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accurate historical records of Earth’s surface temperatures are central to climate research and policy 
development. Widely-used estimates based on instrumental measurements from land and sea are, 
however, not fully consistent at either global or regional scales. to address these challenges, we develop 
the Dynamically Consistent ENsemble of Temperature (DCENT), a 200-member ensemble of monthly 
surface temperature anomalies relative to the 1982–2014 climatology. Each DCENT member starts from 
1850 and has a 5° × 5° resolution. DCENT leverages several updated or recently-developed approaches 
of data homogenization and bias adjustments: an optimized pairwise homogenization algorithm for 
identifying breakpoints in land surface air temperature records, a physics-informed inter-comparison 
method to adjust systematic offsets in sea-surface temperatures recorded by ships, and a coupled 
energy balance model to homogenize continental and marine records. Each approach was published 
individually, and this paper describes a combined approach and its application in developing a gridded 
analysis. A notable difference of DCENT relative to existing temperature estimates is a cooler baseline 
for 1850–1900 that implies greater historical warming.

Background & Summary
Historical earth surface temperature estimates are important for monitoring climate change, attributing those 
changes to particular causes, and developing and communicating appropriate policy responses. Estimates of 
Earth’s surface temperature, however, involve a number of intricacies reflecting a heterogeneous observing net-
work that is subject to various biases.

Land surface air temperatures (LSATs) are measured at approximately two meters above the ground, and 
LSAT records may contain discontinuities arising from changes in the types and exposure of thermometers, sta-
tion relocation, and urbanization or other changes in the station environment1. Sea surface temperatures (SSTs) 
correspond to water temperatures of a layer that is generally within the top few meters of the ocean, though 
sometimes deeper2. Historically, SSTs were measured on traveling ships either by lowering buckets to collect 
water samples or as a by-product of monitoring engine room intake (ERI) temperatures3. Whereas bucket SSTs 
are mostly biased cold due to wind-induced evaporation, ERI SSTs are typically biased warm due to heat release 
from ship engines4. It was not until the 1990s that more accurate SST measurements became widely available in 
the form of observations from moored and drifting buoys5.

Accounting for these data biases, especially their changes over time, is crucial for quantifying and under-
standing long-term climate change. A variety of approaches exist for the homogenization and adjustment of 
temperature records over land6,7 and sea8–12. We briefly review existing datasets and the homogenization or 
adjustment methods used, and then outline certain improvements upon existing methods. These methodo-
logical improvements are used in constructing a new dataset called the Dynamically Consistent ENsemble of 
Temperature, or DCENT.
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Some LSAT homogenization approaches rely upon national efforts conducted by some but not all coun-
tries, such as the Climate Research Unit Temperature (CRUTEM)13 and China Meteorological Administration 
datasets14. Another approach is to use global statistical homogenization algorithms, such as used in the Global 
Historic Climate Network (GHCNm)7 and Berkeley Earth Surface Temperature15. We recently described an 
extension to the homogenization algorithm proposed in ref. 6 to account for temporal auto-correlation in cli-
mate signals16, which is used to homogenize LSATs in DCENT.

The adjustment of ship-based SST measurements differs from that for LSATs because ships, unlike land-based 
weather stations, routinely move. Versions of NOAA’s Extended Reconstructed SST (ERSST)11,12,17 rely upon 
adjusting SSTs to be consistent with smoothed estimates of Nighttime Marine Air Temperatures (NMAT) from 
HadNMAT218 on a global scale11. Other groups make use of the patterns of temperature biases expected on 
the basis of bucket models8, including COBE-SST2 from the Japanese Meteorological Agency19. For HadSST4 
from the Met Office10, its SST correction before 1940 involves both adjusting SSTs to NMATs and using physical 
bucket models. DCENT takes a further step in the homogenization of ship observations by identifying offsets 
between different groupings of ships using pairwise comparisons of nearby observations20.

Beyond homogenizing LSATs and SSTs independently, there is also utility in ensuring physical and statis-
tical consistency between these two domains of observations21. One means of homogenizing land and ocean 
temperatures is to compare and adjust records along coastlines. Ref. 22 linearly scaled coastal LSATs to infer 
near-coast SSTs and used the inferred coastal SSTs to adjust global SSTs. Building from ref. 22, we developed a 
coupled energy balance model (EBM) to better infer near-coast SSTs from coastal station temperatures. The 
model accounts for the physics of air-sea coupling and decreases the uncertainty of inferred near-coast SSTs, 
especially in the extra-tropics. Applying the coupled EBM to various versions of homogenized LSATs confirms 
the inconsistency between current LSAT and SST estimates on global and regional scales23. The homogenization 
between land and ocean temperature evolution is not included in presently available gridded datasets and is 
addressed in DCENT using the coupled EBM.

In the following we describe the development of DCENT, a land-ocean temperature dataset that is glob-
ally homogenized. DCENT takes advantage of recent methodological advances in temperature data homoge-
nization, and is provided in the form of an ensemble of equally likely surface temperatures. We anticipate that 
DCENT, with its enhanced accuracy and comprehensive uncertainty estimation in data homogenization, to 
significantly advance our comprehension of historical warming.

Methods
The development of DCENT involves five steps (Fig. 1). We first give an overview of these steps and then provide 
details in subsequent subsections.

 1. Homogenizing station temperatures and producing DCLSAT, the LSAT component of DCENT: 
Starting from the unhomogenized monthly-resolution Global Historical Climatology Network version 4 
(GHCNmV4)7, we apply pair-wise homogenization algorithms (PHA) to detect and adjust breakpoints. 
PHA compares nearby stations and detects breakpoints in inter-station differences using the Standard 
Normal Homogeneity Test6. Detected breakpoints are attributed to a particular station according to which 
station is most often associated with such a breakpoint when paired against a collection of other stations. 
We use two versions of PHA, both of which are recently revised to account for autocorrelation in climate 
variability16. The first version modifies the SNHT threshold to account for autocorrelation, and the second 
version replaces SNHT with a penalized likelihood (PL) approach wherein data is prewhitened using an 
order-one autoregressive model. These revised algorithms are more skillful than the existing, established 
algorithm6 in identifying the correct timing of breakpoints and recovering true climate variations16. More 
details regarding the revised algorithms can be found in Appendices B and C of ref. 16. Parameters in each 
algorithm are perturbed 50 times and combined to create a 100-member ensemble to quantify uncertain-
ties associated with the timing and magnitude of the identified breakpoints16. An important issue with re-
spect to homogenization approaches that depend on neighboring stations is that station coverage is sparse 
before the 20th century. Existing pairwise algorithms may have insufficient neighbors for early stations, 
leading to incomplete adjustments in the late 19th century. To account for data sparsity, we apply additional 
steps to each member of the ensemble created by ref. 16. These steps involve further iterations of PHA and 
breakpoint verification for stations with limited neighboring data. The ensembles after these additional 
steps are pooled together with the original ensemble to create a 200-member ensemble. Methodological 
details and implications for temperature reconstruction are discussed in sub-section M.1. Station-wise 
anomalies relative to the 1982–2014 climatology are calculated using a pairing and matching algorithm23 
before binning to 5° × 5° monthly grids to create the 200-member DCLSAT ensemble.

 2. Inferring coastal SSTs from coastal land station temperatures: In addition to gridding all land station 
records to create DCLSAT, we also use more than 3,000 coastal stations in each member of our pair-wise 
homogenized station temperature ensemble to infer near-coast SST evolution. This ensemble, named 
LSAT-inferred near-coast SST will be used for estimating SST adjustments (step 4). We use a coupled 
energy balance model (EBM) for land air and nearby sea surface temperatures, as detailed in ref. 23, for this 
inference. In short, the model uses land temperature and its tendency to predict the temporal evolution of 
nearby SSTs. The EBM implementation here is the same as ref. 23.

 3. Group-wise SST intercomparison: Starting from releases 3.0.0 and 3.0.2 of the International Comprehen-
sive Ocean-Atmosphere Data Set (ICOADS), we apply a group-wise intercomparison algorithm to homoge-
nize ship-based SST measurements. ICOADS3.0.0 contains data until 2014, and ICOADS3.0.2 contains data 
from 2015 onward, allowing for extending the dataset to present. The pair-wise homogenization algorithms 
used for land temperatures are not directly applicable to marine measurements because ship motion leads to 
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different recorders at any given point and hence different neighbors. A group-wise intercomparison method 
for homogenizing SSTs was first introduced in ref. 24 that extends the concept of pairing neighboring 
stations to pairing nearby SSTs from different groups. Groups are distinguished according to data source, 
measurement method, and countries, and a linear-mixed-effect model is used to estimate group-level offsets 
as a function of year and 17 sub-ocean basins. In ref. 25, the algorithm was run in a rolling manner, each 
comparing data in three consecutive months, in order to account for seasonality. In order to estimate the 
SST component for DCENT (DCSST), we revise the algorithm presented in ref. 25 to use a set of physics-in-
formed patterns of bucket biases to account for seasonal and regional variations in group-wise SST offsets 
explicitly. Estimated offsets using the revised method hence have spatial and seasonal variations in line with 
physical expectations of how bucket-based SST measurements are biased. The revised method estimates 
offsets in all seasons simultaneously, giving fewer free-parameters and increased computational efficiency. 
Details of the physics-informed group-wise intercomparison method, as well as comparison with the exist-
ing approaches25, are in sub-section M.2. Groupwise offsets are randomly perturbed 200 times according to 
estimated uncertainties in order to create an intermediate ensemble of groupwise homogenized SSTs.

 4. Common SST adjustment: The group-wise intercomparison method adjusts relative offsets but does 
not inform about biases common to all SST measurements. Because LSAT measurements are consid-
ered more reliable than SST measurements21, we use LSAT-inferred near-coast SSTs (step 2) to adjust 
group-wise homogenized observational SSTs, an idea similar to ref. 22. The common SST adjustment here 

Fig. 1 Five steps of DCENT development. A schematic for DCENT development, including (1) Homogenizing 
station temperatures and creating DCLSAT, (2) Inferring coastal SSTs from coastal land station temperatures, 
(3) Group-wise SST intercomparison, (4) Common SST adjustment, and (5) Combining DCLSAT and DCSST. 
Displayed are raw, intermediate and final data products (open circles and black text), processes and techniques 
used (solid circles and red texts), uncertainties accounted for (pink text), and references (gray text). Land air 
temperatures are in green, sea-surface temperatures are in blue, and temperatures along coast lines are in orange.
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assumes that SST biases estimated from coastal comparisons can be used to infer biases in the open ocean. 
Specifically, we use physically modeled patterns of bucket biases to estimate the spatial distribution of 
SST biases, anchoring these patterns to the coastal bias estimates. Details of this common SST adjustment 
are in sub-section M.3. To propagate the uncertainty of land temperature estimates, each member of the 
LSAT-inferred near-coast SST ensemble is randomly paired with a groupwise homogenized SST member 
without repetition. The adjusted ship-based SST ensemble is then combined with moored buoy and drifter 
SST anomalies to generate the gridded DCSST product.

 5. Combining DCLSAT and DCSST: Finally, each DCLSAT member is combined with its DCSST member 
pair from the common SST adjustment (step 4) to create the dynamically consistent ensemble of tempera-
ture (DCENT). Over coastal regions where both LSAT and SST are available, the combination is weighted 
by the fraction of land and ocean area in individual grid boxes, as provided by ref. 26. When either LSAT or 
SST is available, the weight of the available component is one. Moreover, the ensemble contains compre-
hensive uncertainty quantification for the adjustments applied, including land station homogenization, the 
inference of coastal SSTs, groupwise SST adjustments, and common SST adjustments.

Updates in land station temperature homogenization. Ref. 16 introduced two revisions to a bench-
mark pair-wise homogenization algorithm (PHA) by accounting for auto-correlation in breakpoint detection. 
Improvements in the accuracy of identified breakpoints and recovered underlying climate variability has been 
illustrated using synthetic data, climate model simulations, and comparisons against available historical meta-
data16. That said, station coverage was sparse before the 20th century and has led to an apparent decline in the per-
centage of station with sufficient neighbors for pair-wise comparison in the later half of the 19th century (Fig. 2a). 
An example could be the station network in the Northeastern US (Fig. 2c). Around the target station in New 
Hampshire (blue cross), PHA first pre-selects the nearest 100 stations (black) and of those selects the 40 stations 
best correlated with the target (red circles). However, among the initial 100 stations, many do not have data 
that extends back to the late 19th century (open circles). Stations with data from that period (filled circles) are 
often too far away to be considered using the modern station network. Consequently, the frequency of effective 
comparisons against neighbors decreases significantly before 1900, leading to a reduction in the detection and 
adjustment of breakpoints (black lines in Fig. 2d). This issue potentially results in insufficient adjustments for the 
period before the 20th century.

We performed two additional analyses to account for the sparsity of early stations. First, after perform-
ing a first round of PHA, we subset all stations that have data before 1900 and run a second round of PHA 
on homogenized pre-1900 data from this station subset. Such a practice effectively uses a larger radius for 
neighbor-selection and increases the number of valid neighbors substantially (Fig. 2b). Around 2-3% more 
breakpoints are identified before 1897 (blue curves in Fig. 2d), suggesting that the rate of breakpoints in station 
records could be more consistent over time than previously suggested16.

After two rounds of PHA, some stations still have insufficient valid neighbors, at least during some periods. 
Among the ~28,000 stations in GHCNmv4, the number of these isolated stations ranges from 138 to 2439 across 
the 100-member ensemble. This variation reflects different parameters, such as the number of initial stations 
checked for identifying neighbors and the definition of data sparsity used across ensemble members. We, there-
fore, also perform a separate check for each of these stations for breakpoints during its neighbor-sparse period. 
Specifically, we use a penalized likelihood approach similar to that used in ref. 27. Because we are not comparing 
isolated stations against neighbors, and the actual climate variability could be large, we use a more flexible model 
setup that allows for placing change points in mean and trend at different times, i.e., 
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where μ and k are the mean and trend before the first change point. List tj, j = 1, 2, …, m denotes the timing of m 
breakpoints with the magnitude relative to the previous segment denoted as Δμj, and list τj, j = 1, 2, …, n denotes 
the timing of n change points in trend with the magnitude of trend change relative to the previous segment denoted 
as Δkj. In the current setup, tj can only take values in data sparse periods. Term εt is the error process, representing 
natural temperature fluctuations, and is modeled as an AR(1) process. The penalized likelihood of Eq. (1) is, 

σ π= + + + + +�T N N N m n Nlog( ) log(2 ) (2 2 4)log( ), (2)2

 where N is the length of the series, and σ2�  is the residual of an ordinary least square fit. We use a multi-parent 
genetic algorithm to optimize Eq. (2) (see Appendix C in ref. 16 for detailed implementation). An illustration of 
station record, data sparse period, and fitted change points are in Fig. 3. This double-check based on penalized 
likelihood identifies most breakpoints before 1880 (Fig. 2d), a period during which a considerable portion of 
stations are still data-sparse in the second round of PHA (Fig. 2b).

Compared with only running the first step of PHA, these additional steps, on average, revise tempera-
ture over 1850–1900 to be 0.03 [0.00,0.06] °C cooler, suggesting a slightly higher degree of warming since the 
pre-industrial period.

Physics-informed group-wise SSt intercomparison. We inform the group-wise intercomparison 
algorithm with simulated monthly patterns of physically-based bucket biases to explicitly account for seasonal 
and regional variations in group-wise SST offsets. Specifically, we use the canvas bucket model in ref. 28. Bias pat-
terns, P, are resolved at monthly 5° resolution, and examples of January and July patterns are in Fig. 4. Using the 
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physical patterns of biases expected on the basis of bucket models reduces the number of parameters by a factor of 
9 and allows for better quantification of uncertainties. Specifically, we specify a linear mixed effect model, 

T X X Z Z , (3)B B B Bδ β β ε= α + α + + +

 where δT is a vector of SST differences within individual pairs. X is a design matrix, whose entries are 0, 1, and 
-1, to indicate which two groups are being compared. α is the fixed effect and contains systematic offsets for indi-
vidual groups. Z is another design matrix similar to X but also indicates in which 5-year increment comparisons 
occur. β is the random effect and contains variations of offsets across 5-year increments for individual groups. 
ε denotes random error. These terms are identical to ref. 25. On the other hand, XBαB and ZBβB are terms associ-
ated with bucket patterns. XB is a design matrix whose entries are 0, p, and − p, where p(φ, θ, m) denotes bucket 
SST bias patterns sampled from P at longitude φ, latitude, θ, and calendar month, m. Accordingly, αB denotes 

Fig. 2 Land temperature homogenization in the 19th century. (a) Density plot of the number of neighbors 
with data (y-axis) as a function of time (x-axis). Results are shown for the default parameter combination of 
the pairwise homogenize algorithm (PHA) in ref. 16. (b) as panel (a) but for a second round of group-wise 
homogenization using only stations having data before 1900, which effectively increases the search radius for 
neighbors and hence reduces the number of neighbor-sparse stations. (c) station network in the Northeastern 
US. Markers shows a target station (blue cross), the nearest 100 stations (black), 40 neighboring stations (red), 
and other stations (gray). Stations with valid data reported in 1887 are filled circles, and otherwise open circles. 
(d) 11-year running averaged frequency of detecting breakpoints as a function of years for the ensemble in ref. 16 
(black). Also shown are results after running an additional PHA for stations having data in the late 19th century 
(blue), and after running penalized likelihood for stations that remain data sparse after two rounds of PHA 
(orange). Shown results are for the default parameter combination (thin curves), mean over the 100-member 
ensemble (thick curves), and the 95% confidence interval (c.i., shading). (e) as (d) but for the histogram of 
breakpoint magnitudes. Note that the left and right y-axes have different scales.
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mean groupwise offsets in the magnitude of bucket patterns. Similarly, βB denotes temporal variations in the 
magnitude of the bucket pattern, and ZB is the associated design matrix. An element-wise visual representation 
detailing the construction of this physics-informed linear-mixed effect model is in Fig. 4.

We use the revised groupwise intercomparison method to homogenize all ship-based SST measurements in 
ICOADS3.0.0 and 3.0.229, where ICOADS3.0.2 contains data from 2015 to 2023. The identification of ship-based 
SSTs, initial quality control, and group assignment are identical to ref. 25. The current analysis contains ~50 
million pairs coming from 513 groups that each contributes to at least 5,000 SST pairs. To increase computation 
efficiency, we aggregate data by averaging SST differences and design matrices according to combinations of 
pairs of groups, 5-year increments, calendar month, and 30° × 15° longitude-latitude boxes, which reduces the 
number of pairs to 4.2 million.

Common SSt adjustment using near-coast SSts inferred from coastal weather stations. Inferred 
coastal SSTs are paired with group-wise homogenized SSTs for estimating common SST biases after the 1930s, when 
the SST archive is a mixture of bucket and engine-room-intake (ERI) measurements, using the following linear 
model (Model 1), 

δ γ γ ε= + + .T X (4)B B

Vector δT contains the difference between group-wise homogenized and inferred coastal SSTs binned to 
monthly 5° resolution. The elements of vector XB are sampled from the bucket bias patterns according to lon-
gitude, latitude, and calendar month. Term γ is similar to α in Eq. (3) and denotes the spatially and seasonally 
invariant biases, representing those congruent with ERI measurements, which have been assumed to be less 
influenced by environmental factors9. Term γB, similar to αB in Eq. (3), denotes the magnitude of common biases 
that can be projected onto the bucket pattern.

Before 1930, the SST archive contains mainly bucket measurements20, and we use a model that only projects 
onto the bucket patterns to estimate required adjustments (Model 2), i.e., 

T X (5)B Bδ γ ε= + .

 We assume a linear transition from using Model 2 to Model 1, with the starting and ending years of the transi-
tion randomly drawn from uniform distributions U (1907, 1913) and U (1927, 1933), respectively.

The solution of both models are found using weighted least squares, with the weight being the inverse of the 
uncertainty in each monthly 5° box. The uncertainty model is, n/s r c i l l

2 2 2 2 2 2σ σ σ σ σ σ= + + + +ε . Terms σs
2, 

σr
2 and σc

2 denote SST’s sampling uncertainty, random observation uncertainty and systematic ship-level uncer-
tainties, respectively. We use the HadSST4 estimates for these values10. Term i

2σ  denotes the uncertainty of 
inferred coastal SSTs and is estimated to have a spatially averaged standard error of 0.36°C at monthly 5° grid 
level23. Term l

2σ  denotes the uncertainty of monthly station temperatures, which we assume to decrease with the 
number of stations in a grid (nl), and we estimate its value (0.41°C; 1 s.d.) using island grids in CRUTEM513.

Moreover, ref. 23 concluded that the sparsity of land stations would result in the standard error of aver-
aged coastal SSTs inferred from station temperature higher than 0.05°C. In addition, the group-wise SST 

Fig. 3 An illustration of applying the penalized likelihood method in producing the DCLSAT ensemble. This 
station has an insufficient number of valid neighbors before the 1930s (orange curve) after running two rounds of 
PHA. A penalized likelihood method is hence running on temperature record from this station alone (black curve) 
to detect potential discontinuities in records. Our model allows for detecting discontinuities in mean (dashed 
vertical blue lines in 1916, 1926, and 1931) and trend (blue circle in 1988) separately. The red line shows the best fit.
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intercomparison could be incomplete due to limited metadata available for grouping in the early period, intro-
ducing another layer of complexity. As a result, we use the estimated common bias in 1880 to adjust SSTs over 
1850–1880, a practice that has been adopted in producing other SST products12. In other words, the common 
SST bias adjustment in DCSST involves adjusting inferred bias estimates from 1850–1880, using biases fitted 
from a bucket-pattern only model until the 1910s, linearly transitioning to biases fitted from a bucket-pattern 
plus intercept model until the 1930s, and continue all the way to present (Fig. 5a).

Removing the estimated common SST biases leads to our fully adjusted ship-based SSTs, which are then 
merged with data from both moored and drifting buoys, identified using ICOADS ID indicator, source ID, deck, 
and platform metadata25. Observations from buoy and drifter SSTs begin in the early 1980s. Notably, these meas-
urements are typically 0.1°C warmer than the OISST reference used for the anomaly calculations. This results in 
a noticeable mean offset between the ship-adjusted data and buoy/drifter SSTs. To address this offset, we adopt 
the approach detailed in ref. 17, removing the average 1982–2022 discrepancies between buoy and adjusted 
ship-based SST anomalies from buoy SSTs. These adjustments are made at a monthly 5° resolution. Leveraging 
insights from ref. 17, we assign a weight to buoy and drifter SSTs that is 6.8 times of ship-based SSTs, where the 
weighting is determined by comparing their uncertainty estimates.

Data records
This data descriptor presents version 1.0 of DCENT, which is available as 200 NetCDF files named in the format 
of “DCENT_ensemble_1850_[YYYY]_member_[XXX].nc”, via HarvardDataverse30 (https://doi.org/10.7910/
DVN/NU4UGW). The variables in individual files are described in Table 1. In addition, the ensemble mean is 

Fig. 4 An element-wise illustration of the linear-mixed-effect model for the physics-informed group-wise 
intercomparison. Equation (3) is given, together with the dimensions of matrices and vectors (blue), where p, 
g, and y are, respectively, numbers of pairs, groups, and 5-yr increments, respectively. Four terms are illustrated 
in detail: (1) paired SST differences δT; (2) X is a design matrix that specifies group-wise interactions between 
paired observations, and α represents the fixed effects of global and seasonal mean offsets; (3) XB is a design 
matrix that specifies not only groups but also the monthly bucket bias pattern where comparisons occur (p 
and − p), and αB represents the fixed effects of group-wise offsets congruent with bucket patterns; and (4) ZB is 
a design matrix expanded to specify 5-yr bins in which group-wise comparison take place, and βB represents 
5-yr random effects of bucket magnitude that are assumed to follow a Gaussian distribution. Bucket patterns are 
resolved at 5° × 5° monthly resolution, and the two snapshots in January and July are shown as an illustration.

https://doi.org/10.1038/s41597-024-03742-x
https://doi.org/10.7910/DVN/NU4UGW
https://doi.org/10.7910/DVN/NU4UGW


8Scientific Data |          (2024) 11:953  | https://doi.org/10.1038/s41597-024-03742-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

provided in “DCENT_ensemble _1850_[YYYY]_ensemble_mean.nc”, and monthly climatological temperatures 
at 5° × 5° resolution are available in “DCENT_monthly_climatology_1982_2014.nc” to facilitate the determi-
nation of absolute temperatures. To support users requiring access through cloud computing, DCENT is also 

Fig. 5 Common SST bias adjustment. (a) Estimated magnitude of biases congruent with bucket patterns 
(blue) and globally and seasonally uniform bias (black). Shading denotes 95% c.i. across the 200 DCSST 
members. Whereas values after 1880 are estimated from comparing LSAT-inferred versus group-wise adjusted 
observational SSTs along global coasts, those before 1880 are assumed to have the same value because early 
coastal land stations are sparse (ref. 23). The dashed line shows the result if we estimate bias using pre-1880 data. 
Moreover, SST measurements are primarily from bucket before 1930 but consist of bucket and engine-room-
intake measurements afterwards. To account for this distinction, we fit two models, using bucket pattern plus 
an intercept (Model 1) and the other with only the bucket pattern (Model 2). The transitions between using 
inferred to fitted biases and using Model 2 to Model 1 are indicated by gray vertical shadings. (b) The difference 
between group-wise adjusted minus LSAT-inferred coastal SSTs (y-axis) scales positively with collocated bucket 
bias patterns (x-axis). Data shown are for 1920. Each marker is a 5° × 5° monthly box with size indicating 
number of contributing SST observations. Also shown is a linear fit using ordinary least squares (red line).

Fig. 6 Comparison of instrumental and tree-ring-based temperature reconstructions. Land air temperature 
anomalies for the Northern Hemisphere growing season (May-August) are compared across instrumental 
datasets – DCENT (red), CRUTEM5 (green), and Berkeley Earth (blue) – and a tree-ring-based temperature 
reconstruction (black). Anomalies are calculated relative to the 1900-2000 mean, and the tree-ring-based 
temperatures are re-scaled to have the same interannual variance as the instrumental temperatures following 
the methodology of ref. 33. The comparison is performed using the least common coverage over the Northern 
Hemisphere (20° N poleward) across all datasets to ensure a fair evaluation.
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accessible in .zarr format in the Google Cloud bucket “dcent_dynamically_consistent_ensemble _of_tempera-
ture”. A Jupyter notebook script for accessing DCENT on Google Cloud is available at https://doi.org/10.7910/
DVN/NU4UGW.

technical Validation
Summary of methodology evaluation. The methodologies employed in DCENT development have 
undergone thorough evaluation across different aspects.

Fig. 7 Comparison of group-wise SST adjustments between ref. 25 and DCSST. (a) the pattern of 1900 group-
wise SST adjustments in ref. 25. Note the apparent boundaries in the open ocean due to estimating regional 
variations of offsets using 17 sub-basins. (b) as (a) but for adjustments from this study. Using bucket patterns 
prevents the existence of apparent boundaries. (c–d) as (a–b) but for year 1945. (e) Pattern correlation of annual 
group-wise adjustments between ref. 25 and this study. The group-wise comparison in this study has nine times 
fewer parameters but the pattern correlation remains higher than 0.6 throughout 1880–2000. (f–g) as (a–b) 
but for year 1940. (h–i) also as (a–b) but for year 2005. (j-l) group-wise adjustments in both ref. 25 (dashed) and 
this study (solid) yield highly consistent results in removing SST biases at global and regional scales, including 
abnormally warm SSTs during World War 2 (j), cold truncation bias in Japanese measurements after the 1930s 
over the North Pacific (k), and warm bias associated with engine heat release after the 1930s over the North 
Atlantic (l).

Variable Long name Description

lon Longitude Longitude of the center of 5° cell (2.5°E–357.5°E)

lat Latitude Latitude of the center of 5° cell (−87.5°S–87.5°N)

time Time Midpoint of a month (days since Jan. 1st, 1850)

temperature Temperature anomaly Combined LSAT and SST anomalies relative to the 1982–2014 mean (in °C)

sst Sea surface temperature anomaly SST anomalies relative to the 1982–2014 mean (in °C)

lsat Land surface air temperature anomaly LSAT anomalies relative to the 1982–2014 mean (in °C)

Table 1. Details of variables provided in DCENT.
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 1. Validation of revised pair-wise homogenization algorithms for land station temperatures: The bench-
mark pair-wise homogenization algorithm, which doesn’t consider auto-correlation, has been shown to 
be skillful in recovering long-term trends6,31. This validation has been conducted using synthetic data, 
simulated temperatures, and reanalysis products with introduced breakpoints, either randomly intro-
duced or clustered in time6,31. In direct comparison with the benchmark algorithm, the algorithms used in 
DCENT demonstrate superior performance across various metrics. When tested on synthetic data and also 
the Coupled Model Intercomparison Phase 6 (CMIP6) simulations with randomly introduced breakpoints, 
they correctly identify more breakpoints, making fewer false identifications, and showing lower root mean 
square error (RMSE) in the recovery of long-term trends16. Furthermore, the validation process included 
a comparison with station metadata from the Historical Observing Metadata Repository16. When revised 
pairwise homogenization algorithms are applied to GHCNmV4 data, the percentage of identified break-
points matching with metadata indicating station re-locations and instrumental changes was found to be 
14% and 10% higher (p < 0.01) compared to random breakpoint identification. These percentages were 
also 1% higher (p < 0.1) than those achieved by the benchmark algorithm, highlighting improved skill of 
the revised algorithms. To further evaluate DCENT land temperature estimates, we compare the datasets 
against a tree-ring-based temperature reconstruction32 following the approach of ref. 33. The proxy-based 
temperatures suggest cooler summertime land temperatures during the late 19th century, and they show 
the highest consistency with DCENT land temperatures in the baseline period compared to other instru-
mental datasets (Fig. 6).

 2. Validation of the physics-informed group-wise intercomparison algorithm for SSTs: The validation of 
the benchmark algorithm25, which doesn’t account for physically simulated patterns of bucket SST biases, 
has been conducted using both physical and historical evidence. Identified group-wise offsets across 

Fig. 8 Comparisons of temperature estimates on global and hemispheric scales. (a) Upper: annual global mean 
surface temperature anomalies from DCENT (black), HadCRUT5 (red), NOAA global temperature (blue), 
GISTEMP (green), and unadjusted records (gray). Shading denotes 95% c.i. for the 200-member DCENT 
ensemble. Lower: difference relative to the ensemble mean estimate of DCENT. Anomalies are relative to the 
1982–2014 mean, and all datasets are regridded to 5° resolution and reduced to the least common coverage. 
(b) as (a) but for continental mean land air temperature estimates from DCLSAT (black), CRUTEM5 (red), 
Berkeley Earth (purple), and GISTEMP (green). (c) as (a) but for global mean sea-surface temperature estimates 
DCSST (black), HadSST4 (red), ERSST5 (blue), and COBE-SST2 (cyan). (d-f) and (g-i) as (a-c) but for the 
Northern Hemisphere and the Southern Hemisphere, respectively.
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groups of bucket measurements are negatively correlated with the amplitude of the SST diurnal cycle28. 
This relationship aligns with the physical expectation of inaccurate metadata categorizing engine-room-in-
take (ERI) measurements as buckets. ERI measurements exhibit a warm bias due to engine heat but have 
small diurnal cycles since they sample at depths of 5-15m, which are less influenced by daily temperature 
fluctuations4,34. Removing estimated offsets between groups of ERI and bucket SSTs suggests no apparent 
SST warming during the World War II period, consistent with contemporary land temperature evolution25. 
Moreover, the group-wise intercomparison algorithm also identified a sudden drop of around 0.4° C in 
SSTs from the Japanese KOBE Collection relative to other groups, specifically in the 1930s20. This finding 
is consistent with a truncation error that floored all temperature measurements from the KOBE collection 
to whole degrees Celsius since the 1930s35. Adjusting for this bias resulted in continuous early-20th-century 
warming, whose magnitude is comparable to the North Atlantic warming, over the North Pacific20. Updat-
ing the groupwise intercomparison using bucket patterns yields highly consistent global and basin-scale 
adjustments (Fig. 7j–l). Moreover, it prevents apparent boundaries of SST adjustments in the open ocean 
(Fig. 7a–i).

 3. Validation of inferring coastal SSTs from nearby LSATs: The coupled EBM has been shown to capture 
different regimes of air-sea interaction23. The spatial distribution of model parameters derived from recent 
observations are also consistent with those fitted from CMIP6 simulations and are aligned with physical 
expectations23. The EBM parameters have also been shown to be quasi-stationary throughout the historical 
period by comparing CMIP6 results during the first and second halves of the 20th century23. Compared 
with an earlier method that linearly scales LSAT anomalies to infer coastal SSTs22, using the coupled EBM 
significantly reduces inference error, especially for the extra-tropics during wintertime23.

 4. Validation of common SST adjustment: The difference between LSAT-inferred and groupwise homoge-
nized coastal SSTs show an apparent positive correlation with the assigned bucket bias pattern before the 
1940s (p<0.01, Fig. 5b). Moreover, DCENT’s common SST adjustment show a rapid increase from 1880 to 
1900 (Fig. 5a), which is consistent with a rapid increase in diurnal amplitude and the physical expectation 
of using a less insulated bucket25. In addition, both DCENT’s common SST adjustment and the diurnal am-
plitude evolution can be simulated physically using bucket models representing different bucket sizes and 
levels of insulation28.

Comparison with other data products. When compared to existing estimates, DCENT demonstrates a 
high level of consistency at global, hemispheric, and regional scales for both land and sea-surface temperatures 
after the 1960s (Figs. 8, 9, 10). Before the 1960s, DCENT global and hemispheric mean temperatures show lower 
temperatures during World War II (WWII), systematically higher temperatures from 1900 to 1940, and lower 
temperatures over 1850–1890 (Fig. 8a,d,g). Specifically, the warm anomaly during WWII and the cold anomaly 
over 1900–1910 in other existing estimates (HadCRUT5 26, NOAA Global Temp36, and GISTEMP37) falls outside 
the range of the DCENT ensemble. In contrast, the difference during the late 19th century remains within uncer-
tainty estimates.

Fig. 9 Comparison of regional land surface air temperatures. Individual panels are as (b) in Fig. 8 but for (a) 
North America, (b) Europe, (c) Asia, (d) South America, (e) Africa, and (f) Australia.

https://doi.org/10.1038/s41597-024-03742-x


1 2Scientific Data |          (2024) 11:953  | https://doi.org/10.1038/s41597-024-03742-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Looking at the land and the ocean separately indicates the source of discrepancies between DCENT and 
other products. Over land, all temperature estimates show a consistent pattern, with warming from 1850 to 
1940, followed by a period of warming hiatus over 1940–1970, and a rapid warming until present (Fig. 8b,e,h). 
Despite this overall consistency, DCLSAT indicates colder temperatures from 1850 to 1900 than all other esti-
mates. Whereas Berkeley Earth15 and GISTEMP37 estimates are on the upper bound of the DCENT ensem-
ble, CRUTEM513 falls outside the DCENT range, especially over the Northern hemisphere. Note that, unlike 
all other estimates, CRUTEM5 does not homogenize station temperatures using a global homogenization algo-
rithm13. On the other hand, DCENT runs revised global homogenization algorithms twice and hence is likely to 
remove the influence of breakpoints more completely, especially in the Northern Hemisphere where the station 
density is higher.

Not surprisingly, the most substantial difference is in the SST component. DCSST is systematically cooler 
than all other estimates in the late 19th century but becomes systematically warmer in the early 20th century 
(Fig. 8c,f,i). From 1850 to 1900, whereas HadSST410 and COBE-SST219 falls in the 95% c.i. of DCSST, ERSST512 
is significantly warmer than DCSST. During the early 20th century, especially between 1900–1920, all other 
estimates are colder and fall outside the range of DCSST. These differences are consistent between hemispheres 
(Fig. 8f,i). This difference is due to the different approach used in DCSST to adjust early SST biases. Whereas 
DCSST was referenced against coastal station temperatures, ERSST512 and HadSST410 were referenced to 
night-time marine air temperatures (NMAT). The contrast between DCSST and other estimates also implies that 
coastal air temperatures do not align with NMATs before the 1940s, a discrepancy reported in ref. 38. Although 
NMAT may entail biases due to variations in ship height18, the underlying cause of the difference between 
coastal-LSAT and NMAT references remains elusive. Nevertheless, this comparison underscores the inconsist-
ency between LSATs and NMATs and indicates that further investigation of this divergence is warranted.

Further breaking-down to regional temperatures, DCLSAT is largely consistent with other estimates over 
North America, Europe, Asia, and Australia (Fig. 9a–c,f). South America and Africa show different regional 

Fig. 10 Comparison of regional sea-surface temperatures. Individual panels are as (c) in Fig. 8 but for (a) the 
North Atlantic, (b) the North Pacific, (c) the tropical Atlantic, (d) the Indian Ocean, (e) the Tropical Pacific, (f) 
the South Atlantic, (g) the Southern Ocean, and (h) the South Pacific.
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variations, however, especially before the 1920s. DCLSAT suggests significantly cooler South American tem-
peratures in the late 19th century than the Berkeley Earth estimate (Fig. 9d). That said, both estimates suggest a 
continuous warming throughout 1880 to 1940, whereas in CRUTEM5 and GISTEMP, South American temper-
atures contain an apparent discontinuity in the late 1890s. For African temperatures before the 1940s, whereas 
DCLSAT, CRUTEM5, and Berkeley Earth estimates are consistent within uncertainties, GISTEMP suggests a 
significantly warmer African temperature in the 1880s. For regional SSTs, the difference between DCSST and 
other estimates is generally consistent with that on the global scale (Fig. 10).

Next we compare decadal trends by dividing the temperature record into four intervals: 1880–1909, 1910–
1945, 1946–1969, and 1970–2023, based on the evolving patterns of warming, cooling, or neutral trend. During 
the 1970–2023 interval, DCENT’s trends exhibit remarkable consistency with other temperature estimates 
on global and hemispheric scales for both LSATs and SSTs (Fig. 11a,b,c). The spatial distribution of warming 
trends is highly congruent across the different estimates (Fig. 12a4–e4), depicting intensified warming over 
land, particularly prominent over the Eurasian landmass. Over the ocean, SST trends since the 1970s reveal a La 
Niña-like pattern. While COBE-SST2 does not portray evident cooling in the Eastern South Pacific, similar to 
other estimates, all datasets indicate greater warming in the Western Equatorial Pacific warm pool region than 
in the Eastern Equatorial Pacific.

In the period from 1946 to 1969, the global mean temperature displays modest trends and regional pat-
terns of warming again closely align, especially among the estimates from DCENT, NOAA, and GISTEMP 
(Fig. 11a,b,c). This congruence is consistently observed when examining trends within LSAT and SST estimates. 
Features include weak warming in the tropical oceans and cooling in regions such as the Eastern United States, 
the Mid-latitude North Atlantic, Europe, and Russia (Fig. 12a3–e3).

Substantial trend discrepancies emerge before 1945. In the early 20th century (1910–1945), all other estimates 
exhibit significantly faster warming trends than all 200 members of DCENT on both global and hemispheric 
scales (Fig. 11a,b,c). This discrepancy primarily stems from differences in SST estimates, whereas LSAT trends 
remain consistent between DCLSAT and other estimates. It is worth noting that the 1910–1945 SST warming 
in estimates other than from DCSST surpass contemporary land warming and SST warming in certain regions 
over recent decades. DCSST mitigates this rapid warming on account of warmer SSTs in the 1900s as well as 
removing the World War II warm anomaly following the group-wise intercomparison25 (Figs. 8 and 10).

During the late 19th century (1880–1909), all LSAT estimates indicate warming, but SST estimates in data-
sets other than DCSST show broadly uniform cooling (Fig. 11a,b,c). In contrast, DCSST indicates overall SST 
warming during this period. Although data coverage is limited in the late 19th century, it is clear that LSATs over 

Fig. 11 Comparison of decadal and long-term trends of global and hemispheric temperatures. (a) Decadal 
temperature estimates over individual decades (x-axis) for combined land-sea temperature estimates (black), 
LSATs (green), and SSTs (blue). The bars and shading denote DCENT/DCLSAT/DCSST estimates with the 
95% c.i., and markers denotes other estimates as indicated in the legend. (b–c) are as (a) but for the Northern 
Hemisphere and the Southern Hemisphere, respectively. (d–f) as (a–c) but for long-term trends ending in 2023, 
with starting year indicated in the x-axes.
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regions such as Europe, Russia, India, and the United States exhibit positive trends. If we juxtapose Berkeley 
Earth land temperature and COBE-SST2 without merging LSATs and SSTs along coastal grids, distinct bound-
aries between positive and negative trends become evident along the coasts of the US, Europe, and India 
(Fig. 12e1). In contrast, a pattern more consistent with our expectations would resemble Fig. 12e3, where regions 
of positive and negative anomalies exhibit continuity across coastlines.

Finally, we examine century-long temperature trends and the evolution of linear trends up to 2023. 
Long-term trends of global mean surface temperature in DCENT, HadCRUT5, NOAA global temperature, and 
GISTEMP all increase from around 0.05°C per decade when the starting year is 1850 to approximately 0.2°C per 
decade when the starting year is 1970 (Fig. 11d). After 1970, the warming rate remains relatively stable, indicat-
ing that the ongoing warming since the 1970s follows mostly a linear trend. The spatial pattern of the trend in 
1880–2023 is generally consistent across different temperature estimates (Fig. 12a5–e5).

Usage Notes
DCENT, DCLSAT, and DCSST data are provided in NetCDF format as anomalies relative to the 1982–2014 
climatology on a 5° × 5° longitude and latitude grid. This format makes it easy to analyze the data using 
commonly-used programming languages such as Python, Matlab, and NCL. The DCENT ensemble consists of 
200 members, each representing an equally likely realization of the data generation process. As a result, although 
the ensemble-mean estimate is provided, we encourage users to explore and analyze the entire 200-member 
ensemble to quantify uncertainty effectively.

The current version of DCENT does not include estimates of sampling and measurement uncertainty or infill 
for grid cells without direct measurements. Future updates will address these issues. Specifically, forthcoming 
versions will add estimates of sampling and measurement uncertainties, based on the number of measurements 
or stations in each grid cell, as highlighted in relevant literature. Additionally, a machine learning-based algo-
rithm for data mapping is under development to introduce spatially infilled temperature products, improving its 
utility for AMIP-type model simulations. Subsequent updates will focus on providing long-term sub-monthly 
temperature analyses at a spatial resolution of 1 degree or finer, aiming to support studies on climate extremes 
and risk management more effectively. These planned improvements demonstrate a continuous effort to improve 
and expand the DCENT dataset for the benefit of the scientific community.

Fig. 12 Comparison of the pattern of decadal and long-term trends. (a1–a5) DCENT decadal trends over (a1) 
1880–1909, (a2) 1910–1945, (a3) 1946–1969, (a4) 1970–2023, and (a5) 1880–2023. For trends to be estimated 
in a grid cell, we require at least half of the decades, together with the first and the last decade, to have valid data 
coverage. For a decade to be valid, at least five years of data should each has at least six month being sampled. 
Columns b–e are as (a) but for other estimates from (b) HadCRUT5, (c) NOAA global temperature, (d) 
GISTEMP, and (e) combining Berkeley Earth over land and COBE-SST2 over the ocean (for display purposes). 
The combination of Berkeley Earth LSAT and COBE-SST2 involves replacing empty grid cells in Berkeley LSAT 
trends with COBE-SST2 trends where-ever possible. Before calculating trends, all datasets are regridded to 
5° × 5° spatial resolution and reduced to the least common coverage, or those grid boxes containing data across 
all products.
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Code availability
The complete method is detailed in the manuscript, and the corresponding code is available at https://github.
com/duochanatharvard/DCENT. All packages are developed in Matlab and have been tested on both MacOS and 
Linux systems, using Matlab version 2021a.
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