrations through enhanced
dilution.



Environmental impact of mining CR/02/190N

Table 3.3 Time (in years) for groundwater As levels to exceed WHO drinking water
guidelines at receptor site

Medium sand aquifer

Distance to
receptor
Hydraulic
gradient 1000m 2000m 5000m
0.05 6.5 22 n/a
0.2 3 n/a n/a

(n/a indicates that the contaminant plume concentration stabilises at a steady-state value below the WHO guideline

value.)

In order to establish the source to receptor distance within which arsenic is likely to pose a health
risk to consumers of groundwater, the risk assessment module of MINDEC has been used. It
was calculated that the arsenic concentration which would give rise to a hazard quotient of 1 is
0.011 mg/l, based on the receptor data tabulated above (i.e. body weight = 55kg; water intake =
1.5 litres / day; exposure frequency = 365 days) assuming that all water consumed is
groundwater. With a hydraulic gradient of 0.05 and medium sand alluvial aquifer, the
groundwater pathway module of MINDEC can then be used iteratively to calculate that this
limiting concentration should be attained at a source to receptor distance of 2600m. At distances
of less than 2600m from the source, therefore, consumers of groundwater might be subject to a
significant toxic risk from arsenic.
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4 Conclusions

Without doubt the most visible impacts of abandoned mining are derelict ground formed by
waste rock piles, abandoned buildings and the sight of acid drainage, both ARD and AMD,
which aesthetically is never very pleasant and in most cases is the source of serious heavy metal
burden on the environment. In the operational mines and mineral processing plants visited
effluents were carefully monitored and environment management systems were in place in most
cases. However, site aftercare after mine closure was generally seen to be non-existent.

Literature searches, recent news and observations in Chile and Zimbabwe have emphasised that
poor tailings dam construction and aftercare failure are major causes of environmental impact,
see Appendix B. The problem was found to be a general one in Chile, but Iron Duke and
Arcturus Mines in Zimbabwe had both suffered from tailings and waste rock problems in the
past.

The present project concentrated on the groundwater and surface water pathway for contaminant
transport away from tailings and mine sites. However, the risk assessment work on a reasonably
well constrained site (in terms of data), Da-Duk Mine in Korea has demonstrated that
contaminated soils and arsenic bioaccumulation by food plants pose a serious threat that
certainly needs further investigation.

Air borne dispersal of contaminants from dried up tailings lagoons and waste piles is considered
to be a major problem, but one about which there appears to be little information. Stabilisation
of abandoned tailings should be considered as a major priority in any site remediation strategy.
A possible sustainable approach would be to plant heavy metal-resistant tree species that could
be harvested to supply a local fuel wood industry.

The treatment of acid drainage is more problematical in that there is a need for long-term
aftercare and certainly in the past mining operators did not make financial provisions for this
eventuality. As can be demonstrated with the MINDEC model the duration of the activity of the
pyrite source term, the main contributor to acid drainage, runs into many decades and even minor
anthropogenic disturbance tends to cause problems with renewed acid generation.

In many instances, site remediation may be necessary in order to reduce the risk to nearby
inhabitants to acceptable levels. This may involve the removal or modification of the
contaminant source, the re-engineering of the contaminant pathway or, in extreme cases, the re-
location of the receptors. Contaminant source modification options include covering with low
permeability media or using chemicals to neutralize acidity or immobilise heavy metals.
Pathway re-engineering may include the construction of structures such as reactive barriers and
wetlands which are intended to modify the acidity and oxidation potential of contaminated
waters so that dissolved contaminants are immobilised. In many areas with a long history of
mining activity there may be hundreds of potential contaminant sources and there is therefore a
clear role for site prioritisation tools and guidelines with which to decide where to allocate
available resources.
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Appendix A: Sample descriptions and chemical analyses for samples collected in
Chile, (sample numbers prefixed C and CS) and Zimbabwe (Sample numbers prefixed Z)
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Environmental impact of mining
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Appendix B: Some major tailings dam failures
Date Location | Ore type | Type of Incident Release Impacts
2000, |Inez, Martin |coal tailings dam 250 million About 75 miles (120
Oct. | County, failure from gallons (950,000 | km) of rivers and
11 Kentucky, collapse of an m3) of coal streams turned an
USA underground waste slurry irridescent black,
mine beneath the |released into causing a fish kill along
slurry local streams the Tug Fork of the Big
impoundment Sandy River and some
of its tributaries. Towns
along the Tug were
forced to turn off their
drinking water intakes.
2000, |Borsa, tailings dam 22,000t of contamination of the
Mar. |Romania failure after heavy-metal Vaser stream, tributary
10 heavy rain contaminated of the Tisza River.
tailings
2000, |Baia Mare, gold tailings dam crest | 100,000 m° of |contamination of the
Jan. |Romania recovery |failure after cyanide- Somes/Szamos stream,
30 from old|overflow caused |contaminated tributary of the Tisza
tailings | from heavy rain |liquid River, killing tonnes of
and melting fish and poisoning the
Snow drinking water of more
than 2 million people in
Hungary
1999, |Placer, gold tailings spill 700,000 tonnes | 17 homes buried, 51
Apr. |Surigao del from damaged of cyanide hectares of riceland
26 Norte, concrete pipe tailings swamped
Philippines
1998, |Los Frailes, |zinc, lead, |dam failure from |4-5 million m3 |thousands of hectares of
Apr. |Aznalcéllar, |copper, |foundation of toxic water | farmland covered with
25 Spain silver failure and slurry slurry
1995, |Omai, gold tailings dam 4.2 million m3 |80 km of Essequibo
Aug. |Guyana failure from of cyanide River declared
19 internal dam slurry environmental disaster
erosion zone
1978, | Arcturus, gold slurry overflow | 30,000 tonnes 1 person killed,
Jan. |Zimbabwe after continuous extensive siltation to
31 rain over several waterway and adjoining
days rough pasture
1975, |Silverton, (metal) dam failure 116,000 tonnes | tailings flow slide
June |Colorado, polluted nearly 100
USA miles (160 km) of the
Animas river and its
tributaries; severe
property damage; no
injuries
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