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Abstract

Research has provided considerable evidence that temperature significantly influ-

ences species biology. Its influence is so great that climate corridors have been pro-

posed to assist species in tracking their climatic niche at macroecological scales,

reinforcing the importance of accounting for this variable at all scales to address

the climatic threat to biodiversity. This threat is exacerbated in cities where

artificialization enhances the effect of climate change, to the extent that urban

temperatures are a public health concern, with heatwaves causing excess human

mortality and having a stark impact on biodiversity. Recent developments in cli-

mate monitoring networks enable characterizing the spatiotemporal structure of

urban climates in ever greater detail, with many cities already equipped with such

networks. The impact of temperature on biodiversity, on the same scale as these

networks allows, has never been explored. Characterizing urban climate infra-

structures and cool corridors, and thus thermal connectivity for species, would

enrich and strengthen existing ecological infrastructures, on the basis of scientific

evidence. In this perspective, we discuss how stronger collaborations between ecol-

ogists and climatologists could help leverage the full potential of urban climate

monitoring networks. We highlight research opportunities they could offer in

terms of studying the impact of urban climate on biodiversity and the efforts that

need to be pursued to enable co-designing and make interdisciplinary collabora-

tions operational. Such interdisciplinary research on urban climate and its impact

is all the more important that its outcomes can help better inform urban planning

and mitigate the impacts of climate change on people and biodiversity.
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1 | INTRODUCTION: URBANIZATION MODIFIES THE LOCAL CLIMATE,
AND URBAN EXPANSION RAISES QUESTIONS ABOUT THE FUTURE
HABITABILITY OF CITIES

More than half of the world's population lives in urban areas (UNDESA, 2018). The combined effects of population
growth and increased attractiveness of cities are responsible for diverse and major structural anthropogenic pressures
on urbanized landscapes (e.g., Forman, 2014; Hölker et al., 2010; Jerem & Mathews, 2021; McKinney, 2006). In particu-
lar, the increase in artificial surfaces, built-up or impervious (e.g., roads and pavements), fragments the habitats of
many species (LaPoint et al., 2015), and substantially alters the local climate perceived by people and organisms living
in cities (Li et al., 2023; Wilby & Perry, 2006). This influence of urbanization on local climate was first documented in
the 19th century by Howard (1833/2007), who described differences in temperature records between the city of London
and the surrounding countryside. This phenomenon, known as the Urban Heat Island (UHI), is the result of differences
in the energy balance between urban and rural areas. While the UHI phenomenon results from the complex interac-
tions between human activities (e.g., air conditioning, combustion engines, etc.), it is mainly associated with artificial
surfaces that accumulate the energy of solar radiation during the day and release it as heat at night, whereas in rural
areas, this energy is utilized mainly by vegetation for evapotranspiration. The intensity and extent of this phenomenon
are further modulated by the spatial configuration of built-up areas—that is, by the nature of urban geometries and
their patterns, also known as urban morphology—that locally modify heat exchange (Kim & Brown, 2021; Oke
et al., 2017). The effects of urbanization on the local climate are sometimes so strong that they precede the effects of
global climate change, as described by Zhang et al. (2010) for the city of Shanghai.

This raises questions about the habitability and safety of cities (Nieuwenhuijsen, 2021), and all the more so in the
current context of global warming and its acceleration (Pörtner et al., 2022). Not only are cities warmer on average than
their surrounding areas, but the effects of global warming are also more pronounced (Arnfield, 2003). Accordingly,
because of its impact on heatwaves and their consequences – with episodes of excess mortality observed on a planetary
scale (Ho et al., 2017; Luber & McGeehin, 2008; Oleson et al., 2015)—UHI is now attracting a growing body of work in
geography and climatology (Kim & Brown, 2021), which has even led to the creation of the journal “Urban Climate” in
2012, devoted to the subject. The detrimental effects of urban climate as a whole on human health are now well docu-
mented (Argaud et al., 2007) but paradoxically, demographic pressure on urban areas continues to increase worldwide.
Models predict that by 2050, 68% of the world's human population will live in cities (UNDESA, 2018), leading to an
increase in urban areas over 2015 of 78%–171% (Huang et al., 2019). The projected growth of urban areas raises con-
cerns not only about the future well-being of city dwellers but also about the future of all organisms inhabiting urban
ecosystems. Protection of biodiversity in urban areas will require thoughtful consideration of suitable ecological infra-
structures and depend on well-informed policy and urban planning decisions (Huang et al., 2019). At the local level,
certain territories and policies are addressing the issue of managing heat—and coolness—in cities, notably in urban
planning (Climate-ADAPT, 2023; IPBES, 2019). These initiatives are supported by climatologists and geographers
whose aim is to get as close as possible to what city dwellers feel (SNO Observil, 2023) to help prioritize management
actions in relation to the challenges associated with urban heat and UHI. Similar engagement by ecologists is needed to
understand the climatic conditions to which species are exposed in cities, to anticipate the overall impact of heat on bio-
diversity and ultimately target and strengthen local actions to build resilience and ensure sustainable urban
development.
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Strong synergies and collaborations between ecologists and climatologists are essential to initiate this engagement.
Research at this interface would be all the more beneficial in that it enables leveraging the full potential of urban moni-
toring networks and maximize its relevance for urban planning. In this perspective, we first highlight that while tem-
perature is shaping the biology of most species, its fine spatiotemporal structure, available from climate monitoring
networks, has never been used to understand species assemblages and persistence in cities. Second, considering that
research into ecological corridors has found an operational translation and is a tool for urban planning projects, under-
standing the impact of its climatic component, including temperature, on the distribution and conservation of urban
biodiversity can only strengthen these projects. Last, we discuss the representativeness of the data and propose ways of
adapting and co-designing these urban climatic networks to make interdisciplinary collaborations fully operational.

2 | RESEARCH IN ECOLOGY IS EXPLORING THE IMPACTS OF
URBANIZATION ON BIODIVERSITY, BUT ITS CLIMATIC COMPONENT IS
STILL LARGELY UNDEREXPLORED

The number of ecological studies conducted in urban ecosystems has seen considerable growth since the 2000s, making
urban ecology a major disciplinary field in ecology (Niemelä et al., 2011). Such momentum can be explained by the fact that
understanding and predicting the future of biodiversity is a real ecological and societal challenge given the rapidly changing
footprint of cities. But also, urban ecosystems allow changes that otherwise take place at macroecological scales to be studied
locally (Diamond & Martin, 2021; Merckx et al., 2024; Merckx, Souffreau, et al., 2018; Rivkin et al., 2019). In particular, the
magnitude of urban warming (1–5�C on average) being close to current global warming scenarios and projections (Gao &
O'Neill, 2020; Youngsteadt et al., 2015), understanding species responses to urban temperatures could be a good indicator of
their ability to adapt more globally to climate change (Diamond & Martin, 2021).

There is ample evidence in the literature of the diverse impacts of cities on biodiversity (Dennis et al., 2017; Hansen
et al., 2005; Merckx, Kaiser, & Van Dyck, 2018; Mimet et al., 2009; Thimmegowda et al., 2020), but it is often limited to
describing general patterns and how aspects of anthropogenic landscape, particularly habitat fragmentation and, to a
lesser extent, climate, shape biodiversity and the biology of urban populations. The impact of the spatial and temporal
dimensions of urban climate on biodiversity remains in many aspects largely unexplored (Collins et al., 2024) and the
misalignment between the scale biodiversity is sampled, and the temperature data often restricts our capacity to derive
robust inferences about the impact of temperature on biodiversity (e.g., Ombugadu et al., 2024). For example, while the
importance of UHI is increasingly recognized in ecology, works that do refer to UHI are based on a limited number of
temperature records (Battles & Kolbe, 2019; Kaiser et al., 2016; Merckx et al., 2021; Merckx, Souffreau, et al., 2018), or
refer to (broad) surrogate variables, such as population density and distance to city centers, which only indirectly indi-
cate altered climatic conditions (Szulkin et al., 2020). In recent decades, however, technological advances associated
with dense climate monitoring tools have enabled the collection of high-resolution data on driving forces that shape
biodiversity, such as temperature (McDonnell & Hahs, 2013). The spatial structure of heat in cities and its temporal var-
iations is now described at ever finer scales, and the associated raw temperature data can be used to contrast their fluc-
tuations between urban areas and their rural peripheries, as well as between neighborhoods and across temporal scales
(i.e., daily, monthly, seasonal, or annual; Dubreuil et al., 2022). These spatiotemporal variations in temperature result
from climatological processes that operate at different scales, which explains that their characterization is likely to bet-
ter capture the complexity of the urban climate that species in cities actually face. Thus, these high-resolution data open
new opportunities to study species' distribution in cities and their responses to small-scale variations in urban climate.
Making better use of the extensive data collected by climate scientists as part of their ongoing UHI monitoring is, there-
fore, not only a way of capitalizing on existing data but also an opportunity to unlock new research opportunities for
ecologists and environmental scientists, which are all the more relevant given that temperature structures and shapes
the biology and population dynamics of most species (Parmesan, 2006).

3 | FROM UHI MONITORING DATA TO INTEGRATIVE NOTIONS OF
CLIMATIC LANDSCAPE AND THERMAL CONNECTIVITY FOR
BIODIVERSITY

The methods and research questions in landscape ecology, which aim to understand the distribution of individuals and
ecological processes in space, feed into our reflections on the impact of urban climatic landscapes on the dynamics of

AUDUSSEAU ET AL. 3 of 10

 17577799, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cc.912 by U

K
 C

entre For E
cology &

 H
ydrology, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



biodiversity. At present, landscape ecology applied to the urban environment focuses mainly on describing how land-
scape mosaics, and in particular soil mineralization and habitat fragmentation, explain species distributions (Balbi
et al., 2021; Hilty et al., 2019; Merckx, Kaiser, & Van Dyck, 2018). If we transpose those works and describe cities
through their climate component, with a specific interest in temperature, comprehensive UHI monitoring data could
be used to describe this urban climatic landscape, composed of a mosaic of habitats which would be thermally more or
less favorable for the establishment and survival of species and thereby explain their distributions in urban landscapes.

Since the effects of temperature on species are well documented, with response curves and thermal optima, we can
develop mechanistic hypotheses and test them to assess how temperature shapes the distribution of species in urban
areas. In this regard, thermal tolerance and dispersal ability of species are key biological traits to understand their
capacity to adapt to new environmental conditions (e.g., higher temperatures) and, if available, to disperse into habitats
that are thermally more favorable (Bellard et al., 2012). For example, by comparing species' thermal tolerance (the
lower and upper limits) with the temperature of the habitat, we can assess the extent to which species are living at the
edge of their thermal limits, and predict their fate in the face of expected warming (Bennett et al., 2018, 2021). The abil-
ity of species to persist in heterogeneous and highly fragmented urban landscapes is additionally understood by
accounting for their ability to disperse, which will determine their capacity to reach thermally suitable habitats, and
thereby have a direct impact on their fate and risk of extinction (Thomas et al., 2004). Even temporary exposure to tem-
peratures above critical thresholds can be lethal for species that cannot escape and threatens those that can only com-
pensate for such a temperature in the medium term by using local microhabitats through behavioral thermoregulation,
such as burrowing (Fey et al., 2019).

Research into the relationships between the spatiotemporal structure of temperature and the distribution of species
and their biological traits could help to identify functional thermal corridors to increase connectivity in urban environ-
ments. The concept of corridors is certainly not new and the operational implementation of movement corridors is
widely supported by public policies and conservation actions from local to international levels (IPBES, 2019), but here,
we propose to extend this concept to climate corridors. The concept of corridors was initially defined solely on the basis
of land use that, combined with reservoirs, define a network of ecological continuities favorable to the movement and
reproduction of species, that are the green and blue infrastructures. Since then, and because of their effects on the
behavior and reproduction of many species (Hölker et al., 2010; Hoy & Robert, 1996; Vaz et al., 2022; Zapata
et al., 2019), other constraints to the movement and persistence of species such as anthropogenic light sources (the
ALAN effect and its associated dark corridors) and noise, are also considered when defining functional ecological corri-
dors. At this stage, however, and while there is a wealth of work on the impact of temperature on species, few have pro-
posed climate corridors as such (see Hilty et al., 2019), and to our knowledge none at a city scale. The few studies that
exist on this topic have been conducted to predict the fate of biodiversity in the face of environmental change, mostly
measured at macroecological scales. For example, McGuire et al. (2016) sought to assess the extent to which species
would be able to follow their climate niche on the scale of 100-year climate predictions. A similar approach was taken
by Su et al. (2021) to assess climate connectivity in the Yangtze Delta, a densely populated economic region in China.
In both cases, climate connectivity depends on the availability, contiguity, and suitability of land use required for spe-
cies to move and reach thermally favorable habitats. However, reduced habitat contiguity does not necessarily impair
individual movement, especially if species have few interactions with the land use when they move (as is the case for
species that fly to migrate). This is exacerbated in urban environments because the geographical extent considered is,
for many species, at a smaller scale than the extent of their dispersal capacities. Therefore, the movement of species in
urban environments may be more restricted by UHI and temperature extremes than by the geographical distance
between habitats. The climatic resistance to movement through an urban matrix, measured as the cumulative values of
temperature over a distance between two suitable habitats, may become a real barrier to species' movement or, at the
very least, significantly limit species capacity to move between thermally suitable habitats. The climatic resistance to
movement, or conversely climatic permeability, is all the more structuring in cities where temperatures vary on
extremely short time and space scales. We thus need to characterize this climatic landscape to define cool infrastruc-
tures and the movement corridors they can provide, in the same way as it is done for the green and blue, and dark
infrastructures that exist for land use and light, or maps of sound pollution. Recent works emphasize even more clearly
the need to study thermal fluctuations and extreme high-temperature events, knowing their impacts on population
dynamics (Ma et al., 2021) and species evolution (Buckley & Huey, 2016; Clusella-Trullas et al., 2011; Kingsolver &
Buckley, 2017; Paaijmans et al., 2013). Accounting for the non-linear relationship between species performance and
temperature would significantly improve the accuracy of our predictions on species population dynamics (Denny, 2018)
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and help to identify and prioritize biodiversity-friendly corridors in urban landscapes based on quantitative and func-
tional elements in terms of population dynamics.

4 | LIMITS IMPOSED BY THE RESOLUTION OF CLIMATIC AND
BIOLOGICAL DATA

To develop an understanding of the biological mechanisms that determine species composition and distribution in cities
from temperature data collected through UHI monitoring networks, we need to overcome the mismatch in data
requirements (e.g., type and resolution) between ecology and climatology. The difference in data resolution highlights
the need to adapt the UHI monitoring network to provide and retain fine-scale data needed by ecologists if we are to
ensure that such interdisciplinary research can be conducted and thrive.

What first led climatologists' to study UHI phenomenon was their interest in understanding its formation and
dynamics, in other words, the physical processes that drive the phenomenon. Therefore, work on urban climates gener-
ally involved UHI data measured at a resolution that describe the phenomenon at the local or meso scales (as defined
by Kim & Brown, 2021), and for stratum in or above the urban canopy and buildings (Oke, 1976). However, these scales
are (horizontally) larger than the habitats in which city dwellers live and for a (vertical) stratum that is far above where
most urban biodiversity disperses. Indeed, urban dwellers and a large proportion of urban species are likely to be sensi-
tive to UHI occurring at the micro-scale that results from air temperature measured at the street level (Hwang
et al., 2015). On the other hand, the few studies that have attempted to describe the UHI phenomenon at the micro-
local scale are confronted with an inconsistency between the resolution of the climate data used to calculate the UHI
and the scale at which its effect is interpreted (Kim & Brown, 2021). Indeed, most of these studies rely on infra-red data
obtained from satellites available at a resolution of 60 m and a frequency that does not allow daily tracking. Tempera-
ture derived from satellite imagery also presents the caveat that information is limited to temperature variations at the
surface, and does not include a direct measurement of air temperature variations. Although the processes that explain
the genesis and dynamics of UHI phenomena at the surface and in the air are related, they are shaped by different pro-
cesses and result in regional differences (Oke et al., 2017). Other studies rely on data collected through networks of cli-
mate stations which, while partly compensated with spatial statistics methods to interpolate values between
measurement points (Amorim et al., 2021; Foissard et al., 2019), are limited by the location and number of stations.

However, in their effort to identify and isolate the causes of UHI, climatologists have considerably developed and
densified the urban climate monitoring networks and thereby partly addressed these caveats. Historically, large conur-
bations and metropolises were often the first to set up climate networks. Since UHI phenomena are generally propor-
tional to city size, they are often more pronounced and have far greater consequences in large and dense urban areas
(Manoli et al., 2019). Nevertheless, the phenomenon occurs in cities of all sizes, further vary across climate zones, and
is modulated by the texture and the morphology of the city (Manoli et al., 2019). This explains why, alongside techno-
logical development and reduced costs, climate monitoring networks are being deployed around the world to character-
ize and monitor UHI, as is the case in Rennes (467,580 inhabitants in 2020, Brittany, France, Dubreuil et al., 2022). In
particular, technical developments in semi-professional stations since the 1990s have made it possible to densify the
network of fixed weather stations at an affordable cost, while reducing the workload associated with mobile measure-
ments along transects. The spatial resolution for modeling the UHI has also continued to increase over the last decade
with the use of low-cost connected or participatory sensors strategically located to better capture the heterogeneity and
complexity of urban space where people live, capture micro-scale phenomena such as wind or radiation or explore the
impact of urban planning (generally described by the LCZ). Yet, even though there are continuous efforts to refine
the monitoring network and place sensors in a homogeneous and controlled manner, cities represent complex climatic
mosaics whose diurnal micro-scale variation in temperature remains difficult to understand. These climate data are also
restricted to the vertical stratum where the weather stations and sensors are placed, that is, at a height of 2 or 3 m,
which represents a compromise between the reference measurement in climatology and the risk of damage. Moreover,
only few networks currently allow to study the impact of UHI over time (Bai et al., 2018; Dubreuil et al., 2022). More
generally, what is true for temperatures (the preferred parameter for studies on the UHI) is also true for the other
parameters that these stations and sensors can monitor, such as humidity or wind, and that describe the state of the
urban atmosphere.

With respect to the characterization of the spatial structure of temperature, we strongly believe that extending cur-
rent climate monitoring in other vertical strata (soil, ground surface, air) would be particularly useful for urban ecology.
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Temperature profiles are highly variable between strata (He et al., 2022; Wong et al., 2021), especially at ground level
where many species live, while UHI monitoring is mainly derived from air temperatures measured at about 2 m above
ground level. Hence, knowledge of the temperature profiles across strata (using drone or sodar technologies) would
allow us to more accurately describe and link ecological processes and population dynamics of species to the thermal
environment they experience. This work is essential if we want to support evidence-based decisions and guide urban
planning to improve the habitability of cities. To this end, the location and the density of weather stations and sensors
within climate monitoring networks are crucial. A monitoring network design that providing reliable data of night-time
and daytime temperature would make it possible not only to characterize and track UHI, which occurs mainly at night,
but also to identify areas prone to extreme daytime temperatures and that can represent a threat to many species. Other
climate parameters such as hygrometry and precipitation—yet sometimes already available from climate monitoring
networks—could also be monitored and characterize, not only because they interact with temperature and the overall
local conditions conducive to the formation of UHI (Kastendeuch et al., 2019), which further differ between climate
regions (Manoli et al., 2019), but also because they can influence the effects of heat on organisms. For some species,
water stress can be more harmful than climatic stress (Burdine & McCluney, 2019).

While the shortcomings in climate records and the lack of comprehensive climate monitoring networks across cities
hamper our ability to explore general patterns between the spatial structure of temperatures and species distribution in
cities, a proxy approach can, on the short term, partly compensate for the limitations in the current data and be used to
start exploring these associations. Zhao (2018) shows that surface UHI correlates strongly with city Local Climate Zones
(LCZs) classification, which are based on morphological and land-use units. With certain limitations (Richard
et al., 2018), LCZs can be used as climate proxies to assess climatic connectivity at the city-wide scale. Much work also
remains to be done in ecology and evolution to understand the dynamics of biodiversity in urban environments and
decipher the underlying mechanisms. To give just one example where improvement is needed: while species' thermal
tolerance is often used to explain the pattern of species' occurrence in urban areas, the reference data available in the
Globtherm database (Bennett et al., 2018) are derived from measurements made on individuals from populations col-
lected in distant geographical areas. However, because adaptive change can occur on very short timescales (Brans
et al., 2017; Diamond et al., 2017, 2018; Merckx et al., 2024), intra-specific and inter-populations measures collected
across small spatial (and climatic) gradients are needed to assess species' plasticity, their ability to adapt to changes, and
at which speed. We also need to better understand the physiological mechanisms that determine species' thermal toler-
ance, an area that remains largely unknown (Gonz�alez-Tokman et al., 2020), despite its importance for predicting spe-
cies' response to climate.

5 | CONCLUSION

There is no doubt that temperature is an important determinant of species' distribution and survival, and that under-
standing its spatiotemporal dynamics in cities—and even further explore how they vary across climate zones, between
urban morphologies, including the temporal trajectories of urban sprawl—is crucial if we are to rethink and plan ahead
the design of cities to enable essential ecological processes for species to move, persist and evolve in urban environ-
ments. In this context, we believe it is crucial that ecologists work more closely with geographers and climatologists so
that the temperature, and more widely all the other climatic variables collected as part of the monitoring of UHI, can
eventually be used to understand the dynamics of biodiversity in cities.

Habitat, generally delineated by land cover type, is often the only object upon which conservation measures are
undertaken. Although habitats can be physically identified, mapped, and manipulated through land-use planning their
suitability for species is also determined by other factors such as climatic conditions. Thinking about climatic infrastruc-
tures and thermal corridors, and integrating them into ecological infrastructures that already exist to characterize
anthropized environments (associated with artificial surface, light, and noise pollution, etc.) would greatly improve our
understanding of the permeability of urban areas for biodiversity and contribute to the development of more sustain-
able urban planning. The increasing number of days with strong UHI observed over the last decades and the so-called
tropical nights, due in part to the pressure on land biased against natural habitats, makes these ecological and thermal
corridors all the more vital for species persistence. Their implementation is also reinforced by the obvious benefits they
represent for human health. Evidence-based understanding of the role of urban climate on biodiversity and how it var-
ies around the globe is urgently needed to guide, support, and reinforce initiatives already undertaken by decision-
makers, for whom climate management is becoming a central political issue in the face of the threat posed by global
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warming to the habitability of cities. The development of a climate monitoring network that can inform on climatic
conditions in areas where species live and transit, combined with a deeper understanding of species' climatic require-
ments, along urbanization gradients, would help ecologists and climatologists work toward that objective. Finally, we
would like to emphasize the importance of investigating the relationships between the temperature landscape measured
at multiple scales and across strata (i.e., three-dimensional structure) and the dynamics of species living and transiting
in these complex environments. Such research could be used to identify urban morphologies and develop infrastruc-
tures that “work” for biodiversity and people in different urban contexts.
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